
Crash Recovery with Partial
Amnesia Failure Model Issues

Qüestions sobre el Model de Fallades de
Caiguda–Recuperació amb Amnèsia Parcial

Departament de Sistemes Informàtics i
Computació

Tesi Doctoral

Presentada per:
Rubén de Juan-Maŕın

Dirigida per:

Dr. Luis Irún-Briz
Dr. Francesc Daniel Muñoz-Escóı

Juliol 2008

Agräıments

A Luis Irún Briz i Francesc D. Muñoz i Escóı, els meus directors de tesi, els vull
donar les gràcies pel seu suport, col·laboració, assessorament i paciència al llarg
d’aquest treball cient́ıfic.

Vull agrair també als revisors d’aquest document pels seus comentaris que han
ajudat a millorar i donar-li el format definitiu.

Al Institut Tecnològic d’Informàtica (ITI) li vull agrair l’oportunitat de poder
fer recerca en el camp dels sistemes distribüıts i les facilitats oferides per fer el
doctorat.

Als meus companys del grup de Sistemes Distribüıts els vull agrair per les discus-
sions i comentaris que han servit per millorar i aprofundir el meu coneixement en
el món dels sistemes distribüıts. No puc oblidar en aquests agräıments als com-
panys de l’ITI pel magńıfic ambient de treball en el qual he pogut desenvolupar
aquest treball.

Als doctorants i professors de la Facultat d’Informàtica de la Universitat de
Lugano els he de donar les gràcies per l’enriquidor ambient d’investigació en el
que m’han permés fer part d’aquest treball, i en especial als membres del grup
de sistemes distribüıts dirigit per Fernando Pedone.

Finalment, vull agrair-li a la meva familia el constant suport que m’han donat
sempre, i que entre moltes coses m’ha permés dur a terme aquesta tesi.

Contents

Resum 1

Resumen 3

Abstract 5

1 Introduction 7

1.1 Replicated Systems . 7

1.2 Methodology . 10

1.3 Motivation and Scope . 11

1.4 Outline . 16

I Background 17

2 Research Context 19

2.1 SiDi Group . 19

2.2 MADIS . 19

2.3 CONDEP . 20

3 Concepts and Definitions 21

3.1 Glossary . 21

3.2 Faults, Failures and Errors . 23

3.3 Failure Models . 24

3.4 Crashed Nodes . 27

3.5 Failure Detectors . 28

3.6 Recovery Information and Strategies 29

4 System Model 31

4.1 General Configuration . 31

i

ii CONTENTS

II Contributions 35

5 The Amnesia Phenomenon 37

5.1 Introduction . 37

5.2 Phenomenon Description . 38

5.3 Transactional Amnesia Formalization 44

5.4 Non-Transactional Amnesia Formalization 45

5.5 Basic Recovery Schema . 48

5.6 Amnesia Recovery Information and Strategies 49

5.7 Recovery Protocols Design Criteria 53

5.8 Related Work . 55

5.9 Conclusions . 56

6 Amnesia and Majority Partitions 59

6.1 Introduction . 59

6.2 A Problem Sample . 60

6.3 Progress Condition . 62

6.4 Transactional Problem Formalization 63

6.5 Non-Transactional Problem Formalization 65

6.6 Solutions . 66

6.7 Related Work . 68

6.8 Conclusions . 71

7 “
n
2 + 1 alive nodes” Progress Condition 73

7.1 Introduction . 73

7.2 Recovery Information Model . 75

7.3 Progress Conditions . 76

7.4 Related Work . 79

7.5 Conclusions . 79

8 Transactional Amnesia Support 81

8.1 Introduction . 81

8.2 Recovery Protocol . 82

8.3 Amnesia Recovery Support . 83

8.4 Replicated Systems Characteristics and Amnesia 86

8.5 Overhead . 90

8.6 Related work . 92

8.7 Conclusions . 93

9 Amnesia Support Review 95

9.1 Introduction . 95

9.2 Group Communication System Issues 95

9.3 Considered Recovery Protocols 96

9.4 Amnesia Support Recovery Observations 107

9.5 Conclusions . 111

CONTENTS iii

10 Amnesia in Linear Interaction Systems 113

10.1 Introduction . 113

10.2 Recovery Protocol and Amnesia Support 114

10.3 On-Going Transactions and Consistency 115

10.4 Related work . 119

10.5 Conclusions . 120

11 Non-Transactional Amnesia Support 123

11.1 Introduction . 123

11.2 Recovery Information . 124

11.3 Recovery Protocol . 125

11.4 Amnesia Support . 125

11.5 Amnesia Overhead . 130

11.6 Related Work . 134

11.7 Conclusions . 135

12 Amnesia Solution Analysis 137

12.1 Introduction . 137

12.2 Amnesia Solution Overheads . 137

12.3 Simulation . 138

12.4 Results . 140

12.5 Related Work . 146

12.6 Conclusions . 147

III Related Work 149

13 Related Work 151

13.1 Replicated Systems Recovery and Failure Models 151

13.2 Recovery Survey . 152

13.3 Successful Delivery . 153

13.4 Atomic Broadcast Based On Consensus 153

13.5 Recovery Optimization Techniques 155

13.6 Recovery in Replicated Commercial Systems 157

IV Conclusions and Future Work 163

14 Conclusions and Future Work 165

14.1 Conclusions . 165

14.2 Future Work . 166

Bibliography 166

iv CONTENTS

V Annex 179

A Thesis Publications 181

A.1 Publications List . 182

Index 183

List of Figures

4.1 Node Architecture . 32

5.1 Starting system . 39
5.2 Transaction propagation . 40
5.3 Transaction processing . 40
5.4 Transaction commit . 41
5.5 Crash of replica R3 . 41
5.6 Reconnection of replica R3 . 42
5.7 Logical Recovery Process . 48
5.8 Log Recovery Information for Transactional systems. 50
5.9 Log Recovery Information for Non-Transactional Systems. 51
5.10 Version Recovery Information. 52

6.1 Transaction commit . 61
6.2 Crash of R2 and R3 . 61
6.3 Reconnection of R2 and R3 . 62
6.4 Progress Condition Problem . 69

7.1 Reconstruction State. 78

8.1 Recovery Algorithm. 82
8.2 PassiveReplication (Hot Passive Asynchronous) 87
8.3 Passive Replication (Hot Passive on Processing) 88

10.1 Linetime events . 116
10.2 Reactive BRP . 118
10.3 Proactive BRP . 118

11.1 Real Log Recovery Information for Non-Transactional Systems. . 124
11.2 Intermediate Recovery Process 126
11.3 Complete Recovery Process . 128
11.4 Final Recovery Process . 129

12.1 Results for 3 replicas and 10% read-only Txs. 141
12.2 Overhead cost - 3 replicas and 10 % of read Tx. 141

v

vi LIST OF FIGURES

12.3 Results for 9 replicas and 10% read-only Txs. 144
12.4 Overhead cost in % - 9 replicas and 10 % of read Tx. 144
12.5 Results for 21 replicas and 10% read-only Txs. 145
12.6 Overhead cost in % - 21 replicas and 10 % of read Tx. 145

List of Tables

3.1 Schneider Failure Models classification [115]. 25

6.1 View Transitions. 63

8.1 Characteristics Set. 86
8.2 Processing Times. 91

10.1 Employees. 117
10.2 Employees in r1, r2. 117
10.3 Employees in r3. 118

11.1 Parameters. 132
11.2 Processing Times. 133
11.3 Processing Times for each External Access. 134

12.1 Simulation values. 139
12.2 Storing system values. 140

A.1 Publication List. 182

vii

Resum

Els sistemes replicats són una branca dels sistemes distribüıts que tenen per
objectiu obtenir sistemes informàtics altament disponibles, tolerants a fallades
i amb alts rendiments. Una de les últimes tendències en les técniques de repli-
cació, gestionats per protocols de replicació, és fer ús de Sistemes de Comuni-
cació a Grups i més especialment de la primitiva de comunicació difusió atòmica
per obtenir protocols de replicació eficients.

Un aspecte important en aquests sistemes consisteix en com gestionen la descon-
nexió de nodes –que degrada el seu servei– i la connexió/reconnexió de nodes
per mantenir el seu suport original. Aquesta tasca és delegada en els sistemes
replicats al protocol de recuperació. Com treballa aquest depén especialment
del model de fallades adoptat. Un model comunment utilitzat per sistemes
amb gran estat és el de fallada-recuperació amb amnèsia parcial ja que propor-
ciona periodes de recuperació curts. Però, l’assumpció d’aquest model implica
l’aparició de diversos problemes. Molts d’aquests nous problemes ja han sigut
solventats en la literatura: gestió de vistes, abortament de les transaccions locals
iniciades en el node fallat –quan es parla de sistemes transaccionals–, o per ex-
emple la reinclusió de nodes en el sistema replicat. Tot i aixó, hi ha un problema
associat a l’assumpció d’aquest model que no ha sigut considerat completament:
el fenomen de l’amnèsia. Fenomen que pot donar lloc a inconsistències si no és
gestionat correctament.

Aquest treball presenta aquest problema d’inconsistència d’estat degut a l’amnèsia
i el formalitza, definint les propietats que es deuen complir per evitar aquest
problema i es presenten possibles solucions. A més a més, també es presenta i
formalitza un problema d’inconsistència –degut a l’amnèsia– que apareix sota
una seqüencia espećıfica d’esdeveniments tolerada per la condició de progrés
majoritària que implicaria parar el sistema, proposant també les propietats
per evitar el problema i plantejant solucions. Com a conseqüència es proposa
una forma alternativa de condició de progrés majoritària. Després es defineix
més acuradament una de les solucions –que consisteix en persistir els missat-
ges de forma atòmica en el procés d’entrega– i s’estudia el seu comportament
baix diferents configuracions dels sistemes replicats. Finalment, s’inclou un es-
tudi del sobrecost introdüıt per la utilització de la solució general plantejada,
demostrant-se que si la memòria és suficientment ràpida aquest és assumible.

1

Resumen

Los sistemas replicados son una rama de los sistemas distribuidos que tienen por
objetivo obtener sistemas informáticos altamente disponibles, tolerantes a fallos
y con altos rendimientos. Una de las últimas tendencias en las técnicas de repli-
cación, gestionadas por protocolos de replicación, es hacer uso de los Sistemas
de Comunicación a Grupos y más especialmente de la primitiva de comunicación
de difusión atómica para obtener protocolos de recuperación eficientes.

Un aspecto importante en estos sistemas consiste en cómo gestionan la desco-
nexión de nodos –que degrada su servicio– y la conexión/reconexión de nodos
para mantener su soporte original. Esta tarea es delegada en los sistemas replica-
dos al protocolo de recuperación. Cómo trabaja éste depende especialmente del
modelo de fallos adoptado. Un modelo comúnmente utilizado para sistemas con
gran estado es el de fallo-recuperación con amnesia parcial ya que proporciona
periodos de recuperación cortos pero asumir este modelo implica la aparición
de diversos problemas. Muchos de ellos ya han sido solventados en la literatura:
gestión de vistas, aborto de las transacciones locales en el nodo cáıdo –cuando
se habla de sistemas transaccionales–, o por ejemplo la reinclusión de nodos en
el sistema replicado. De todos modos, hay un problema asociado a la asunción
de este modelo que no ha sido considerado completamente: el fenómeno de la
amnesia. Fenómeno que puede dar lugar a inconsistencias si no es gestionado
correctamente.

Este trabajo presenta este problema de inconsistencia debido a la amnesia y
lo formaliza, definiendo las propiedades que se deben cumplir para evitarlo y
plantea posibles soluciones. Además, también se presenta y formaliza un pro-
blema de inconsistencia –debido a la amnesia– que aparece bajo una secuencia
espećıfica de eventos tolerada por la condición de progreso mayoritaria que im-
plicaŕıa parar el sistema, proponiendo también las propiedades para solventarlo
y planteando soluciones. Como consecuencia se propone una forma alternativa
de condición de progreso mayoritaria. Después se define de forma más precisa
una de las soluciones –que consiste en persistir los mensajes de forma atómica
en el proceso de entrega– y se estudia su comportamiento bajo diferentes con-
figuraciones de los sistemas replicados. Finalmente, se incluye un estudio del
sobrecoste introducido por la utilización de la solución general planteada, de-
mostrando que si la memoria es suficientemente rápida éste es asumible.

3

Abstract

Replicated systems are a kind of distributed systems whose main goal is to en-
sure that computer systems are highly available, fault tolerant and provide high
performance. One of the last trends in replication techniques managed by repli-
cation protocols, make use of Group Communication System, and more specif-
ically of the communication primitive atomic broadcast for developing more
efficient replication protocols.

An important aspect in these systems consists in how they manage the discon-
nection of nodes –which degrades their service– and the connection/reconnection
of nodes for maintaining their original support. This task is delegated in repli-
cated systems to recovery protocols. How it works depends specially on the fail-
ure model adopted. A model commonly used for systems managing large state
is the crash-recovery with partial amnesia because it implies short recovery peri-
ods. But, assuming it implies arising several problems. Most of them have been
already solved in the literature: view management, abort of local transactions
started in crashed nodes –when referring to transactional environments– or for
example the reinclusion of new nodes to the replicated system. Anyway, there
is one problem related to the assumption of this second failure model that has
not been completely considered: the amnesia phenomenon. Phenomenon that
can lead to inconsistencies if it is not correctly managed.

This work presents this inconsistency problem due to the amnesia and formalizes
it, defining the properties that must be fulfilled for avoiding it and defining pos-
sible solutions. Besides, it also presents and formalizes an inconsistency problem
–due to the amnesia– which appears under a specific sequence of events allowed
by the majority partition progress condition that will imply to stop the system,
proposing the properties for overcoming it and proposing different solutions. As
a consequence it proposes a new majority partition progress condition. In the
sequel there is defined in a more accurate and precise way one of the solutions
– that consists in persisting messages atomically in the delivery process– and it
is studied its behaviour under different replicated systems configurations. Fi-
nally, it is included a study of the overhead introduced when using this generic
solution, demonstrating that if the memory is fast enough the overhead can be
tolerated.

5

Chapter 1

Introduction

1.1 Replicated Systems

Replicated systems are a special subset of distributed systems focused on pro-
viding good performance levels, high availability and fault tolerance. These
are successful key points for information systems. Good performance levels re-
fer to the requirement that applications would provide short response times to
client requests. High availability implies that the system responsiveness is up
and working during a high percentage of time. Usually, when talking about
high availability it is said that systems are built for providing service during
the: 99.999%, 99.9999%, 99.99999% –also known as five, six and seven nines
respectively– of the time. When talking about fault tolerance it is meant that
the service is provided even in the presence of failures or crash node occurrences.
Thus, in order to provide all these characteristics, replicated systems are com-
posed of several replicas interconnected through a network where the state is
partially or wholly replicated.

On the one hand, performance can be improved when clients access the closest
replica to them [94, 99, 88], or by using load-balancing algorithms [104, 49, 2].
On the other hand, replicas may fail or may disconnect; therefore, fault tolerance
and high availability are reached forwarding client requests to non-failed nodes
in a transparent way.

Replicated systems can be arranged attending to different characteristics, but
one of the most important classifications distinguishes these systems; those
which perform their work outside the boundaries of transactions and those whose
work is performed inside. First ones are usually denoted as process replication
(but in order to avoid ambiguities here, they will be named “non transactional”)
systems while the second ones are known as replicated transactional systems (e.g.
replicated databases). Therefore, the main difference between these systems is
that the second ones are constrained by ACID [10] or ACID-like properties while

7

8 CHAPTER 1. INTRODUCTION

the first ones are not. An important aspect on both cases is to determine the
replicated consistency level they need and to ensure that it is guaranteed. This
desired state consistency can vary among different replicated systems depend-
ing on their respective necessities and their respective robustness or tolerance in
front of replicated state inconsistencies. In the case of transactional replicated
systems consistency is highly related to the isolation level established among
transactions.

Regardless of the replication type, latest trends in replication techniques –
managed by replication protocols [94, 99, 88, 104, 49, 2]– make use of a Group
Communication System (GCS for short) [24] as it is detailed in [121]. These
GCSs offer different services to the systems built on top of them. They provide
several communication primitives, such as the atomic broadcast [69] allowing
a more efficient implementation of replication protocols. These trends were
started in [100], where authors demonstrated that the atomic broadcast primi-
tive could be used instead of atomic commitment –either two phase commit [61]
or three phase commit [66, 116]. Moreover, GCSs make use and provide mem-
bership mechanisms –also known as group membership service [28, 108, 113].
The membership service keeps track of the active and connected nodes reporting
changes on the system configuration (i.e. failure or join of a replica).

The information provided by membership services is useful in determining if the
replicated system’s progress condition is fulfilled. A progress condition is the
rule that has to fulfill a replicated system to be enabled to work in order to
provide guarantees upon failures and recoveries. This progress condition can be
based on a majority of alive replicas –when a primary component membership
[24] is used.

Therefore an important aspect in replicated systems is how they manage node
disconnection occurrences –which degrades their performance, fault tolerance
and high availability support– and node connections or reconnections in order
to maintain their original support. In fact, an intuitive basic algorithm to run
when a replica connects or reconnects to the replicated system would consist in
the following steps:

1. First of all, it is necessary to check if its state is outdated in relation to
the replication system state.

2. If the replica’s state is outdated in regard to the replicated system state,
a recovery process for updating it must be started. In this process an
updated replica –or replicas– plays the recoverer role transferring the in-
formation –recovery information– needed to update the outdated replica
which adopts the recovering role.

This recovery process of outdated nodes can be carried out in many ways, rang-
ing from the simplest one (a backup transfer) to more complex alternatives. But
ideally, this process must be performed without interfering the common work

1.1. REPLICATED SYSTEMS 9

of the replicated system. To do so, replicated systems use recovery protocols
which deal with these situations –in a coordinated way with the consistency
management performed by the replication protocol–, and the way in which the
recovery protocols handle recovery processes depends on the recovery informa-
tion strategy used and the adopted failure model.

With regard to the type of recovery information transferred to the outdated
node, traditionally, two different techniques have been used: version-based and
log-based strategies. The first one consists in transferring the last state reached
by the replicated system to the outdated node while the second consists in
transferring the set of replication messages lost by the outdated node in order
to be processed in the recovering node. Usually, the first technique is more
interesting for long term failures –where the outdated node has lost a lot of
state changes– while the second one is more interesting for short term failures
–where the outdated node has lost few update propagation messages–.

Literature has proposed many failure models for replicated systems [29, 69,
106, 115]. Among all them, this thesis focuses on the fail-stop [114] and crash-
recovery with partial amnesia [29] failure models because they are widely used
in replicated systems –and more specifically in replicated databases.

The first one makes replicated systems discard crashed replicas, substituting
them by “new” ones. Thus, when connecting a new node to the replicated
system, the recovery protocol must first transfer the whole state to the new
node –recovering node– before becoming fully operational. Note that a failed
node can still be recovered, but in that case it adopts a new identity and it does
not need to maintain its previous state. This failure model is interesting due
to its simplicity. When a node crashes it is forgotten by the replicated system
which substitutes it by a new replica. Then its semantic is very simple: a node
can be active and updated or active being updated. Moreover, the algorithm
for determining the information set that must be transferred is very easy: whole
state. But, it is impractical for replicated systems managing large states because
it leads to long transfer periods implying in the replicated system the following
consequences:

• Longer periods with low performance levels for systems based on active
replication. This effect is obvious for replicated systems which do not allow
outdated replicas to work. But, it is also present in systems that allow
outdated replicas to work, because the rate of work concluded correctly
is degraded. Note that replicated systems based on passive replication do
not suffer this effect.

• Longer periods with decreased fault tolerance support. Only fully updated
replicas can be used to guarantee the correct and consistent state evolution
in the replicated system.

• Higher times of unavailability if the replicated system does not fulfil the
progress condition (i.e. systems based on primary partitions).

10 CHAPTER 1. INTRODUCTION

A particular case of systems managing big amount of state is data bases. In
order to avoid such drawbacks, latest replication/recovery proposals for database
systems [79, 70] have adopted the crash-recovery with partial amnesia failure
model. In this case crashed nodes are not discarded. The replicated system
waits for their reconnection in order to start the recovery process. In this case
the recovery protocol transfers to each recovering node only the information lost
during its disconnection crash interval. Once the recovering node has updated
all its lost information, it becomes a fully operational node. So, in this approach
the recovery process does not need to transfer the whole state but only the subset
lost or outdated by the recovering node, shortening the recovery process and
diminishing its associated problems.

But when assuming this second failure model, a new set of problem appears.
Most of them are already solved in the literature. View management, aborting
started local transactions in the disconnected node –in transactional replicated
systems–, and node reinclusions to the replicated system are problems that have
been already analysed by the scientific community.

However a particular set of problems have not been considered completely: those
related to the amnesia phenomenon [38]. In this case, the problem resides on the
difficulty that this failure model introduces to establish the accurate subset of
information to transfer when recovering reincluded nodes. It appears because
in some protocols the last assumed state in the recovering node is not really
the last one, since such recovering replica may have lost some information that
other replicas propagated to it before crashing. This phenomenon can lead to
undesired situations.

It must be noticed that the “end-to-end argument” guideline proposed in [112]
for placing funcionalities in layered –and modular– distributed systems can be
used for solving the amnesia problem. In fact, the amnesia problem is a clear
example of the problems that tried to address the “end-to-end argument” being
described in [112] as the deliverey guarantees problem. This thesis focuses on
this problem in the context of replicated systems using group communications
systems.

1.2 Methodology

The methodology used for dealing with each problem detected and studied in
this thesis has been the same one.

As a first step, a bibliographical research is performed in order to set the back-
ground about the existing problem in the scientific community in this area. If
this process of information compilation ends finding references –and proposed
solutions– in the literature to this problem, they are considered in order to know
the goodness and accurateness of the solutions presented in the thesis. However,
if the problem has not been already addressed properly, the search is extended

1.3. MOTIVATION AND SCOPE 11

to similar and related scientific fields for detecting similar problems and the
provided solutions.

Later, once the information gathering has been concluded, the problem is anal-
ysed and formalized, considering previous references, for establishing a theoret-
ical basis that will be used later for demonstrating the validity and correctness
of the provided solutions.

The process of generating a solution for a specific problem starts studying differ-
ent possibilities and variations. Among all the considered solutions a selection
process is started. First, their validity is checked against the problem formaliza-
tion, discarding immediately those that do not succeed in this process. Second,
the remaining possibilities –if there are several– are compared in order to de-
termine which one presents better behavior attending to several characteristics.
Finally, the selected solution is described, compiling all the information gener-
ated in the design process.

The research result is validated presenting and confronting it with the scien-
tific community. To do so, papers –where the solution and research results are
included– are written and sent for publication in specialised conferences of this
area. In order to ensure the quality of this process, papers are only sent to
conferences which publish at Springer LNCS, Association of Computer Machin-
ery (ACM) and IEEE. The first submission of a paper is also published as a
technical report. Once the conference review comments are received, the paper
is improved including the more important suggestions, either if the paper has
been accepted or not. In the first case, the reviewed paper is submitted in its
last version to the conference. In the second case, the paper –including the
improvements– is sent to another conference.

In conferences, the comments and suggestions received in the questions time
after the paper presentation are considered and included in the thesis research
for improving the overall quality.

1.3 Motivation and Scope

This thesis is focused on how the assumption of the crash recovery with par-
tial amnesia failure model introduces the necessity of considering special solu-
tions in order to avoid undesired situations –mainly resulting in replicated state
inconsistencies– in these replicated systems due to the amnesia phenomenon.

To start with, it is presented the amnesia phenomenon. To do so, first it is
detailed an example for describing it and its possible effects. At the same time
there are outlined the two levels at which this phenomena appears. Later,
there are included the formalizations for this phenomena in transactional repli-
cated systems and non-transactional replicated systems, presenting in both cases
which properties must be fulfilled in order to manage it accurately.

12 CHAPTER 1. INTRODUCTION

A special case that is also considered in this thesis are possible arising repli-
cated state inconsistencies when combining the amnesia phenomenon with the
majority progress condition. To do so it is first outlined with a simple exam-
ple (look at Section 6.2) the replicated consistency problem which arises when
combining the amnesia phenomenon –non-correctly handled– with a specific
replicated system composition allowed by the majority partition progress condi-
tion. This problem as it would be seen can lead different state evolutions among
the members of the replicated system.

Later, this problem is formalized, establishing the replicated system conditions
that would generate it, and the properties that must be fulfilled for overcoming
it.

Notice that despite being a rare problem, it should be accurately managed for
avoiding critical situations. Therefore, two different approaches are presented
for overcoming it, being each one of them interesting for transactional replicated
systems with different characteristics. On the one hand, it is presented a solution
for critical systems where already performed and committed work at replicated
system level can not be undone nor lost. On the other hand, it is proposed
the use of a technique used in partitionable systems, reconciliation, whose main
advantage is its zero overhead in normal work.

Related to the previous case it is presented in this thesis a new approach for the
majority partition progress condition in replicated systems. It is included due to
the importance of these rules in replicated systems. Their importance resides in
the fact of being key aspect in order to guarantee the replicated state correctness
in replicated systems. To this end, two basic approaches can be adopted: primary
partition systems where only the majority partition is allowed to work and
partitionable systems where multiple partitions may work concurrently. The
latter implies the use of costly quorums [12] for merging partition states, which
may not always be feasible without breaking correctness. Therefore, primary
partition is widely accepted in order to guarantee correctness in the replicated
state, as well as the capability, for any reconnected (thus potentially outdated)
node, of being always in disposition to be updated to continue working.

This principle is based on the idea of a progress condition. Thus, consider-
ing that the distributed system knows the pre-configured set of possible nodes
D = {r1, ..., rn}, the condition of primary partition is granted when the intercon-
nected alive nodes conform a subset of D that satisfies the progress condition.
Thus, the progress condition enables a partition P ⊆ S (i.e. a subset of the
distributed system) to go on working with guarantees.

Traditionally, replicated systems have adopted the concept of majority parti-
tion, meaning that n

2 +1 nodes of the system must be alive and fully up-to-date
in order to enable the partition to work. More precisely, this statement implies
that the notion of “up-to-date member” is equivalent to “member of the pri-
mary view”. In the scope of recovery systems for database replicated systems
based on broadcast primitives, the Enriched View Synchrony was presented in
[9], decoupling the concept of “up-to-date member” from the “member of the

1.3. MOTIVATION AND SCOPE 13

primary view” one. This distinction drives the authors to separate the working
view concept from the majority partition one. The work also demonstrates how
this new approach models more accurately the evolution state in node replicas,
and how it fits better for applications where the recoveries are long and complex.

In addition, during the process run for recovering a newly reconnected node on
a primary partition, several problems arise in order to guarantee the correctness
of the system. Because of these problems, many recovery protocols introduce
several restrictions on the set of nodes allowed to work during that process. The
most advanced protocols disallow for working just the recovering node, whilst
other approaches prohibit the activity in the entire partition during part of -or
even all- the process run to recover nodes.

A direct implication of these two characteristics is that the aforementioned
condition introduces a drawback in the availability of the system, since the
nature of the update process of reconnected nodes makes it expensive, at the
time that the n

2 +1 updated condition requires an immediate update of the nodes
in order to proceed in partitions with just n

2 +1 composing nodes. Consequently,
it results extremely convenient to find a mechanism for relaxing the progress
condition, thus allowing to proceed partitions with just n

2 +1 alive nodes, which
will lead to a higher availability, also enabling background recovery processes.

This work formalizes a new and more relaxed progress condition for replicated
systems. Its viability and correctness in recovery terms are also proven to be
guaranteed by a proposed general recovery information strategy, ensuring that
primary partitions will always be able to go on working. This proposal is pre-
sented in the scope of a middleware recovery protocol intended to provide fault
tolerance for replicated systems based on linear interaction approach [124], al-
though the formalized principles are also applicable to replication protocols
based on constant interaction. The only assumption made by our model is that
the information gathered during the failure of nodes can be structured as an
activity log (i.e. log-based gathering). This recovery protocol supports dif-
ferent recovery strategies with the idea to minimize the effort and cost of the
recovery process, without stopping the replicated system work for primary par-
titions. It is also intended to perform partial recoveries, when needed. Finally,
as our design is performed as a middleware recovery system, it can be easily
applied to different transactional scenarios, in addition to database replicated
systems. In fact, this recovery system is highly oriented to replicated processes
which manage large amounts of state, not being such interesting for replicating
small objects, where usually transferring the whole state to outdated nodes will
present better performance.

After presenting and formalizing the amnesia phenomenon and its associated
problems, there are detailed how recovery protocols can face its undesired effects
concerning this phenomenon with several replication aspects.

Taking as starting point the solution presented in [19] it is performed an analysis
of how different replication configurations in replicated transactional systems
can affect the amnesia phenomenon and its accurate support. This analysis is

14 CHAPTER 1. INTRODUCTION

enriched with the study of the overhead introduced when supporting correctly
amnesia in different transactional replication configurations.

Later, there are briefly described some database recovery protocols –as example
of recovery techniques for replicated transactional systems– proposed in the
literature [79, 70, 82, 20, 3, 74, 19, 20] and surveyed in [57]. This survey is
enriched here by emphasizing how they face the amnesia phenomenon, attending
to the fulfillment of the properties described in the formalization which correct
observance guarantees an accurate amnesia phenomenon management. This
study also gives special importance to the database replication protocols they
are designed for, because as it was depicted in [57], the recovery protocols are
very dependent from the characteristics of the replication protocols used, and the
information that these replication protocols store. In this study it is observed
how a correct amnesia support depends on the combination of an adequate
recovery information generation policy and an accurate way for notifying the
last really committed changes in the node that must be recovered.

The aftermath of this study is a recovery protocol categorization grouped first
by the used technique –version-based or log-based–, and secondly by the gran-
ularity used for managing the recovery information. In this categorization, it is
analyzed the correct amnesia phenomenon management, and in the cases it is
not guaranteed they are proposed changes in these techniques for overcoming
it.

On the sequel it is considered the design of a general strategy for recovery
protocols implemented for transactional replication protocols based on linear
interaction, in contrast of using the constant interaction [124] approach. This
is provided because linear interaction –consisting in broadcasting one message
per operation-, in spite of its high performance cost, will be the only feasi-
ble alternative for object-oriented replicated systems with large data states to
transfer, and with a transactional support, such as FT-CORBA with its com-
plementary Transaction Service, where constant interaction will either lead to
huge messages or be impractical in case of partial replication, since the state
to be transferred should be collected from different source nodes. The problem,
as it will be shown, is the management required by linear-recovery protocols
which is more complex because it must manage multiple messages per trans-
action. In addition, for ensuring correctness under linear interaction, messages
belonging to not-yet-committed (as well as for rolled-back) transactions, must
be adequately treated.

The idea is to obtain a recovery protocol for linear interaction replication proto-
cols which minimizes the effort and cost of the recovery process, without stop-
ping the replicated system work for primary partitions. It is also intended to
perform partial recoveries, when needed. Finally, as our design is performed as
a middleware recovery system, it can be easily applied to different transactional
scenarios, specially including database replicated systems.

When presenting the proposed solution it would be outlined the on-going trans-
actions problem which arises due to the use of linear interaction in database

1.3. MOTIVATION AND SCOPE 15

replication protocols –implying the broadcast of messages belonging to not yet-
committed transactions–. Besides, this replication system will interleave mes-
sages belonging to different transactions, messages that will be applied to the
database in their delivery total order. Finally, each transaction is committed
when its commit is applied. In this context, if a node crashes, all associated
changes to not yet committed transactions are lost whilst associated updates to
committed transactions remain permanent. Afterwards, when the crashed node
becomes active again, the recovery process updates it by reapplying (among
others) the messages associated to not yet committed transactions at the crash
time, while the committed transaction messages at the crash time are not reap-
plied. In this scenario, inconsistencies can arise if these reapplied messages were
interleaved with committed transaction messages in the original work sequence
because this original order is misunderstood in the recovered node. These in-
consistencies appear if the mentioned transactions conflict, and the selected
isolation level tolerates such conflicts. As it will be noticed this problem only
occurs when an outdated node reconnects to a working replicated system, and
it has not lost the working condition from the instant when the outdated node
crashed.

Later, it is presented a generic recovery protocol for non-transactional replicated
systems which manages accurately the amnesia phenomenon. This solution is
based on the use of checkpointing and logging ideas widely used in distributed
systems [51]. Therefore, when a crashed node reconnects first restores the check-
point and applies the received messages before the crash –amnesia recovery–,
and second receives the broadcast messages during its disconnection. This so-
lution emphasizes which information must be maintained when applying the
messages during the amnesia recovery process in order to: repeat the forgot-
ten work –work already done before the crash but lost in it–, and do the work
not performed before the crash. Moreover, the amnesia recovery solution has
to avoid the repetition of the work already performed and which follows the
exactly-once semantics [72] (i.e. state changes with permanent effects). Then it
is included an amnesia overhead analysis for different non-transactional repli-
cation configurations in order to know the time cost associated to managing
accurately the amnesia problem.

As it has been already said in [112], authors considered this problem when pro-
posed their “end-to-end argument” guideline for modular distributed systems.
The guideline said that functions placed in the low levels of a layered design are
redundant or low value when compared with the effort of putting them there.
So, the idea would be to put functions usually as top as possible. And, this
the approach followed when proposing the generic solution for managing it cor-
rectly either in transactional and non-transactional systems. As a result, it is
provided some minimal mechanisms able to assist the applications for solving
the amnesia problem.

Finally the generic solution proposed for transactional systems is simulated
using different storage systems. The obtained results are included, compared

16 CHAPTER 1. INTRODUCTION

and analyzed.

1.4 Outline

This thesis is structured in three different parts. The first Part, Background,
will describe the thesis context. Chapter 1 is a brief Introduction to the thesis
contents and motivations. In Chapter 2 it is presented the research projects
where this thesis has been developed. Some concepts and definitions used in
the thesis body are defined in Chapter 3, while Chapter 4 details the considered
system model. The second Part, Contributions, contains the contributions of
this thesis. The Amnesia Phenomenon is detailed and formalized in Chapter 5.
Chapter 6 details and formalizes a source of possible inconsistencies when com-
bining the amnesia phenomenon with the majority partition progress condition,
while Chapter 7 presents a refinement in the majority partition progress condi-
tion, considering the problems formalized in previous chapters. Later, Chapter
8 studies how can be provided amnesia support –and the cost associated to–
in transactional replicated systems. Next chapter, Chapter 9 surveys different
recovery techniques for replicated transactional systems proposed in the liter-
ature analysing if they manage accurately the amnesia phenomenon, and also
proposing a classification. A recovery proposal for transactional replicated sys-
tems based on linear interaction is presented in Chapter 10. Chapter 11 details
a log-based recovery protocol for non-transactional replicated systems which
manages accurately the amnesia phenomenon and considers several semantics
when recovering. Finally, Chapter 12 contains an analysis of the overhead intro-
duced by the proposed solution based on a simulation. The third part extends
the related work with Chapter 13 while the fourth part contains the conclusions
and future work in Chapter 14.

For concluding the fifth part Annex, includes additional and complementary
information.

Part I

Background

17

Chapter 2

Research Context

This chapter describes the research group and research projects where the thesis
work has been developed.

2.1 SiDi Group

The SiDi Group has been working for a long in several projects with the aim
of designing and implementing middleware replication solutions whose goal is
to provide highly available and fault-tolerant information systems. Among
these projects the most important ones are: GlobData (FP5-IST-1999-20997),
DeDiSys (FP6-2003-IST-2-004152), MADIS (MCYT TIC03-09420-C02) and CON-
DEP (TIN2006-14738-C02-01). Therefore, all this research has been oriented to
designing and developing middleware frameworks for supporting replication and
recovery protocols either for traditional –static– and dynamic environments. At
the same time designing, implementing and evaluating different replication and
recovery protocols in replication solutions.

This thesis has been developed in the context of the research projects MADIS
and CONDEP. These projects are described on the sequel for giving the neces-
sary context.

2.2 MADIS

This project follows the SiDi group research in the replicated systems field
for providing highly available and fault tolerant applications. This research is
focused on both process and data replication, proposing protocols and archi-
tectures for facilitating the development of highly available applications. More

19

20 CHAPTER 2. RESEARCH CONTEXT

specifically, this project has the aim of designing and implementing architec-
tures capable to provide support for multiple replication models –active, pas-
sive, coordinator-cohort–, selecting each time in a dynamic way the model which
provides better behavior and performance to the application.

Another important aspect considered in this research project are the recov-
ery protocols. These protocols are important for building real fault tolerant
applications, because their mission is to recover disconnected nodes, updating
them before becoming fully operative ensuring then the original fault tolerance
support provided by the replicated system.

Thus, the result of this project was a two layer architecture which supported the
execution of different replication protocols –providing different consistency levels
and different replication configurations–, providing a common interface for all
them. The results of this project have been presented in different publications
as [5, 3, 4, 42, 43, 75]

In this project the author has also co-authored in the following publications
[4, 31, 32, 36, 40, 43, 75].

2.3 CONDEP

The global goal of this project is to make progress in supporting the construction
of reliable systems, both in traditional (static) and dynamic environments. Dif-
ferent kinds of protocols are needed for support, depending on different layers of
the middleware architecture being developed at the SiDi. In general, the more
extended architectures that offer reliability support recur on a lower layer in
non-reliable communications. It contains the membership services, used as the
basis for a large number of distributed algorithms, in particular those in need
of some kind of agreement among the components of the distributed system.
Typical examples are group communication services. They should be located in
a second layer of the architecture. On top of this, both the replication manager
and the replication and recovering protocols, each located in the third layer,
need the mentioned membership data. This project researches on: (1) the im-
provements described above for static environments; (2) the design, specification
and implementation of a dependable architecture for dynamic environments; (3)
new supports for group membership, distributed agreement, secure communi-
cations, authentication, and consistency and replication management in those
dynamic environments. Finally, all these issues will be conveniently adapted for
intermediate environments (e.g., decentralised distributed systems), producing
generalised solutions that will be compared with their equivalent approaches in
static environments.

The author has co-authored in the following papers derived from this project
[11, 33, 34, 35, 37, 38, 39, 41, 58, 93, 111].

Chapter 3

Concepts and Definitions

This chapter is intended for detailing the basic concepts and definitions about
replicated systems that would need the reader of this thesis. Obviously, this
chapter is not intended for these readers who are experts in this research field.

This chapter is structured as follows. First of all there is the Section 3.1 which
gives the definition that will be used in this thesis for different concepts. Sections
3.2, 3.3, 3.4 and 3.5 compound a block related to failure. Section 3.2 details
the differences between fault, failures and errors. In Section 3.3 are referenced
the most common failure models for replicated systems, while in Section 3.4
it is detailed when this thesis considers that a node has crashed. Later, some
comments about failure detectors are included in Section 3.5. Finally, Section
3.6 outlines the two existing recovery strategies from an information point of
view.

3.1 Glossary

Before starting to talk about the basic concepts and definitions that will be used
in this thesis it is necessary to introduce a summary of the most used words in
this research field, and their meaning in the thesis context.

Replicated System. A replicated system is a set of nodes interconnected
through a network, where the information is wholly or partially replicated.
Replicated systems can be either transactional or non-transactional.

Node. Each one of the members that compound the replicated system. Also
known as “replica”.

Node States. Nodes can have different states from a replication and recovery
point of view. Traditionally, from a replication point of view, the nodes can

21

22 CHAPTER 3. CONCEPTS AND DEFINITIONS

be alive –or working–, and crashed –also disconnected or in other words
non working as replicated member–. From a recovery point of view, nodes
can be updated –have the last state reached in the replicated system– or
outdated.

Group Communication System. A Group Communication System [24] is
a middleware that provides communication funcionality among intercon-
nected nodes throw several group communication primitives.

Group Communication Primitive. Each one of the different communica-
tion mechanisms [24] provided by a group communication system. They
differ in the communication guarantees they provide in reliability and de-
livery order when sending messages in regard to other sent messages.

Replication Protocol. Algorithm used in a replicated system in order to
propagate updates among its members guaranteeing the desired level of
data consistency.

Transactional Replicated System. In these replicated systems the work is
performed into the boundaries of transactions. Sections 5.3, 6.3.1 and
Chapters 8, 9, 10.

Transaction. The main characteristic of a transaction is that all its opera-
tions are performed atomically. If all its operations succeed, the transac-
tion commits. Contrarily, if one operation fails, the transaction rollbacks,
aborting its transaction operations that had succeeded. In fact, transac-
tions ensure that their committed work guarantees the ACID properties.

Distributed Transaction. In a replicated system, instead of using simple
transactions there are used distributed transactions. In this case, each
transaction must be checked in all replicas, and only can be committed if
it can be committed in all nodes. If the transaction fails in one node, it
must be aborted in all nodes. This is known as distributed commit.

Constant Interaction. A transaction is done in a constant interaction way
when the number of messages used for broadcasting it and decide its abort
or commit is constant. In this technique the replication protocol can either
broadcast operations or readsets and writesets, but in most cases it simply
spreads readsets and writesets.

Linear Interaction. A transaction is done in a linear interaction way when
for each included operation the system broadcasts a message. In this
case, instead of being also possible to transfer either writesets/readsets or
operations, usually are broadcast the operations. Chapter 10.

On-going Transaction. It is said about broadcast transactions whose commit
or abort has been neither decided nor broadcast. They can be also named
as non-yet-committed. Section 10.3.

3.2. FAULTS, FAILURES AND ERRORS 23

Lost transactions. Set of broadcast transactions that have not been received
by a node –because it is crashed or disconnected–. Also known as “missed
transactions”.

Non-Transactional Replicated System. In this replicated systems the work
is not performed between the boundaries of transactions, therefore ACID
properties are not ensured. These systems are also known as process repli-
cation. Sections 5.4, 6.5 and Chapter 11.

Recovery protocol. Algorithm used in a replicated system for updating out-
dated nodes. Sections 5.5, 8.2, 9.3, 10.2 and 11.3.

Recovery information. Information set needed by a recovery protocol for
updating outdated nodes. Sections 3.6 and 5.6.

Log-Based recovery. This is the name of the recovery technique that uses as
basic recovery information the log of broadcast messages in the replicated
system. Sections 3.6.1, 5.6.1.

Version-Based recovery. This is the name of the recovery technique that
uses as basic recovery information the state of the data maintained in the
nodes of a replicated system. Sections 3.6.2 and 5.6.2.

Progress Condition . This is the condition that must fulfil the replicated
system in order to go on working. The most common progress condition
in replicated systems is the majority partition . Chapters 6 and 7.

Database. A database is a structured collection of records or data. These data
is structured following a certain model. Nowadays, the most common
model for databases is the relational model [25].

3.2 Faults, Failures and Errors

When talking about reliability, dependability or fault tolerance in information
systems it is very important to know the differences between different words that
if there are not known can lead to misinterpretations. Thus, it is important to
know the exact use in the thesis context: faults, failures and errors. In [97],
these terms were defined like their relationships.

Faults are defined as anomalous execution conditions. Their causes cover a great
range: from mistakes in systems specifications or implementations to external
disturbances. And faults are manifested in systems as errors, where the logical
state differs from its intended value. Thus, an error is a discrepancy between a
computed, observed or measured value or condition and the true, specified or
theoretically correct value or condition. Finally, failures are caused by errors,
and it is said that a failure has occurred in a system when it is unable to perform
its required functions within specified performance requirements.

After determining their meaning it is time to talk about failure models.

24 CHAPTER 3. CONCEPTS AND DEFINITIONS

3.3 Failure Models

Replicated systems are used to provide fault tolerance and high availability.
The background idea of a replicated system relies on replicating the service in
different nodes that can fail independently. Therefore, if one of these nodes
fails the service is still provided by non-failed nodes, ensuring then the fault
tolerance and high availability.

In this context, it is said that a replicated system is a k-fault tolerant system if
it supports k simultaneous faults without presenting an incorrect behavior.

But, this support is not straightforward to provide. On one hand, there is the
inherent complexity to distributed systems. And on the other hand, the use of
replicated systems introduces new types of failures that must be considered (i.e.
those associated to the use of networks) when designing and implementing the
system. In order to simplify the design and implementation of these replicated
systems, literature has proposed and encouraged some assumptions about the
fault types and the fault rates that have the components of a replicated system.
So, these assumptions will influence the design and redundancy degree of the
replicated system, determining then its fault tolerance level.

These failure assumptions have been structured in different failure models as
detailed in [29, 69, 106, 115]. The failure modes proposed go from the fail-stop,
the less disruptive one, to the byzantine, the one supporting most disruptive
failures. In the first one, it is assumed that nodes only fail by halting, remaining
in this state once they have halted. In the other extreme any kind of failure is
assumed. Between these two extremes a wide variety of failure models exists.

In [115] most commonly failure models used in distributed systems were sum-
marized and classified. Table 3.1 presents all these failure families.

In [29] the author presented a classification of server failures. An omission fail-
ure happens when a server does not respond to an input. If the server responds
outside the assumed response time interval a timing failure has occurred, being
early and late the possible timing failures. Another server failure type is the
response one. In this case, either the returned value is incorrect –value failure–
or the adopted action is not the desired one –state transition failure–. The
last failure type is the crash failure that occurs if the server stops responding
incoming inputs. But, the author assumes in this case that crashed replicas
can either remain halted or be restarted. In the first case, the author assumes
that crashed servers behave like in all failure models proposed in [115] (see table
3.1), denoting it as halt-crash failure. In the second case, [29] distinguishes sev-
eral restart behaviors depending on the server state at restart time. When the
server restarts in a predefined state, without depending on the inputs received
before crashing the author denotes it as amnesia-crash failure. If some part of
the restart state is established to a predefined initial state whilst the other part
is equal to the state before crashing, the server has suffered a partial-amnesia
crash failure. The last option, the pause crash failure implies that the server

3.3. FAILURE MODELS 25

Name Description

Fail stop Processors fail by halting, remaining in this state.
Other processors can detect the failed processor [114].

Crash Processors fail by halting, remaining in this state. But,
in this case other processors can not detect the failure
[53].

Crash+Link Processors fail by halting, remaining in this state.
Moreover, links can lose some messages, but do not
delay, duplicate or corrupt messages [16].

Receive-Omission Processors can halt –remaining in this state– or can
receive only a subset of the messages sent to them
[102].

Send-Omission Processors can halt –remaining in this state– or trans-
mitting only a subset of the messages they have to
send [68].

General-Omission This is a combination of the two previous failure mod-
els [102].

Byzantine Fail-
ures

In this failure model processors fail in an arbitrary way
[114].

Table 3.1: Schneider Failure Models classification [115].

restarts with the same state it had before crashing.

As it can be seen, instead of modeling the failures that can occur in distributed
systems –including therefore replicated systems ones– [115, 29] present both
overlapping and complementary failure models. Thus an accurate study of the
existing failure models, and an analysis about how they fit the system require-
ments must be done before selecting one or a combination.

So, when designing a replicated system a basic question that must be answered
is which failure model to assume. The most conservative approach would be to
adopt the byzantine failure model, in fact the worst case. But, as it has been
demonstrated in [106] it needs the highest degree of replication for providing a
k-fault tolerant system –3k+1 instead of k+1 for the fail stop–, it decreases the
overall system dependability because there are more possible sources of failure.

It must be noticed that due to the complexity associated to replicated systems
its design and development has been usually divided into the design and devel-
opment of several small pieces –each one providing a basic functionality needed
by a replicated system– that when combined compound a fully operational repli-
cated system. Traditionally, at least two main pieces can be distinguished: GCS
and the replication protocol itself.

The GCS is the component which provides communication primitives to the
replicated system. Primitives that are used by the replication algorithm for
performing its work. Normally, the designers and developers of these GCSs
consider and solve some of the failures that can arise in the communication

26 CHAPTER 3. CONCEPTS AND DEFINITIONS

work –at network level–, therefore the replication protocol can rely on the GCS
for managing these failures, being only necessary to deal with those that the
GCS can accurately manage. Thus, the GCS provides what is called hierarchical
masking in [29].

Traditionally, in the literature the byzantine failure model has not been used
due to its complexity and to the fact that it needs a high degree of redundancy
which at the same time jeopardizes the system dependability, so few works as
[118] have intended to support them. In fact, the most commonly used failure
model for replicated systems has been the fail stop. The reason is its simplicity:
nodes only can fail by halting, not being possible to resume them. Simplicity
was very important as researchers were usually more concerned about providing
good performance levels in their replication techniques, as far as performance
is their “Achilles’ heel” in regard to centralized solutions. So in the literature
there are a lot of proposals adopting this failure model as [12, 16, 87].

The main problem of the fail stop failure model arises when a replicated system
using it tries to maintain its original k-fault tolerance level once one or some
nodes have crashed. Notice that maintaining the original k-fault tolerance level
for replicated systems must be one of its main goals, if it is not considered their
fault tolerance will degrade until they do not provide any level.

In this case, when the fail stop failure model has been assumed crashed replicas
remain in this state. Then it is necessary to join a new replica for substituting
the crashed node, being therefore necessary to transfer to this new replica the
whole state of the system. This work way is useful if the state in the replicated
system is not very large, but as soon as the state amount increases this updating
process is more expensive: in computing and time terms. Thus, this option will
not work well for replicated systems which manage large states, because will
lead to very long transfer periods. This situation implies: longer periods with
low performance levels for systems based on active replication, longer periods
with decreased fault tolerance support and higher intervals of unavailability if
the replicated system does not fulfill the progress condition (i.e. systems based
on primary partitions) as commented in [32, 34].

Then for avoiding these problems when trying to maintain the original k-fault
tolerance it will be assumed that nodes fail by crashing but they can work
again once their failure period has ended. This assumption is usually named
the crash recovery with partial amnesia failure model [29]. This new assumption
introduces the possibility of recovering previously crashed nodes, trying to intro-
duce as less complexity as possible like it will happen if adopting more complex
failure models as the byzantine one. This is the reason why in the literature
can be found a wide range of replication proposals based on this failure model
[6, 3, 19, 20, 31, 36, 37, 38, 58, 70, 74, 79, 82].

In these proposals, the adoption of this failure model decreases the problems
associated to the assumption of the fail stop failure model because only lost
state (and not whole) must be transferred. The provided advantages are not
free, since they are provided at the cost of introducing more complexity in the

3.4. CRASHED NODES 27

replication and recovery algorithms.

Once the most widely used failure models for replicated systems and the reasons
for using them have been detailed, it is time to determine how components, or
in this case, nodes crash. This is important because the way they crash will
affect the way they can be recovered.

3.4 Crashed Nodes

Attending to the definition given by [29] it is said that a node crash occurs
when from certain instant on the node does not respond to any new input.
Therefore, the author of [29] explains the node crash consequences but does not
tell anything about the cause of such crash.

But a node crash can happen for many different reasons. Nodes belonging to a
group which does not fulfill the progress condition –due to a network partition–
are crashed in replicated system terms when this model is adopted. Also, nodes
that switch off, or nodes that lose their energy source supply also can be con-
sidered as crashed because they can not go on working. And in catastrophic
situations as fires or explosions that affect the integrity of the nodes, it is also
said that node crashes have occurred. Finally, but not more infrequent, soft-
ware misfunctioning can be assumed as a node crash. All these situation imply
a node crash under the [29] terminology, but depending on the way the node has
crashed different will be the state at its restart and therefore different actions
must be taken for updating it –when possible.

The way a node crashes is important when adopting the crash recovery with
partial amnesia failure model because it will affect to the state it will have at
restart time.

For simplicity reasons in this thesis, it will be considered that a node crash
occurs because the processor halts in a non expected way and then the node
is powered off. This implies that it is impossible to take special stop actions
because the node stops in an abrupt way. This way of crash implies that all the
volatile state is lost in the node, and that all started and on-going operations
are stopped abruptly without finishing them in a controlled way. But, all the
state that has been stored persistently before the crash is maintained at restart
time.

There are other crash variants: as network partition and programmed switch
off (i.e. using a UPS –uninterrupted power supply–). In the first case, volatile
state is not lost and on-going operations can be finished in a controlled way. In
the second, the volatile state is lost, but on-going operations can be also ended
in a controlled way. Therefore, the solutions that will be presented in this thesis
for the assumed crashing way –the one described in the previous paragraph–
will be also valid for these other crashing ways. This is due to the fact that the
assumed crash way is a more restricter variant covering therefore these other

28 CHAPTER 3. CONCEPTS AND DEFINITIONS

crashing modes.

However, the assumed way of nodes crashing does not cover other crash causes.
This may happen when the crash occurrence is related to a problem in the
physical integrity of the node. If there is a failed component –not the device of
persistence storage– which halts the node activity may be simply switching off
the node and substituting the failed component by a new one is enough. In this
case, the assumed crash way –previously described– is valid for covering this
crashing mode.

But, if the failed component is the device of persistence storage or the overall
physical integrity of the node has been affected (i.e. a fire) the assumed crash
occurrence is not useful. In both cases the disk must be substituted –in the
second case including the whole computer– and the restarted node will be con-
sidered a new replica. Therefore, its recovery is better adapted to the crash stop
failure model. Anyway, it must be noticed, that the crash recovery with partial
amnesia failure model assumption also covers the crash stop failure model one.
If only the disk has failed, other strategies can be adopted to overcome its fail-
ure. One possibility could be to use a RAID (Redundant Array of Independent
Disks), thus if one of the disk fails one of the others can substitute it.

3.5 Failure Detectors

Failure detectors are a basic element for developing fault tolerant systems us-
ing replicated systems. Their mission is to detect membership changes in the
replicated systems, detecting each time which nodes are correct and which are
faulty. Thus, failure detectors are a key component when designing recovery
protocols.

Failure detectors in replicated systems are based on consensus, all alive replica
members must agree about correct or failed nodes. Therefore, they must solve
the problem of reaching consensus either in synchronous, partially synchronous
or asynchronous replicated systems [47].

Achieving consensus in synchronous systems is very easy because both message
transmission and process execution are bounded in time terms. The problem is
that these systems are not feasible.

On the other hand, asynchronous systems are very easy to implement, but these
systems can not establish an upper time bound neither on message transmission
delays nor on process execution steps. This assumption difficults the process of
determining which nodes are crashed or alive in the replicated system, because
it can not be distinguished in a reliable way among crashed nodes, slow nodes
or slow connections and even more difficult to reach a consensus [53]. In fact,
[54, 45] demonstrated the impossibility for solving in a deterministic way this
problem if the system is subject even to a single failure. In order to avoid
these problems, researchers have performed a big effort for overcoming them,

3.6. RECOVERY INFORMATION AND STRATEGIES 29

presenting different ways.

One way consisted in defining weaker problems and solve them [46, 8]. An-
other way for avoiding these problems has consisted in using unreliable failure
detectors [23, 22, 65].

Another alternative consists in proposing different partial-synchrony models
[45, 47, 23] and solve the problem on them. In [86] authors analyzed the im-
plementation of unreliable failure detectors in partially asynchronous systems,
demonstrating which were feasible and which were not.

Some replication techniques use failure detectors in order to release locks owned
by failed nodes in order to avoid accessing problems to common resources. The
idea would be to free a shared resource as soon as the system detects that the
node which owns the lock on this resource has crashed. For this problem, in [17]
the author proposes the use of temporary locks which expire after an established
timeout if the owner of the lock does not renew them. This technique avoids
the necessity of failure detectors, because if a node crashes it will not renew the
lock and the shared resource it owned would be free once the timeout passes.
This technique is known as advisory locks.

As conclusion, it can be said that the scientific community has made a big effort
for developing failure detectors in replicated systems.

In regard to failure detectors, this thesis as it is said in Chapter 4 considers
partially synchronous systems and it assumes the use of a group communications
systems which makes use of a membership monitor being constructed on top
of a failure detector. Thus, how failure detectors work and are implemented is
beyond of the scope of this thesis.

3.6 Recovery Information and Strategies

Another important aspect when designing recovery protocols is which recovery
strategy is adopted. The selected recovery strategy is related to the type of
information used in the recovery process. Usually, two main ways of recovery
have been considered in the distributed systems literature: log-based or version-
based. In the first one, the broadcast messages during the node disconnection
are used as recovery information, while in the second a copy of the state –or
only of the modified state during the node disconnection– is transferred to the
recovering node. Obviously, each one can be implemented in different ways but
all proposed recovery techniques in the literature belong to one of these family
techniques or combination of both.

3.6.1 Log-based

The log-based policies use the broadcast messages as recovery information.
Traditionally, the recovery systems based on this strategy started to generate

30 CHAPTER 3. CONCEPTS AND DEFINITIONS

the recovery information –store persistently the replication broadcast messages–
when the membership monitor detected disconnected nodes in the replicated
system, as it is done in [70]. This information must be maintained until the
outdated nodes have applied the missed messages. A message only can be
deleted when all replicas that have lost it have received and applied it in their
recovery.

This recovery families are mainly used for transactional replicated systems that
have assumed the crash recovery with partial amnesia failure model. This is
due to the fact that transactional systems persist their state and therefore,
transferring and applying in recovering nodes only the messages they lost during
their disconnection is enough. Moreover, in some works its use is recommended
for short term failures, encouraging the use of a version-based technique for long
term failures.

However, it is not used for replicated system which adopted the fail stop failure
model because in these scenarios it is cheaper to adopt a version-based technique
consisting on transferring to the new node the whole state.

This technique can also be used in process replication, but then combined with
checkpointing policies. The use of checkpointing is necessary because in process
replication all the state –or some part of the important state– is volatile, there-
fore when a node crashes –in the sense it has been explained in Section 3.4– this
volatile state is lost. Then, for reconstructing this volatile state in the recovery
two approaches can be adopted: applying all the messages from the beginning
or using checkpoints. The first option implies to maintain a log of all broadcast
messages from the beginning, that as it can be assumed is undesirable in most
common cases. The second one consists in generating a state checkpoint and
recover a crashed node from this checkpoint. In this case the messages log must
be restarted each time a new checkpoint is performed.

3.6.2 Version-based

The version-based recovery approach consists in transferring to each outdated
node either a whole copy of the state or the last state of updated data items
during its disconnection period that caused its outdated state.

To transfer a whole copy of the state has been commonly used when the repli-
cated system adopted the fail stop failure model. But, when the crash recovery
with partial amnesia failure model is adopted the recovery information set can
be constrained to the state modified during the node disconnection.

Chapter 4

System Model

In this chapter it is described the basic system model considered in this thesis.
In fact, it must be said that in this thesis two different system models are taken
under account: one for transactional replicated systems and another one for
non-transactional replicated systems. The single difference between these two
system model replicated systems is that in the first one all the replication work
is performed between the boundaries of transactions, while in the second one it
does not.

4.1 General Configuration

Our model considers a replicated system, which is compound by several replicas,
whose architecture is shown in figure 4.1, and where each replica is located in
a different node. These nodes belong to a partially synchronous distributed
system: their clocks are not synchronized but the message transmission time is
bounded. The state is fully replicated in each node, so each replica has a copy
of the whole state.

The system uses a ROWAA approach therefore reads are performed in only
one replica while updates are performed in all replicas. This implies that only
updates must be broadcast by the replication protocol.

The replicated system uses a GCS which provides point-to-point and broadcast
deliveries. The minimum guarantee provided is a FIFO and reliable communi-
cation.

It is also assumed the presence of a group membership service, who knows
in advance the identity of all potential system nodes. These nodes can join
the group and leave it either explicitly or implicitly by crashing. The group
membership service combined with the GCS provides Virtual Synchrony[14]
guarantees, thus each time a membership change happens, it supplies consistent

31

32 CHAPTER 4. SYSTEM MODEL

information about the current set of reachable members. This information is
given in the format of views. Sites are notified about a new view installation
with view change events.

Replication Protocol

Recovery Protocol

GCS

Recovery Module

View Management Algorithm

Membership Service

Figure 4.1: Node Architecture

The view notification mechanism is extended with node application state in-
formation providing the enriched view synchrony [9] approach. This makes
simpler and easier the support of system cascading reconfigurations. These en-
riched views (e-view) not only inform about active nodes, but they also inform
about the state of active nodes: outdated or up-to-date. The use of e-views
refines the primary partition model into the primary subview model, therefore
the system only can work when a progress condition is fulfilled1 as it is detailed
in [32]. At the same time the state consistency is ensured because only the
primary subview is able to work in partition scenarios. Thus, this subview is
the only one allowed to generate recovery information, which will be afterwards
used for recovery. For similar reasons, a node can not serve client requests until
it has not been fully updated.

4.1.1 Transactional Replicated System

When the previous system model is extended with the assumption that all
the work is performed into the boundaries of transactions, it is obtained the
transactional replicated system considered in this thesis.

It is assumed that these replicated systems broadcast a constant number of
messages per transaction –constant interaction. Thus, the updates associated
to each transaction are broadcast using only one single message, while the other
message rounds, when used, are intended for reaching consensus. Notice, that
when constant interaction is used the replication protocol uses writesets in order
to propagate updates.

1This characteristic prevents the system from working in the starting phase until a primary
subview is reached, and therefore, during this initial phase, the recovery protocol must not
perform any work.

4.1. GENERAL CONFIGURATION 33

4.1.2 Non-Transactional Replicated System

If the replicated system work is not performed following transactional semantics
it is obtained the behavior of a non-transactional replicated system. It is also
known as process replication.

Part II

Contributions

35

Chapter 5

The Amnesia Phenomenon

This chapter describes the amnesia phenomenon in a generic way, detailing how
it manifests. Once this phenomenon has been presented, it is formalized both
for replicated transactional systems and non-transactional replicated systems.

5.1 Introduction

Recovery protocols are a key element when building fully operational replicated
systems for ensuring their fault tolerance. These recovery protocols have as
main goal to update replicas that became outdated by different reasons.

One of these possible reasons is that they crash, stop working, losing all their
volatile state –state that has not been stored persistently–, being this the most
complex case of node outdateness. Therefore, how the replicated system must
react when the membership monitor notifies that a node has crashed? It de-
pends. In fact, it depends on the failure model adopted.

Usually, the replicated systems adopted the fail stop failure model, due to its
management simplicity. Crashed replicas are conceptually abandoned being sub-
stituted by a new one. In this case the recovery protocol simply has to transfer
to the new joined replica the whole system state –or a consistent version–.

But in last proposals, replicated systems when managing large states have pre-
ferred to adopt the crash recovery with partial amnesia failure model. This
is due to the fact, as it has been said, that it allows to design more efficient
recovery protocols because in this case it is only necessary to transfer to the
recovering node the information it has lost during its failure time.

But, when this failure model is assumed several circumstances can cause that the
state reached after applying a recovery in an outdated node is not consistent
with the state of other replicas. This circumstance is what is denoted the

37

38 CHAPTER 5. THE AMNESIA PHENOMENON

amnesia phenomenon. Therefore, in this chapter, it is described the problem,
determining how it manifests at different levels. Later, the amnesia phenomenon
and its associated problems are formalized for establishing the properties that
must fulfil a recovery process for overcoming it.

Once it has been formalized, a logical recovery scheme is presented which con-
siders the step of recovering the state lost due to the amnesia phenomenon.
Moreover, there are presented the design criteria that must be applied when
designing a recovery protocol.

So, this chapter is structured as follows. Section 5.2 details the amnesia phe-
nomenon. The formalization of the amnesia phenomenon for transactional repli-
cated systems and process replication is performed in Section 5.3 and Section
5.4 respectively. In Section 5.5 is presented the logical recovery scheme, while
Section 5.6 outlines the recovery information and strategies that can be used.
The criteria that must be followed when designing a recovery protocol are de-
tailed in 5.7. Finally, some related work is given in Section 5.8, and Section 5.9
concludes the chapter.

5.2 Phenomenon Description

What is amnesia phenomenon? When does it appear? How does it manifest
and which are the problems related to? These are basic questions that must be
answered before being able to propose “correct ways” for managing it.

An important aspect in the process design of replicated systems is to propose a
recovery protocol because it will be the key stone for ensuring the original k-fault
tolerance of this replicated system. In this scenario, the amnesia phenomenon
appears when the designer of a recovery protocol for a replicated system assumes
the crash recovery with partial amnesia failure model [29] in order to provide
more efficient recovery processes.

This assumption implies that crashed nodes can be recovered –updated– once
they become alive and reconnect to the system, if the replicated system has
gone on working during their disconnection. The idea of this recovery process is
that outdated replicas reach a state consistent with the replicated system state.
Therefore, as these recovering replicas have a previous state it is mandatory
to determine which is the exact information set that must be transferred to
the recovering node, in order to ensure that the achieved state in the outdated
node, after applying the recovery process, is consistent. Thus, the recovery
protocol must know which is the real state reached by the outdated node when it
reconnects, in order to transfer to it the exact needed information, thus avoiding
the problems of losing some state changes or applying others twice or more. If
it is not correctly determined, the state reached in the recovered node can be
inconsistent with the replicated state –an undesired situation– that in worst
cases can lead to catastrophic situations.

5.2. PHENOMENON DESCRIPTION 39

In this recovery scenario, the amnesia phenomenon implies that the real state
upon the starting point for the recovering node is different to the last state it
is assumed it has had before crashing. The idea is that the recovering node will
have delivered some messages before crashing, therefore the system can assume
that these messages have been correctly processed by this replica, assumption
that as it was demonstrated in [122] is not right.

5.2.1 Amnesia Example

The example is based on the system model presented in Section 4.1.1 for trans-
actional replicated systems. More particularly, the considered transactional
replicated system uses constant interaction, broadcasting only one message per
transaction, using total order communications and virtual synchrony –based on
the same view delivery concept.

Therefore, consider a replicated system compound by three replicas {R1, R2, R3}.
The information is wholly replicated, and at the beginning all them have the
same state, as it is show in Figure 5.1.

R1

R2

R3

Figure 5.1: Starting system

Later at t0, replica R1, after processing locally the transaction Tn broadcasts
its updates to all members –including itself– for processing Tn as a remote
transaction. This step is shown in Figure 5.2.

During the processing of Tn each node modifies its local state in a temporary
way as the Figure 5.3 depicts.

At this point, each node decides deterministically if Tn can be committed or not,
so taking all them the same decision. But these steps of transaction processing
and confirmation are done at different instants in each replica. Thus, it is
possible that two replicas –R1, R2– commit Tn before R3 does. This situation
is presented in 5.4. As a consequence the state modified in a temporary way by
Tn in R1 and R2 is persisted, while in R3 remains as volatile state.

Then, at t1 as it is shown in Figure 5.5, replica R3 crashes. As it crashes before
committing Tn, the Tn changes –which are temporary– are lost.

40 CHAPTER 5. THE AMNESIA PHENOMENON

R1

R2

R3

t0 Tn

Tn

Tn

Figure 5.2: Transaction propagation

R1

R2

R3

t0 Tn

Tn

Tn

State modified by T (not persisted)n

Figure 5.3: Transaction processing

Whereas R3 is crashed as the other two replicas are alive the system goes on
working because the majority progress condition is fulfilled. Thus, R3 misses
all the performed and committed changes during its disconnection –R3 missed
state–.

Some time later, at t2, R3 reconnects to the replicated system (Figure 5.6).
This event is notified to the other two replicas starting then a recovery process
for R3. But, it must be noticed that if this recovery process only consists in
transferring to R3 the state it has missed during its disconnection, the state
reached by R3 when this recovery process finishes will be inconsistent with the
other replicas state –an undesired situation. This is due to the fact that when R3

has reconnected to the system, it has the same state it had before the process of
Tn by the system, having no idea about Tn changes. That happens because R3

in spite of having received and partially processed the Tn associated message
it has not been able to process it completely, and therefore all its performed
changes are lost due to the atomicity characteristic even though the GCS has
successfully delivered the message to R1, R2 and R3. This state lost is caused
by the amnesia phenomenon, therefore the forgotten state constitutes a problem
caused by the incorrect handling of recovery information.

5.2. PHENOMENON DESCRIPTION 41

R1

R2

R3

t0 Tn

Tn

Tn

State modified by T (not persisted)n

State modified by T (persisted)n

Commit

Commit

Figure 5.4: Transaction commit

R1

R2

R3

t0 Tn

Tn

Tn

State modified by T (not persisted)n

State modified by T (persisted)n

Commit

Commit

X

t1

Figure 5.5: Crash of replica R3

Obviously, in order to avoid this state inconsistency problem after applying re-
covery it will be necessary to include the forgotten state in the recovery process.

This example intended for transactional replicated systems based on constant
interaction using a single message can be easily modified to show the amnesia
phenomenon in other systems.

Lets gather now in a transactional replicated system based on constant interac-
tion which uses more than one message per transaction. The simplest case would
be to use one message for broadcasting the transaction updates and another one
for spreading the final decision –either commit or abort–. Then assume that
the commit of a transaction has been delivered in all replicas but at least one of
them crashes before being able to process the commit, then it loses the transac-
tion changes due to the crash. This example also fits very well for showing the
manifestation of the amnesia phenomenon in transactional replicated systems
based on linear interaction –where a message is sent typically for each operation
in the transaction.

42 CHAPTER 5. THE AMNESIA PHENOMENON

R1

R2

R3

t2

State modified during R disconnection = missed state 3

State modified by T = forgotten staten

Figure 5.6: Reconnection of replica R3

In regard to non-transactional systems, when a message has been delivered to
all replicas, any replica who crashes before processing completely the message
will suffer amnesia for the work of the message not processed.

It must be said that this amnesia phenomenon manifests differently in transac-
tional replicated systems from non-transactional replicated systems.

5.2.2 Transactional Replicated Systems

When talking about transactional replicated systems it must be first noticed
that the consistent state meaning will depend on the consistency level adopted in
these replicated systems. For simplicity reasons in this thesis it will be assumed
that the replicated system consistency level is the 1-copy-serializability –the
strongest one–, therefore all replicas have the same state.

In this scenario, when a node crashes it is possible that some of its delivered
messages have not been processed before crashing due to workload reasons.
Moreover, it is possible that it has started to process the commit message for
a transaction but it has not been able to commit it really, implying that all
changes that have not been committed are lost. Therefore, if this problem is
not considered at recovering time the recovery process can lead to state incon-
sistencies.

The crash also implies that the node can forget some of its delivered messages
if they are not stored persistently. Thus, the node will not be able to apply
in the recovery process both the already processed messages belonging to non
committed transactions and the non processed messages.

Therefore, it can be concluded that the amnesia phenomenon manifests at two
different levels:

• Transport/Replication level. At this level, it implies that the replica does
not remember which messages have been received. Actually, the amne-

5.2. PHENOMENON DESCRIPTION 43

sia implies that delivered messages non-persistently stored are lost when
the node crashes, generating a problem when the replicated system as-
sumes that they have been correctly processed in all nodes, even in the
crashed node –behavior that can not be always ensured–, because message
delivery does not actually imply that it has been correctly processed as
demonstrated in [122].

• Replica level. The amnesia is manifested here in the fact that the node
“forgets” which were the really applied messages.

Thus, extra information has to be maintained to solve this problem, being af-
terwards used in the amnesia recovery process.

5.2.3 Non-Transactional Replication

Basically, it can be said that crashed nodes in non-transactional replicated sys-
tems at their reconnection time have lost the last actual state reached before
the crash, being necessary to restore it before applying the replication messages
missed during their disconnection in order to avoid diverging state evolutions.

In fact, crashed nodes at reconnection time have lost all their volatile state,
while their permanent performed changes are maintained. Therefore, it will be
necessary to reconstruct all their volatile state before the crash, as a first step
in their recovery process.

Moreover, it is possible that some messages delivered before the crash event have
not been applied in the crashed replica (e.g. due to workload). This situation
makes necessary to distinguish between messages delivered and applied from
those delivered but not applied before the crash. The latter should be retried.

The amnesia phenomenon also manifests at message delivery. The underlying
idea is that once a message is delivered, the group communications system does
not maintain it. At this point, if a node crashes before storing the message per-
sistently, when the node reconnects the system is unable to reapply it partially
–message already applied–, or to apply it.

Then, it can be concluded that the amnesia problem arises again at two different
levels:

• Transport/Replication level. At this level, it implies that the replica does
not remember which messages have been received.

• Replica level. The amnesia is manifested here in the fact that the node
has lost all its volatile state and “forgets” which were the really applied
messages.

Obviously, extra information has to be maintained to solve this problem, being
afterwards used in the amnesia recovery process. The next section describes
ways to avoid amnesia problems at recovery time for log-based recovery policies.

44 CHAPTER 5. THE AMNESIA PHENOMENON

5.3 Transactional Amnesia Formalization

The next step consists in formalizing the amnesia problem for transactional
replicated systems. It must be noticed that in a transactional scenario the
important state is persistent, meaning that all the changes performed within
the boundaries of a transaction which has been committed remain permanent,
not being lost even in the presence of failures. It must be noticed, that this
depends on the kind of failure. Disks might break down and also computers.
So, in such cases their information is not only lost, but also unrecoverable.

Consider a replicated database system –the most common case of replicated
transactional systems–, N = {n1, n2, ..., nn}, compound by n replicas, being
n > 2 (primary partition assumption [24]). It uses an eager update everywhere
protocol based on a GCS which provides an atomic broadcast primitive for
spreading messages and virtual synchrony. It also uses constant interaction,
broadcasting each transaction in a single message.

In this system, each installed view –working view– is identified as Vx, being
x the view identifier. Tx = {Tx,1, Tx,2, ..., Tx,m} are the transactions delivered
(and not aborted in this view –aborted transactions are not considered because
they are not relevant for recovering purposes–). As the system uses the atomic
broadcast primitive [69] for spreading transactions, all alive nodes deliver the
broadcast transactions in the same order, using this order at execution time.
This order is being reflected by the second subindex.

∀ny ∈ Vx it is denoted as T D
x,ny

the transactions subset of Tx really delivered to

ny and, respectively, T C
x,ny

the transactions subset of Tx really committed in ny;

fulfilling T C
x,ny

⊆ T D
x,ny

. Virtual synchrony [24] ensures that T D
x,ny

= Tx. View
transitions are represented as Vx → Vx+1.

Then ∀Vi → Vi+1 triggered by a node crash, it will be at least one node nl :
nl ∈ Vi \ Vi+1.

Considering that Ti = {Ti,1, Ti,2, ..., Ti,m} is the transactions set delivered and
committed in the replicated system during Vi, it can be assumed that ∀nk ∈
Vi ∩ Vi+1:

• Ti = T D
i,nk

= T C
i,nk

= {Ti,1, Ti,2, ..., Ti,m} if they remain alive for a while.

While ∀nl ∈ Vi \ Vi+1, due to [122] it might happen the following:

• Ti = T D
i,nl

6= T C
i,nl

, where T C
i,nl

= {Ti,1, Ti,2, ..., Ti,m−s}, being 0 ≤ s ≤ m

in the general case, but s ≥ 1 when T D
i,nl

6= T C
i,nl

It must be noticed that the assumption that T D
i,nl

= T D
i,nk

is only valid if the used
communication guarantees provide it. As it is the case with atomic broadcast

5.4. NON-TRANSACTIONAL AMNESIA FORMALIZATION 45

protocols. This is necessary because the Virtual Synchrony does not enforce
any message delivery guarantee to crashed nodes.

In spite of assuming that s ∈ {0, .., m} for simplicity reasons, it is also possible
sometimes that s > m due to workload reasons.

When nl reconnects to the system, it triggers a new view Vi+x, being x > 1.
Later, the system must update it through the recovery process, transferring to
it its lost transactions, which are:

• Transactions forgotten from its last seen view, Vi: T F
i,nl

= Ti,m−s+1, ..., Ti,m

• Transactions missed during its disconnection: T M
nl

= Ti+1 ∪ ... ∪ Ti+x−1

Then, for solving the amnesia phenomenon –forgotten state– when recovering
nl the two following properties must be provided:

• Prop. FS1 : nl must remember its last committed transaction, Ti,m−s;

• Prop. FS2 : the replicated system must maintain and provide a way for
obtaining the transactions subset T F

i,nl
or their associated updates.

Once this forgotten state has been updated in the recovering replica, the recovery
protocol can start with the recovery process itself, transferring missed data: T M

nl
.

Therefore, any solution for these systems must fulfill these two properties for
managing accurately the amnesia problem.

It exists another way for solving the amnesia phenomenon in nl which consist
in transferring to the recovering node the whole state. We denote it as property
Prop. CS1 being an alternative to the previous ones. Obviously, this solution
–the one used when adopting the fail-stop failure model– is not interesting when
talking about systems managing large states.

5.4 Non-Transactional Amnesia Formalization

The amnesia formalization for non-transactional replicated systems differs slightly
from the formalization for transactional replicated systems, in this case instead
of talking about transactions it is necessary to talk about messages.

Moreover, in non-transactional replication it is necessary to consider that the
whole state –WS– of the system can be divided into volatile –V S– and perma-
nent state –PS–. Then, it is fulfilled that WS = V S ∪ PS and ∅ = V S ∩ PS.

In fact, in these scenarios most of the replicated state is volatile state, while in a
transactional system is all permanent. Then, it is necessary to handle specially
the volatile state in the presence of crashes, because it is lost.

46 CHAPTER 5. THE AMNESIA PHENOMENON

In this case it is also considered a replicated system, N = {n1, n2, ..., nn}, com-
pound by n replicas, being n > 2 (primary partition assumption [24]). It uses
an eager update everywhere protocol based on a GCS which provides an atomic
broadcast primitive for spreading messages and virtual synchrony.

In this system, each installed view –working view– is identified as in the previous
section as Vx, being x the view identifier. Mx = {Mx,1, Mx,2, ..., Mx,m} are the
messages delivered. As the system uses the atomic broadcast primitive [69] for
spreading operations, all alive nodes deliver the broadcast messages in the same
order, using this order at execution time. This order is being reflected by the
second subindex.

∀ny ∈ Vx it is denoted as MD
x,ny

the messages subset of Mx really delivered

to ny and, respectively, MA
x,ny

the messages subset of Mx really applied in ny;

fulfilling MA
x,ny

⊆ MD
x,ny

. Virtual synchrony [24] ensures that MD
x,ny

= Mx.
View changes are represented as Vx → Vx+1.

In regard to the volatile state, V S, it is denoted as V Sny
the volatile state of

the replica ny.

Then ∀Vi → Vi+1 triggered by a node crash, it will be at least one node nl :
nl ∈ Vi \ Vi+1.

Considering that Mi = {Mi,1, Mi,2, ..., Mi,m} is the messages set delivered and
applied in the replicated system during Vi, it can be assumed that ∀nk ∈
Vi ∩ Vi+1:

• Mi = MD
i,nk

= MA
i,nk

= {Mi,1, Mi,2, ..., Mi,m} if they remain alive for a
while.

• V Snl
will be the volatile state resulting of applying the messages set

{M0,1, ..., Mi,m}

While ∀nl ∈ Vi \ Vi+1, due to [122] it might happen the following:

• Mi = MD
i,nl

6= MA
i,nl

, where MA
i,nl

= {Mi,1, Mi,2, ..., Mi,m−s}, being 0 ≤

s ≤ m in the general case, but s ≥ 1 when MD
i,nl

6= MA
i,nl

• V Snl
will be the volatile state resulting of applying the messages set

{M0,1, ..., Mi,m−s}

As for transactional formalization the assumption that the crashed replica de-
livers the same message set as not crashed nodes is not ensured by virtual syn-
chrony. Therefore, it must be guaranteed by other communication guarantees
as the one provided by atomic broadcast protocols.

In spite of assuming that s ∈ {0, .., m} for simplicity reasons, it is also possible
sometimes that s > m due to workload reasons.

5.4. NON-TRANSACTIONAL AMNESIA FORMALIZATION 47

When nl reconnects to the system, it triggers a new view Vi+x, being x > 1.
Later, the system must update it through the recovery process, being necessary
to recover first its V Snl

before the crash and applying to it its lost messages,
which are:

• Messages forgotten from its last seen view, Vi: MF
i,nl

= Mi,m−s+1, ..., Mi,m

• Messages missed during its disconnection: MM
nl

= Mi+1 ∪ ... ∪ Mi+x−1

Then, for solving the amnesia phenomenon –forgotten state– when recovering
nl the three following properties must be provided:

• Prop. FS1 : nl must remember its last applied message, Mi,m−s;

• Prop. FS2 : the replicated system must maintain and provide a way for
obtaining the messages subset MF

i,nl
or their associated updates.

• Prop. FS3 : nl must remember its last volatile state V Snl

In regard to the properties that must be fulfilled for supporting the amnesia
phenomenon in a transactional replicated system it appears a new property,
Property FS3. The first two ones are equivalent to the ones proposed for the
transactional replicated system. Anyway, it must be noticed that if the transac-
tional replicated system has also volatile state the Property FS3 must be fulfilled
too.

Once this forgotten state has been updated in the recovering replica, the recovery
protocol can start with the recovery process itself, transferring missed data:
MM

nl
.

Obviously, it is possible to transfer the whole state, Prop. CS1 , avoiding the
amnesia phenomenon, as it has been commented in the transaction formaliza-
tion. But, the idea is to avoid to transfer the whole state.

Demonstrating that properties FS1 and FS2 are necessary is straightforward,
but may be the necessity of FS3 is no so direct. Its necessity can be demon-
strated using contradiction. Assume that property FS3 is not necessary for
avoiding inconsistencies and that the last volatile state before crashing of a
replica was V Snl

= S. Therefore, when this replica recovers after crashing it
will start to apply its forgotten messages MF

i,nl
provided by properties FS1 and

FS2 over an ∅ or initialized volatile state –V Snl
= ∅ or V Snl

= S0– instead of
applying it over the correct volatile state V Snl

= S –the one that it would have
had if it had not crashed when applying these messages. So, this inconsistency
in the volatile state can lead to new inconsistencies if some work performed
by MF

i,nl
or subsequent messages depends on the V Snl

. So, property FS3 is
mandatory for avoiding possible inconsistencies in the recovery process due to
the amnesia phenomenon.

48 CHAPTER 5. THE AMNESIA PHENOMENON

A possible example of the previous problem when property FS3 is not provided
is the following one. Assume a cluster of application servers compound by three
replicas, N = {R1, R2, R3}, where a service Serv is deployed in all them being
all allowed to serve client requests. The deployed service performs some work
or another attending to b, the number of served sessions by the whole cluster at
each instant, where b ∈ V S. So, if b < bthreshold Serv does A, else Serv does B.
Consider also that the recovery of a crashed replica is performed transferring
the messages it has lost during its disconnection and not transferring the whole
state.

Then at certain instant, t0, replica R2 crashes, losing its volatile state, VR2
= S,

having MF
i,R2

6= ∅ and being Mi,m−s its last correctly applied message. Later,
at instant t1 replica R2 reconnects starting its recovery process. Therefore, it
will start to apply first the forgotten messages, Mi,m−s, subsequently its missed
messages MM

R2
–transferred by other replicas– and then the messages propagated

after its reconnection denoted as Mi+x.

At this point, assume that message Ma, a subsequent message of Mi,m−s, re-
quests the service whose work depends on variable b ∈ V SR2

. Notice that its
value just before the crash was bt0 = b(Mi,m−s) > bthreshold while at recovery
time bt1 = bO < bthreshold, being bt0 6= bt1 –because FS3 is not provided. Then
the results of Ma work would be different in R2 compared to those obtained in
R1 and R3 and that would have been also obtained in R2 if it had not crashed.

Obviously, this would have not happen if the property FS3 is provided. In this
case R2 will apply the V SR2

= S as first step in its recovery process, then when
applying message Ma, bt1 = b(Mi,m−s) obtaining the same result when applying
Ma as if R2 has not crashed.

5.5 Basic Recovery Schema

After presenting the amnesia phenomenon, its related problems and its formal-
ization it is time to know how it must be included in the overall recovery process.
Then if the amnesia phenomenon is considered the logical steps that must be
performed in a recovery process are the ones presented in the figure 5.7.

Recovery process:
1 - Amnesia Recovery Process
2 - Update Recovery Process
3 - Current Recovery Process

Figure 5.7: Logical Recovery Process

The recovery process is initiated each time the replicated system detects the
presence of outdated nodes. The outdateness cause will be node disconnections
–network partitions– or node crashes.

5.6. AMNESIA RECOVERY INFORMATION AND STRATEGIES 49

• Amnesia Recovery Process (ARP). This is the first recovery step to be
performed when a node is being recovered. But, it is only necessary if the
node becomes alive after crashing. The goal of this step is to recover what
it is called forgotten state. The conditions that must be guaranteed for
performing this step are the ones presented in Properties FS1 and FS2 for
transactional replicated systems, and Properties FS1, FS2 and FS3 for
non-transactional replicated systems

• Update recovery Process (URP). In this step, outdated nodes update their
missed state. The outdated nodes recover during this phase the state
changes lost during their disconnection.

• Current Recovery Process (CRP). This last step is done if the replicated
system is working during the outdated node recovery. It is performed once
the node has applied all its missed views, and its goal is to apply in the
recovering node any message received during the previous stages (which
could not be applied, since the node was not updated yet). Obviously,
recovery processes performed in non working partitions do not need to
apply this step.

As it has been said these are the logical steps that must be performed in a
recovery process. Later, when implemented in really recovery processes some
of these steps can be combined or mixed depending on the recovery techniques
and the information maintained for this purpose.

5.6 Amnesia Recovery Information and Strate-
gies

Once it has been explained and formalized the amnesia phenomenon either for
transactional replicated systems or non-transactional replication and the logic
recovery schema that includes the amnesia recovery has been presented, it will
be detailed how the two main recovery strategies presented in 3.6 must be used
for supporting the amnesia phenomenon.

Thus, node recovery must include both the recovery of “missed state”, and the
recovery of the “forgotten state”. The first one refers to the data state that
the node has not received because it was disconnected. The second one covers
the state received but later lost (due to the amnesia) when the node crashed.
Therefore, the recovery system must maintain information allowing it to handle
these two out-of-date causes.

5.6.1 Log-Based Strategy

The log-based policies use the broadcast messages as recovery information. If
the amnesia is not considered, the recovery information only refers to messages

50 CHAPTER 5. THE AMNESIA PHENOMENON

missed by crashed nodes. Thus, in this case, the recovery information must
be created when the membership monitor detects disconnected nodes in the
replicated system. Then, the information must be maintained until the outdated
nodes have applied the missed messages.

r1

r2

r3

A

B

X

t1 t2

Figure 5.8: Log Recovery Information for Transactional systems.

However, the amnesia recovery information for log-based policies relates to those
messages delivered and not being processed in a crashed replica.

Notice, that for transactional replicated systems using more than one message
for broadcasting and processing transactions, the replicas have started to pro-
cess some transactions but have not finished them because they need to receive
the messages that conclude these transactions. Therefore, it appears the phe-
nomenon on non-yet-committed or on-going transactions. When a node crashes
all changes associated to these transactions are lost because they have not been
committed, being necessary later to reprocess them. This phenomenon implies
some problems and needs a special management as it is later explained in Section
10.3.

Figure 5.8 shows the information needed to recover an outdated node using the
log-recovery strategy in replicated transactional systems. In this figure node r2
crashes at time t1 and reconnects at time t2. At this moment, the system must
start the r2 recovery.

• Firstly, it needs the A recovery information block used to recover the am-
nesia –ARP stage–, it contains the messages received but not committed
by r2 before its crash at t1 –it has to fulfil the Prop. FS1 and Prop. FS2.

• Secondly, the system needs B block which contains the messages missed
by r2 (either committed or not-yet-committed) during its failure time in
order to perform the URP.

• Finally, r2 must perform the CRP starting to apply the messages it has
delivered after t2. These messages must be enqueued for applying them
after in the CRP.

Obviously, the A block can be managed and maintained by r2 whilst the B
block must be generated and managed by a non-failed node.

5.6. AMNESIA RECOVERY INFORMATION AND STRATEGIES 51

r1

r2

r3

A

B

X

t1 t2

VS

Figure 5.9: Log Recovery Information for Non-Transactional Systems.

It must be remarked that for non-transactional systems it is necessary, as it has
been said previously in Section 5.4, to have a copy of volatile state.

In figure 5.9 it is shown the information needed to recover an outdated node
using the log-recovery strategy in non-transactional replicated systems, present-
ing some differences. The events sequence in this figure is the same as for figure
5.8: node r2 crashes at time t1 and reconnects at time t2. At this moment, the
system must start the r2 recovery.

• Firstly, it needs the checkpoint block –VS– which recovers the volatile
state before crashing –fulfilling the Prop. FS3.

• Secondly, it applies the A recovery information block which contains in
this case the messages delivered but not applied before t1 –fulfilling the
Prop. FS1 and Prop. FS2. Once the A block is processed the ARP
finishes.

• Later, the system needs the B block which contains the messages missed
by r2 during its failure time in order to perform the URP stage.

• Finally, r2 must perform the CRP starting to apply the messages it has
delivered after t2. These messages must be enqueued for applying them
after CRP.

Obviously, on one hand the V S must be managed and maintained by r2. On
the other hand, A block can be managed and maintained by r2 whilst the B
block must be generated and managed by a non-failed node.

5.6.2 Version-Based Strategy

The version-based recovery approach, mainly intended for transactional sys-
tems, consists of transferring to each outdated node the last state of updated
data items during its disconnection period that caused its outdated state. The
whole transfer is not considered in this thesis as long as the main purpose of
adopting the crash recovery with partial amnesia failure model is to avoid this

52 CHAPTER 5. THE AMNESIA PHENOMENON

recovery technique. Thus, a snapshot of the lost updated state must be trans-
ferred. As the transferred information only refers to committed changes it must
be completed with recovery information related to the on-going transactions
when the recovery version-based information snapshot was taken. This extra
information, if needed, can be obtained from the applied log-based policies.

This recovery information policy can be supported in two different ways:

• By maintaining information about the last state of changed items, or

• Using the whole database information.

It must be noticed that the version-based amnesia recovery information is in-
cluded in the data state, as well as in the transferred ongoing transactions. In
this sense, it is assumed that messages belonging to on-going transactions are
maintained in the system. The only thing that must be guaranteed is that
the transferred state includes all the changes performed after the last change
performed in the outdated node –remember Prop. FS1.

The recovery information necessary to recover the outdated nodes using version-
based strategies is detailed graphically in figure 5.10. As in the example shown in
figure 5.8, the r2 node fails at t1 and reconnects at t2 time. In this case, in order
to recover r2, the recovery protocol first transfers the A recovery information
block which is a snapshot of the committed lost state by r2. The block A
contains the data state generated by:

• committed transactions before t1 that have been lost by r2 due to amnesia,
and

• committed transactions between t1 and t2 (including committed transac-
tions completely missed by r2 or ongoing transactions at t1 time commit-
ted before t2).

Afterwards, the system will transfer the B block. This recovery information
block only contains ongoing transactions, regardless their start time were pre-
vious or posterior to t1.

r1

r2

r3
B

X

t1 t2

A

Figure 5.10: Version Recovery Information.

5.7. RECOVERY PROTOCOLS DESIGN CRITERIA 53

5.7 Recovery Protocols Design Criteria

Which criteria must be followed when designing a recovery protocol? The idea
is to know which principles or guidelines must be considered for designing and
developing them. Usually, these criteria are related to correctness and overhead
characteristics.

5.7.1 Correctness Criteria

First of all, the main basic criterion should be to ensure its correctness in con-
sistency terms. In other words this principle means that the recovery protocol
does what it is supposed to do: to update an outdated replica, reaching in the
recovering replica a consistent state regarding the state of updated replicas. If
this criterion is not ensured the recovery protocol is useless. Obviously, as it has
been demonstrated in previous sections, recovery protocols for replicated sys-
tems which assume the crash recovery with partial amnesia failure model need
to fulfill the properties previously determined in order to overcome the amnesia
phenomenon.

Another correctness criterion design –although it can be considered a finite-
ness criterion– must ensure that the recovery process will end successfully in a
bounded time. The paper [103] has demonstrated that under certain workload
circumstances some recovery protocols are not able to finish the recovery process
in a recovering replica. Therefore, the replica remains always outdated without
reaching the state of the other replicas. Only, being possible for the recovering
replica to reach the state of other replicas if the workload decreases. Notice,
that it is possible that the recovering node has all the information it needs to
reach the consistent replicated state because it has received all its missed state
–being not outdated in this sense–, but the speed in which it is able to process
this information and new incoming requests is lower than the speed at which
new requests come in, being in this sense its really applied state more outdated
than before. Logically, this behavior is undesired because the replica instead of
having all the information it needs for being fully recovered, it is stressed. This
will imply sometimes high delays in the process of requests for which it acts as
delegate server.

5.7.2 Overhead Criterion

The other main criterion to consider is the overhead introduced by recovery
protocols. As it is known, recovery protocols are used to increase the fault
tolerance and high availability –in terms of service availability– of replicated
systems. But, to do so they must perform extra work that will introduce some
cost that decreases the performance level and high availability –in terms of re-
sponse time– of replicated systems –one of its original goals. Thus, the recovery

54 CHAPTER 5. THE AMNESIA PHENOMENON

protocol must also be designed to work minimizing the overhead introduced in
the replicated system overall performance.

In the optimal case, and hypothetical one, the recovery protocol will not in-
troduce any overhead in the replicated system. But, this goal is impossible to
reach. But when appears the overhead? Three main cases can be observed,
depending on if there are not crashed replicas in the system, if there are, or if
there are replicas being recovered.

A recovery protocol may introduce overhead when in the replicated system there
are not crashed replicas. At first glance, it can be thought that in this case the
recovery protocol neither has to update any outdated replica nor has to gener-
ate recovery information –information that will be used later by the recovery
protocol–. So, no overhead should be introduced. But, as it has been seen if
the crash recovery with partial amnesia failure model is assumed the recovery
protocol needs to generate recovery information even if there are not crashed
nodes in the system in order to overcome the amnesia problem. Therefore, a
minimum cost is introduced, the cost of generating the necessary recovery in-
formation. Notice, that if the GCS used provides the successful delivery [122] it
would not be necessary to generate the recovery information in this case. Later,
in Chapter 9 it will be seen how some literature recovery proposals generate
recovery information during this scenario, whilst others do not.

Obviously, when there are crashed replicas, it is necessary to generate recov-
ery information for the time they restart in order to be updated –recovered–.
Information used to recovery the missed state. Therefore in this case the re-
covery protocol will always introduce some overhead in the performance of the
replication protocol it works for. This work scenario can be mixed with the
previous one, because in both cases it is necessary to generate recovery informa-
tion, when the amnesia phenomenon is possible. But, as soon as the recovery
protocol uses two different techniques for recovering the forgotten and missed
state, the overhead introduced will be slightly different.

The other case is when an outdated node is recovered, independently if there
are crashed nodes or not –combining their overheads. Naturally, in this case
the recovery protocol also introduces some cost. This is the cost of transferring
the information lost by the outdated node during its disconnection. This cost is
basically compound by the cost of collecting the information to be transferred
in the recoverer node, transferring it to the recovering one, and applying the
information. In some cases, version-based recovery techniques minimize the cost
of recovery information generation transferring the main part of the cost to the
step when the information is collected –executing very expensive SQL sentences,
for instance. Moreover, some of these version-based techniques lock database
tables during the recovery process decreasing the performance of the replication
protocol.

5.8. RELATED WORK 55

5.7.3 Summary

In conclusion, it must be said that when a recovery protocol is designed it must
ensure the two first criteria correctness: both in consistency and time-bound
terms. Whilst, the basic goal for the overhead criterion is to minimize it in all
the predefined cases.

At this point, it can be proposed some parameters for describing the recovery
protocols both for their correctness time-bound criterion and for their intro-
duced overhead. Therefore, these parameters can be used for comparing them
and select which approach best suits the overall replication system needs.

For the correctness time-bound criterion it would be interesting to determine
the workload threshold, in the way that for any workload value higher than
this threshold the system can not ensure the correctness time-bound criterion.
As this threshold can vary depending on the replication technique used, the
number of replicas, and other parameters. It would be necessary to generate
threshold graphics representing the workload threshold evolution for each repli-
cation technique depending on the number replicas. This would be very useful
when selecting a recovery solution depending on the workload requirements of
the replicated system.

In regard to the overhead criterion it would be also interesting to study and
represent through graphics the overhead evolution –for the three different cases–
. For simplification reasons, it would be interesting to assume for the second and
third case, that there is only one crashed replica and a replica being recovered
respectively.

5.8 Related Work

In [29] the author proposed a categorization of the crashed nodes failure de-
pending on the state they have when they restart –if the failure model supports
it– for distributed systems.

As it has been said in the Introduction, replicated systems at the beginning
commonly adopted the fail-stop failure model as [14], while last trends in trans-
actional replicated systems [82, 20, 19, 6, 79] have adopted the crash recovery
with partial amnesia. The second one is largely used because allows to design
more efficient recovery processes. But, its main drawback relates to the fact that
its associated problems have not been deeply considered by researchers as they
were more focused on developing very fast replication and recovery protocols.
Therefore, not all recovery proposals for systems assuming the crash recovery
with partial amnesia handle its problems accurately.

Anyway, some papers as [122] have already pointed out the difference between
message delivery and message processing. A very important difference when
talking about crash recovery with partial amnesia failure model because implies

56 CHAPTER 5. THE AMNESIA PHENOMENON

that all not delivered messages in a replica have been already correctly processed.
For overcoming this problem they proposed the successful delivery which implied
that a message has been both delivered and correctly processed. Therefore, a
message is not discarded by a GCS until it has not been successful delivered in
all replicas. Then, if it is assumed that the GCS provides the successful delivery
behavior, the amnesia phenomenon is avoided.

It must be said that some authors also noticed the necessity of persisting mes-
sages at some point in the broadcast process when designing atomic broadcast
algorithms based on consensus [84, 109] for the crash-recovery model.

In [84] the author forced the system to persist delivered messages in order to
avoid possible consistency problems associated to the fact that nodes can dis-
connect. Authors of [109] also make mandatory in their proposal that for each
consensus round each replica has to persist its proposed messages, being possible
later to replay these consensus rounds as recovery process. As an optimization
proposed to persist the queue of agreed messages. Although both solutions pro-
vided a basic mechanism for overcoming the amnesia problem neither of these
two solutions specified the necessity of persisting the messages as an atomic step
of the delivery process –at the basic approach of [109] it was not necessary–,
leading also sometimes to undesired situations if problems appeared between
message delivery and message persisting. But in spite of the development of
these approaches, most GCS provide atomic broadcast implementations that
are not based on them and do not consider the necessity of persisting messages.
So, they can not manage correctly the amnesia phenomenon. Authors of [91]
also introduced the necessity of checkpointing the state of each replicated pro-
cess in two levels: application level and atomic broadcast algorithm level in
order to provide more correct recovery processes.

Also in former proposals for using atomic broadcast in replicated databases
as [100] the authors introduced the concept of irrevocability for the delivery
process. It implied that a process must not forget the messages it has already
delivered. Therefore, the necessity of remembering the delivered messages was
already detected as it has been pointed out in this chapter.

5.9 Conclusions

In this chapter it has been described the amnesia phenomenon, and how it can
derive to a consistency problem when the crash recovery with partial amnesia
failure model is adopted.

Subsequently, it has been formalized both for transactional replicated systems
and process replication. Proposing the properties that must be fulfilled in both
cases for overcoming it. Later, it has been proposed a logic recovery schema
that includes the amnesia recovery step.

Finally, the chapter includes a set of design criteria that must be followed when

5.9. CONCLUSIONS 57

constructing a recovery protocol for replicated systems.

Chapter 6

Amnesia and Majority
Partitions

Replicated transactional systems only can go on working if they fulfill a progress
condition. This condition fulfillment is adopted for ensuring the consistency of
the replicated system. Replicated transactional systems usually assume the
crash-recovery with partial amnesia failure model, and the majority partition
progress condition. But, despite the large use of such combination most of
these works do not handle accurately a very special phenomenon that can lead to
diverging states in different replicas causing, when happening, critical situations.
In this chapter it will be described and formalized the problem, and a solution
is provided.

6.1 Introduction

This chapter presents a replicated consistency problem which arises when com-
bining the amnesia phenomenon –non-correctly handled– with a specific repli-
cated system composition allowed by the majority partition progress condition.
A problem that can lead different state evolutions among the members of the
replicated system.

Later, the problem is formalized, establishing the replicated system conditions
that would generate it, and the properties that must be fulfilled for overcoming
it.

Despite being a rare problem, it should be accurately managed for avoiding crit-
ical situations. Therefore, two different approaches are presented for overcoming
it, being each one of them interesting for transactional replicated systems with
different characteristics. On one hand, a solution is presented for critical sys-
tems where already performed and committed work at replicated system level

59

60 CHAPTER 6. AMNESIA AND MAJORITY PARTITIONS

can not be undone nor lost. On the other hand, it is proposed the use of a
technique used in partitionable systems, reconciliation, whose main advantage
is its zero overhead in normal work.

The rest of the chapter is structured as follows. It is first outlined in Section
6.2 with a simple example the arising problem. Later, it is performed a short
formalization about progress conditions in Section 6.3. In Sections 6.4 and 6.5 it
is formalized the amnesia issue with the progress condition both for transactional
and non-transactional replicated systems, presenting some solutions in Section
6.6. Finally, related work is included in Section 6.7, and Section 6.8 concludes
the paper.

6.2 A Problem Sample

As it has been said combining the amnesia problem –which appears when the
replicated system adopts the crash-recovery with partial amnesia failure model–
with the replicated system progress condition –primary partition– can lead the
replicated system to state inconsistencies. The problem is that the system is
unable to guarantee the correct system data state progress. This inconsistency
problem can be seen with the following example.

Consider that the information system of a hospital is compound by three repli-
cas, α = {R1, R2, R3}, and all the hospital terminals work against it. All three
replicas are fully updated –with the same state– and working at the instant
t0. Then, a doctor introduces a first patient diagnosis in the system through
Tn –including the necessary analysis that need to be performed for refining it–,
being delivered and committed in all replicas.

After performing and studying these analysis, the doctor introduces in the sys-
tem that the patient has forbidden to eat some particular food –because its
ingestion can derive in severe health patient consequences– through Tn+1. Tn+1

is delivered to all replicas, but only committed in R1. This situation is depicted
in Figure 6.1.

This is due because R2 and R3 nodes crash before being able to commit Tn+1,
as Figure 6.2 shows, moreover, R2 and R3 lose the Tn+1 associated message
because the replication protocol does not persist it. R2 and R3 crash implies that
the hospital information system does not fulfil the primary partition progress
condition, so it stops working.

Once the hospital IT staff has repaired R2 and R3, these replicas are reconnected
to the system, but in this view change it also crashes R1 as it is detailed in Figure
6.3.

Then the information system fulfils the progress condition, but it arises a consis-
tency problem, R2 and R3 have not seen the Tn+1 changes. So, as they fulfil the
progress condition they can go on working, but if they work they will start from
the state reached after committing Tn and not Tn+1 –the last really committed

6.2. A PROBLEM SAMPLE 61

R

R

State modified by T (not persisted)

State modified by T (persisted)

Committ0

2

3

R1

Tn+1

Tn+1

Tn+1

n+1

n+1

Figure 6.1: Transaction commit

R

R

State modified by T (not persisted)

State modified by T (persisted)

Committ0

2

3

R1

Tn+1

Tn+1

Tn+1

n+1

n+1

t0

X

X

Figure 6.2: Crash of R2 and R3

transaction in the replicated transactional system– leading to a diverging state
evolution to R1 state –which is the correct one.

It must be said that this situation or another combination of events that leads
to a similar situation is very improbable in a replicated system. And this prob-
ability diminishes as long as the number of replicas increases. But, it must
be correctly managed in order to avoid undesired situations in the replicated
consistent state. In the previous example, the inconsistency can imply that the
patient eats something that he has forbidden, causing severe damages in his
health.

As previous step to presenting possible solutions that can be applied for solving
this problem, it is formalized.

62 CHAPTER 6. AMNESIA AND MAJORITY PARTITIONS

R

R

State modified by T = forgotten state

t2

2

3

R1

n+1

Figure 6.3: Reconnection of R2 and R3

6.3 Progress Condition

Progress condition is the condition that must be fulfilled by a replicated system
to be enabled to work. Usually, replicated systems have adopted the primary
partition condition [24]. So, in this case the replicated system is allowed to work
if a majority of its replicas is alive.

6.3.1 Progress Condition Formalization

Considering a replicated transactional system, N = {n1, n2, ..., nn}, compound
by n replicas –with n > 2–, Nx represents that it has a working view, Vx,
while with N∗

x that it has not any working view, being Vx the last working view
installed in the system. Minority partitions are represented by V∗

y , where y is
the last working view seen by the members of this partition.

Thus, it is in a working view, Nx, if it has a Vx : card(Vx) >= ⌊n
2 ⌋ + 1.

Contrarily, it is said that it is in a non-working view N∗

x . Minority partitions,
V∗

x , always fulfil that card(V∗

x) < ⌊n
2 ⌋ + 1.

For formalization reasons, two different view counters are used: one for total
installed views –first subindex–, and another one for working installed views
–second subindex. The first subindex is used for noticing that membership
changes also occur in non-majority partitions, installing “views”, although usu-
ally authors only use the view concept for partitions which fulfil the progress
condition. So, this first counter is increased in any members group view change
–but it has not any purpose in a real system–, while the second one is only
increased when a new working view is installed –being the counter that must
be used in a real system–. Possible view transitions are shown in table 6.1.

6.4. TRANSACTIONAL PROBLEM FORMALIZATION 63

TRANSITION CASES
Node Addition

T1 : Vx,j ∪ V∗

k,l → Vx+1,j+1

T2 : V∗

x,j ∪ V∗

k,l → V∗

max(x,k)+1,max(j,l)

T3 : V∗

x,j ∪ V∗

k,l → Vmax(x,k)+1,max(j,l)+1

Node Removal
T4 : Vx,j → Vx+1,j+1

T5 : Vx,j → V∗

x+1,j

T6 : V∗

x,j → V∗

x+1,j

Table 6.1: View Transitions.

6.4 Transactional Problem Formalization

Assume a replicated transactional system, N = {n1, n2, ..., nn}, compound by
n replicas, being n > 2.

∀T 5 transitions triggered by node crash/es it will be at least one nl : nl ∈
Vx,j \ V

∗

x+1,j.

Considering that Tj = {Tj,1, Tj,2, ..., Tj,m} is the transactions set delivered
and committed in the replicated system during Vx,j, it can be assumed that
∀nk ∈ Vx,j ∩ V∗

x+1,j:

Tx = T D
j,nk

= T C
j,nk

= {Tj,1, Tj,2, ..., Tj,m}

While ∀nl ∈ Vx,j \ V∗

x+1,j, as it has been formalized in subsection 5.3, it might

happen the following: Tj = T D
j,nl

6= T C
j,nl

, where:

T C
j,nl

= {Tj,1, Tj,2, ..., Tj,m−s}, being 0 ≤ s ≤ m.

Due to the amnesia phenomenon it will be distinguished minority partitions,
V∗

z,j –which is used in a generic way–, between V̌∗

z,j and V̂∗

z,j . First ones, are
minority partitions whose last seen view is j, but they can not ensure that they
do not have the amnesia phenomenon in relation to this view because all their
nl nodes that have seen the j view fulfil that nl : nl ∈ Vx,j \ V∗

x+1,j . While

second ones, V̂∗

z,j , are minority partitions that have seen also the j view, and at
least one of their nodes that has seen j fulfills nm ∈ Vx,j ∩ V∗

x+1,j .

Later, if in the first transition of type T 3 to a new working view, Vk,j+1 –recall
that the last installed working view in the system was Vx,j–, the new installed
view fulfils the following:

64 CHAPTER 6. AMNESIA AND MAJORITY PARTITIONS

Vk,j+1 = A ∪ B where:

• A = {nl ∈ Vx,j \ V
∗

x+1,j : nl /∈ V̂∗

z,j : x + 1 < z < k}, are the nodes that
were alive in the last working view, but crashed –so they were not alive in
any V∗

x+1,j– triggering the view change that lead Nj → N∗

j , and did not
belong to any minority view that can recover the whole j view.

• B = {nk /∈ Vx,j ∩ V̂∗

z,j : x < z < k}, are the nodes that did not belong
to the last working view, and that have not recovered the whole j view in
any minority partition.

Then, the new reached majority is enabled to go on working. But, in this
situation a problem can arise if the s term for A nodes fulfils that s > 0. This
is because this new installed majority will be unable to reach the last consistent
replicated state –the one reached after applying Tj,m–, due to the fact that:

• ∀nl ∈ A it is fulfilled that T F
j,nl

6= ∅

• ∀ns ∈ B it is either fulfilled that T D
j,nk

= T C
j,nk

= ∅ or T F
j,nl

6= ∅

So, the arising consistency problem conditions are:

• Condition 1 : T 3 transition → Vk,j+1

• Condition 2 : Vk,j+1 = A ∪ B

• Condition 3 : ∀nl ∈ A it is fulfilled that T F
j,nl

6= ∅

The properties that must fulfil the replicated system to avoid this possible sit-
uation are similar to the ones proposed for solving the general amnesia phe-
nomenon in subsection 5.3: in fact the Prop. FS1 is necessary as it is defined in
5.3, while the Prop. FS2 must be slightly modified to overcome this problem:

• Property FS2* : each node nl ∈ A must maintain and provide a way for
obtaining its T F

j,nl
transactions subset or associated updates, instead of

trusting in “the replicated system”.

The generic solution, described in Section 8.3 and presented in [38, 36], fulfils
also both properties, as explained in the next section.

Once formalized the problem for transactional systems it would be formalized
for non-transactional replicated systems.

6.5. NON-TRANSACTIONAL PROBLEM FORMALIZATION 65

6.5 Non-Transactional Problem Formalization

The problem formalization for non-transactional replicated systems follows the
same steps as the formalization performed in the previous section.

It must be also assumed a non-transactional replicated system, N = {n1, n2, ..., nn},
compound by n replicas, being n > 2.

∀T 5 transitions triggered by node crash/es it will be at least one nl : nl ∈
Vx,j \ V∗

x+1,j.

Considering that Mj = {Mj,1, Mj,2, ..., Mj,m} is the messages set delivered and
applied in the replicated system during Vx,j, it can be assumed that ∀nk ∈
Vx,j ∩ V∗

x+1,j:

Mx = MD
j,nk

= MA
j,nk

= {Mj,1, Mj,2, ..., Mj,m}

While ∀nl ∈ Vx,j \ V∗

x+1,j, as it has been formalized in subsection 5.4, it might

happen the following: Mj = MD
j,nl

6= MA
j,nl

, where:

MA
j,nl

= {Mj,1, Mj,2, ..., Mj,m−s}, being 0 ≤ s ≤ m.

Due to the amnesia phenomenon it will be distinguished minority partitions,
V∗

z,j –which is used in a generic way–, between V̌∗

z,j and V̂∗

z,j . First ones, are
minority partitions whose last seen view is j, but they can not ensure that they
do not have the amnesia phenomenon in relation to this view because all their
nl nodes that have seen the j view fulfil that nl : nl ∈ Vx,j \ V∗

x+1,j . While

second ones, V̂∗

z,j , are minority partitions that have seen also the j view, and at
least one of their nodes that has seen j fulfills nm ∈ Vx,j ∩ V∗

x+1,j .

Later, if in the first transition of type T 3 to a new working view, Vk,j+1 –recall
that the last installed working view in the system was Vx,j–, the new installed
view fulfils the following:

Vk,j+1 = A ∪ B where:

• A = {nl ∈ Vx,j \ V∗

x+1,j : nl /∈ V̂∗

z,j : x + 1 < z < k}, are the nodes that
were alive in the last working view, but crashed –so they were not alive in
any V∗

x+1,j– triggering the view change that lead Nj → N∗

j , and did not
belong to any minority view that can recover the whole j view.

• B = {nk /∈ Vx,j ∩ V̂∗

z,j : x < z < k}, are the nodes that did not belong
to the last working view, and that have not recovered the whole j view in
any minority partition.

66 CHAPTER 6. AMNESIA AND MAJORITY PARTITIONS

Then, the new reached majority is enabled to go on working. But, in this
situation a problem can arise if the s term for A nodes fulfils that s > 0. This
is because this new installed majority will be unable to reach the last consistent
replicated state –the one reached after applying Mj,m–, due to the fact that:

• ∀nl ∈ A it is fulfilled that MF
j,nl

6= ∅

• ∀ns ∈ B it is either fulfilled that MD
j,nk

= MA
j,nk

= ∅ or MF
j,nl

6= ∅

So, the arising consistency problem conditions for non-transactional replicated
system are:

• Condition 1 : T 3 transition → Vk,j+1

• Condition 2 : Vk,j+1 = A ∪ B

• Condition 3 : ∀nl ∈ A it is fulfilled that MF
j,nl

6= ∅

The properties that must fulfil the replicated system to avoid this possible sit-
uation are similar to the ones proposed for solving the general amnesia phe-
nomenon in subsection 5.4: in fact the Prop. FS1 and Prop. FS3 are necessary
as they are defined in 5.4, while the Prop. FS2 must be slightly modified to
overcome this problem:

• Property FS2* : each node nl ∈ A must maintain and provide a way
for obtaining its MF

j,nl
messages subset or associated updates, instead of

trusting in “the replicated system”.

It can be noticed that the modification is very similar to the one proposed for
transactional systems.

6.6 Solutions

In this section different approaches for solving this problem in replicated systems
are provided.

6.6.1 Transactional Systems

Persisting Messages

This solution is in fact the generic approach presented in Section 8.3. So, the
idea consists in storing persistently the delivered messages in each replica as an
atomic step of the delivery message, being only possible to delete them once
they have been correctly processed in the replica.

6.6. SOLUTIONS 67

Working in this way it is always ensured that ∀T 5 transition triggered by node
crashes –reaching V∗

x+1,j– all nl ∈ A has persisted its T F
j,nl

. Thus, when they
reconnect and start their recovery process they can apply them. So, if in the
first transition of type T 3 –reaching Vk,j+1– it is fulfilled that Vk,j+1 = A ∪ B,
then the A nodes in spite of having the T F

j,nl
6= ∅, they have permanently stored

the messages associated T F
j,nl

. Hence, they are able to reach the last consistent
state of the replicated system, avoiding diverging state evolutions, when the
amnesia problem is combined with a T 3 transition.

Obviously, persisting messages as soon as they are delivered implies an overhead
during the replication work. A study of this overhead cost is presented in Section
8.4. An overhead that will penalize constantly the replication work in order to
avoid problems for situations that will rarely occur.

Mobile approach

Mobile approach. Another possible solution is to do nothing and assume these
situations can happen. In this case, the idea is that among the alive nodes that
compound the new primary partition –instead of not having the last consistent
state– decide a new last consistent replicated state, allowing the system to go
on working from this point, the Tj,m−s with highest m − s value of A nodes.

Later, when a replica which really reached the last consistent state of the repli-
cated system reconnects, it must undo the transactions not processed in the
new consistent replicated state before being recovered.

This solution avoids the overhead of persisting messages and simply implies
to undo –in very rare occasions– some transactions –usually very few–. This
solution is similar in concept to some approaches used in reconciling processes
for partitionable systems [7].

Selecting Alternatives

Which solution must be adopted? It depends on the replicated system charac-
teristics. The first solution solves the problem ensuring that committed trans-
actions are not lost, but implies a constant overhead during the normal work
for solving a problem that will rarely happen. While the second solution avoids
the problem without implying any overhead, but some transactions must be
undone when this improbable scenario happens. So, it depends on the repli-
cated system tolerance to undo some already committed transactions. If this
tolerance is critical it is necessary to select the first approach, while if there are
not important problems of undoing some committed transactions, the second
one can be adopted.

68 CHAPTER 6. AMNESIA AND MAJORITY PARTITIONS

6.6.2 Non-Transactional Systems

Persisting Messages

For non-transactional systems it can also be used the approach based on per-
sisting messages for transactional systems. This is in fact the solution presented
in Section 11.3. Therefore, as for transactional systems, this solution consists
in persisting messages atomically in the delivery process –in each replica–, and
deleting them once they have been correctly applied in the replica.

This ensures that ∀T 5 view transition triggered by node crashes –where the
system reaches V∗

x+1,j– all nl ∈ A have persisted their MF
j,nl

. Therefore, when
they perform their recovery process they can apply their respective forgotten
messages. In this case, if in the first transition of type T 3 –reaching Vk,j+1 a
working view– the system fulfils that Vk,j+1 = A ∪ B, then the A nodes have
persisted their respective MF

j,nl
messages. Hence, they reach in the recovery

process the last consistent state of the replicated system, avoiding then diverging
state evolutions, when the amnesia problem is combined with a T 3 transition.

Logically, the process of persisting messages atomically in their delivery process
implies an overhead in the replication work. A study of this overhead cost is
presented in Section 11.5. This overhead is really important because penalizes
constantly the replication work for overcoming problems that will rarely occur.

6.7 Related Work

Different semantics have been defined for facilitating the implementation of
recovery protocols. On the sequel we will include considerations about how
different proposals face this problem.

In [51] the authors surveyed rollback–recovery protocols in message passing sys-
tems for non-transactional distributed systems. Among the considered protocols
there were the Logging protocols based on checkpointing and logging. In this
case each node can recover its last achieved state setting its last performed
checkpoint and reapplying the messages logged –at delivery time– from this
checkpoint. Checkpoint and logged messages were stored persistently. Then as
we can see these protocols avoid the problem presented in this chapter when
talking about replicated systems as long as a node has access to all its received
messages which have been logged. If instead of talking about transactions we
translate Prop. 1 and Prop. 2 to message terms, the checkpoint ensures Prop.
1 and the logged messages ensure Prop. 2.

The enriched view synchrony [9] (a.k.a. EVS) proposed for simplifying the
programming of applications which will have long and complex reconfigurations
can not avoid by itself this problem. The EVS decouples the “up-to-date nodes”
idea from “members of the primary view” notion –because the second ones can

6.7. RELATED WORK 69

be outdated. And defines a hierarchy for grouping nodes: subview, subview set
and view –or enriched view. And the EVS semantics imply the following. A
living node always belongs to exactly one subview, one subview always belongs
to exactly one subview set, and a subview set always belongs to exactly one
view. Moreover, only primary subviews are enabled to work.

This grouping hierarchy proposed by the EVS is used in recovery protocols as
follows. Consider a majority of nodes alive and belonging to the same subview
–which implies that they belong to the same subview set and view and that they
can work. When a crashed node becomes alive it has its own subview, subview
set and view. As soon as the GCS triggers the corresponding view change this
node maintains its own subview and subview set separated from the others, but
all nodes become member of the new created view. Later, in order to start the
recovery the outdated node merges its subview set with the subview set of the
previous nodes, but remains in its own subview. Once the recovery completes,
the recovered node merges its subview with the other nodes subview. At this
point, it becomes member of the primary subview so it can work.

But, all this behavior does not avoid the problem considered in this chapter.
We can see it with the previous example –explained in Section 6.2 and depicted
in figures 6.1, 6.2 and 6.3. Figure 6.4 shows the evolution of this example using
the EVS semantics.

R2

R1

t 0

R1

t 1 t 2

R2

R3

R2

R3

t 3

R2

R3

R2

R3

A B C D E F G

subview subview set e-view

Figure 6.4: Progress Condition Problem

At the beginning when R1 and R2 are alive and working –assume view n– they
belong to the same subview, subview set and view attending to EVS semantics
–Figure 6.4 (A)–. When R2 crashes the replicated system stops working because
it does not satisfy the majority partition progress condition. Remember that
R2 crashes before being able to commit Tb. Thus:

• Tn = {..., Ta, Tb}

• T D
n,R1

= T C
n,R1

= Tn

• T D
n,R2

= Tn, but T C
n,R2

= {..., Ta} 6= Tn

• so T F
n,R2

= Tb

70 CHAPTER 6. AMNESIA AND MAJORITY PARTITIONS

At this moment, the replica R1 remains alive –Figure 6.4 (B)– without working
from a replication point of view until it fails.

Later, R2 and R3 become alive. Obviously, both replicas do not become alive
at same instant, but it does not mind. At this moment each one has its own
subview, subview set and view –Figure 6.4 (D)–. When the GCS realizes about
it, it triggers a new view, becoming both replicas member of the same view but
maintaining each one their own subview and subview set –Figure 6.4 (E)–. In
order to start the R3 recovery its subview set is merged with R2 one –Figure
6.4 (F)–. This recovery ends when R3 reaches the same state as R2 –the state
reached after applying Ta– and at this moment it joins to the same subview of R2

–Figure 6.4 (G)–. Then, the replicated system has reached a primary subview
being enabled to work according to the EVS specification. The problem is that
this working view has as last state the one reached after applying Ta, and not the
correct one that is the one reached after committing Tb, because the node who
has to ensure the consistency among the view n and the new one, R2 is unable
to remember or obtain Tb –it has not committed this transaction before crashing
and has lost the message when crashing–. Therefore, a state inconsistency will
arise if they start working.

The problem of EVS is that neither avoids the amnesia phenomenon nor man-
ages it accurately. In fact, it does not satisfy any property Prop. 1 and Prop.
2 as long as it does not say anything about how to manage the recovery in-
formation. Thus, it can not avoid the problem presented here. Only if EVS is
combined with persisting the messages at each node as soon as they are delivered
will be enabled to avoid this problem.

In regard to Virtual Synchrony it must be said that by itself can not avoid this
problem. This derives from the fact that it only considers the message delivery
and not the message processing, so the virtual synchrony alone is not enough
for avoiding the presented problem.

It must be noticed that in [122], authors analyzed the basic phenomenon which
underlies behind the amnesia problem. They proposed in such paper the concept
of successful delivery that when correctly implemented, it overcomes both the
amnesia generic problem and the amnesia issue with the progress condition
presented in this chapter.

These problems are solved when successful delivery is combined with virtual
synchrony, and more specifically the one based on the same view delivery se-
mantic. In this case, if a node fails when processing the message, the system will
enforce the delivery of this message in all nodes in the next view. The idea is
that if one of the nodes of a view can not successful delivery a message the other
nodes belonging to such view neither can, therefore the nodes remaining alive
in the next view –if a crash has happened– will try to successfully deliver it in
this new view. Therefore, the basic amnesia phenomenon is avoided, forcing to
successfully deliver in the subsequent view those which can not be successfully
delivered in the previous one. In this case, this delivery semantic always ensure
that T F

j,nl
= ∅, so the problem presented in this chapter is avoided.

6.8. CONCLUSIONS 71

Assuming the example of Section 6.2, as R2 is not able to process correctly Tb

due to its crash, the successful delivery semantic will force to quit Tb from T D
n

and T C
n . That will imply removing Tb from: T C

n,R1
, T D

n,R1
, and T D

n,R2
. And try

to successfully deliver Tb in the next view if possible. Therefore, in this case
would be fulfilled:

• Tn = {..., Ta}

• T D
n,R1

= T C
n,R1

= Tn

• T D
n,R2

= T C
n,R2

= Tn

• so T F
n,R2

= ∅

In [109], authors proposed a new variant of atomic broadcast algorithm –based
on consensus– for the crash-recovery failure model. They propose as basic re-
covery mechanism to persist messages at propose time in the consensus work,
persisting other important consensus information when it concluded at replica
level in order to avoid problems at recovery time. Thus, later at recovery time
the recovering replica simply must to replay consensus rounds reconstructing
the queue of agreed messages but to do so it needs all other participants alive,
situation that in the presented problem is not fulfilled. So, this solution as it is
basically defined does not avoid the problem. Moreover, authors also proposed
an optimized recovery solution based on persisting the agreed messages queue
–combining it with some checkpointing policy. But, as they do not force to do
it atomically with the delivery process therefore the problem persisted, due to
the possibility that the replica crashed before persisting the delivered messages.

The solution proposed in [91] does not avoid this problem due to the fact that
it relies in other replicas to replay consensus rounds.

Anyway, in [109, 122] authors do not formalize the amnesia phenomenon and
do not study the associated problem when combined with the majority progress
condition.

6.8 Conclusions

This chapter shows how combining the amnesia phenomenon, which arises when
replicated systems assume the crash recovery with partial amnesia failure model,
with a particular scenario allowed for the most commonly used progress condi-
tion –majority partition– in replicated systems can lead to diverging replicated
state evolutions. Later, it has been formalized, proposing the properties that
must be ensured in order to overcome these undesired situations. Subsequently,
it has been proposed two different approaches for solving this problem, being
interesting each one for different replication scenarios.

72 CHAPTER 6. AMNESIA AND MAJORITY PARTITIONS

This phenomenon in spite of being very rare can cause catastrophic consequences
in consistency concerned replicated systems, so in these systems it must be
accurately managed.

Chapter 7

“
n

2 + 1 alive nodes”

Progress Condition

From the knowledge obtained in the previous chapter it can be derived a new
majority progress condition. Traditionally, the condition established to allow a
replicated system to go on working from a recovery point of view is based on
the existence of n

2 + 1 fully up-to-date nodes. In this chapter, it is formalized
the problem, in order to prove a mechanism for relaxing this condition, at
the time it is also kept the guarantee, for any possible primary partition, of
providing a correct evolution of the replicated system. There are also discussed
the drawbacks and advantages related to this relaxed progress condition.

7.1 Introduction

Apart from maintaining the original k-fault tolerant level of replicated systems,
another important aspect in these systems is to guarantee the replicated state
correctness. To this end, two basic approaches can be adopted: primary par-
tition systems where only the majority partition is allowed to work and parti-
tionable systems where multiple partitions may work concurrently. The latter
implies the use of costly quorums [12] for merging partition states, which may
not always be feasible without breaking correctness. Therefore, primary parti-
tion is widely accepted in order to guarantee correctness in the replicated state,
as well as the capability, for any reconnected (thus potentially outdated) node,
of being always in disposition to be updated to continue working.

This principle is based on the idea of a progress condition. Thus, consider-
ing that the distributed system knows the pre-configured set of possible nodes
D = {r1, ..., rn}, the condition of primary partition is granted when the intercon-
nected alive nodes conform a subset of D that satisfies the progress condition.

73

74 CHAPTER 7. “N
2 + 1 ALIVE NODES” PROGRESS CONDITION

Thus, the progress condition enables a partition P ⊆ S (i.e. a subset of the
distributed system) to go on working with guarantees.

Traditionally, replicated systems have adopted the concept of majority parti-
tion, meaning that n

2 +1 nodes of the system must be alive and fully up-to-date
in order to enable the partition to work. More precisely, this statement implies
that the notion of “up-to-date member” is equivalent to “member of the pri-
mary view”. In the scope of recovery systems for database replicated systems
based on broadcast primitives, the Enriched View Synchrony was presented in
[9], decoupling the concept of “up-to-date member” from the “member of the
primary view” one. This distinction drives the authors to separate the working
view concept from the majority partition one. The work also demonstrates how
this new approach models more accurately the evolution state in node replicas,
and how it fits better for applications where the recoveries are long and complex.

In addition, during the process run for recovering a newly reconnected node on
a primary partition, several problems arise in order to guarantee the correctness
of the system. Because of these problems, many recovery protocols introduce
several restrictions on the set of nodes allowed to work during that process. The
most advanced protocols disallow for working just the recovering node, whilst
other approaches prohibit the activity in the entire partition during part of -or
even all- the process run to recover nodes.

A direct implication of these two characteristics is that the aforementioned
condition introduces a drawback in the availability of the system, since the
nature of the update process of reconnected nodes makes it expensive, at the
time that the n

2 +1 updated condition requires an immediate update of the nodes
in order to proceed in partitions with just n

2 +1 composing nodes. Consequently,
it results extremely convenient to find a mechanism for relaxing the progress
condition, thus allowing to proceed partitions with just n

2 +1 alive nodes, which
will lead to a higher availability, also enabling background recovery processes.

This chapter formalizes a new and more relaxed progress condition for repli-
cated systems. Its viability and correctness in recovery terms are also proved
to be guaranteed by a proposed general recovery information strategy, ensuring
that primary partitions will always be able to go on working. This proposal
is presented in the scope of a middleware recovery protocol intended to pro-
vide fault tolerance for replicated systems based on linear interaction approach
[124], although the formalized principles are also applicable to replication pro-
tocols based on constant interaction. The only assumption made by our model
is that the information gathered during the failure of nodes can be structured
as an activity log (i.e. log-based gathering). This recovery protocol supports
different recovery strategies with the idea to minimize the effort and cost of the
recovery process, without stopping the replicated system work for primary par-
titions. It is also intended to perform partial recoveries, when needed. Finally,
as our design is performed as a middleware recovery system, it can be easily
applied to different transactional scenarios, in addition to database replicated
systems. In fact, this recovery system is highly oriented to replicated processes

7.2. RECOVERY INFORMATION MODEL 75

which manage large amounts of state, not being such interesting for replicating
small objects, where usually transferring the whole state to outdated nodes will
present better performance.

This chapter is structured as follows: the information model is described in
Section 7.2. In the following section, Section 7.3 the most restrictive progress
condition and the relaxed proposal are presented and formalized. It also in-
cludes a comparison, as well as the implications of the discussion for building
an adequate recovery protocol. Subsequently, the related work is included in
section 7.4. Finally, Section 7.5 summarizes the paper.

7.2 Recovery Information Model

In this section, it is presented a model that allows us to represent in a simple
way the information maintained at each node. It will be used afterwards in this
work to demonstrate the n

2 + 1 alive nodes progress condition correctness.

This model considers for each node member of the replicated system its com-
mitted information as well as the recovery information maintained in this node.
As the replicated system is intended to work using atomic broadcast primitives,
this recovery information is abstracted as an activity log. This recovery log
information contains messages belonging to on-going1 and committed transac-
tions which obviously were not received by a failed node or not yet applied by
the node. Aborted or rolledback transactions are immediately deleted from the
log.

Since the GCS notifies nodes about each view (understood as a single change
in the group composition), this log-recovery relates to each one of the missed
views. The view where the recovering node is being reconnected is also included
in a recovery log, since the activity of the current view cannot be applied to
the node until it is fully up to date. Thus, the recovery of a node is split up
into two parts: the log-recovery of previous views and the log-recovery of the
current one.

The model to represent the information available in a node is summarized in
S = (B, R, A), where B represents the data state committed, R is the log-
recovery of previous views, and A is the log-recovery of the current view.

Afterwards, the view concept is introduced in the model, thus the model can
be used to represent the data state contained in a node in view terms, relating
it to the replicated system view history. Therefore, the information available in
the view j by a node that has not failed is:

Sj = (Bj−1, Rj−1, Aj)

1Notice that on-going transactions only exist if the replication protocol uses linear inter-
action.

76 CHAPTER 7. “N
2 + 1 ALIVE NODES” PROGRESS CONDITION

Bj−1, is the committed state when the view vj started, Rj−1 is the log recov-
ery generated until the view j − 1 including itself, and Aj is the log recovery
generated during the view j. At the beginning of vj , Aj is empty and when the
system installs the view vj+1 it becomes part of Rj.

This model derives on the following characteristics:

• B and R do not exist at S0,

• Bj+1 = Bj + (Rj−1 + Aj) committed messages during view vj ,

• Rj = Rj−1+Aj , if this expression is iterated, at the end Rj = A0 + ... + Aj

It must be remarked that the log-recovery contents, modelled as R and A, vary
as long as transactions are committed and aborted or failed nodes reconnect to
the system and are further recovered.

7.3 Progress Conditions

In this section, there are discussed either the most extended, more restrictive
progress condition, and the relaxed one proposed in this chapter. It is also
proved the correctness of the relaxed condition, as well as the recovery informa-
tion needed to guarantee its correctness. Finally, both conditions are compared.

7.3.1 n

2
+ 1 Updated Nodes

This condition is the commonly used one for recovery purposes. It guarantees
that a majority partition will always contain at least one full up-to-date node.
This node can be used then to recover the outdated nodes present in this new
view. Thus, it will always be possible for a majority partition to fully update
each one of the outdated nodes. Then, once this view reaches n

2 + 1 updated
nodes (i.e. the progress condition) it can start to work.

Its correctness demonstration is trivial. Assume that a new majority partition
does not have any fully up-to-date node. If this scenario is reached, it implies
that the last installed working view2 contained less than n

2 + 1 updated nodes.
This situation, obviously is prohibited under this progress condition. Conse-
quently, the n

2 + 1 updated nodes guarantees the capability to progress of any
majority view.

The main advantage of this progress condition relies in the fact that the recovery
information is always guaranteed to exist in a majority partition, since it is
ensured by construction that at least one node was present and fully updated
in the last working view.

2Recall that only majority partitions install new views.

7.3. PROGRESS CONDITIONS 77

Although this condition provides correctness and liveness guarantees, it presents
important drawbacks. The most relevant arises on minimal majority partitions,
with just n

2 + 1 alive nodes and where just one of them is fully up-to-date.
Those partitions will be disallowed to work until every node (n

2 +1) is updated.
Since the recovery process of such nodes is costly, the inactivity time becomes
inconveniently long.

7.3.2 n

2
+ 1 Alive Nodes

To mitigate the inconveniences introduced by the mentioned progress condition
it becomes necessary, as it will be shown in this section, to combine the condi-
tion with a recovery log storing policy which persistently stores each broadcast
message as soon as it is delivered by the GCS.

The adoption of this process condition guarantees that in each installed and
working view there are always at least n

2 + 1 alive replicas. Thus, it is ensured
that all these replicas will generate the A term corresponding to the installed
view, even if they are not up-to-date. So, the A term means a “seen view”,
even if such view has not been applied in the node. Therefore, the system has,
for each installed view, at least n

2 + 1 nodes that have generated the associated
view recovery information, if needed3.

Consequently, this system behavior guarantees that, in any possible installed
view (over a majority partition) the recovery system can lead its replica members
to the last reached data state, even if no one of them is fully up-to-date4. This
is possible because this condition ensures that, the cooperation of all alive nodes
enables the recovery system to reconstruct the entire activity of the replicated
system, and thus, to recover any outdated nodes. In fact, some of the nodes of a
recovering view (at least one) have been alive in each one of the installed views.
In terms of the information model, they have the sequence of log-recoveries,
{Ac, ..., Ai} (although the sequence may be spread over different nodes) that
allow the recovery system to update them.

To demonstrate this assertion, assume that the last data state reached in the
replicated system is Sn, which can be expressed as Sn = {Bn−1, Rn−1, An}.
Also assume that, in each installed view, it has always existed at least a failed
node. Then, Sn can be reconstructed applying the messages maintained in
{Rn−1, An}. And this information can be expressed in A terms as it is shown
in figure 7.1. Therefore, as the progress condition guarantees that each A term
is always seen by at least n

2 + 1 alive nodes, it is easy to see that, spread over
the alive nodes in any possible majority partition, there are the A terms for any
missed view, and they are able to reconstruct the last data state.

This condition differs from the “n
2 + 1 Updated Nodes” one in the sense that

3It is not needed if there is no failed node.
4By definition, at least one of these nodes was in the last installed view but it is possible

that it did not apply this view because it was outdated.

78 CHAPTER 7. “N
2 + 1 ALIVE NODES” PROGRESS CONDITION

Taking as starting point:
Sn = {Rn−1 + An}

where Rn−1 = {Rn−2 + An−1}
Then, if Rn−1 is substituted

Sn = {Rn−2 + An−1 + An}
Finally, if this step is performed until the first view
the Sn can be expressed as

Sn = {A0 + ... + An−1 + An}

Figure 7.1: Reconstruction State.

it allows to install majority views in a majority partition (and consequently, to
work) as soon as it exists in the group one fully up-to-date node5. Therefore,
the system does not need to wait for a recovery process that leads the system
to a n

2 + 1 updated nodes situation. Obviously, if when a majority partition
is reached and it does not contain any fully up-to-date node, it must wait the
completion of the recovery process of at least one node in order to install the
new view, and consequently, start working.

With this condition the recovery process requires more information, but it usu-
ally permits the system to work sooner when it reaches a majority partition
from a minority one. Thus, every node contained in a working partition will
store (if there are failed nodes) the activity seen in such partition at any time.
This activity, modelled as a log, will be potentially used by the recovery process
on node reconnection.

7.3.3 Comparison

The biggest difference among these two progress conditions appears in system
transitions when a majority partition is reached. Therefore, the “n

2 +1 Updated
Nodes” one will not let the system work until n

2 + 1 replica nodes are fully up-
dated, whilst the second one lets the system work as soon as one of its members
is fully up-to-date. So, the latter is a less restrictive condition, reducing the
unavailability time of a replicated system in these transitions.

However, the second one implies a more complex recovery process, that also
needs a costly storing policy which forces the system to persist any broadcast
message. However, such storing policy is highly convenient in truly fault-tolerant
systems in order to bypass the amnesia problem.

The adoption of the progress condition presented in this work will be useful for
systems that need to provide their service as soon as possible and are frequently
subject to the minority-to-majority transition.

5Recall that only up-to-date nodes can start transactions.

7.4. RELATED WORK 79

7.4 Related Work

The use of majority partition progress condition derives from the quorum voting
replication strategies [59] used in replicated systems. In fact, this is the simplest
version of quorum voting strategies.

At the beggining these quorum voting strategies where combined with atomic
commit protocols in order to ensure consistency and progress. The most basic
commit protocol, the two phase commit [61] –2PC–, had the problem of blocking
if a replica –holding some locks– crashed. In order to avoid this blocking problem
they were presented the three phase commit protocols [116] –3PC. 3PC protocols
in spite of not blocking presented the unilateral abort problem. This problem
leaded the 3PC to abort transactions even if a single replica server crashes. For
this reason, authors of [66] presented a 3PC variant which commits transactions
as long as a majority of replicas are up, avoiding the unilateral abort problem.

It must be said that this last protocol [66] can work with a majority of repli-
cas up and not a majority of updated replicas because it includes internally in
its commit work the version number that for every data item being accessed
has each replica server participating. Compared to the proposed condition in
this chapter it presents several drawbacks. Its main problem is that it must be
combined with a 3PC protocol, with the cost that it implies instead of using
atomic broadcast. Also, it is unable to manage the amnesia phenomenon cor-
rectly being possible to arise the different problems related to it if the system
adopts the crash recovery with partial amnesia failure model. And finally, it
forces to access also a majority of replica servers for read operations while in
the proposed condition in this chapter accessing only one is enough.

7.5 Conclusions

Inspired by the decoupling of “primary view” from “primary partition”, this
chapter proposes and demonstrates a new progress condition combined with a
specific storing recovery information policy. The advantages and drawbacks of
both progress conditions are also compared.

This work details in first place an information model to represent the information
maintained in a replica node, in the context of replicated transactional systems
which use a log-based recovery strategy as [19]. The model represents on one
hand the committed state, and on the other hand the log-recovery information
maintained at each replica node. Moreover, there are detailed the three basic
rules fulfilled by this recovery information model.

In second stage, it has firstly shown, using the proposed information model,
the correctness of the traditional and widely assumed progress condition for
replicated systems, the n

2 + 1 updated nodes. Then, a new progress condition,
the n

2 + 1 alive nodes, has been presented and its correctness has been also

80 CHAPTER 7. “N
2 + 1 ALIVE NODES” PROGRESS CONDITION

demonstrated. Moreover, it has been shown that its correctness is subordinated
to the persistent storage of each broadcast message when failed nodes exist.

Finally, both progress conditions have been compared, and it is shown how, for
the transitions from a minority partition to a majority one, the condition pro-
posed here is more convenient than the traditional one. The first one allows to
work a majority partition as soon as one of its members is up-to-date. Contrar-
ily, the traditional one only allows the majority partition to work when n

2 +1 are
up-to-date, which is often subject to costly recovery processes. The drawback
of our proposed condition is the necessity of persistently storing any broadcast
message when failed nodes exist. It also has been shown how this storage be-
comes necessary in any case in realistic systems, where the crash-recovery with
partial amnesia failure model is adopted.

Therefore, the adoption of one or another approach will depend on the necessity
of high availability even for the transitions from a non-majority partition to a
majority one.

Chapter 8

Transactional Amnesia
Support

After having described and formalized the amnesia phenomenon problem either
for transactional replicated systems or for non-transactional replicated systems
in the previous chapter, it is time to provide ways for managing it accurately
and therefore overcoming the problems associated when it arises.

8.1 Introduction

In this chapter, it will be provided a generic way for handling accurately the
amnesia phenomenon in transactional replicated systems. The idea is to provide
a recovery technique that fulfills the properties presented in Section 5.3 and
that can be combined with any existing recovery technique without disturbing
its basic work way.

As it has been said transactional replicated systems can work either in a constant
interaction or in a linear interaction way. This thesis assumes that replication
protocols broadcast writesets and readsets when working in a constant interac-
tion way, while they spread operations under the linear interaction approach.
Evidently, there are more possibilities but these are not considered in this thesis
due to space constraints.

Depending on the recovery policy used, log-based or version-based, the informa-
tion that must be maintained to solve the amnesia problem differs. Thus, extra
information is needed to be maintained to this particular end, being afterwards
used in the amnesia recovery process.

This chapter is structured as follows: Section 8.2 outlines the wrapping recov-
ery protocol. The next section, Section 8.3 provides ways to avoid amnesia

81

82 CHAPTER 8. TRANSACTIONAL AMNESIA SUPPORT

problems at recovery time using a log-based recovery policy. Later, in Section
8.4 this chapter studies how different replication configurations behave when
the amnesia phenomenon arises, taking as starting point the basic generic so-
lution presented for a basic replication configuration. On the sequel, Section
8.5 analyzes the overhead introduced when applying this solution in different
replication configurations. Section 8.6 includes some related work, and Section
8.7 concludes the chapter.

8.2 Recovery Protocol

In the basic considered replicated systems each transaction is only processed
in one replica –denoted as delegate server by [123]–, the replica that serves
the client request, and only its associated updates are broadcast among all
alive replicas. In this scenario, log-based recovery protocols use as recovery
information the broadcast replication messages missed by crashed nodes. So,
the solutions provided for log-based protocols must maintain these messages as
long as they are not applied by all replicas, as it has been commented in Section
5.6.1.

The recovery protocol has the logic stages presented in Section 5.5. Figure
8.1 concretes this recovery process for transactional systems based on constant
interaction.

Recovery Process:
1 - Amnesia Recovery Process:

if the outdated node is the (re)connected node it performs the ARP
2 - Update Recovery Process:

the outdated node for each non-applied view vi:
if the outdated node does not have the log-recovery view information
for vi:

it demands the log-recovery information for vi to the recoverer
node (vi)

the outdated node updates view vi

notify the alive nodes that vi has been recovered in this node
3 - Current Recovery Process:

if the replicated system was working during the node recovery (all lost
views have been already applied):

the outdated node reapplies the messages delivered after reconnecting

Figure 8.1: Recovery Algorithm.

The first step, the ARP, is used by (re)connected nodes to retrieve the right
state they had at their crash time. In this process, the outdated node must

8.3. AMNESIA RECOVERY SUPPORT 83

apply the messages received and not yet committed before its failure. A deeper
discussion of this recovery step is done in Section 8.3.

The URP stage is performed by every outdated node. Each outdated node
starts the recovery of its missed views by selecting its recoverer node for such
views (in a primary partition, a single node can be used for every view1). Since
views are sequentially numbered, the first view to be recovered is the next one
to its last fully applied view, and finishes when it reaches the last applied view
in the recoverer node2. As this recovery is performed view by view, it is possible
to request to the recoverer node just the log-recovery information for the lost
views. Once the outdated node has this information (i.e. missed messages), it
applies them to recover this view. The application of these missed messages
must be performed in the same order they were delivered in the replication
system total order. When the outdated node has finished the recovery of this
view it must notify all alive nodes that it has recovered this view, therefore they
may discard the available recovery information for such view.

Every time a membership change occurs it must be checked how it affects to each
recovery process started. Obviously, if the outdated node crashes the recovery
process ends. If the recoverer node has failed the outdated node must look for
a new one for going on with the recovery process.

The third step, CRP, is performed by outdated nodes recovered as long as the
system is working (i.e. if the (re)connection was into a primary partition). In
this scenario, the system generated activity during the recovery process, but the
recovering node delayed the application of such activity (it just persisted it in a
queue as part of a “seen view”). Thus, once all the non-previously-applied views
are applied in the recovering node, it must conclude its recovery by applying all
these delayed messages in their delivery order. If a new working view is installed
during the recovery of a node, a new queue is created for the new view3.

After outlining the recovery protocol for transactional systems based on constant
interaction it is time to determine how to handle the amnesia phenomenon.

8.3 Amnesia Recovery Support

The amnesia recovery in an outdated node has to be done before recovering the
missed messages lost during its failure period, as it is explained in Section 5.5
and Section 8.2 in order to guarantee the state consistency.

In Section 5.2 it has been detailed that the amnesia can be manifested at two
different levels: transport and replication. Therefore, the log-based recovery

1This approach allows partial recoveries if the outdated node is in a system which does
not fulfil the progress condition.

2If the system is in a working view the previous view to the current one is considered the
last one applied in the recoverer node.

3Notice that in this case the outdated node has already the information of the previous
view.

84 CHAPTER 8. TRANSACTIONAL AMNESIA SUPPORT

protocols must manage the information necessary for performing the recovery
in an adequate way for both levels.

8.3.1 Transport Level

The amnesia at the transport level implies that received messages non-persistently
stored are lost when the node crashes. If this occurs, the amnesia recovery could
not be performed using a log-based approach. So the system must ensure these
messages are available for recovery purposes by storing them in a persistent way.

The simplest, easiest option is that each node manages its own amnesia recovery
information persistently. This storage of received messages must be kept until
the respective owner transaction is either committed or aborted4. Moreover, if
the messages must be maintained after its transaction commit, they must be
marked in some way to remember that they have been already applied.

In addition, the permanent storage of a received message must be performed
atomically with the group communications system message delivery. Under this
principle, if the node is not able to persistently store the message, the GCS
does not consider this message as delivered (thus ensuring that the delivery is
coupled with the persistent storage). With these conditions Property FS2 is
always fulfilled.

Another approach, that it can be considered, will consist in storing persistently
messages in their replica senders, but this option presents several drawbacks.
One of them implies that senders must maintain for each sent message a list of
replicas that have acknowledged the commit of this message, being only possible
to delete the message when all replicas have acknowledged it. Other important
drawback is that the recovery process can only be performed when all senders
are alive –the only one scenario that can ensure that Property FS2 is totally
fulfilled–, a condition that can delay a lot of time the recovery process, situation
highly discouraged. In spite of having several problems which discard its use
in many transactional replicated systems, there are some replicated systems
which their work way fits well with this solution. This is the case of hot passive
on-processing [34] or voting replication systems [124].

Therefore, the original way presented for solving the amnesia at transport level
is selected as the best option for overcoming it.

It must be noticed that the support at transport level would not be necessary if
the replication system makes use of what is called successful delivery presented
in [122]. This is due to the fact, that this semantic avoids the misconception
that a delivered message is a really applied message.

4i.e. discarding them on transaction aborts, or maintaining them for committed transac-
tions only when failed nodes exist.

8.3. AMNESIA RECOVERY SUPPORT 85

8.3.2 Replica Level

The amnesia problem relates at the replication level to the fact that the system
can not remember which were the really committed transactions. Even for
those transactions for which the “commit” message was applied, it is possible
for the system to fail during the commit. Thus, the information about the
success of such commit must be also stored because it is needed by the recovery
amnesia process in order to know which are the messages that must be applied
(as discussed previously). So, at the replicated system level, the problem is to
know if a “commit” was successfully applied before the failure or not. At this
level the ideas is to fulfill the Property FS1.

The mechanism for generating this information consists in maintaining some
information about the last committed transaction for each open connection.
Thus, when a transaction commit is performed in the replica, the system must
write this information in a single atomic step, as part of the transaction itself.
Thus, on commit success, the system contains the identity of this last committed
transaction. Afterwards, when the connection is closed with all its transactions
terminated, the entry corresponding to this connection is erased.

Then this generated information is useful in the recovery process to check if
messages marked as not committed have been really committed. When the
node becomes alive again and starts its amnesia recovery it will check if there
are messages marked as not committed, but its owner transaction is marked as
committed in the replica.

A similar problem arises regarding the state associated to not committed mes-
sages (messages belonging to not yet committed transactions), since it is lost
at the crash instant, since the replication system is also a transactional system.
Therefore, these messages applied by the replication system but not committed
must be again reapplied.

There are two possible scenarios where messages maintained as non-committed
belong to a transaction whose owner connection does not have an entry in the
table of committed transactions:

• The node did not start to apply this connection and its transactions before
the node crash. Then, these messages must be applied in the amnesia
recovery process.

• The connection is closed before committing some of its related transactions
(implying that these transactions will be aborted) but the node crashes
before the system erases those messages. Thus, all the messages will be
reapplied in the amnesia recovery process but they will be aborted again
as it has happened in the normal work way.

• The transaction was really committed, the system has not marked yet its
messages as committed, and it has already deleted its table connection

86 CHAPTER 8. TRANSACTIONAL AMNESIA SUPPORT

entry. This scenario must be avoided, because it will lead the system to
apply twice a transaction if a recovery process is performed. So, when the
“remove connection” message is applied, the removal of the corresponding
entry in the system must be done after the protocol considers committed
the transaction.

As a result, the amnesia recovery stage will just consist in reapplying the mes-
sages marked in the log recovery as “not applied” or “not committed”, first
checking against the replica if they were not really committed.

It must be noticed that database management systems used for building repli-
cated databases –one of the most common transactional replicated systems–
provide ways for recovering internally their state.

8.4 Replicated Systems Characteristics and Am-
nesia

Once in the previous section has been described how the amnesia problem can
be solved in a transactional replicated system using a log-based technique, this
section will describe how the replication characteristics affect the way in which
the system must manage the amnesia problem. Table 8.1 shows the character-
istics being considered:

Characteristics Set

Active, Update Everywhere or Passive Replication

Eager or Lazy Replication

Voting or non-Voting Technique

Constant or Linear Interaction

Communication Guarantees

Table 8.1: Characteristics Set.

The following subsections detail the effects on the amnesia support.

8.4.1 Active, Update Everywhere or Passive Replication

The adoption of an active [123] (AR), update everywhere [124] (UER) or passive
[123] (PR) replication policy will not have any effect in how the replicated system
must manage the amnesia problem. It is due to the fact that the amnesia
phenomenon does not depend on how many replicas can serve client requests,
but on how the changes are spread and stored at each replica.

In figures 8.2 and 8.3 it can be seen two different variants of passive replication,
hot passive asynchronous and hot passive on processing respectively, that will
be used later in the overhead analysis in Section 8.5.

8.4. REPLICATED SYSTEMS CHARACTERISTICS AND AMNESIA 87

Primary
replica

Backup 1

Backup 2

Client
Request

upm
multicast

Client
Response

X

X

Client Process

Server Process
Processing

Msg DeliveryX
Msg Reception

Figure 8.2: PassiveReplication (Hot Passive Asynchronous)

8.4.2 Eager or Lazy Replication

The selection between eager (ER) or lazy (LR) replication [62] has a great effect
in the amnesia phenomenon and its management.

In fact there are some configurations in the eager approach that are managing
indirectly the amnesia phenomenon. This is the case of eager passive replication
systems, also known as hot passive replication in [120], based on on-processing
synchronization [34]. These systems block the client answer until the primary
receives the process acknowledgement from all secondary replicas. Therefore,
the replicated system work way controls which slaves have committed which
transactions, providing the necessary information for managing the amnesia
problem at the replication level. The other eager passive replication techniques,
on-delivery and on-reception synchrony [34] will not provide this intrinsic am-
nesia support, being necessary in these cases to adopt our amnesia support
proposal.

Another case is eager update everywhere replication protocols as [81] which com-
mit a transaction once all active replicas have locally committed it. This work
way also provides the needed information to control the amnesia phenomenon
at the replication level.

But not all eager solutions provide this intrinsic amnesia replication level sup-
port, only those whose transaction replication work includes the processing in
all alive replicas into the transaction boundaries. Eager solutions that do not
provide this behavior must adopt a system similar to our proposal either for
replication and transport level.

This is the case of active replication protocols, which always work in an eager
way. When these active replication protocols are based on total order broadcast
they rely on a fully deterministic transactions execution as it is commented in

88 CHAPTER 8. TRANSACTIONAL AMNESIA SUPPORT

ack

ack

Primary
replica

Backup 1

Backup 2

Client
Request

upm
multicast

Client
Response

Client Process

Server Process
Processing

Msg DeliveryX

X

X

Msg Reception

Figure 8.3: Passive Replication (Hot Passive on Processing)

[123]. Therefore, they do not provide a support for amnesia, making necessary
to add an extra support.

The lazy replication approaches need always to adopt our amnesia support pro-
posals or similar ones in order to support our assumed failure model. In these
solutions, their work way does not provide the information needed for providing
the amnesia support.

Anyway, it must be noticed that from a recovery point of view using a lazy
replication technique will have a disruptive behavior in regard to the replicated
consistency state because it will not be guaranteed at any time that all the
information needed to reach the last consistent state in the system is available.
Therefore, it is not ensured the success of these recovery processes. In fact,
a priory some lazy replication protocols have had to implement some eager
replication level to provide fault tolerance as it does [76].

Only lazy hot passive replicated systems, based on asynchronous and reliable
communication, which propagate changes before answering to the client can
provide amnesia support using our amnesia support proposal, and ensure the
replicated consistency correctness. But in order to provide this support, the
client must remember which requests have not been already answered.

8.4.3 Voting or non-Voting technique

The use of a replicated system based on a voting termination technique (VT)
[124] can provide to the recovery protocol information if a node has not com-
mitted a transaction before its failure, because the system needs to know the
decisions adopted in all nodes. Thus, its use provides information that is neces-
sary for overcoming the amnesia problem implying a partial implementation of

8.4. REPLICATED SYSTEMS CHARACTERISTICS AND AMNESIA 89

our proposal. Whereas if a non-voting technique (NVT) is adopted the repli-
cated system will have to adopt the whole system proposed in this work.

8.4.4 Constant or Linear Interaction

The use of constant (CI) or linear (LI) interaction [124] in the replication
protocols will not have great effect on the amnesia level support.

At this point it only must be remarked that the adoption of a linear replica-
tion approach will difficult the transaction messages management because the
messages belonging to a transaction can be spread among several views, and
they can also be interleaved with the messages owned by other transactions,
forcing to persist messages belonging to non yet committed transactions with
our approach. Obviously this problem only appears when the system adopts a
log-based recovery strategy as it is commented in [36].

8.4.5 Communication Guarantees

Until so far, it has been considered that all replicated systems use a total order
broadcast (TOB) for propagating changes5, with virtual synchrony [14, 24].
Therefore it is ensured that all replicas have delivered the same sequence of
messages before a membership change occurs.

But what does it happen when these communication guarantees are relaxed?
Will it affect the amnesia problem and the way it must be managed? In the
following paragraphs it is evaluated.

Communication primitives which provide reliable communication are consid-
ered but which allow different delivery orders in different replicas, as it occurs
when causal or FIFO (R-FIFO) delivery orders are used. The problem of these
communication configurations is that they do not guarantee, in most cases, a
consistent replicated state, allowing diverging state evolutions in different repli-
cas, situation that can not be accepted. Only the intrinsic characteristics of
some replicated systems allow to use more relaxed delivery orders without dam-
aging the replicated consistent state. This is the case of PR (also known in the
literature as primary copy systems) where R-FIFO is enough to guarantee the
replicated state consistency, because in these systems there is only one sender.
These relaxed orders can also be applied in AR or UER if they use commuta-
tive updates [62]. In these cases, where relaxing the total order delivery does
not affect badly the replicated consistent state correctness our amnesia support
proposal can be applied.

Another possible communications relaxation should be the use of non-reliable
communications, but under these conditions it is impossible to build any kind
of fault tolerant system, because there is no guarantee about which messages

5In passive replicated systems a FIFO order is enough.

90 CHAPTER 8. TRANSACTIONAL AMNESIA SUPPORT

have been received by which replicas. Thus, these systems must use a protocol
which provides reliability. Therefore, the study of non-reliable communication
primitives must not be considered.

8.5 Overhead

After detailing how the different replication characteristics can affect the am-
nesia support in a transactional replicated system, the overhead introduced for
providing amnesia support is analyzed, detailing first the basic processing time
(BPT) and later the processing time supporting amnesia (PTSA). Both process-
ing times will be expressed for each propagated transaction in terms of spread
time (st), persisting time (pt) and processing time (Pt).

The st depends on: the communication guarantees provided, amount of mes-
sages to spread for transaction and the message size. In regard to the commu-
nications, two possibilities are considered: TOB for UER and R-FIFO for PR.
For TOB, the fixed sequencer is assumed in the broadcast-broadcast (BB) vari-
ant [44], which uses two reliable broadcasts for message propagation. On the
other hand, the R-FIFO as it is considered for PR can be implemented using
only one reliable broadcast for message propagation because there is only one
sender. Then, if α is the cost of a reliable broadcast, the TOB has a cost of 2α
for spreading a message while the R-FIFO cost is α.

For CI replication protocols, it is considered that only one message is broadcast
per transaction, while LI protocols spread as messages as update operations
contains the transaction, n. In this context, message size (S) is important
because some GCS have a maximum message size bound to spread, SM . Thus,
messages greater than SM must be spread sending ⌈ S

SM
⌉ messages. That can

occur in CI protocols because they transfer the resulting transaction writeset,
while messages in LI protocols are always smaller because they only transfer
one update operation.

The message persisting time is expressed as β + γ(⌈S/k⌉), where β is the upper
bound time for write disk accesses, γ is the storing time of a block size message
k, and S is the message size. It is considered that only one write disk access
is needed per message. Then, the pt in CI protocols where only one message
is broadcast is β + γ(⌈S/k⌉), while in LI protocols is n(β + γ), being n the
number of update operations and assuming that their message size is always
smaller than k.

For Pt, the π value is considered which depends on the replication system load
and on the consistency provided by the replication protocol. Moreover, in CI
protocols it will depend on the message size to apply (writeset) while in LI
protocols will depend on the number of update operations and their complexity.
Thus π is very difficult to model, anyway it is considered that any transaction
always fulfills the rule Pt > pt.

8.5. OVERHEAD 91

Configuration BPT PTSA

C1 - UER, ER, CI, NVT and TOB (⌈ S

SM
⌉ + 1)α (⌈ S

SM
⌉+1)α+β+γ⌈S

k
⌉

C2 - UER, ER, LI, NVT and TOB 2nα n(2α + β + γ)

C3 - UER, ER, CI, VT and TOB (⌈ S

SM
⌉ + 2)α + π (⌈ S

SM
⌉ + 2)α + π

C4 - PR (hot passive on-processing),
ER, CI, and R-FIFO

(⌈ S

SM
⌉ + 1)α + π (⌈ S

SM
⌉ + 1)α + π

C5 - PR (hot passive asynchronous),
ER, CI, and R-FIFO

⌈ S

SM
⌉α ⌈ S

SM
⌉α + β + γ⌈S

k
⌉

Table 8.2: Processing Times.

Several observations must be made for table 8.2. The first one is that repli-
cation configurations which perform the transaction processing as core part of
their propagation process, as C3 and C4, discard pt due to the rule Pt > pt.
Therefore, π hides the β + γ(⌈S/k⌉) value. Another consideration is that all
configurations perform the message persisting process as an atomic step in the
delivery process.

From table 8.2 can be concluded that VT configurations will not have any
overhead for supporting amnesia, but from the beginning they have a BPT
higher than the others, while the others present an overhead which depends on
the persisting time, pt. Overhead which increases with the message size, S, in
CI and the number of messages, n, in LI.

Another issue is that the overhead introduced for R-FIFO configurations is
higher than for TOB configurations in percentage terms.

At this point it must be remarked the difficulty to compare CI configurations
with the LI configuration. This is because the first ones depend on the size of
the writeset to propagate, persist and/or apply, while the second depends on the
number of update operations to apply and their complexity, depending then on
the transactions characteristics. In a generic way, it can be said that if a trans-
action contains a lot of update operations but changes few data items the CI
configuration will introduce less overhead. Contrarily, if the transaction has few
update operations but changes a lot of data items the LI configuration will in-
troduce less overhead. Thus, only when in our transactional system one of these
transaction types predominate can be adopted accurately the configuration that
best fits our necessities.

Anyway it must be pointed out that providing amnesia support can only alter
the original order cost for the LI in regard to the others, depending on the
transaction characteristics.

92 CHAPTER 8. TRANSACTIONAL AMNESIA SUPPORT

8.6 Related work

A wide range of proposals for solving the recovery problem [12] have been pre-
sented in the literature. Traditionally, among these recovery protocols, the ones
oriented for replicated processes have adopted the fail-stop failure model, as
[14]. In these cases, they transfer the whole data state to new or “reconnected”
nodes, a good approach for systems with few data state. Whereas for systems
which manage large data amounts, as replicated databases, it has been largely
recommended the crash recovery as it is proposed in [82, 20, 19, 6, 79] in order
to minimize the recovery information to transfer. Few protocols as [87] have
adopted the fail-stop failure model for large data state scenarios.

Among these last recovery protocols, some of them as [82, 20, 6] are version-
based, while others as [82, 19] are log-based. First ones, which only transfer
changed data, are typically useful for long-term outages whilst the latter, which
send lost messages, present better performance for recovering short-term fail-
ures. Therefore, combining a version-based technique with a log-based one to
construct a recovery framework has been proposed in several works as [82, 19]
to improve the recovery features, choosing the recovery strategy that presents
a lower cost each time an outdated node is detected.

Thus all these recovery protocols that have adopted the crash-recovery with
partial amnesia failure model have to solve the amnesia problem. In fact, [19]
proposes a solution for the amnesia phenomenon in log-based strategies based
on logging received messages. This protocol is focused on replicated systems
with the following characteristics: update everywhere, eager and using total
order delivery.

In [79] it is presented a different way to deal with the amnesia problem in similar
scenarios. In this paper the authors mix checkpointing with message transfer,
in other words, they combine as recovery information to transfer a snapshot
of the data state and the needed messages from the snapshot instant point.
The combination of these two techniques allows the protocol to overcome the
amnesia problem. The problem of this solution depends on the way in which the
checkpoint process is performed, because if the whole data state is transferred
the benefits of adopting the crash-recovery failure model are lost.

The [122] authors noticed that message delivery does not imply message pro-
cessing, therefore they presented the successful delivery concept. They said that
a message has been successfully delivered to a node when this node has acknowl-
edged the message processing to the GCS. The background idea is that GCS can
deliver multiple times a message to a node but it can only be delivered success-
fully once. To do so, they proposed the end-to-end atomic broadcast primitive
which ensures that each message is successfully delivered once. This delivery
mechanism provides an easy way to support amnesia if the acknowledgement is
returned once the application has processed the message and has persisted its
updates.

8.7. CONCLUSIONS 93

8.7 Conclusions

In this chapter, it is detailed first how transactional replicated systems based
on total order broadcast communication primitives can manage the amnesia
phenomenon, avoiding its related problems for log-based recovery strategies.
Later, it is analyzed the amnesia support provided by other replicated systems
configurations depending on their characteristics.

Finally, it is performed an analysis of the overhead introduced for providing
amnesia support in different replicated system configurations using a log-based
recovery strategy. The obtained results show that it is difficult to compare
the overhead introduced between linear and constant interaction replication
protocols. However, the study also shows that the differences in processing
times in constant interaction replication protocols are not altered when amnesia
is properly managed.

Chapter 9

Amnesia Support Review

This chapter reviews some recovery protocol proposals for the most usual trans-
actional replicated systems –replicated databases–, analyzing their support for
both the basic amnesia problem, detailed in 5.2, and the problem when this am-
nesia phenomenon combines with the majority progress condition 6.2. Moreover,
it is presented a recovery protocol categorization determining for each category
its support for both phenomena and proposing modifications when needed for
supporting them accurately.

9.1 Introduction

Before starting with the review itself it must be noticed that it is based on the
formalizations and Properties presented in Section 5.3 and Section 6.4.

This chapter is structured as follows: in Section 9.2 it will be pointed out some
aspects of the GCS used by these replicated systems. Section 9.3 reviews the
considered recovery protocols. Later, Section 9.4 presents a recovery categoriza-
tion and finally Section 9.5 concludes the chapter.

9.2 Group Communication System Issues

Before surveying the recovery protocols and the replication protocols they are
designed for, some issues dealing with replication aspects that would be used
later in the study will be remarked.

As it has been said in the system model the replicated systems use a GCS
which provides some communication primitives used by replication protocols to
perform their work. It also provides a membership monitor which informs group

95

96 CHAPTER 9. AMNESIA SUPPORT REVIEW

members about membership events –node connections, disconnections, network
partitions, etc.–

Additionally, some GCSs provide virtual synchrony [24, 13] (or view-synchronous
multicast according to [67]) since it ensures that all replicas have delivered the
same sequence of messages before any replica fails or any replica is added. Ac-
cording to [24], the most relaxed property related to multicast delivery that
provides virtual synchrony is same view delivery; i.e., that all destinations of
each multicast deliver each message when they belong to the same view (a view
change arises when one process fails or rejoins the group). Virtual synchrony
provides a replicated work way which facilitates the recovery protocols imple-
mentation.

9.3 Considered Recovery Protocols

In this section the recovery protocols considered in this study are briefly de-
scribed, highlighting only the details that are important from the amnesia sup-
port point of view. When detailed, for each recovery protocol some remarks are
included for our study about the replication protocols to which they are asso-
ciated. For other details readers are encouraged to look at the original papers.
Note that in most cases the replication and recovery protocols were originally
described in different papers (or even no replication protocol was described). As
a result, a solution for the amnesia problems was not the target of such papers.

For determining if these recovery protocols provide accurate amnesia support
it will be studied if they fulfill either the two properties FS or the property
CS presented in Section 5.3. Moreover, it will be also considered the accurate
management of the progress condition problem due to the amnesia phenomenon,
presented in Chapter 6, taking under account the fulfillment of the properties
presented in 6.3.1.

9.3.1 Protocols by Kemme, Bartoli and Babaoǧlu

Multiple recovery protocols for replicated databases are presented in [82]. All
of them are proposed for database replication protocols sharing the following
characteristics: update everywhere protocol –ROWAA approach [62]–, based on
total order broadcast –without a terminating phase– propagating a message per
transaction –constant interaction [121]– and virtual synchrony. Moreover, repli-
cated data objects are tagged with version numbers. The provided correctness
criterion is one-copy-serializability.

These recovery protocols fulfill the following issues:

1. Single Site Recovery. The recovering node first brings its own database
into a consistent state. To do so the underlying database maintains a log

9.3. CONSIDERED RECOVERY PROTOCOLS 97

of performed writes during the normal processing, storing the initial and
resulting values for each changed data object. Then, once it reconnects it
checks this log in order to store in the database the changes of committed
transactions that were not already applied in the database.

2. Data Transfer. An operating site –recoverer node– must provide the cur-
rent database state to recovering nodes. Different techniques can be used,
from transferring the full database to transferring only the set of updated
objects.

3. Determination of a Synchronization Point. If transaction processing is al-
lowed during the recovery process it must be ensured that the recovering
node will reflect the updates performed by these transactions. This syn-
chronization process can be done in different ways but it depends strongly
on the data transfer technique.

On the sequel the recovery protocols proposed in [82] are described, focusing on
the data transfer and synchronization points.

Database State Transfer Checking Version Numbers

In this protocol global transaction identifiers are used, marking each data ob-
ject with the identifier of the last transaction that updated it –allowing later the
system to determine the information set to transfer in recovery processes–. The
recovering node informs to the recoverer node about its cover transaction, (i.e.
the transaction with the highest global identifier that successfully committed,
Ti,m−s). Thus, the recoverer can determine the updates lost by the recovering
node –information that must be transferred–, including the updates associated
to T F

nl
. The recovering node can easily determine its cover transaction by re-

viewing its single site recovery log.

The amnesia phenomenon is avoided with this replication protocol because the
recovering node tells to the recoverer node which is its last real committed trans-
action, Ti,m−s. Thus, the recovery process transfers all data objects that were
modified by transactions delivered between the last real committed transaction
in the recovering node and the first transaction propagated after it become alive.
These lost updates are transferred using a DT. In properties terms:

• Prop. FS1 : It is fulfilled because the recovering node remembers its last
really committed transaction.

• Prop. FS2 : Data modified by T F
i,nl

are marked with the associated trans-
action identifier, so they will be later transferred in the recovery process.
Notice that it is possible that this data is included when recovering T M

nl

and not by T F
i,nl

, because it has been modified also during the node dis-
connection.

98 CHAPTER 9. AMNESIA SUPPORT REVIEW

In regard to the progress condition problem this recovery protocol does not
avoid it. This is due to the fact that the outdated nodes affected by the amnesia
phenomenon rely on the replicated system to obtain the information lost due
to the amnesia phenomenon. In property terms it must be said that the Prop.
FS2’ as it is defined in 6.3.1 is not fulfilled.

This recovery protocol presents the drawback of scanning the entire database
when checking for the database subset to transfer, then the following proposal
was designed to overcome it.

Restricting the Set of Objects to Check

In order to avoid the full scan on the entire database, and with this the overhead
and long locking time that it may cause, the use of a so-called “reconstruction
table” is proposed. A record in this table consists of an object identifier and
a global identifier informing about the last transaction that updated the ob-
ject. Each update is recorded in the reconstruction table, unless all sites have
successfully performed the update.

In contrast to the previously discussed protocol options, this one only needs to
set a single lock on the entire database. Once the incremental data set to be
transferred is determined, that lock is replaced by fine-grained object level locks
on the respective data items.

This proposed optimization does not handle correctly the amnesia phenomenon.
This is because the reconstruction table only is generated when there are failed
nodes. Then, only those objects modified in a view with failed nodes are included
in this table. It implies that if a failed node has not been able to process correctly
a message delivered before crashing –in a view with no failed nodes–, when it
reconnects it will not apply the associated updates. And the reconstruction
table will not store these updates because they have been performed in a view
without failed replicas, being unable the recovery system to transfer the correct
information set. Expressing it in properties terms:

• Prop. FS1 : It is fulfilled because the recovering node remembers its last
really committed transaction.

• Prop. FS2 : It is not always fulfilled because data modified by T F
i,nl

is only
stored in the reconstruction table and marked with the associated trans-
action identifier if there are failed nodes. Therefore, the system will not
have the T F

i,nl
changes in the reconstruction table when a replica crashes

in a replicated system where there were not any crashed node.

Therefore, this recovery protocol must be modified in order to support the amne-
sia phenomenon. One possibility consists in generating the recovery information
in the reconstruction table either with or without the presence of failed nodes,

9.3. CONSIDERED RECOVERY PROTOCOLS 99

ensuring always the Prop. FS2. Other possibility consists in using our proposed
solution in [38] ensuring then always Prop. FS2.

As the basic amnesia problem is not correctly managed by the original definition
of this recovery protocol, it is also unable to support correctly the progress con-
dition problem. And, in regard to the two possible modifications, only adopting
our proposed solution in [38] would ensure the fulfilment of Prop. FS2’ as it is
defined in 6.3.1.

Filtering the Log

In the previously discussed optimization, locking of non-relevant data is reduced,
but locks on relevant data may still last long. To avoid locks, multiple versions
of data can be used, e.g., the use of multi-version concurrency control, as in
PostgreSQL, or Oracle. In that case, transactions can continue to update the
database while earlier versions that have been missed by the recovering site are
transferred to it.

This recovery technique must be combined with one of the previous ones, that
will be used for generating the recovery information and determining the subset
to transfer, for working. Therefore, its amnesia support depends on the sup-
port provided by the combined technique. Hence, if the last one –Restricting
the Set of Objects to Check– is selected in its original description the amnesia
phenomenon will not be managed accurately. The same happens when study-
ing its correct support to the problem arising when the amnesia phenomenon is
combined with the progress condition as it is specified in Chapter 6.

Lazy Data Transfer

Up to this point, all mentioned solutions use view changes as synchronization
points. Then any recovering node enqueues all new broadcast transactions for
applying them once it has recovered its lost views. This approach, despite being
simple, has several drawbacks (detailed in [82]) leading the authors to decouple
the synchronization point from the view change.

In this new approach any recovering site discards the messages delivered –instead
of enqueuing them–. After the view change –triggered by its reconnection–,
the recoverer site starts the transfer. When the transfer is about to complete,
the recoverer and the recovering sites agree a delimiter transaction –one of the
transactions broadcast in the new view– as synchronization point. Then, the re-
coverer site transfers all changes performed by transactions with lower identifier
than the delimiter transaction one. While, the recovering site starts enqueuing
transaction messages with greater identifier than the delimiter transaction one,
for applying them once the data transfer is completed.

This recovery proposal differs from the others in the synchronization point, but
depends on the previous ones for obtaining the recovery information. Then, it

100 CHAPTER 9. AMNESIA SUPPORT REVIEW

will support the amnesia phenomenon and the problem when this phenomenon
is combined with the progress condition depending on the recovery information
generation policy being used.

9.3.2 Protocols by Holliday

The recovery protocols proposed by J. Holliday in [70], were designed for the
replication protocols Broadcast Writes, Delayed Broadcast and Single Broadcast
described in [1]. According to the classification in [124], these are eager update
everywhere and non-voting protocols. Concurrency control is performed by
the DBMS with Strict 2PL. These replication protocols make also use of a GCS
which provides atomic broadcast, virtual synchrony and a membership monitor.
They provide the one-copy serializability correctness criterion.

These replication protocols differ in the number of messages used for propa-
gating transactions. Single Broadcast only spreads a message per transaction,
Delayed Broadcast propagates two messages per transaction –writeset and com-
mit messages–, while Broadcast Writes sends a message per write transaction
operation –linear interaction–.

On the sequel it will be summarized the recovery approaches presented in [70].

Single Broadcast Recovery

This recovery approach is designed for replication protocols which broadcast a
single message per transaction as [88]. Another author criterion design is to
avoid to transfer the whole database in the recovery process if possible, and the
selected mechanism for doing so consists in reapplying in outdated nodes the
messages that they have lost.

Therefore, this recovery protocol relies on a GCS which provides a log of deliv-
ered messages. If the GCS does not provide this log, the recovery protocol must
designate some replicas as loggers. These loggers will have a log where they will
store persistently the delivered messages, either those notifying view changes
and those broadcasting update transactions –keeping only those associated to
committed transactions, deleting aborted ones–.

Then, when a node reconnects –a view change is triggered– it requests a logger
to be brought up-to-date, informing about its last view –last view in which the
recovering node was alive–. Thus, the logger transfers to the outdated node the
messages broadcast during the views it was crashed –maintaining their original
order–. Sometimes the logger will not have, due to log storing policies, all the
messages necessary in the recovery, thus it will transfer the whole database. It
must be remarked that as long as a node is being recovered the replicated system
can not work, starting only when the recovery process has been completed.

This protocol does not support the amnesia phenomenon accurately, because
when a crashed node reconnects, the system starts to transfer the messages

9.3. CONSIDERED RECOVERY PROTOCOLS 101

broadcast in the views it was failed. Then, this information does not include
messages delivered in the crashed node before crashing but not processed cor-
rectly. In properties terms:

• Prop. FS1 : It is not fulfilled because the recovering node only remembers
its last seen view, i.e., it does not maintain nor propagate the Ti,m−s

identifier.

• Prop. FS2 : This property is not fulfilled because messages –recovery
information– are stored by view. But it can be easily overcome using
messages as basic recovery information unit.

This fact, also implies that this protocol does not avoid the progress condition
problem, because neither Prop. FS1 nor Prop. FS2’ are fulfilled.

One possibility for handling accurately the amnesia phenomenon in this recovery
protocol would be to use message or transaction identifiers –which are equivalent
in this replication protocol–. Then the recovery protocol can be modified forcing
each replica to mark which is its last really committed transaction. Therefore,
when a replica reconnects after a crash, it can inform about its last committed
transaction to the Logger –instead of using the identifier of its last seen view–
for the recovery. Then both properties as they are defined in Section 5.3 are
ensured. But, the Prop. FS2’ defined in 6.3.1 is not fulfilled, so the problem
arising when the amnesia phenomenon is combined with the progress condition
is not avoided.

Another possibility would consist in giving the Loggers role to all the replicated
system members. Therefore when a node reconnects, it will perform a local
recovery step consisting in checking if some of the persisted messages in its
local log have not been correctly processed, applying them in this step. In
this case the properties Prop. FS1 and Prop. FS2 defined in Section 5.3 are
also ensured, like the properties defined in 6.3.1. Therefore, both the original
amnesia problem and progress condition problem are overcome.

In both cases, notice that it is necessary that Loggers store persistently the
broadcast messages even when there are no failed nodes. In the second approach,
the messages that have been seen by all nodes –because there are not any failed
nodes– can be removed from the log –of a replica– as soon as they are correctly
processed in this replica. While, in the first approach, these messages can only
be removed view per view. And the messages broadcast in a view where there
were not failed nodes, only can be removed if in the subsequent view there are
not any failed nodes –which is a non sense– or when the nodes whose crash
triggered this view change are recovered and the system ensures that they have
correctly processed all the messages broadcast when there were not failed nodes.

The second solution provides better recovery support as all replicated members
are Loggers, and provides a more simple way for managing messages that have
been seen by all nodes. Moreover, it also avoids the problem associated to the

102 CHAPTER 9. AMNESIA SUPPORT REVIEW

amnesia phenomenon when combined with the progress condition. Therefore,
its use must be encouraged.

Delayed Broadcast Recovery

The Delayed Broadcast replication protocol decouples the writeset broadcast
from the commit broadcast for any transaction –weak voting technique [123]–.
This behavior raises some problems when recovery is being considered. It might
happen that the recovering site was able to deliver the writeset for a particular
transaction, but not its commit or rollback message. So, that writeset was lost
when the site failed and should be retransmitted now by the recoverer site if
its commit message was delivered whilst the recovering site was crashed. Two
possible solutions for the problems caused by the writeset-commit decoupling
are presented:

1. Log Update Method. In this approach, at each view change, loggers must
examine their logs or the database state for determining if there exist on
progress transactions in the nodes without failure. If there are, the logger
must mark these transactions in order to copy their writeset message in
the log associated to the view when their commit was broadcast. So, when
a previously failed node rejoins to the group, the logger begins transferring
writesets of in progress transactions when the node failed, following with
messages of transactions originated and committed while the node was
failed. The commit order is the same for all non-aborted transactions.
The operations of the aborted transactions are not included in the log
since their effects are undone in the nodes without failure.

2. Augmented Broadcast Method. This second method gives additional pro-
cess for managing on-going transactions and requires a change in the lock
policy for recovering nodes during the global recovery. The new replication
protocol forces to include the writeset in the broadcast commit message
for these transactions that have delivered the writeset in a previous view.
The nodes that have already seen the first broadcast writeset message
ignore the writes included in the commit message, and loggers store the
augmented commit message. The existence of augmented messages obliges
global recovery to change its lock policy as it is described in [70].

In this case, as the policy for determining the start point recovery is the same
one as before –the identifier of the last view in which the crashed node was
alive–, an accurate amnesia phenomenon support is not provided. Explained in
properties terms:

• Prop. FS1 : As before, it is not fulfilled because the recovering node only
remembers its last seen view.

9.3. CONSIDERED RECOVERY PROTOCOLS 103

• Prop. FS2 : This property is not fulfilled because messages –recovery
information– are stored by view.

Consequently, it must be said that this recovery protocol can not handle accu-
rately the progress condition problem.

Therefore, the modifications proposed in the previous recovery protocol are also
valid for this one. Anyway, it must be pointed out that in this case handling
delivered messages correctly is more difficult because the system broadcasts two
messages per transaction –writeset and commit or rollback– with its associated
complexities.

If the second solution –all nodes are Loggers– is selected, when the recovering
node performs the additional local recovery step –checking if some of the per-
sisted messages in its local log have not been correctly processed for applying
them– it must discard the messages belonging to transactions whose commit
message is not also stored in the log. This is because these messages would be
later applied in the Global Recovery process.

Broadcast Writes Recovery

The Augmented Broadcast global recovery method presented for the Delayed
Broadcast replication protocol could be used also for the Broadcast Writes one
–which broadcasts a message for each write operation, in other words linear
interaction–. Then all writes must be attached to the commit message to be
broadcast for on-going transactions, as it does the Augmented Broadcast. But
in this recovery protocol loggers must take special care for removing the logged
messages of aborted transactions due to deadlocks, in order to not reapply them
in recovering nodes.

As the two other recovery protocols proposed by Holliday it does not handle
correctly the amnesia phenomenon problem, because the underlying mechanism
for determining the recovery information set to transfer is the same one –to send
the identifier of the last view seen by the crashed node–. In properties terms:

• Prop. FS1 : As in two previous ones, it is not fulfilled because the recov-
ering node only remembers its last seen view.

• Prop. FS2 : This property is not fulfilled because messages –recovery
information– are stored by view.

Therefore, this protocol does not avoids the progress condition problem.

Anyway, the proposed solutions for the previous recovery protocol will also work
for this one.

104 CHAPTER 9. AMNESIA SUPPORT REVIEW

9.3.3 Parallel Recovery by Jiménez, Patiño and Alonso

In [79] the authors presented a recovery protocol whose main goal was to avoid
stopping the replicated system work when performing recovery processes.

The replication protocol for which it was designed used a GCS that provided
strong virtual synchrony, reliable multicast and a membership monitor. The
replicated database was divided into disjoint partitions,and the system forced
transactions to access only single partitions. Each partition had a master site
–which processed the transactions accessing this partition– and the rest of repli-
cas worked as backups –which only applied updates–, therefore it is a passive
replication protocol per partition. And transactions are broadcast using only
one message –constant interaction–. The transactional system supports Strict
2PL, providing one-copy serializability.

Each node has a log –one per partition– which contains the committed updates
in the same order they were applied. Updates are only logged once their commit
is confirmed. When a crashed node reconnects to the system it informs about the
LSN –log sequence number, a global number– of its last committed transaction
on each partition. Then the selected recoverer for each partition will collect
and transfer from its log the set of messages needed to recover this partition
in the outdated node. In order to limit the recovery duration –interesting for
long failure times– some form of checkpointing is assumed. Therefore, if it is
necessary, the recovering site will first receive a recent checkpoint of the database
and later can start applying messages from this checkpoint.

The combination of these two techniques, or the use of the LSN of the last
committed transaction in the node being recovered allows the protocol to over-
come the amnesia problem. The problem of this solution depends on the way
in which the checkpoint process is performed, because if the whole data state
is transferred the benefits of adopting the crash-recovery with partial amnesia
failure model are lost. Expressed in properties terms:

• Prop. FS1 : It is fulfilled with the use of LSN.

• Prop. FS2 : This property is fulfilled because nodes store committed up-
dates and combines this with a checkpointing technique when necessary.

This recovery protocol in spite of supporting the basic amnesia phenomenon
does not avoid the progress condition problem because it does not fulfil the
Prop. FS2’. This is due to the fact that T F

i,nl
changes are not stored and

maintained in the crashed replica.

9.3.4 The COLUP Recovery Protocol

A configurable eager/lazy replication protocol with a lazy recovery protocol is
proposed in [74]. The replication protocol can be categorized as an update

9.3. CONSIDERED RECOVERY PROTOCOLS 105

everywhere approach with voting technique, using constant interaction. This
protocol defined and provided its own correctness guarantees: transaction and
checkout consistency. These correctness guarantees are somewhat equivalent in
some circumstances to snapshot isolation and read committed respectively.

In this replication protocol each data object is owned by the replica where it was
created. For any object, a set of nodes will maintain synchronous copies, while
other replicas constitute the set of asynchronous copies. In these last nodes
object updates will be eventually received, once they have been committed in
synchronous replicas. The owner is responsible of managing object accesses and
coordinating the propagation of their last versions.

Conflict transactions are solved in the processing node in an optimistic way,
using object versions. To do so, for each accessed object –for those the node
does not have a synchronous copy– it calculates the probability of having an
outdated version. If the obtained value is higher than an established threshold
the node assumes that its object version is obsolete, obtaining from the owner
node the last version. Later, in the commit phase it checks for possible conflicts.
Aborting the transaction if it has read obsolete values that were updated by
other concurrently committed transactions.

In a node crash the ownership of its objects is assumed by an alive and synchro-
nized replica. Then, alive nodes inform the new owner about previous grants
conceded to these objects by the previous owner. Thus, the new owner can
process the requests as if it was the original owner node of the object.

When a node recovers from a failure, it sends a message to the node that man-
aged its owned objects in order to synchronize the activity in both nodes. In
this process, the recovering node updates in a version-based way the state either
of its owned objects and the objects for which it is a synchronized replica. Dur-
ing this process, the recovering node may receive requests for objects that were
updated during the failure interval. In order to handle this situation, the recov-
ering node must consider each object of which it is owner like an asynchronous
replica until it is updated by a synchronous replica.

This recovery protocol provides accurate amnesia support because as soon as a
node reconnects it starts to obtain the last state of its owned and synchronized
objects in a version-based way. The objects that are maintained in this replica
asynchronously are updated using the basic mechanism provided by the repli-
cation protocol. This protocol fulfils the Prop. CS1, because all the state is
transferred: synchronized objects are transferred immediately in the recovering
process, and non-synchronized ones are updated using the replication mecha-
nism. Therefore, the other properties are not needed. It must be noticed that
in spite of adopting the crash-recovery with partial amnesia failure model this
recovery protocol transfers the whole state instead of sending only the missed
information during the disconnection period.

But, this recovery protocol does not avoid the progress condition problem due
to the fact that Prop. FS2’ is not fulfilled, as long as the information this

106 CHAPTER 9. AMNESIA SUPPORT REVIEW

property refers to is neither stored nor maintained in the replica having the
amnesia problem.

9.3.5 CLOB: Short-Term Failure Recovery

CLOB (Configurable LOgging for Broadcast protocols) described in [19] is de-
fined as a framework for reliable broadcast protocols that are used as a basis for
database replication. Its aim is to log messages in the broadcast protocol core,
providing with this automatic recovery for short-term failures, but discarding
the log and using a version-based recovery protocol (e.g. [20]) for long-term
outages.

In order to do so the recovery protocol has two logs: one for missed messages,
another for received messages. In the first one, each node stores any message it
delivers when there are failed nodes, maintaining them as long as there is any
failed node that has not received them. In the second one, each node stores
any received message, removing it as soon as it is correctly processed. So,
when a crashed node reconnects –and the system uses the log recovery–, it first
checks the log of received messages in order to process its last received messages
that were not correctly processed before crashing. Later, it asks for its missed
messages, and applies them.

Notice that if the outage period exceeds a given threshold, the reliable broadcast
service will notify the replication protocol about that, and the logs will not be
used.

The CLOB recovery protocol manages accurately the amnesia phenomenon be-
cause it considers a persistent log where each replica stores its delivered messages
as soon as they are received. And these messages are only deleted once they
are correctly processed. Then, when a crashed node reconnects, only needs to
check this log and reapply the messages it contains. Talking about properties:

• Prop. FS1 : It is fulfilled in an indirect way. All messages maintained
in the queue represent delivered transactions non correctly processed, so
instead of knowing its last really committed transaction it has the T F

i,nl
.

• Prop. FS2 : As it has been said above, each node stores persistently its
own T F

i,nl
.

This protocol fulfils both the Prop. FS1 and Prop. FS2’ –each replica stores
persistently its delivered messages–, therefore it avoids the progress condition
problem.

9.3.6 Protocol by Armendáriz

In [3] three replication protocols are considered –BRP, ERP and TORPE –,
and a recovery protocol that can be applied on ERP and TORPE is proposed.

9.4. AMNESIA SUPPORT RECOVERY OBSERVATIONS 107

These two replication protocols are categorized for being eager update every-
where and sending a constant number of messages per transaction. They make
use of a GCS which provides reliable broadcast, a membership monitor and
virtual synchrony. The correctness guarantees provided by these protocols were
one-copy serializability, provided thanks to the use of underlying DBMS which
ensured serializability.

The main idea for the recovery protocol proposed in [3] is to store in a database
table –in all alive replicas– the identifiers of objects modified when there are
failed nodes, grouping them per views. Then, when a failed node reconnects,
it informs about the last view in which it was alive. Later, a recoverer node
transfers to the recovering node the identifiers of modified objects during its
disconnection, and later transfers their values.

The recovery protocol proposed by Armendáriz for the replication protocols
ERP and TORPE can not manage accurately the amnesia problem. In this
case, the problem resides in the fact that this recovery protocol assumes that any
delivered message is correctly processed, but this assumption, as demonstrated
in [122], is not correct. So, all generated recovery information does not contain
all the information that would be needed for supporting amnesia. Expressing
all this in properties terms:

• Prop. FS1 : It is not fulfilled because the recovering node only remembers
its last seen view.

• Prop. FS2 : This property is not fulfilled because the recovery information
is grouped by view. And either it presents the problem of being generated
only when there are failed nodes.

As Prop. FS2 is not fulfilled, Prop. FS2’ is neither fulfilled, then the progress
condition problem is not avoided.

In [58] it is provided amnesia support to this recovery protocol. The adopted
solution is the same one as proposed in Section 8.3, to log persistently the
delivered messages. This reviewed approach supports the amnesia phenomenon
and avoids the progress condition problem.

9.4 Amnesia Support Recovery Observations

It has been seen in the study how a correct amnesia support depends on the
combination of an adequate recovery information generation policy and an ac-
curate way for notifying the last really committed changes in the node that must
be recovered.

On the sequel, it will be presented some observations obtained from the per-
formed study. These observations are grouped first by the used technique –

108 CHAPTER 9. AMNESIA SUPPORT REVIEW

version-based or log-based–, and secondly by the granularity used for managing
the recovery information.

This categorization will not consider the recovery solution consisting in trans-
ferring the whole state, because the original goal of adopting the crash-recovery
with partial amnesia failure model in replicated systems is to avoid its use.

9.4.1 Version-based Techniques

Version-based recovery protocols can overcome this problem in different ways,
depending on the basic way used for performing the recovery processes.

Transaction identifier

The first one will consist in storing for each object the identifier of the last
transaction that modified it. But, this must be done even if there are not
failed nodes as it does the Database State Transfer Checking Version Numbers
presented in [82], because if it is not done the amnesia support is not provided
as it happens with Restricting the Set of Objects to Check presented also in [82].
Thus, in this case the recovering node only has to inform the recoverer node
about the identifier of its last committed transaction. Therefore, properties
Prop. FS1 and Prop. FS2 are ensured. But, this solution does not ensure
Prop. FS2’ because the information for solving the amnesia problem is not
maintained in the crashed node, then it does not avoid the progress condition
problem.

An alternative for this strategy will be to combine it with our amnesia generic
solution approach described in Section 5.2. In this case it would not be necessary
to generate this information even when there are not failed nodes. And, then
this approach does not need the transaction granularity being enough with the
view identifier granularity. It is due to the fact that in this case each replica
maintains its own T F

i,nl
, being only necessary to inform the recoverer node about

the last seen view in the recovering node. Then, this solution overcomes the
progress condition problem.

View identifier

Another possibility is to store for each object the identifier of the last view
in which it was modified. The problem of this solution is that the recovery
protocols that follow this approach start the recovery process from the first
view lost by the recovering node, being impossible then to solve the amnesia
problem, associated to the forgotten state –T F

i,nl
– because even if Prop. FS1 is

ensured, Prop. FS2 is not ensured. The non fulfilment of Prop. FS2 implies
that Prop. FS2’ is not fulfilled either. It happens in Protocol by Armendáriz
[3]. This can be solved as follows:

9.4. AMNESIA SUPPORT RECOVERY OBSERVATIONS 109

• One option for overcoming this would consist in including in the trans-
fer recovery process the changes performed in the last view seen by the
recovering node. So, this solution forces the system to generate recovery
information even when there are not failed nodes. But, this approach
presents some drawbacks. On one hand, it forces to transfer all the per-
formed changes in a view –most of which will have been already seen by
the recovering node– for solving the amnesia problem that will affect usu-
ally a very small subset of changes done in such view. On the other hand,
it is possible that in very special cases transferring only the changes done
in the last view seen by the recovering node is not enough for solving
the amnesia problem (e.g. a sequence of very short views in time terms).
Moreover, this solution does not overcome the progress condition problem
because Prop. FS2’ is not fulfilled.

• Discarding the previous option, another strategy will consist in combining
this strategy with our generic approach –using in each replica a persistent
log of delivered messages– as it is done in [58], fulfilling then the properties
Prop. FS1 and Prop. FS2. In this case, it is not necessary for the version-
based strategy to generate information when there are not failed nodes,
because it is already maintained in the queue. When this technique is
adopted the recovery protocol overcomes the progress condition problem.

9.4.2 Log-based Techniques

In these techniques, recovery protocols use as recovery information the broadcast
messages during the replication work. Therefore, the only way for solving the
amnesia problem is to maintain in the system the messages that can be affected
by the amnesia problem.

Transaction identifier

In this technique, stored messages –all replicas store messages– are not grouped
by views, then when a crashed node reconnects it informs about the message
corresponding to its last committed transaction. Then, the recoverer node sends
to the recovering node the set of messages it has not correctly processed and
it has lost. Notice, that this policy will overcome the amnesia phenomenon in
all cases, only if logs store messages even when there are not failed nodes. If
this behavior is not provided the Prop. FS2 is not ensured when a replicated
system transits from a view where all replicas were alive to another where there
are failed nodes.

An important aspect of this technique is when messages or updates are stored
in the log. If messages are persisted as soon as they are delivered, crashed nodes
will have at recovering time the messages they have delivered but not processed
correctly –those associated to T F

i,nl
–. Then, they do not have to ask updated

110 CHAPTER 9. AMNESIA SUPPORT REVIEW

replicas for these messages, only for those they have not seen. These protocols
also avoid the progress condition problem. On the contrary, if messages –or
updates– only are logged when they are really committed, crashed nodes will not
have the messages necessary for overcoming the amnesia problem at recovering
time. So, in this case the information for solving the amnesia phenomenon must
be looked for in the recoverer replica. Therefore, this second strategy does not
support the progress condition problem.

This is the case of the Parallel Recovery by Jiménez, Patiño and Alonso [79]
protocol. This protocol also combines this technique with checkpointing for log
shortening reasons. It must be noticed that this protocol stores updates once
they are committed –non when they are delivered–, so crashed replicas must
ask updated replicas for messages delivered but not correctly processed. This
behavior, as it has been said in the previous section, implies that the progress
condition problem is not avoided.

View identifier

In this strategy broadcast messages are stored when they are delivered –in the
same order delivery– being grouped by views –when there are crashed nodes–.
Then, when a crashed node reconnects it informs to the system about its last
seen view. At this point, the system starts to send to the recovering node the
messages broadcast during the view it was crashed. Therefore, the amnesia
problem is not solved as it occurs in all recovery protocols proposed in [70],
because it will not contain messages seen by the crashed node but non correctly
applied, in other words the recovery process does not transfer the messages
corresponding to the transactions set T F

i,nl
. In fact, neither Prop. FS1 nor

Prop. FS2 are ensured. The same happens with Prop. FS2’, which is not
ensured, then the progress condition problem is not avoided. For solving this
problem, two different approaches can be adopted:

• A first proposal for avoiding the amnesia problem in this technique can
consist in transferring in the recovery process the messages broadcast dur-
ing the last view where the crashed node was alive. Then, this solution
needs to store broadcast messages even if there are not failed nodes. But,
it can be optimized if the recovering node informs about the identifier of
the message associated to its last correctly processed transaction. More-
over, it must be noticed that if all nodes store broadcast messages the own
crashed node will contain the messages it has received and not correctly
applied, obtaining then the second approach.

• The second one consists in applying our proposed generic solution, that in
fact is the solution already applied in [122, 19]. In [122], authors proposed
the “successful delivery” approach. A successfully delivered message im-
plies that it has been correctly processed. Therefore, they proposed that

9.5. CONCLUSIONS 111

the used GCS has to deliver the same message to a replica until it is suc-
cessfully delivered in this replica. In [19], each node stores persistently all
its delivered messages, being only removed when they are correctly pro-
cessed. Obviously, if there are failed nodes, correctly processed messages
are not removed but maintained in another log for recovering failed nodes
during this view. This proposal solves both the amnesia phenomenon and
the progress condition problem.

9.5 Conclusions

In this survey it has been analyzed how some recovery solutions for replicated
databases, which have adopted the crash-recovery with partial amnesia failure
model –in order to avoid to transfer the whole database–, manage the introduced
amnesia phenomenon problem and the progress condition problem presented in
Chapter 6.

The amnesia phenomenon problem appears because some works assume that
all delivered messages are correctly processed, fact that as it is demonstrated
in [122] is not true. Then, in most cases their provided recovery solutions do
not handle correctly this problem. Among the studied papers only the recovery
protocols proposed in [79, 74, 19] and two of [82] manage accurately this prob-
lem. But, even not all these recovery proposals are able to avoid the progress
condition problem.

Moreover, for those studied recovery protocols which do not provide accurate
amnesia support it has been proposed solutions for overcoming this situation.

Later, a categorization of the analyzed recovery techniques has been performed
commenting if they provide accurate amnesia support –solving both problems
or not, and how they can be improved to support them when they do not in its
original definition.

Chapter 10

Amnesia in Linear
Interaction Systems

In Chapter 9 it has been seen that most recovery protocols have been designed
with replication protocols based on constant interaction –broadcasting a con-
stant number of messages per transaction– while very few have been imple-
mented for replication protocols using linear interaction –where a message is
broadcast for each transaction operation–. It is due to the fact that researchers
consider and also have demonstrated that constant interaction provides better
performance behavior in replication techniques, therefore they have considered
the linear interaction useless. However, linear interaction is at first glance the
most natural approach for building a replicated system.

This chapter presents a general strategy for recovery protocols based on linear
interaction, analyzing the problems that arise when considering the amnesia
phenomenon. At the same time, it is also studied its provided support for
snapshot isolation apart from 1-copy-serializability.

10.1 Introduction

This chapter presents a general strategy for recovery protocols based on linear
interaction, in contrast of using the constant interaction [124] approach. Linear
interaction, in spite of its high performance cost, will be the only feasible alter-
native for object-oriented replicated systems with large data states to transfer,
and with a transactional support, such as FT-CORBA with its complementary
Transaction Service, where constant interaction will either lead to huge messages
or be impractical in case of partial replication, since the state to be transferred
should be collected from different source nodes. But, as it will be shown, the
management required by linear-recovery protocols is more complex because it

113

114 CHAPTER 10. AMNESIA IN LINEAR INTERACTION SYSTEMS

must manage multiple messages per transaction. In addition, for ensuring cor-
rectness under linear interaction, messages belonging to not-yet-committed (as
well as for rolled-back) transactions, must be adequately treated.

In parallel, the proposed recovery strategy adopts the crash-recovery with partial-
amnesia failure model because it supports the recovery of outdated nodes. Re-
covery which becomes a key point for building fully-functional fault tolerant
systems in replicated systems with large data states. The traditional adopted
failure model, crash or fail-stop, is not adopted because does not support out-
dated nodes recovery presenting only good behavior for replicated systems with
few data state.

The idea is to obtain a recovery protocol for linear interaction replication pro-
tocols which minimizes the effort and cost of the recovery process, without
stopping the replicated system work for primary partitions. It is also intended
to perform partial recoveries, when needed. Finally, as its design is performed as
a middleware recovery system, it can be easily applied to different transactional
scenarios, specially including database replicated systems. The obtained results
can be used to perform a generic revision of recovery protocols for constant
interaction replicated systems.

This chapter is structured as follows. In Section 10.2 it is outlined the recovery
protocol for transactional replicated systems based on linear interaction. Section
10.3 presents the consistency problem due to on-going transactions, created by
the interleaved phenomenon. Some related work is given in Section 10.4, and
finally 10.5 concludes the paper.

10.2 Recovery Protocol and Amnesia Support

Since the replication protocol considered uses linear interaction for implementing
its functionality, the most natural way for performing the recovery will follow a
log-based strategy to recover outdated nodes as the one proposed in Chapter 8
for constant interaction systems.

The recovery protocol that must be used in a transactional replicated system
based on linear interaction has the same stages as the recovery protocol pre-
sented in Section 8.2 and uses the same information as the one proposed in
Section 5.6.1.

In regard to the amnesia support in the recovery process it must be taken the
same approach as the one presented in Section 8.3. Obviously, some differences
arise between these two approaches.

At replica level as linear interaction systems transactions work is broadcast in
multiple messages the non committed state at each replica would be higher than
for those systems using constant interaction. State that would be lost in a crash
occurrence. Therefore, in this scenario it is more important to know which are
the “really committed” transactions, in order to know which messages must be

10.3. ON-GOING TRANSACTIONS AND CONSISTENCY 115

reapplied in the recovery process. Then the information about the success of
such commit must be also stored because it is needed by the recovery amnesia
process in order to know which are the messages that must be applied in the
ARP. So, at the replicated system level, the problem is to know if a “commit”
message was successfully applied before the failure or not.

But, when performing the recovery process a new problem can arise due to the
use of linear interaction. This problem is detailed in the following section.

10.3 On-Going Transactions and Consistency

The use of linear interaction in replication protocols implies the broadcast of
messages belonging to not-yet-committed transactions –only the updates in a
ROWAA approach. Thus, these messages belonging to different transactions
are interleaved and applied to the replica in their delivery total order. Finally,
each transaction is committed when its commit is applied. In this context, if a
node crashes, all associated changes to not-yet-committed transactions are lost
whilst associated updates to committed transactions remain permanent.

Afterwards, when the crashed node becomes again active, the recovery pro-
cess updates it, reapplying among others the messages associated to not-yet-
committed transactions at the crash time, while the committed transaction
messages at the crash time are not reapplied (since they were already persisted
in the replica). In this scenario, some inconsistencies could arise if these reap-
plied messages were interleaved with committed transaction messages in the
original work sequence, because this original order is misunderstood in the re-
covered node. The inconsistencies appear if these transactions conflict and the
selected isolation level tolerates these conflicts.

It must be remarked that this problem only occurs when an outdated node
reconnects to a working replicated system, and it has not lost the working
condition from the instant when the outdated node crashed. Moreover, notice
that the interleaving phenomenon does not happen when the replication protocol
uses constant interaction. This is due to the fact that all the updates associated
to this transaction are broadcast using a single message –even when more than
one message per transaction is used– instead of broadcasting the updates using
multiple messages as the linear interaction does.

The following example shows this problem in a more intuitive way. Let us
assume a replicated system of three nodes, α = r1, r2, r3. At the beginning,
the three nodes are up-to-date and working. During a replicated system work
period, the sequence of events shown in figure 10.1 happen.

In the linetime shown in figure 10.1 appears the following events:

• T 1, transaction started in r1 and compound by messages m1, m3, m5

• T 2, transaction started in r2 and compound by messages m2, m4, m6

116 CHAPTER 10. AMNESIA IN LINEAR INTERACTION SYSTEMS

m1 (T1)

m2 (T2)

m3 (T1)

m4 (T2)

m5 (T1 commit)

m6 (T2 commit)E1 E2

Figure 10.1: Linetime events

• E1, node r3 crash

• E2, node r3 recovery process start

As it can be seen, in the original sequence order, the messages of T 1 and T 2 are
interleaved. T 1 commit is performed before the crash of node r3, while the T 2
commit is done during the r3 failure time. Therefore the final messages sequence
seen in r1 and r2 is:

m1, m2, m3, m4, m5, m6

while the final message applied sequence in r3 once it has been recovered is:

m1, m3, m5, m2, m4, m6

This message order misunderstood in r3 is originated by the recovery protocol.
In fact the node r3 before E1 applies the same sequence message order as r1

and r2 that is:

m1, m2, m3, m4, m5

but, when it fails, it loses non committed changes, in this case the changes
performed by T 2. Thus, when it reconnects to the system its data state is:

m1, m3, m5

At this moment, the recovery process applies the not yet applied updates in r3,
which in this case are the T 2 messages, causing the message order difference.
This different message order in T 2 could lead to a different data state with
regard to the state in r1 and r2 if T 1 and T 2 conflict and the selected isolation
level tolerates it. In this example a conflict could arise if m2 and m3 perform
the following sentences respectively:

m2 → ”UPDATE employees SET salary = salary∗1.05 WHERE points > 10”

m3 → ”UPDATE employees SET points = points+1 WHERE points == 10”

With these sentences, it is possible that in r3 some employees increase their
salary while in r1 and r2 their salaries are not increased. Thus, the recovery
protocol can generate different data state evolutions in recovered nodes with
regard to not recovered nodes. This problem appears because the recovery pro-
tocol does not store the transactions original context. For instance, the original
table 10.1 will evolve to 10.2 in r1, r2 and to 10.3 in r3 after applying T1 and

10.3. ON-GOING TRANSACTIONS AND CONSISTENCY 117

EmployeeId Salary Points

001 18000 9
002 18000 10
003 21000 10
004 21000 11

Table 10.1: Employees.

EmployeeId Salary Points

001 18000 9
002 18000 11
003 21000 11
004 22050 11

Table 10.2: Employees in r1, r2.

T2.

In order to avoid this problem, two solutions can be applied. The first and
more natural one consists in selecting an isolation level that aborts this kind
of conflicts, which in fact implies to apply the serializable isolation level at the
replication protocol. Thus, this approach avoids the problem presented above
allowing to use the two proposed recovery strategies: the log-based and the
version-based.

Another option would be to relax the required consistency guarantees, which
means to tolerate this kind of conflicts, but in order to avoid the above pre-
sented problem this approach implies to perform the recovery process under
a special condition. Such special condition requires that the recovery process
must be done when the recovery messages to apply do not conflict with com-
mitted transactions during its life. This means that the recovery messages to
apply were not interleaved with conflicting committed messages. As controlling
the fulfilment of this condition is difficult, it must be selected an easiest to con-
trol condition. This new condition would be to select as Base Recovery Point
(BRP) a data state in the replicated system lifetime where there does not exist
on-going transactions. Obviously this base recovery point must be posterior to
the moment when the outdated node crashed. Then, the outdated node recov-
ery is performed in two steps. In the first one, the outdated node recovers the
data state up to the selected BRP, using the version-based approach. It must
be remarked that in this step it can not be used the log-based recovery strategy,
since the problem of different state evolution would not be avoided. In the sec-
ond step, it would be applied the messages that have been delivered after the
selected BRP (if they exist) using the log-based approach. This solution could
be implemented in two different ways: reactive and proactive.

118 CHAPTER 10. AMNESIA IN LINEAR INTERACTION SYSTEMS

EmployeeId Salary Points

001 18000 9
002 18900 11
003 22050 11
004 22050 11

Table 10.3: Employees in r3.

In the reactive one (figure 10.2), the base recovery point is selected once the
crashed node reconnects to the working replicated system. The system has two
options at this moment: to wait until the working system reaches the previous
defined condition in a natural way or to force it either temporarily prohibiting
the start of new transaction or delaying progressively the start of new trans-
actions. The first one does not ensure to reach this condition at any known
interval time. Thus, it is discouraged in replicated systems with a high work
load, whilst the second one implies to stop in an aggressive way the replicated
system work that is also an undesired situation.

t
t0 t1 t2

 t0 - N1 crashes
 t1 - N1 reconnects
 t2 - BRP

Figure 10.2: Reactive BRP

The proactive way (figure 10.3) consists in using BRPs previous to the crashed
node reconnection. The idea with this option is to keep ready the recovery
information before the failed node reconnects to the system. Therefore, as soon
as a node fails (or as long as there exist failed nodes), the system starts to
check when the replicated system fulfils the BRP conditions. Each time these
conditions are reached, the recovery system will store the version-based recovery
information of this point, erasing the previous one if existed. After that, when
a failed node reconnects to the system its recovery is performed using for the
first step the last BRP information generated. For the second step, it is used
the messages broadcast after this point.

t
t0 t1 t2

 t0 - N1 crashes
 t1 - BRP
 t2 - N1 reconnects

Figure 10.3: Proactive BRP

Obviously, if the replicated system reaches this condition easily with a high

10.4. RELATED WORK 119

frequency, the system can decide not to generate this information at each time
the base recovery point condition is fulfilled.

Between the two proposed solutions to solve this problem of potential data node
state divergence, it is preferable to select in first instance the establishment of the
serializable isolation level. This election is based on the fact that this approach
does not need to wait for any non-replication system work instant as the BRP
(as the other one does). Obviously, working in a linear-interaction replication
system combined with the serializable isolation level will present a cost in terms
of performance and efficiency that must be considered.

It must be noticed that these two last proposals are based on the same concept
that is used for the recovery solution proposed for non-transactional replicated
systems in Chapter 11.

Moreover, the only possible solution to use a log-based recovery approach with-
out using a version-based one forces the system to adopt the serializable isolation
level. Another aspect that must be considered is which recovery information pol-
icy must be applied, and how it is affected by the linear recovery interaction.
The following section is devoted to the discussion of this aspect.

10.4 Related work

In the area of recovery protocols for replicated distributed systems two basic
approaches are used: version based and log based. The first one consists in
transferring to outdated nodes those data items changed during their failure
period, whilst the second one consists in transferring the messages missed by
outdated nodes.

A wide range of proposals about this classic problem[12] have been presented
for a long time in the last years either version-based [82], [20] and log-based [82],
[19], [79]. First ones are typically useful for long-term outages whilst the latter
ones present better performance for recovering short-term failures. Therefore,
combining a version-based technique with a log-based one to construct a recov-
ery framework has been proposed in several works as [82], [19] to improve the
recovery features, choosing the recovery strategy that presents a lower cost each
time an outdated node is detected.

The most widely assumed correctness criterion for replicated systems is 1-copy-
serializability, which consequently leads to recovery protocols intended to work
with such systems, often using log-based approaches [79], [82], [70]. However,
the use of other isolation levels has not been traditionally treated in recovery
protocols, probably based on the assumption that replication protocols are in-
tended to provide 1-copy-serializability. In fact, this is the isolation level that
best fits the consistency guarantee in a general distributed system. But, when
the replicated state requires high transfer rates, its use implies a high perfor-
mance cost. Also, for transactional systems, where isolation must be enforced

120 CHAPTER 10. AMNESIA IN LINEAR INTERACTION SYSTEMS

by using specific concurrency control mechanisms, this problem is even worst.
These two drawbacks are specially problematic in replicated databases, where
the enforcement of 1-copy-serializability usually leads to extremely inefficient
systems. Therefore, relaxed isolation guarantees are used there to alleviate
the performance degradation associated to the highest isolation level. One of
the most widely adopted relaxed levels is Snapshot Isolation, having the in-
teresting property of allowing read-only transactions to proceed without being
blocked or delayed by any other transaction. In this way, recent publications
[88, 50, 81, 80, 30], have proposed some replication protocols providing Snapshot
Isolation [10]. Moreover, the most extended DBMS (Oracle [55], PostgreSQL
[105]...) provide snapshot isolation as the basic isolation guarantee.

On the other hand, recovery protocols are also typically designed to work for
replicated protocols based on constant interaction[82]. Others ,simply outline
how these protocols can work using linear interaction. In fact, a few works
have designed recovery protocols[70] which work over linear-interaction-based
systems. In [70], different log-based recovery protocols are presented includ-
ing proposals either for constant and linear interaction, but always focused on
serializable systems.

10.5 Conclusions

In this chapter, it has been detailed a middleware-based general log-based re-
covery strategy intended to provide fault tolerance support for linear interac-
tion-based replication systems. This obtained system lets to perform on-line
recoveries, fulfilling one important condition for building a high available sys-
tem. Most important, this chapter studies which effects has the use of linear
interaction on the recovery work, specially emphasizing the global data state
consistency and the recovery information management.

Moreover, the chapter also analyses and designs an amnesia recovery process as
part of the whole recovery strategy, supporting a more realistic failure scenario.
This amnesia phenomenon has been discussed at the two different levels in which
it could appear, and a basic strategy to bound the amnesia problem has been
also detailed.

In addition, the proposed strategy supports re-inclusions in minority partitions,
performing partial or full recoveries, helping the system to accelerate outdated
nodes recovery.

Another important aspect demonstrated in this chapter, in Section 10.3, is that
using a linear-interaction replication protocol forces the system to use serializ-
able isolation level to avoid consistency problems after any log-based recovery
process. In fact, the use of any other isolation level could let different replicas
to reach different data states after applying the same transactions set.

In an indirect way, this chapter also has highlighted that the existence and

10.5. CONCLUSIONS 121

management of on-going transactions (due to linear interaction) from a recov-
ery point of view presents several difficulties (replicated consistency, amnesia
delimitation boundaries), whose solution reduces the whole system performance
and scalability. Therefore this chapter reinforces the traditional arguments (traf-
fic net overhead) that discourage the use of the linear interaction approach on
replication systems.

A sequel of this work will be a generic revision of existing recovery protocols
based on constant interaction taking under account the results obtained in this
work for recovery systems working in linear interaction replicated systems.

Chapter 11

Non-Transactional Amnesia
Support

This chapter presents a generic recovery protocol for non-transactional repli-
cated systems which manages accurately the amnesia phenomenon. This so-
lution is based on the use of checkpointing and logging ideas widely used in
distributed systems [51]. Moreover, the provided solution avoids the repetition
of the work already performed and which follows the exactly-once semantics
[72] (i.e. state changes with permanent effects). Later, it is included an amne-
sia overhead analysis for different process replication configurations in order to
know the time cost associated to managing accurately the amnesia problem.

11.1 Introduction

Non-transactional –process– replication based on message-passing systems, fo-
cus of this chapter, has largely assumed to substitute crashed replicas by new
ones transferring to them the whole state as recovery solution [69], based on
the fail stop failure model [114], due to its easy management and their accurate
behavior for systems with few state (typical case in process replication).

This chapter, instead, recommends the use of the crash-recovery with partial am-
nesia failure model [29] for process replicated systems with large state, where
transferring the whole state as it is done in the first approach will imply a
high cost. This solution is based on the use of checkpointing and logging ideas
widely used in distributed systems [51]. Therefore, when a crashed node recon-
nects first restores the checkpoint and applies the received messages before the
crash –amnesia recovery–, and second receives the broadcast messages during
its disconnection.

As it has been demonstrated and formalized in Section 5.4 when this failure

123

124 CHAPTER 11. NON-TRANSACTIONAL AMNESIA SUPPORT

model is adopted, recovery processes must consider the amnesia phenomenon
in order to avoid its associated problems. Moreover, the amnesia recovery must
follow the [72] (i.e. state changes with permanent effects). This chapter proposes
a solution for all these issues.

The chapter is structured as follows. Section 11.2 adapts the theoretical prop-
erties presented in Section 5.4 for real non-transactional replicated systems. In
Section 11.3 it is detailed the basic recovery schema, whereas in Section 11.4 it
is explained how to deal with the amnesia phenomenon with a log-based recov-
ery strategy for these systems. Section 11.5 details the overhead introduced for
providing amnesia support in different process replication configurations. Fi-
nally, some related work is given in Section 11.6, and Section 11.7 concludes the
chapter.

11.2 Recovery Information

The recovery information for non-transactional replicated systems has been al-
ready outlined in Section 5.6.1 with the figure 5.9. But, as long as it is expressed
in Section 5.6.1 this recovery information is not achievable because it needs to
checkpoint the volatile state after processing each delivered message.

Obviously, this theoretical checkpoint policy must be relaxed performing check-
points in a more spaced way, as it is shown in figure 11.1.

r1

r2

r3

A

B

X

t1 t2

checkpoint

tA

Figure 11.1: Real Log Recovery Information for Non-Transactional Systems.

Then, the original recovery process as it is detailed in Section 5.6.1 must be
redefined in its two first steps as follows:

• Firstly, it needs the checkpoint block which recovers the volatile state at
instant tA.

• Secondly, it applies the A recovery information block which contains in
this case the messages processed after tA. Therefore, some of the A block
messages will be reprocessed –those already processed between tA and
t1– while other ones will be applied for the first time. Then, for these
messages that must be reprocessed the system must avoid to repeat their
permanent changes in order to avoid possible inconsistencies.

11.3. RECOVERY PROTOCOL 125

This behavior implies a redefinition of the properties presented in Section 5.4.
The redefined properties are:

• Prop. FS1’ : nl must remember the last message processed before tA.
In fact, that implies that the original Mi,m−s is moved back to Mi,m−x

–fulfilling that x > s–, being Mi,m−x the last message processed before
tA.

• Prop. FS2’ : the replicated system must maintain and provide a way for
obtaining both the messages processed between tA and t1 in nl and the
messages that have been simply delivered in nl before t1.

• Prop. FS3’ : nl must remember the volatile state V Snl
at instant tA, after

applying Mi,m−x.

Notice that these redefined properties can also be used for avoiding the problem
formalized in Section 6.5, being only necessary to redefine Prop. FS2’ as follows:

• Property FS2’* : each node nl ∈ A must maintain and provide a way for
obtaining its messages processed between tA and t1 in nl and the messages
that has been simply delivered in nl before t1, instead of trusting in “the
replicated system”.

So, as the generic solution presented in this chapter fulfils the properties Prop.
FS1’, Prop. FS3’ and Prop. FS2’*, this problem is also avoided.

In the next section it will extended the amnesia recovery focusing in the Amnesia
Recovery Process –ARP–.

11.3 Recovery Protocol

The departing point for overcoming the amnesia problem is the basic recovery
schema presented in figure 5.7. On the sequel it is presented how to perform
the ARP in a non-transactional system considering different phenomena that
will affect in the obtained result.

11.4 Amnesia Support

Once the general context has been presented it is time to describe how this
amnesia recovery process is performed, and detailing the necessary information
for the two levels considered in Section 5.2: transport and replica.

126 CHAPTER 11. NON-TRANSACTIONAL AMNESIA SUPPORT

11.4.1 Transport/Replication Level

Amnesia implies at this level that delivered messages are lost at crash time.
Therefore the idea is to store persistently these messages in each replica as soon
as they are delivered –in an atomic way in the delivery process– as it is proposed
in [38]. Moreover, this work way is similar to the adopted in logging recovery
strategies for distributed systems [51].

Solving the amnesia problem at this level is a necessary but not sufficient con-
dition for solving the amnesia at replica level. Thus, once it has been overcome
it can be solved the amnesia at replica level.

11.4.2 Replica Level

For being able to manage the amnesia problem at replica level the system must
know which work –meaning state changes– must be performed during the am-
nesia recovery process.

This amnesia recovery process combines the application of the last checkpoint
and the received messages –persistently stored for avoiding the transport level
amnesia– from this checkpoint [52]. Thus, each replica performs checkpoints
periodically, storing permanently its in-memory state at this time. When a
new checkpoint is created, the replica discards the previous checkpoint and the
messages that lead the system to the current checkpoint, starting to log new
incoming messages [52]. Therefore, the previous algorithm is refined to figure
11.2.

Recovery process:
1 - Amnesia Recovery Process

Restoring the Checkpoint
Reapplying messages

2 - Update Recovery Process
3 - Current Recovery Process

Figure 11.2: Intermediate Recovery Process

But there are some problems associated to the second phase of the amnesia
recovery process, when applying the stored messages after the applied check-
point, because some of this work must not be redone (e.g. persistent changes),
because it has no sense. Therefore, it is necessary to know for each applied
message its really performed changes, and more specifically changes that must
not be repeated. And, for messages delivered but not applied before the crash
it is necessary to know which work must not be performed during the recovery
process.

Then, the next question that must be answered is which work must not be repro-
cessed –or processed– in the amnesia recovery. To do so, first some aspects that

11.4. AMNESIA SUPPORT 127

must be considered for determining which state changes must not be reapplied
are presented. The aspects considered are:

• in-memory or external changes,

• permanent or non-permanent changes,

• exactly-once semantics changes [72] or not,

• real time changes or not, meaning that these changes can only be per-
formed –or only has sense to perform them– into the boundaries of an
established window time interval (e.g. changes depending on an input
data which changes its value outside the window time interval).

State changes can be classified attending to these issues, and depending on them
it will be necessary to process them or not. Subsequently, some considerations
about these issues are performed, their combinations, and how they influence
in the necessity of reapplying changes or not.

• In-memory state changes are volatile, therefore all their changes are lost
at crash time. And it has not sense to consider the exactly-once and real-
time semantics for these changes, because they do not imply any action
in external devices. Then, they can be reapplied –or applied–, without
leading to undesired situations.

• External changes can be distinguished among those implying permanent
changes and those implying volatile ones. In this case, considering exactly-
once and real time semantics will imply different behaviours in each cat-
egory.

– Permanent effect changes, are always associated to the exactly-once
or real-time semantics. In the first case, the system must ensure
that they must be applied exactly once, so if a change has not been
performed before the crash it must be applied later. Contrarily, if
it has been already applied it must not be reprocessed, because its
change is not lost. In the second case, the system must ensure that
the change is processed only once within the established time bound-
aries. Then, if change has been processed before the crash it is not
necessary to reapply it in the recovery process –remind that are per-
manent effects–, while if it has not been applied it must be only
processed if the time window has not ended.

– Volatile effect changes performed before the crash are lost, there-
fore in the recovery process they must always be reprocessed –those
already performed– or processed –those that were not processed–.
Only, those volatile changes following the real time semantics must
be not performed if their time window has ended.

128 CHAPTER 11. NON-TRANSACTIONAL AMNESIA SUPPORT

Therefore, summarizing the previous considerations the work that must be not
reapplied:

• for already applied work:

– External permanent changes, either following the exactly-once or real
time semantics.

– External volatile changes associated to the real time semantics if the
time window has closed.

• for non already applied work:

– External changes associated to the real time semantics once their
time window has closed, either permanent or volatile.

Then, from a recovery point of view, how must manage each replica its already
performed work attending to the previous characterization? The idea is to log
each external access which must not be repeated, in this case only external
accesses implying permanent changes. Notice that real time semantics are man-
aged in a different way. Therefore, the log process for each external permanent
access is done in two steps. First, it logs when the message/signal is sent, and
second it closes the log when receives the process message/signal acknowledge-
ment from the external device. If the used wire is reliable and the external
device is enabled to store incoming orders/signals the second step, the acknowl-
edgement requirement can be avoided, only being necessary the first step of the
log process.

Afterwards, this log information can be used in order to avoid repeating already
performed work in the amnesia recovery process, checking in the log if the task
was already performed before the crash as it is shown in the algorithm presented
in figure 11.3.

Recovery process:
1 - Amnesia Recovery Process

Restoring the Checkpoint
Reapplying messages

For each message check if it has been applied:
Yes - check its related log when reapplying
No - apply completely

2 - Update Recovery Process
3 - Current Recovery Process

Figure 11.3: Complete Recovery Process

It must be noticed that a problem will arise if the process does not receive the
acknowledgement from the external device accessed, implying that it can not
know if the external device has been able to perform the commanded order or

11.4. AMNESIA SUPPORT 129

even if it has received the message/signal. In this case, a similar problem, to
the two generals problem arises [85].

Other considerations that must be taken under account in the amnesia recovery
process are the following ones:

• Another arising problem in this scenario relates to the fact that usual
process replication does not work atomically as transactional systems do
[63], supporting that at crash time in a replica some work associated to a
message has been applied while other not. This problem has been already
explored in some literature as [89], and some solutions have been provided.
But, in our case, the previously provided solution for knowing which work
must be reapplied in the amnesia recovery process overcomes this prob-
lem when a crash occurs. This stored work log information prevents the
system for reprocessing previously performed permanent changes during
the recovery process. Therefore, our previous algorithm can be modified
to the algorithm presented in figure 11.4.

Recovery process:
1 - Amnesia Recovery Process

Restoring the Checkpoint
Reapplying messages

For each message check its work log
2 - Update Recovery Process
3 - Current Recovery Process

Figure 11.4: Final Recovery Process

Obviously, it must be remarked that this message work log proposed policy
can only be used for atomicity purposes in a crash context. In order to use
it as a generic undo mechanism it would be necessary to log also performed
volatile changes.

• It also must be noticed that for exactly-once operations it is necessary
to distinguish between exactly once operations at replicated system level
or replica level. In first case, in spite of a replica crash, if the replicated
system has not stopped working one of the alive replicas will have per-
formed the operation. In the second case, this work must be done in all
replicas, therefore in crashed replica the recovery process must ensure its
fulfillment.

• Some of these previous considerations, the ones related to permanent
changes that are not lost at replica time, can be discarded if the performed
checkpoint in the replica stores either the in-memory state –volatile– and
its associated external state. Then, when restoring the checkpoint after
the crash part of the permanent changes will be also undone, then when
reapplying the messages it will be only necessary to consider the changes
associated to real time semantics.

130 CHAPTER 11. NON-TRANSACTIONAL AMNESIA SUPPORT

Once it is detailed how the amnesia problem can be avoided at the two levels
it manifests, and have described the arising problems when performing the re-
covery process, in the following section the overhead introduced for supporting
amnesia is analyzed.

11.5 Amnesia Overhead

In this section the overhead introduced due to supporting amnesia in process
replication is studied. We will only consider the overhead during the normal
work, in order to analyze how it influences in its performance. Overhead during
recovery processes is not considered. We neither consider as overhead the regular
operations on any replicated system; e.g., failure detectors, since the mechanisms
needed by these low-level services are always in use and their overhead is not
directly related to the amnesia problem.

The overhead must be studied at different levels: transport –replication– and
replica level. At replication level the overhead introduced is related to the
process of storing persistently the delivered messages. While at the replica level
it will depend on several aspects. If the checkpointing solution is selected the
overhead will be associated to the cost of generating the checkpoint, but it can
be discarded if it is performed in a separated thread, with less priority than the
replication work. The other aspect relates to the logging of external accesses
that follow the exactly-once semantics as it has been commented before. Thus,
the overhead at replica level will depend on the percentage mean of external
accesses done in replica operations. Therefore, the overhead associated to the
amnesia support at replication and replica levels is considered.

11.5.1 Replication Level

The overhead study at this level is performed considering the four main process
replication configurations proposed in [121]: active replication (AR), semi-active
replication (SAR), semi-passive replication (SPR) and passive replication (PR).

In AR all replicas receive the client request messages and process them, whereas
in PR only a replica, the primary, receives the client request, processes the re-
quest and propagates the updates associated to this request to the other replicas
–backups–. SAR allows to work in a non-deterministic way. All replicas receive
the client request and process them like AR, but it works in a different way for
non-deterministic operations. In this case, one of the replicas –leader– spreads
its result of applying this request among the others –followers–. The last con-
sidered configuration SPR works very similar to PR in “good runs”. But it
presents two differences. The first one is that all replicas receive client requests
but only one, the primary, processes the request. The second one is that when
backups receive the spread update from the primary, first they acknowledge the

11.5. AMNESIA OVERHEAD 131

reception, and once the primary has received all acknowledgements, spreads an-
other message among all replicas in order to apply really the previously spread
update.

From a communications point of view: AR and SAR use total order broadcast
(TOB), while PR and SPR utilize reliable FIFO (R-FIFO). In all cases the use
of sending view delivery is emphasized.

The overhead study will be done detailing first the basic processing time (BPT)
and after the processing time supporting amnesia (PTSA). Processing times
will be expressed for each propagated operation in terms of spread time (st),
persisting time (pt) and processing time (Pt).

The st depends on the communication guarantees provided. And it also depends
on the message size for configurations which spread the updates associated to
an operation.

As it has been said TOB is considered for active and R-FIFO for passive. For
TOB the fixed sequencer is assumed in the broadcast-broadcast (BB) variant
[44] implementation, which uses two reliable broadcasts for message propaga-
tion. On the other hand, the R-FIFO as it is considered for PR can be imple-
mented using only one reliable broadcast for message propagation because there
is only one sender. Then, if α is the maximum cost of a reliable broadcast, the
TOB has a cost of 2α for spreading a message while the R-FIFO cost is α.

The client message request size (S) and the update propagation message (SU)
have their importance because some GCS have a maximum message size bound
to spread, SM . Thus, messages greater than SM must be spread sending ⌈ S

SM
⌉

and ⌈ SU

SM
⌉ messages.

The persisting time, pt, is expressed as β + γ⌈(S/k)⌉, where β is the upper
bound time for write disk accesses, γ is the storing time of a block size message
k, and S is the message size. It is considered that only one write disk access is
needed for each message.

For Pt, the π and πU value are considered, processing times for client request
and update application respectively, which depend on the replication system
load. Instead of being very difficult to model, anyway it is considered that any
operation always fulfills the rule Pt > pt.

It must be noticed, that for AR, SAR and SPR the replication work starts as
soon as the client performs its request because all replicas receive this request,
while for PR it starts once the primary propagates the update. Moreover, for
passive configurations we consider two different synchrony levels: hot passive
on-processing (HPP) and hot passive asynchronous (HPA) as presented in [34].

From table 11.2 different observations can be extracted.

The first one is that SAR, SPR (HPP) and PR (HPP) do not present any kind
of overhead because their processing times π and πU hide the corresponding
persisting times β + γ⌈S

k
⌉ and β + γ⌈SU

k
⌉. The SPR (HPA) configuration only

132 CHAPTER 11. NON-TRANSACTIONAL AMNESIA SUPPORT

Parameters Description

α maximum reliable broadcast cost

β upper bound time for write disk ac-
cesses

λ point to point communication cost

γ storing time of a block size message
k

S client message request message size

SU update propagation message size

SM maximum message size

π processing time for client request

πU processing time for update applica-
tion

Table 11.1: Parameters.

presents the overhead corresponding to the persisting storage of the update
propagation message with size SU , while the overhead of the first broadcast
message with size S is hidden by π. Other configurations present the overhead
associated to store persistently the messages propagated for performing the
replication work.

Notice that SAR, SPR (HPP) and SPR (HPA) perform their replication work
spreading two messages: on one hand the client request message and on the
other hand the update propagation message. In SPR configurations, as in active
configurations, it is considered that the broadcast performed by the client is a
part of the replication work, because the client spreads its request to all replicas.
And this broadcast uses TOB. While in the PR this broadcast is not considered
as replication work, because the client request is only received by the primary.

Another consideration is that SAR working in a deterministic way presents the
same times as AR, while when it works in a non-deterministic way, the presented
one in the table, presents the same cost as SPR (HPP). But SAR can be refined
in order to work with the same cost as SPR (HPA), if it is allowed to answer
to the client once it has broadcast the update propagation message to other
replicas without waiting that they process it.

A problem that appears when comparing these configurations is the difficulty
to compare S and SU , assuming that S is the size of the client request message
whereas SU is the size of the update propagation message associated to this
client request. Normally, S, the message size of the client request, will be smaller
than SM and k, while SU will be greater or smaller depending on the updates
associated to the process operation to perform. If a client request performs a lot
of changes its corresponding update propagation message will be greater than
SM and k. Thus, in order to present a more accurate study it will be necessary
to extend this work including an analysis of the workload profiles of different
client requests.

11.5. AMNESIA OVERHEAD 133

Configuration Time

AR
BPT (⌈ S

SM
⌉ + 1)α

PTSA (⌈ S

SM
⌉ + 1)α + β + γ⌈S

k
⌉

SAR
BPT (⌈ S

SM
⌉ + ⌈ SU

SM
⌉ + 2)α + π + πU

PTSA (⌈ S

SM
⌉ + ⌈ SU

SM
⌉ + 2)α + π + πU

SPR BPT (⌈ S

SM
⌉ + ⌈ SU

SM
⌉ + 2)α + π + πU

(HPP) PTSA (⌈ S

SM
⌉ + ⌈ SU

SM
⌉ + 2)α + π + πU

SPR BPT (⌈ S

SM
⌉ + ⌈ SU

SM
⌉ + 1)α + π

(HPA) PTSA (⌈ S

SM
⌉ + ⌈ SU

SM
⌉ + 1)α + π + β + γ⌈SU

k
⌉

PR BPT (⌈ SU

SM
⌉ + 1)α + πU

(HPP) PTSA (⌈ SU

SM
⌉ + 1)α + πU

PR BPT ⌈ SU

SM
⌉α

(HPA) PTSA ⌈ SU

SM
⌉α + β + γ⌈SU

k
⌉

Table 11.2: Processing Times.

Anyway, it can be observed that introducing amnesia support does not alter
among different configurations their original performance cost order. Moreover,
considering that nowadays computers increase faster their computation power
than increase the networks their bandwidth, it can be stated that the overhead
introduced for supporting amnesia does not affect significantly the performance
of these replicated systems.

11.5.2 Replica Level

The overhead introduced at replica level derives from the fact that each replica
must log the external accesses which imply permanent effects. As it has been
said, the log for each external access is performed in two steps, one before send-
ing the signal/message, another after receiving the respective acknowledgement.

In order to calculate the overhead associated to an operation it must be known
the number of external accesses which imply the permanent changes. Assuming
n as this number, the log associated to this operation must have n entries, and
the associated overhead for supporting amnesia for each of its external accesses
is shown in table 11.3. The times are expressed in the same terms used for
presenting the overhead at replication level, compiled in table 11.1. But in this
case the λ term for communications cost is used, because external devices are
assumed to be connected to nodes through point to point channels.

It must be noticed, that to quantify this overhead is very difficult because it will
depend on the processing time in the external device π, value that will present
a great variance among different devices (e.g. sensors or printers). Moreover, it
also will depend on the message size –which can present great differences among
external accesses for different devices–, and on the top boundary of the used

134 CHAPTER 11. NON-TRANSACTIONAL AMNESIA SUPPORT

Configuration Time

BPT λ⌈ S

SM
⌉

PTSA 2(β + γ) + λ(⌈ S

SM
⌉ + 1) + π

Table 11.3: Processing Times for each External Access.

communications channel –different for each accessed device–. Thus it will be
very interesting to categorize the external accesses attending to the accessed
external devices.

As it has been said previously in 11.4.2, if communications are reliable and the
external device can store received messages, the process only must log the sent
message/signal event shorting very much the introduced overhead.

11.6 Related Work

Literature has largely treated the recovery problem in distributed systems, either
transactional systems [12, 82, 79] or process replicated systems [15, 51]. But in
spite of this fact, the recovery protocols presented for process replication have
largely assumed the fail-stop failure model, where the proposed solution for
solving the recovery problem is to transfer the whole state to a new replica.

As it has been commented in this paper, this proposal presents good behav-
ior in replicated systems which manage few state, where to transfer the whole
state does not imply a high impact in the system performance. But, when
talking about systems with large amounts of data state, to transfer the whole
state will imply a cost that can not be tolerated. Therefore, it is necessary to
adopt another strategy for providing fault tolerance. This strategy implies to
recover previous crashed replicas transferring only the information that they
have lost, assuming the crash recovery with partial amnesia failure model, and
being therefore necessary to deal with the amnesia phenomenon. Assumption,
that has been already proposed for replicated databases [19, 38].

In the field of replicated database management, Wiesmann [122] already pro-
posed the “successful delivery” concept in order to partially deal with the amne-
sia problem. It proposes that the GCS needs to maintain the delivered messages
until the receiving process has acknowledged the successful appliance of the mes-
sage effects. Such a solution can also be used for process replication as outlined
in the current paper, but must be complemented with additional mechanisms
(e.g., missed updates recovery).

Obviously, to transfer the whole state approach will avoid the amnesia problem,
but as it has been said the idea is trying to avoid this approach when managing
large state amounts. Moreover, this approach also increases its complexity if it
needs to transfer the replica external devices state –being necessary to collect

11.7. CONCLUSIONS 135

and transfer it–, while our proposal avoids this complexity.

Other recovery strategy studied in the distributed systems literature –not fo-
cused on replicated systems– is the checkpoint-based rollback recovery [51], also
known as Rollback-Recovery protocols. In this case, this strategy forces each
node to store periodically a checkpoint of its state, then if a crash occurs when
the replica becomes alive applies the last checkpoint performed obtaining a con-
sistent state. But, this strategy does not support the amnesia phenomenon
because it can exist a work gap between the last checkpoint performed in the
replica and the work really performed in it after the checkpoint. If this solution
is adopted in a replicated system the amnesia support in a crashed replica can
be provided forcing a not crashed replica to transfer to the crashed one the
changes performed after its last really applied change.

But, in [51], it is also surveyed a recovery strategy which combines checkpoint-
based policies with message logging. This other approach provides support for
the amnesia problem in a natural way. This is due to the fact that log-based
recovery strategies, also widely studied in the literature, as it is the combination
of checkpoint-based policies with message logging are the ones that can provide
amnesia support considering the changes pointed out in this work.

On the other hand, literature has not studied extensively the problems associ-
ated to redoing the work in recovery processes for process replicated systems
because they usually have preferred to transfer the whole state. Few papers,
as [96], have considered it. But, instead of this fact, some research has been
done in the area of generic distributed systems [71]. Contrarily, in regard to the
exactly-once semantics a lot of work has been done [72].

The amnesia recovery support presented in this work follows the end-to-end ar-
gument ideas presented in [112]. In fact, in order to provide “perfect reliability”
from an amnesia point of view at the top replication level, the work is divided
into different levels. Assigning different work to the level that can do it more
efficiently and effectively. Therefore, replication layer stores permanently the
delivered messages while each application replica stores external accesses.

It must be said that a similar study related to the amnesia support and its
associated overhead in transactional replicated systems is presented in [38].

11.7 Conclusions

This chapter presents a solution for managing accurately the amnesia phe-
nomenon in recovery processes when replicated systems adopt the crash-recovery
with partial amnesia failure model.

The proposed approach combines several new issues with already existent par-
tial solutions in different contexts –as checkpointing and message logging for
distributed systems, exactly-once semantics in replicated environments and end-
to-end arguments for general system design– in order to construct a general way

136 CHAPTER 11. NON-TRANSACTIONAL AMNESIA SUPPORT

for solving the amnesia problems when the crash-recovery with partial amnesia
is assumed as a starting design point in process replication. As far as the author
knows this proposal is the first attempt for solving the amnesia problem which
considers all the previous aspects as a whole, combining and putting together
their individual solutions for providing a generic approach which considers all
these details. This work approach points out for avoiding redundancies and
eliminating possible blackholes when considering all these aspects separately.
The resulting strategy establishes a combination of checkpointing and message
logging mechanisms for providing the recovery with amnesia support. More-
over, the message logging is performed at two different levels –replication and
replica– following the general idea of “end-to-end arguments” and consider-
ing the exactly-once semantics and the persistence of the performed changes.
Thanks to this work way the recovery process can be performed efficiently and
avoiding consistency problems.

Finally, the overhead introduced by our proposed solutions for supporting am-
nesia has also been analyzed. At replication level, the study has considered the
four main configuration types of process replication established in [121]. And
at replica level it has been noticed the great overhead variability associated to
this amnesia support.

Chapter 12

Amnesia Solution Analysis

In this chapter it is presented an analysis about how it behaves the solutions
proposed in Chapters 5, 6 based on a simulation of a replicated database based
on a certification replication protocol.

12.1 Introduction

The solution proposed in this thesis for overcoming the two problems related
to the amnesia phenomenon introduces some overhead in the work of the used
replication protocol. But, this overhead is not always constant; it will vary de-
pending on different characteristics of the replicated system. Therefore, the goal
of this chapter is to present how the overhead behaves when different character-
istics of the replicated system vary: workload, message size, number of replicas,
message processing time in replicas, etc.

This chapter is structured as follows. First, in Section 12.2 are presented the
overheads introduced by the proposed solutions. Later, Section 12.3 introduces
the simulation that has been performed for analysing the behaviour of the over-
head. This behaviour is subsequently explained in Section 12.4. Related work
is detailed in Section 12.5 while Section 12.6 concludes the chapter.

12.2 Amnesia Solution Overheads

The basic solution for solving the two problems related to the amnesia phe-
nomenon described in the Chapters 5, 6 consists in persisting the broadcast
messages atomically with the delivery process.

Obviously, forcing the system to persist the messages in the delivery process
implies to introduce an overhead in the overall performance. As minimum this

137

138 CHAPTER 12. AMNESIA SOLUTION ANALYSIS

overhead would be equal to the cost of persisting in physical storage the mes-
sages. This cost will therefore depend on the size of the message to store and in
the transfer write rate of the used device. Basically, it can be said that faster
the storage engine is better the system will behave.

But, in some situations this overhead will be higher than the cost of persisting
the message. This happens when the persisting process becomes a bottleneck,
in other words, when the rate of incoming messages to persist is higher than the
speed at which the storage engine persists them.

The messages that must be persisted in the system for overcoming the amnesia
problems are the update transactions –assuming a message per transaction–
that must be broadcast –update transactions that have not been aborted locally.
Therefore, the rate of incoming messages depends on the transactions per second
workload that can process the replicated system, the % of read transactions of
this workload and the local abort rate of update transactions. High workloads,
low % of read transactions and low rates of update transactions locally aborted
can convert the persisting process in a bottleneck.

It must be noticed, that from a persisting point of view high workloads and low
rates of local aborts are bad news but from a replication point of view are good
ones. So, the ideal storing engine must be able to deal with high workloads and
really low local aborts of update transactions.

Forcing the system to persist messages atomically in the delivery process implies
that the replicas can not deliver the message until they know that all alive
replicas have persisted the message. Thus, it is necessary that replicas exchange
messages in order to notify themselves that they have persisted the message
before delivering them. Obviously, this extra messages round implies another
overhead in the system. But, it must be noticed that this message is really small
because is simply a control message. Moreover, as some GCS use internally an
ack for confirming the reception of the message, this ack can be delayed in order
to inform also that the message has been persisted.

12.3 Simulation

For observing how behaves the proposed solution it has been simulated a trans-
actional replication protocol based on certification for a wholly replicated database.
It works in an update everywhere approach so all replicas can serve client re-
quests; read transactions are processed only locally while update transactions
are broadcast to all nodes –ROWAA approach– using a single message per
transaction –constant interaction. As it has been said a read transaction is only
processed locally so at commit time if there are no conflicts the node serving the
transaction commits it and answers to the client. While an update transaction
is first processed locally in the node that is serving the request and at commit
time –if it has not been aborted locally– is broadcast using total order to all

12.3. SIMULATION 139

nodes. In this case it is broadcast both the writeset –WS– and the readset –RS–
in order to provide serializability.

The total atomic broadcast is implemented using a sequencer with two reliable
broadcasts. In the first broadcast the sender spreads the message to all nodes,
the second broadcast –a small control message– is used by the sequencer to
notify the delivery order. A reliable point to point communication is used by
the nodes in order to notify that they have persisted the message to the other
nodes. Note, however, that such additional round –to the two ones used by
the basic atomic broadcast considered– only uses small control messages; i.e.,
they do not carry the request or update-propagation contents of the original
message, so their size is small and such message round can be completed faster
than the contents-propagation one in the regular case (Considering, e.g., that
in database replication protocols the broadcast messages propagate transaction
writesets and their size may be as big as several hundred KB). The simulation
has used network values appropriate for a 1 Gbps LAN.

In table 12.1 are listed the values assumed for different parameters in the sim-
ulation. The value of some parameters has been varied in order to analyse how
behaves the solution.

Parameter Value

Database size 100000 items

Transaction processing time in serving replica 50 ms

Transaction processing time in other replicas 20 ms

Net average delay 0.15 ms

Workload 30, 100, 300 and
500 TPS

Number of nodes 3, 5, 7, 9, 11 and
21

Total order broadcast message size 100, 200, 300 and
500 KB

% of read transactions 0, 10 and 20

Table 12.1: Simulation values.

Moreover, as the solution consists in persisting the messages broadcast in total
order by the replication protocol two different secondary storage systems have
been considered. On one hand a hard disk drive of 7200 r.p.m. (a.k.a. HDD)
as basic storage system commonly found in low- and middle-range personal
computers. On the other hand a solid state disk based on flash memory. There
are disks of this kind able to store 16 GB and with a transfer rate of 90 MB/s
for less than 400 USD (December 2007 prices). Table 12.2 summarizes the main
performance-related figures of both disks. In the simulation, we consider that
there is a disk entirely dedicated to GCS log management, apart from the one
being used by the DBMS.

The tested configurations in the simulation are the result of combining the work-

140 CHAPTER 12. AMNESIA SOLUTION ANALYSIS

Hard Disk Drive

Parameter Value

Positioning disk average time 5.5 ms

Rotation disk average time 4.16 ms

Write transfer rate 40 MB/s

Flash Memory

Parameter Value

Write transfer rate 90 MB/s

Table 12.2: Storing system values.

load, number of nodes, the message size and the rate of read transactions. The
experiment measure the transaction completion time and consisted in simulating
each configuration with each considered storing engine. An additional without
persisting messages has been performed for each configuration. This last one is
used as the base level for comparison purposes.

Each test consisted in completing 40000 transactions in the whole system. In
the simulation it has been forced that there are not local aborts –so all update
transactions must be broadcast– because this is the worst scenario from a per-
sisting point of view. Once the simulation has completed all these transactions
it is calculated the average of committing transactions.

12.4 Results

For explaining the simulation results, different graphics have been prepared.
They present the results without persisting –basic–, persisting in HDD –HDD–
and persisting in flash memory –flash–. The percentage of read transactions
used in these figures is 10 %, corresponding each one to 3, 9 and 21 replicas
respectively.

Figures 12.1, 12.3 and 12.5 show the average completion time and persistence
overhead in absolute values with two different graphics. In these figures, (a)
graphics show the total cost for basic, HDD and flash storing policies. But, as
it is really difficult to see differences in them (b) graphics have been attached.
Those show the difference of HDD an flash in regard to the basic one. In both
graphics, MS stands for Message Size (in KB) whilst TPS gives the workload in
transactions per second. The vertical axis gives times expressed in milliseconds.

Figures 12.2, 12.4 and 12.6 depict the overhead in % introduced by the proposed
solution for 3, 9 and 21 replicas respectively. As in previous figures, they show
the results for the basic approach –without persisting–, for the HDD and flash
storing engines. In this case the basic graphic only can be used as a reference
point as it happened for (b) graphics in figures 12.1, 12.3 and 12.5.

Attending to these graphics on the sequel it will be explained how the proposed

12.4. RESULTS 141

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

Committing cost for 3 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(a) Committing time (in ms)

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

Committing cost difference for 3 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(b) Persistence overhead (in ms)

Figure 12.1: Results for 3 replicas and 10% read-only Txs.

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 5

 10
 15
 20
 25
 30
 35
 40

Overhead % for 3 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

Figure 12.2: Overhead cost - 3 replicas and 10 % of read Tx.

solution behaves attending to several characteristics in the replicated system
simulated.

12.4.1 Workload

For transaction workloads it can be observed from figures in a general way
that for higher workloads the proposed solution presents: higher overheads in
absolute terms at least for HDD –(b) graphics of figures 12.1, 12.3 and 12.5–,
but lower overheads in percentage terms –figures 12.2, 12.4 and 12.6 either when
using HDD or flash.

First of all, someone can state that the persisting overhead in absolute terms
must not increase with the workload if the size of the messages to store does

142 CHAPTER 12. AMNESIA SOLUTION ANALYSIS

not increase, contradicting then the trend observed for HDD in (b) graphics.
This statement would be right if the write transfer speed of the storing engine
was always high enough to not become a bottleneck when the workload rises.
And (b) graphics show that; HDD becomes sooner a bottleneck –increasing
then its overhead in absolute terms without increasing the message size– as it is
the slowest storing engine tested, while flash memory –which has higher write
transfers rates– does not show this trend at least for the tested workload ranges.
As it can be inferred this trend manifests better for high message size values
–worse cases– as shown HDD tendencies in (b) graphics.

It is also necessary to explain the apparently –at first glance– contradictory be-
haviour of the overhead in absolute –increase– and percentage –decrease– terms
when the workload rises. The explanation for this phenomenon relates to the
fact that the overall replicated system becomes a bottleneck for a certain work-
load, increasing the response time when the workload grows from this threshold
level. From this assert, it can be stated that the tested replication protocol
behaves in a bottleneck way because its time processing cost increases with
workload when messages are not persisted as it can be seen in (a) graphics for
the basic approach. Therefore, the persisting overhead decreases in percentage
–even when it increases as it happens for HDD solution– when the workload
rises because the basic cost of processing transactions grows more.

At this point, it can happen that the replicated system bottleneck hides or avoids
to manifest in all its magnitude the persisting overhead. In fact, observing the
(b) graphics of figures 12.1, 12.3 and 12.5 and figures 12.2, 12.4 and 12.6 it
can be seen how when the number of replicas increases, the overhead increases
both in absolute and relative terms –for the same workload and message size–
because the effects of the replicated system bottleneck are lower.

Finally, it must be also specified that the persisting overhead depends on the
workload of messages to persist which in spite of being related to is different
from the workload of incoming requests to the replicated system. The former
one depends on the incoming workload, the rate of update transactions of this
workload and the rate of transactions aborted locally.

12.4.2 Message size

For this parameter there can not be observed in figures any unsurprising result;
when the message size grows the persisting overhead grows both for HDD and
flash storing engines. And, obviously, it manifests in a sharper way for the HDD
storing engine than for the flash one, and already expected result as the second
one has a higher write transfer.

Moreover, from figures it also can be deduced that the message size has an
important effect in the probabilities that the persisting solution becomes a bot-
tleneck. And it affects in the following way, when higher the message size the
more probabilities has the persisting solution to become a bottleneck.

12.4. RESULTS 143

12.4.3 Number of replicas

The number of replicas affect to the persisting overhead in an indirect way. As
it has been said previously, when the system has more replicas it can process
higher workloads without becoming a bottleneck, then the persisting engine
must manage higher workloads without the barrier provided by the replicated
system when it acts as a bottleneck so its introduced overhead manifests more
in percentage terms.

In regard to the bottleneck phenomenon, the persisting solution has more prob-
abilities of becoming a bottleneck when the system has more replicas as it can
manage usually higher workloads, forcing the storage engine to persist a higher
rate of incoming messages.

12.4.4 Storing engines

From the figures it can be said that any storing engine introduces some overhead
in the replication work, being lower when higher its write transfer rate is. So,
the flash memory introduces lower overheads than the HDD solution for any
tested replication configuration both in absolute and percentage terms. In fact,
it can be seen how the flash storing engine never becomes a bottleneck as it
happens with the HDD solution as graphics (b) from figures 12.1, 12.3 and 12.5
demonstrate for any of the simulated workloads.

It must be said, that having a fast soring engine is not only interesting because it
introduces lower overhead but also for decreasing the probabilities of becoming
a bottleneck as it is seen in (b) graphics.

12.4.5 Other parameters

In the simulation other parameters have been considered: % of read transactions
and % of local aborts. No graphics associated to them have been included due to
space reasons. But, it can be said that the observed evolution was the expected
one. The overhead decreased either when the % of read transactions increased
or when the % of locally aborted transactions increased, because it implied less
messages to persist.

12.4.6 Summary

From the results obtained in the simulation different conclusions can be stated.
The first and obvious one is that any persisting solution introduces some over-
head in the system. It is also important to say that this introduced overhead
depends on the combination of several static and dynamic characteristics of the
replicated system. This overhead in absolute terms increases with the workload,

144 CHAPTER 12. AMNESIA SOLUTION ANALYSIS

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0

 100

 200

 300

 400

 500

 600

 700

Committing cost for 9 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(a) Committing time (in ms)

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0

 10

 20

 30

 40

 50

 60

Committing cost difference for 9 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(b) Persistence overhead (in ms)

Figure 12.3: Results for 9 replicas and 10% read-only Txs.

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Overhead % for 9 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

Figure 12.4: Overhead cost in % - 9 replicas and 10 % of read Tx.

the message size, and % of write transactions, while in % the worst cases are
those in which the system is able to process in a fast way the transactions.

Overhead that would be lower when faster is the used storage engine. And
that the worst overhead cases appear when the persisting process becomes a
bottleneck because in this case the overhead introduced by the persisting process
is higher than the a priory expected cost of persisting –considering the message
size and the write transfer speed. Evidently, as it has been said the phenomenon
of becoming a bottleneck is more probable for slow storing engines. At this
point it also must be remarked how the flash memory does not only become a
bottleneck but even it maintains the introduced overhead in a low level range
for usual workloads.

Moreover, it has been seen how the worst conditions from the persisting point

12.4. RESULTS 145

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 50

 100

 150

 200

 250

 300

 350

Committing cost for 21 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(a) Committing time (in ms)

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0

 10

 20

 30

 40

 50

 60

 70

Committing cost difference for 21 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(b) Persistence overhead (in ms)

Figure 12.5: Results for 21 replicas and 10% read-only Txs.

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Overhead % for 21 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

Figure 12.6: Overhead cost in % - 21 replicas and 10 % of read Tx.

of view are a system processing high workloads, with great message sizes, low
% of read transactions and slow storing engines. In regard to the message
size, it must be advanced that the replicated protocols which propagate the
writeset and readset would behave worse from the storing point of view than
those transferring the operations to perform. Moreover, in the particular case
of certification it would behave better if instead of using serializability it would
have used snapshot isolation, because in this last case the readset must not be
transferred by the replication protocol.

Another obtained conclusion from the simulation is that sometimes when the
replicated system gets overloaded it can hide or decrease the phenomenon of
saturation in the persisting process. This conclusion can be converted in a
guideline to follow when designing a replicated system and this rule will state

146 CHAPTER 12. AMNESIA SOLUTION ANALYSIS

that the capacity of processing transactions by the replicated system and the
capacity of persisting messages by this replicated system must evolve parallely.
The idea is that having a replicated system that can manage high workloads
is not worthy if the storing process acts as a bottleneck because the latter will
decrease the overall performance. And the rule also works in the other way,
so investing money in fast storing engines is not profitable if the replicated
system can not deal with high workloads. In this last case, it only would be
interesting if the size of message transactions is quite large. Other parameter
to consider is the average time cost of processing transactions in nodes because
when higher it is the replicated system saturates sooner, hiding therefore the
overhead introduced by the persisting engines.

It must be remarked, that all these results have been obtained with a 0% aborts,
so all the incoming update requests to the replicated system must be broadcast
among the replicas. If the abort rate in the serving replica is higher the number
of transactions to broadcast decreases, diminishing then the demand to the
storing process, reducing therefore the probabilities of reaching the saturation
point for the persisting process.

12.5 Related Work

There are many replicated database works in the literature that give some nu-
meric results about how they behave. The problem is that most of them have
not considered the amnesia phenomenon and its possible associated consistency
problems that arise when working under specific conditions. So, it is really
difficult to compare the results obtained with this simulation with these other
works.

Among all these works it is interesting to point out the following two ones. The
first one because gives the results associated for the same type of replication
protocol. While the second one because the way it implements the total order
broadcast can avoid in an straightforward way the problems associated to the
amnesia phenomenon.

In [88] authors show the results of a replicated system based on a certification
replication protocol. It uses also an update everywhere approach broadcast-
ing only update transactions in a constant interaction way –single message per
transaction– through a total order communication primitive provided by a GCS.
The problem is that these results can not be compared with the ones obtained
here, because in their case they provided Snapshot Isolation isolation level in-
stead the Serializable one used in the simulation. Moreover, they do not specify
the GCS they have used and the guarantees it provides from an amnesia point
of view.

Authors of Sprint Middleware [18] provide some results of their solution which
main characteristic is to take advantage of being an in memory database –IMDB.

12.6. CONCLUSIONS 147

This solution uses as atomic broadcast protocol the Paxos [84] protocol. This
Paxos protocol forces the system to persist messages in order to establish the
total order, therefore it can avoid in a straightforward way the basic amnesia
phenomenon. But, these results can not be compared with the simulation results
because their system is a partial replicated system.

Finally, this simulation can be seen as a continuation of the work started in [41],
measuring the overhead introduced when forcing the system to persist atomi-
cally the total ordered broadcast messages in the delivery process. Moreover,
this solution fulfills completely the properties defined by [93].

12.6 Conclusions

As it has been seen in this chapter the overhead introduced by the proposed
solution varies with the number of nodes, workload, % of local aborts, % of
read transactions, average time for processing transactions and last but not
least message size. Thus, if this solution must be applied a proper study of
the most common values of these variables in the replicated system must be
performed in order to determine the minimum write transfer speed in order to
avoid the saturation of the storing process.

Anyway, for minimizing the overhead cost the best option is to use the fastest
storing engines. As it has been seen solid memory is a good option, but for
systems managing big messages and high workloads there are other solutions as
ioDrive [56] which provides 600 MB/s write transfer rates.

Part III

Related Work

149

Chapter 13

Related Work

In this chapter it is included some generic related work related also recovery
protocols or mechanisms.

13.1 Replicated Systems Recovery and Failure
Models

The development of first computer networks in the sixties and seventies of XXth
was the starting point of a new branch research area in the computer science
world: distributed systems. These distributed systems have been used for very
different purposes being one of those to increase the systems dependability
through replication, what has been largely denoted as replicated systems.

Replicated systems increased the levels of dependability providing to the sys-
tem fault tolerance. Therefore, a huge work was performed as demonstrated in
[106, 115, 29] for analysing the possible failures that could arise in distributed
systems. In these works authors categorized the failures and defined failure
models in order to simplify their management. The idea was that distributed
system designers in the design process selected one of the proposed failure mod-
els, assuming that their system only has to handle these kind of failures and
considering that other failure occurrences in the system were negligible.

A great variety of failure models have been presented in the literature from the
most severe one, byzantine, to the simplest one, fail-stop.

Replicated systems have traditionally assumed the fail-stop failure model as [12].
Its main advantage is simplicity because nodes only fail by halting remaining
forever in this state. Therefore, failed nodes are discarded. This implies that
if the original k-fault tolerance level wants to be maintained so each discarded
replica must be substituted by a new one, being necessary to transfer to the

151

152 CHAPTER 13. RELATED WORK

added replica the whole state. This way of maintaining its fault tolerance is its
main drawback, when talking about replicated systems managing large states.
In this scenario, the recovery processes are very expensive. In order to provide
more efficient and costless recovery algorithms researchers have adopted the
crash recovery with partial amnesia failure model as in [82, 20, 19, 6, 79, 70] for
replicated systems managing large states. In very few cases have been adopted
the fail-stop failure model as in [87].

13.2 Recovery Survey

A survey of some recovery protocols for database replication techniques is pre-
sented in [57]. In this paper authors classified recovery protocols attending to
several characteristics. These characteristics included the characteristics of the
replication protocols the recovery protocols work for: server architecture, server
interaction, transaction termination and update propagation, and the own char-
acteristics of the recovery protocols: transfer model, concurrency control during
recovery and recovery-work distribution.

This paper also notices the tight relation between a replication protocol and
the recovery protocol designed to work with it. This relation lies in the fact
that the recovery information generation depends on the possibilities provided
by the replication protocol. But, this survey does not consider the amnesia
phenomenon and its correct management.

But, among all these proposals that have assumed the crash recovery with partial
amnesia failure model it has been detected that they do not manage correctly
what we call amnesia phenomenon. This is due to the fact that research in
this area is usually more concerned about building replication algorithms which
provide good performance levels, than ensuring the correctness of their recovery
algorithms which are seen as an accessory in their replicated systems. Some of
these authors made some assumptions that implied an incorrect handling of the
amnesia phenomenon. And this misbehavior can lead to undesired situations.

In a generic way, it can be concluded that literature of replicated systems has
been mostly oriented for designing replication protocols, while the recovery pro-
tocols have been mainly considered as a second step in spite of the very interest-
ing works theorizing and formalizing failures for these systems as [106, 115, 29].

Anyway, literature has studied and analysed several aspects both of replication
protocols tightly related to recovery protocols and recovery protocols them-
selves.

13.3. SUCCESSFUL DELIVERY 153

13.3 Successful Delivery

First of all, it is necessary to point out the importance of the [122] paper,
as it has been commented previously. In transactional replicated systems the
amnesia phenomenon arises due to the fact that some recovery protocols have
been designed assuming that delivered messages are also messages correctly
processed. But this assumption is not correct as demonstrated in [122]. This
is the reason for highlighting this paper, because this assumption –that [122]
shows to be false– combined with the crash recovery with partial amnesia failure
model can lead to inconsistent states after recovery –if what it has been called
in this thesis amnesia phenomenon is not correctly handled.

But, in [122] authors proposed the successful delivery, which ensured that a
message is maintained by the GCS until it has not been processed by all node
receivers. Therefore, a message only can be discarded by the GCS when all re-
ceiver nodes have acknowledged the message processing to the GCS. The back-
ground idea is that GCS can deliver multiple times a message to a node but
it can only be delivered successfully once. To do so, they proposed the end-to-
end atomic broadcast primitive which ensures that each message is successfully
delivered once. This delivery mechanism provides an easy way to support am-
nesia if the acknowledgement is returned once the application has processed the
message and has persisted its updates, being then an alternative to the general
recovery protocols presented in papers [38] and [37].

13.4 Atomic Broadcast Based On Consensus

In regard to these works it must be pointed out the literature concerning algo-
rithms for providing atomic broadcast based on consensus for the crash-recovery
model [84, 109, 91]. In these works authors specify the necessity of perform some
kind of persistence in order to avoid problems at recovery time. All these so-
lutions also have in common that they not need to use the view concept as a
synchronization point, in fact they use the consensus round concept as synchro-
nization mechanism.

In regard to Paxos protocol [84] which can be used to implement an atomic
broadcast based on consensus the author proposes as synchronization point the
last decision –delivered message– written –meaning applied– in a learner. This
approach therefore overcomes the basic amnesia problem presented in Chapter
5. Moreover, as it forces the acceptors that participate in the quorum for a
consensus instance to persist their vote –message to order– as previous step to
the conclusion of this consensus instance –which will imply the delivery of the
message– it can also avoid the problem presented in Chapter 6 in a straightfor-
ward way. So, if a learner crashes, losing some delivered messages, later when it
reconnects it only must ask to the system to run again the consensus instances
subsequent to the last one to which belong the last message it has been applied

154 CHAPTER 13. RELATED WORK

in its application, relearning then the messages that the system has delivered
after. But, this forces the acceptors to hold the decisions they have adopted
for a while till all learners does not acknowledge the correct processing of the
message. Anyway, the proposed solution presented in this paper also can be
applied to the learners in order to avoid the necessity of replaying consensus
instances.

Different systems have been developed using the basic ideas proposed in [84] as
Sprint [18] and Chubby [17]. Sprint is a system for providing partial replica-
tion using in memory database for increasing the performance of the replicated
system. While Chubby lock service is used by Google for loosely-coupled dis-
tributed systems, providing what they name advisory locks .

Another interesting work is [90] where they proposed a failure detection mech-
anism for the crash-recovery model and different ways for solving consensus in
these systems. In this paper, they demonstrated that if the number of correct
processes was lower than the number of bad processes only accessing stable stor-
age could solve the consensus problem, contrarily if the number of correct pro-
cesses was higher than bad processes, consensus can be solved without persisting
information. If access to stable storage was necessary their proposed protocol
forced each process to access twice per consensus round: one at proposing time
–when the process proposes its decision– and at deciding time –when the process
receives the value decided for this round. It must be noticed that the authors
considered that the actions of persisting can not be performed atomically with
the send or reception of messages.

Authors of [109] make mandatory in their proposal that for any consensus round
each replica has to persist its proposed messages –the step before agreeing the
order for this round. Later, the basic approach allowed in the recovery process of
a crashed node to replay all the consensus rounds avoiding rebuilding therefore
the agreed messages queue. Thus as first variant allowed to overcome the basic
amnesia problem presented in Chapter 5, –it does not use view synchronization–
and also affords the amnesia problem presented in Chapter 6 because the whole
queue of delivered messages is rebuilt in the recovering node. For solving this
last problem, it is only necessary that the recovering replica remembers which
was its last applied message, applying then the messages that are subsequent to
this one in the rebuilt agreed messages queue in the replaying phase.

They proposed an optimization that consisted in persisting periodically the last
consensus round executed and the agreed messages queue until this consensus
round –it included– to avoid the necessity of replaying all the consensus rounds
from the very beginning. But, this process of persisting periodically must be
performed atomically, because if the consensus round stored persistently does
not agree with the agreed messages queue persisted some inconsistencies could
arise and the amnesia problems can arise again. Another improvement proposed
consisted to checkpoint the application state instead of maintaining the log of
delivered messages, substituting the later one by the application checkpointed
state that correspond to the the actual set of delivered messages.

13.5. RECOVERY OPTIMIZATION TECHNIQUES 155

In [91] authors considered that the existing specifications of atomic broadcast
were not completely satisfactory in the crash-recovery model. To overcome this
problem they build their atomic broadcast specification using three primitives:
abcast, adeliver and commit –new one–. This specification also divided the pro-
cess state into two different states: the application state and the state at the
atomic broadcast protocol. And a checkpointing policy was used to avoid in-
consistencies between the application state and the atomic broadcast algorithm
state when a crashed replica reconnects. This checkpointing policy consisted in
persisting both states coordinately with certain periodicity. The application was
the one which triggered the checkpointing process: first it checkpointed the ap-
plication state and later instantiated the commit primitive which checkpointed
the state at the atomic broadcast algorithm. So, when a replica reconnects after
a crash it restarts from the last checkpointed state (both application and atomic
broadcast protocol) without inconsistencies between them.

At this point, they proposed two variants: an uniform –more-consistent– and a
non-uniform –more efficient– one. The first one was forced to access to stable
storage at the beginning of each round consensus, while the other only at commit
time. Therefore, the first one –uniform– could replay the consensus rounds not
persisted in the checkpointed state avoiding the amnesia phenomenon, while
the second one only can be used for these applications that can afford losing
uncommitted parts –in this case the amnesia is not completely avoided. Anyway,
it must be pointed out that neither of these two proposals could manage the
problem of combining amnesia with the majority progress condition presented
in this thesis. This is due to the fact that the replay phase –in the uniform
solution– needs that all originally proposed values in the consensus round to be
replayed must be available –condition that is not fulfilled.

The authors of [91] concluded the paper combining their two atomic broadcast
specifications –uniform and non-uniform– for crash-recovery failure model with
consensus with access to stable storage and without access.

13.5 Recovery Optimization Techniques

As one of the criteria when designing recovery protocols is to reduce the amount
of information to transfer in the recovery process –in fact this is the basic reason
for adopting the crash recovery with partial amnesia– in order to obtain more
efficient recovery processes, some papers in the recovery literature have focused
to this end.

In [82] authors proposed a set of recovery protocols –version-based– for transac-
tional replicated systems, that were denoted reconfiguration algorithms. They
started from the simplest one, transferring the entire database, and went on in-
troducing some optimizations for decreasing the information amount to transfer
or reducing the time for the recovery process.

The first optimization, Checking Version Numbers consisted in marking each

156 CHAPTER 13. RELATED WORK

data item with the transaction identifier of the last transaction that modified
it. Later, in the recovery process, the node being recovered notified which
was its last committed transaction –cover transaction–. Then the recovery
process simply had to transfer to the outdated node the data items modified by
transactions whose transaction identifier was higher than the cover transaction
identifier of the recovering node. In this way, the amount of information to
transfer was restricted to the modified information.

The second optimization consisted in maintaining in a single table the informa-
tion about which was the last transaction that modified each data item. The
basic idea was to minimize the time for scanning in the database which data
have been modified by transactions whose identifier is higher than the cover
transaction identifier of the node being recovered. So, in the previous algorithm
the scan was on the entire database, whilst in the second case was in only one
table.

Another optimization was based on using the log that each database maintains
for self recovery purposes, if this log maintains an entire physical after-image of
each modified object. The main advantage of this solution consisted in that it
does not block the process of new incoming transactions. In this case, the recov-
ery algorithm simply scans backwards the log of an updated replica, sending to
the recovering node the values of the data items modified by transactions whose
identifier was higher than the recovering node cover transaction identifier.

Other recovery protocols tried to support both version-based and log-based re-
covery techniques, in order to select each time the most efficient one. This is the
case of [19]. In this paper, the authors proposed to use a log-based technique
for short term failures –few lost changes– and a version-based technique for long
term failures –many lost changes–. The background idea is very interesting and
follows the same principle of those papers as [75, 21] which propose metapro-
tocols for supporting multiple replication protocols selecting each time the one
that best fits the changing replicated system environment.

The main problem of this solution resides on the fact to determine the threshold
used as limit value for selecting one technique or another. Therefore, it is
important to perform an exhaustive and experimental study of this threshold.

Moreover, this strategy can be refined if different recovery protocols are provided
for each technique –version-based and log-based–, therefore the selected recovery
protocol can fit better the performance necessities.

Other strategies try to minimize the set of information to transfer in the recovery
process compacting it. Authors of [58, 103] apply this strategy in version-based
and log-based techniques respectively.

In [58] the recovery information associated to forgotten state is generated and
maintained in a database table, inserting a row for each new installed view –
where there are failed nodes–. The table has three columns: one for the view
identifier, another for the identifiers of the nodes that have lost the changes
performed in this view, and other where the identifiers of the items modified

13.6. RECOVERY IN REPLICATED COMMERCIAL SYSTEMS 157

during this view are stored –this column forbids repeated identifiers, being once
is enough–. Then, when a data item is modified and there are failed nodes, its
identifier is stored in the corresponding view entry in the table. So, it is possible
that the same data identifier appears in different rows of this table, because it
has been modified in different views where there were failed nodes. Later, in the
recovery process –performed view per view– the recoverer node sends for each
view the current value of all data whose identifier is contained in the row view.

Then, the compacting technique in this recovery protocol works as follows. Each
time a new data item identifier is going to be inserted in the row of the current
view a double checking process is performed. First the system checks if the
identifier already exists in the row, if it already exists is discarded, ending the
checking process. But, if this is not the case, the system checks if this identifier
is present in a previous row view. If this is the case, and the set of failed
nodes in this previous view is included in the current set of failed nodes, the
identifier is deleted from the previous view row and inserted in the current
one. Obviously, this compacting technique decreases the information to transfer.
Some simulation results are presented in [58], being noticed that it depends
basically on the rate of data items modified in a repetitive way in different
views.

Authors of [103] applied a compacting technique for a recovery protocol designed
for a certification-based replication protocol. In this case, the recovery protocol
transfer to recovering nodes the transaction writesets they have lost due to
its disconnection. Then, in the original protocol the same data item could be
transferred in many different writesets, but being only necessary to transfer its
last value. Therefore, the authors applied a compacting technique that deletes
from writesets obsolete values. In the experiments performed for this paper they
also found that depending on the workload of the replication system only the
compacted version was able to complete successfully the recovery process.

13.6 Recovery in Replicated Commercial Sys-
tems

Another important related work that must be considered in the thesis is how
commercial systems manage recovery processes, and detect similar problems to
the amnesia phenomenon.

Most extended databases [95, 92, 55, 105, 73] when working in a centralized
way provide either backups or dump strategies for performing recovery pro-
cesses. But, it is also necessary to know the recovery strategies they provide
when working in a replicated way. For instance, MySQL [95] provides different
replication configurations which use a master binary log as source of information
replication. For each slave the master keeps track of the last position in the bi-
nary log that has been replicated, updating it after the slave correct processing.

158 CHAPTER 13. RELATED WORK

If the master crashes it can happen that the master has not flushed the binary
log position for a slave, having then a wrong position for this slave. In this case,
the replication is stopped. In order to avoid this problem, the [95] proposes to
set the master binary log synchronization parameter to the value which implies
the highest rate of binary log flush, decreasing then the probabilities of not hav-
ing flushed the binary log at crash time but without ensuring it at all. Thus,
the system can not ensure that the amnesia phenomenon is correctly managed.
A similar situation arises if a slave crashes or shutdowns uncleanly.

Moreover, it also would be necessary to study how behave enterprise information
systems as [27, 64], or version systems working in a replicated way [26]. The [27]
provides ways for replicating servers, but encourage to do it when there is less
activity on the network. Therefore, this system uses a sort of lazy replication.
When the replication process is scheduled, the replicator constructs a list of
documents –those who must be replicated– in the source database that have
changed since the last successful replication. The time this process is started is
recorded in a replication history so that succeeding replications do not process
changes that have been replicated in previous replication steps. Then the process
starts. If the process succeeds the replication history is updated in the involved
replicas. If it does not, the replication history is not updated, then in the next
replication process will start from the same point time. As it can be seen, the
[27] avoids the amnesia phenomenon problem, but it must be noticed that the
replication it provides is too restricted.

Tivoli clustering [64] is a small example of the multiple clustering solutions
provided by IBM. In [64] authors explain different ways of providing high avail-
ability with Tivoli Software Solutions. They consider two ways of providing high
availability: hot standby and takeover. The first one consists in having an idle
backup that starts to work if the primary fails, while in the takeover solution
all servers are active and if one of them crashes one of the clustered servers
will take the original workload assigned to the crashed node. But, they do not
replicate services therefore if a node crashes the node that assumes the work
of the crashed node it simply restarts from the last consistent state reached
by the failed one. Therefore, in this case inconsistencies due to the amnesia
phenomenon can not arise.

In [83] authors comment the clustered configuration supported by Parallel Sys-
plex, which is a shared cache model. They define the different components that
compound a Parallel Sysplex. Among these components from a recovery point
of view can be pointed out the Sysplex Failure Management and the Automatic
Restart Management. The problem is that the work way provided information
is really generic so it is really difficult to figure out if they can occur state in-
consistency problems due to possible amnesia phenomenon. Anyway, as they
use a shared cache model that is a refined version of shared disks, at the end
they store the information in the same physical disks so different evolutions as
can happen in the system model considered in this thesis can not occur.

Another field that must be considered of commercial systems are clusters of

13.6. RECOVERY IN REPLICATED COMMERCIAL SYSTEMS 159

application servers. Therefore, it would be interesting to know how they manage
recovery processes. Among these application server clusters can be highlighted
JBoss [77], or WebSphere [110].

JBoss [77] supports different ways of clustering. Attending to its manual the
cluster scenario is a set of servers –whose state can be replicated or not– which
work with a single shared database –all servers are client of the same database
server.

If a load balancing policy wants to be used the state of the JBoss server instances
in the cluster will be independent –not replicated–. The problem in this basic
configuration is that if a server crashes all its client sessions are lost. To support
failover the JBoss documentation [77] suggests to use replication of state servers.
In this case if a server crashes, the clients of this server can be redirected to
another server in the cluster which has replicated sessions. This replication
among the servers of a cluster implies some extra communication work which is
performed using the GCS JGroups [78].

But, JBoss manual [77] does not say anything about how the recovery of a
crashed server of a cluster is performed. It simply says that JGroups provides
a MERGE directive which joins the servers of a cluster if they previously got
split –i.e. network partition– once the communications can be reestablished.
Obviously, this merge process will also be triggered when a crashed server re-
connects. However this merge process does not consider state transfer leaving
this state management to the application deployed in the cluster. Anyway, as
all the cluster servers share the same database server no different evolutions
can happen at least at the durable state level. Notice, moreover if the database
instance stops working the overall system also stops.

It must be said, that in the JBoss [77] documentation they do not consider a
similar scenario to the one proposed in this thesis, that would be one where
there is not server state replication and each server in the cluster has its own
copy of the same durable information.

WebSphere [110] documentation also talks about clustering for providing high
availability. In this case they define 6 different levels of Websphere system
availability and differentiate between process and data availability. Upon the
4th level –the ones that provide higher availability– they also replicate the un-
derlying database and other persisting storage devices in the system. Therefore,
it is under these configurations where possible inconsistency problems associ-
ated to the amnesia phenomenon can appear. The problem is that from the
information provided in this manual of high availability it can not be deduced
whether the amnesia problem arises or not, or if in the case of happening it is
correctly managed. This is because this manual presents many different clus-
ter configurations with different software and architecture deployments but does
not precise important details about communications and how recovery processes
are performed.

The Weblogic application server [117] provides both replication in the middle tier

160 CHAPTER 13. RELATED WORK

and replication at the database level. For this last one they define MultiPools
–that can be used either for high availability or load-balancing policies– each
one accessing a different DBMS instance. Obviously, as databases in this last
case are replicated problems of state inconsistency can arise if recovery processes
are not performed accurately. Anyway, from the information provided in the
documentation it can not be figured out if that can happen or not.

Nevertheless, many commercial application servers provide replication –clustering–
of server state as [77] and [98], but rely on shared persisting storage resources.
So, in these configurations different evolutions of persistent state can not occur
due to amnesia phenomena in the recovery process.

An interesting paper related to fault tolerance in middleware servers is [119]. Its
authors comment that two common techniques for providing high availability
in middleware servers are: replication and log-based recovery.

In regard to replication solution they explain that it implies to duplicate the
infrastructure and introduces a relative overhead due to the communications
that must be performed between replicated servers but avoid outages completely.
They propose in this paper a log-based recovery for saving the middleware state
–session and shared variables– when a crash occurs. They argue that it is a
relatively cheap technique. As the servers can work in a collaborative way,
when a server crashes and recovers, later other –non failed– servers of the same
service domain must check if their state is consistent with the state reached
after the recovery in the crashed server. The idea is to provide inter server
consistency avoiding orphan messages. This can imply sometimes a roll back
process in a non crashed server for ensuring the inter server consistency.

Later they perform several experimental results where compare their solution
with other solutions including: persisting sessions in a local DBMS or storing
session states in the main memory of a different computer which are commercial
approaches for session state recovery.

It must be noticed that their proposed solution considers most of the things
told in this thesis, but applied to the recovery of state servers. On one hand,
when they use optimistic logging –between the servers inside a domain service–
sometimes after a recovery process some sessions of non-crashed servers can
become orphans –in other words are inconsistent– in regard to the state reached
in the recovered node. Therefore, these orphan sessions must be rolled back
to avoid such inconsistencies. On the other hand, when they use pessimistic
logging –communications outside the service boundaries– orphans can not be
created because messages are flushed before generating an event that can become
orphan. So, after a recovery process can not appear inconsistencies among
servers in different service domains. It must be precised, that they do not tell
anything about the necessity of persisting messages atomically in the delivery
process when using a pessimistic logging approach.

Authors of [101] present a consistent and scalable cache for J2EE application
servers. They claim that current infrastructure for providing high availability

13.6. RECOVERY IN REPLICATED COMMERCIAL SYSTEMS 161

has been oriented to replicate in many cases only a single tier becoming a bot-
tleneck the non-replicated tier. Therefore, they provide a replicated cache that
considers both middle-tier and back-end tier and which guarantees snapshot
isolation level. To do so, they consider that each replica contains an instance
of the application server and an instance of the database. In the paper they
do not explain anything about how the recovery process in a crashed replica
is performed because it is beyond the scope of their paper. Anyway, it must
be remarked that all comments performed in this thesis related to inconsistency
problems that arise due to amnesia in recovery process must be considered when
designing a recovery solution for this replication solution.

Part IV

Conclusions and Future
Work

163

Chapter 14

Conclusions and Future
Work

14.1 Conclusions

As it has been said at the Introduction in Chapter 1 literature proposals for
replicated systems have been more concerned about providing replication pro-
tocols that combine high consistency restrictions –1-copy-serializable– with high
performance services than ensuring the correctness of their associated recovery
solutions which have been largely seen as a secondary element in their replication
solutions. It can be said, that before focusing in recovery processes researchers
must first obtain good replication solutions.

This is because among all the proposed failure models for distributed systems,
replicated systems adopted at the beginning the fail-stop due to its simplicity.
Later, they started to adopt the crash-recovery with partial amnesia failure
model as a way of providing more efficient recovery processes when talking
about replicated systems with large states.

As it has been demonstrated in this thesis the phenomenon described by [122]
can lead to state inconsistencies after performing recovery processes when the
crash-recovery with partial amnesia failure model is adopted. This thesis has
formalized this problem, and another one that arises when the amnesia combines
with a specific transition from a non-working system to a working one when the
majority partition progress condition is used. Then solutions have been pro-
vided for solving these problems in different replication systems configurations.
Moreover, a new version of the majority progress condition is proposed.

And finally in a review of proposed recovery protocols for transactional repli-
cated systems it has been observed how most of these proposals are unable to
handle this phenomenon accurately at recovery time. And how its great ma-

165

166 CHAPTER 14. CONCLUSIONS AND FUTURE WORK

jority does not avoid the problem when the amnesia combines with the specific
transition from a non-working system to a working one.

14.2 Future Work

Which are the future work and research lines that opens this thesis? First of all,
this thesis will open a revision process of some recovery proposals for replicated
systems –specially in transactional replicated systems– in order to avoid the
commented problems associated to the amnesia phenomenon. Moreover, this
revision will also consider the problem when the amnesia phenomenon com-
bines with the special replicated system transition, seen in Chapter 6, when
the majority progress condition is adopted in order to avoid replicated state
inconsistencies.

Obviously, new proposed recovery proposals for replicated systems which assume
the crash recovery with partial amnesia failure model will must consider the
amnesia phenomenon and ensure that the properties presented in Chapters 5
and 6 of this thesis are fulfilled in order to avoid its associated problems. Or
at least check that the problems associated to this phenomenon can not appear
due to the basic work way provided by the replication protocol.

Another line of work would be to do a performance comparison about all re-
covery techniques that manage accurately the amnesia phenomenon in order
to determine under which circumstances each one presents a better behaviour.
This will help designers to select the more efficient recovery techniques in regard
to different system characteristics.

Moreover, another interesting work will consist in comparing the performance
behaviour provided by different atomic broadcast implementations which ensure
that delivered messages are persisted atomically in this process. This will help
to determine which of these implementations provide the more efficient atomic
broadcast –with persisting– primitive for different communication configurations
and workloads.

In regard to the process replication the future work will consist in designing and
implementing a recovery protocol that on one hand generates all the information
needed for reapplying the messages and on the other hand takes under account
the different work semantics. Later, it will be necessary to perform a comparison
of the obtained results with an approach using the fail stop failure model.

Bibliography

[1] Divyakant Agrawal, Gustavo Alonso, Amr El Abbadi, and Ioana Stanoi.
Exploiting atomic broadcast in replicated databases. LNCS, 1300:496–
503, 1997.

[2] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. A comparative
evaluation of transparent scaling techniques for dynamic content servers.
In ICDE, pages 230–241. IEEE Computer Society, 2005.

[3] José Enrique Armendáriz-Iñigo. Design and Implementation of Database
Replication Protocols in the MADIS Architecture. PhD thesis, Universidad
Pública de Navarra, Pamplona (Spain), February 2006.

[4] José Enrique Armendáriz-Iñigo, Hendrik Decker, Francesc Daniel Muñoz-
Escóı, Luis Irún-Briz, and Rubén de Juan-Maŕın. A middleware architec-
ture for supporting adaptable replication of enterprise application data. In
Trends in Enterprise Application Architecture, VLDB Workshop, TEAA
2005, Trondheim, Norway, August 28, 2005, Revised Selected Papers,
pages 29–43, 2005.

[5] José Enrique Armendáriz-Iñigo, José Ramón Garitagoitia-Padrones, José
Ramón González de Mend́ıvil, and Francesc Daniel Muñoz-Escóı. A ba-
sic replication protocol for the MADIS Middleware architecture. Tech-
nical report, Technical Report ITI-ITE-05/01, Instituto Tecnológico de
Informática, 2005.

[6] José Enrique Armendáriz-Iñigo, Francesc Daniel Muñoz-Escóı, Hen-
drik Decker, José Ramón Juárez-Rodŕıguez, and José Ramón González
de Mend́ıvil. A protocol for reconciling recovery and high-availability in
replicated databases. 21st International Symposium on Computer Infor-
mation Sciences, Springer, 4263:634–644, November 2006.

[7] Mikael Asplund, Simin Nadjm-Tehrani, Stefan Beyer, and Pablo
Galdámez. Measuring Availability in Optimistic Partition-tolerant Sys-
tems with Data Constraints. In International Conference on Dependable
Systems and Networks (DSN), June 2007.

167

168 BIBLIOGRAPHY

[8] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Peleg,
and Rüdiger Reischuk. Achievable cases in an asynchronous environment
(extended abstract). In 28th Annual Symposium on Foundations of Com-
puter Science, Los Angeles, California, USA, pages 337–346, 1987.

[9] Ozalp Babaoǧlu, Alberto Bartoli, and Gianluca Dini. Enriched view syn-
chrony: A programming paradigm for partitionable asynchronous dis-
tributed systems. IEEE Trans. Comput., 46(6):642–658, 1997.

[10] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil. A critique of ANSI SQL isolation levels.
In SIGMOD, pages 1–10, 1995.

[11] Josep Maria Bernabé-Gisbert, José Enrique Armendáriz-Iñigo, Rubén
de Juan-Maŕın, and Francesc D. Muñoz-Escóı. Providing Read Commit-
ted Isolation Level in Non-Blocking ROWA Database Replication Proto-
cols. In XV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD
07), Torremolinos, Spain, pages 159–171, June 2007.

[12] Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison Wesley, Reading,
MA, EE.UU., 1987.

[13] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony
in distributed systems. In 11th ACM Symposium on Operating Systems
Principles, pages 123–138, New York, NY, USA, 1987. ACM Press.

[14] Kenneth P. Birman and Robbert Van Renesse. Reliable Distributed Com-
puting with the ISIS Toolkit. IEEE Computer Society Press, Los Alamitos,
CA, USA, 1993.

[15] Anita Borg, Wolfgang Blau, Wolfgang Graetsch, Ferdinand Herrmann,
and Wolfgang Oberle. Fault tolerance under unix. ACM Trans. Comput.
Syst., 7(1):1–24, 1989.

[16] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg.
Primary-backup protocols: Lower bounds and optimal implementations.
In Proceedings of the Third IFIP Working Conference on Dependable
Computing for Critical Applications, pages 187–198, Mondello, Italy, 1992.

[17] Mike Burrows. The chubby lock service for loosely-coupled distributed
systems. In OSDI ’06: Proceedings of the 7th symposium on Operating
systems design and implementation, pages 335–350, Berkeley, CA, USA,
2006. USENIX Association.

[18] Lásaro Camargos, Fernando Pedone, and Marcin Wieloch. Sprint: a mid-
dleware for high-performance transaction processing. SIGOPS Oper. Syst.
Rev., 41(3):385–398, 2007.

BIBLIOGRAPHY 169

[19] Francisco Castro, Javier Esparza, Maŕıa Idoia Ruiz, Luis Irún, Hendrik
Decker, and Francesc Daniel Muñoz. CLOB: Communication Support for
Efficient Replicated Database Recovery. In 13th Euromicro PDP, pages
314–321, Lugano, Sw, 2005. IEEE Computer Society.

[20] Francisco Castro, Luis Irún, Félix Garćıa, and Francesc Daniel Muñoz.
FOBr: A version-based recovery protocol for replicated databases. In
13th Euromicro PDP, pages 306–313, Lugano, Sw, 2005. IEEE Computer
Society.

[21] Francisco Castro-Company and Francesc Daniel Muñoz-Escóı. An ex-
changing algorithm for database replication protocols. Technical report,
Technical Report ITI-ITE-07/02, Instituto Tecnológico de Informática,
Valencia, Spain, 2007.

[22] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The Weak-
est Failure Detector for Solving Consensus. J. ACM, 43(4):685–722, 1996.

[23] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[24] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group commu-
nication specifications: A comprehensive study. ACM Computing Surveys,
33(4):427–469, December 2001.

[25] Edgard F. Codd. Derivability, redundancy and consistency of relations
stored in large data banks. IBM Research Report, San Jose, California,
RJ599, 1969.

[26] Ben Collin-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Ver-
sion control with subversion, 2007. Accessible in URL:http://svnbook.red-
bean.com/.

[27] IBM Corporation. Lotus Domino Administrator
6.5.1 Help, 2003. Accessible in URL: http://www-
12.lotus.com/ldd/doc/domino notes/6.5.1/help65 admin.nsf/Main.

[28] Flaviu Cristian. Reaching agreement on processor-group membership in
synchronous distributed systems. Distributed Computing, 4:175–187, 1991.

[29] Flaviu Cristian. Understanding fault-tolerant distributed systems. Com-
munications of the ACM, 34(2):56–78, February 1991.

[30] Khuzaima Daudjee and Kenneth Salem. Lazy Database Replication with
Snapshot Isolation. In 32nd International Conference on Very Large Data
Bases, ACM, Seoul, Korea, September 12-15, pages 715–726, 2006.

[31] Ruben de Juan-Maŕın. Linear-CLOB Recovery Protocol. Technical report,
ITI-ITE-06/02, Instituto Tecnológico de Informática, Valencia, july 2006.

170 BIBLIOGRAPHY

[32] Rubén de Juan-Maŕın. (n/2+1) Alive Nodes Progress Condition. In Sixth
European Dependable Computing Conference, EDCC-6, Student Forum,
pages 3–8, 2006.

[33] Rubén de Juan-Maŕın, Luis Irún Briz, and Francesc D. Muñoz-Escóı.
Ensuring Progress in Amnesiac Replicated Systems. In 3rd Interna-
tional Conference on Availability, Reliability and Security, March 2008,
Barcelona, Spain, March 2008.

[34] Rubén de Juan-Maŕın, Hendrik Decker, and Francesc D. Muñoz-Escóı.
Revisiting hot passive replication. In 2nd International Conference on
Availability, Reliability and Security. IEEE, 2007.

[35] Rubén de Juan-Maŕın, Luis Héctor Garćıa-Muñoz, Jose Enrique
Armnedáriz-́Iñigo, and Francesc D. Muñoz-Escóı. Reviewing Amnesia
Support in Database Recovery Protocols. In 9th International Sympo-
sium on Distributed Objects, Middleware and Applications, Vilamoura,
Portugal, pages 717–734. Springer, November 2007. Accepted for publi-
cation.

[36] Rubén de Juan-Maŕın, Luis Irún-Briz, and Francesc D. Muñoz-Escóı. Re-
covery strategies for linear replication. In 4th International Symposium
on Parallel and Distributed Processing and Applications, Sorrento, Italy,
Lecture Notes in Computer Science, vol. 4330, pages 710–723, 2006.

[37] Rubén de Juan-Maŕın, Luis Irún-Briz, and Francesc D. Muñoz-Escóı. Pro-
cess Replication with Log-Based Amnesia Support. In 6th International
Symposium on Parallel and Distributed Computing (ISPDC 2007), Ha-
genberg, Austria, pages 367–374, July 2007.

[38] Rubén de Juan-Maŕın, Luis Irún-Briz, and Francesc D. Muñoz-Escóı.
Supporting amnesia in log-based recovery protocols. In Euro-American
Conference On Telematics and Information Systems (EATIS 2007), Faro,
Portugal, 2007.

[39] Rubén de Juan-Maŕın, Luis Irún-Briz, and Francesc D. Muñoz-Escóı. A
cost analysis of solving the amnesia problems. Technical report, Technical
Report ITI-ITE-08/08, Instituto Tecnológico de Informática, April 2008.

[40] Rubén de Juan-Maŕın, Luis Irún-Briz, and Francesc Daniel Muñoz-Escóı.
Numbing transactions to avoid stopping the system activity. In Sixth
European Dependable Computing Conference, EDCC-6, October 2006.

[41] Rubén de Juan-Maŕın, Maŕıa Idoia Ruiz-Fuertes, Jerónimo Pla-Civera,
Luis Héctor Garćıa-Muñoz, and Francesc D. Muñoz-Escóı. On Optimiz-
ing Certification-Based Database Recovery Supporting Amnesia. In XV
Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 07), Torremoli-
nos, Spain, pages 145–157, June 2007.

BIBLIOGRAPHY 171

[42] Hendrik Decker, Luis Irún-Briz, Francisco Castro-Company, Félix Garćıa-
Neiva, and Francesc D. Muñoz-Escóı. Extending wide-area replica-
tion support with mobility and improved recovery. In Advanced Dis-
tributed Systems: 5th International School and Symposium, ISSADS 2005,
Guadalajara, Mexico, January 24-28, 2005, Revised Selected Papers, pages
10–20, 2005.

[43] Hendrik Decker, Luis Irún-Briz, Rubén de Juan-Maŕın, José Enrique Ar-
mendáriz-Iñigo, and Francesc D. Muñoz-Escóı. Wide-area replication sup-
port for global data repositories. In 16th International Workshop on
Database and Expert Systems Applications (DEXA 2005), 22-26 August
2005, Copenhagen, Denmark, pages 1117–1121, 2005.

[44] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM Comput. Surv.,
36(4):372–421, 2004.

[45] Danny Dolev, Cynthia Dwork, and Larry J. Stockmeyer. On the minimal
synchronism needed for distributed consensus. J. ACM, 34(1):77–97, 1987.

[46] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching approximate agreement in the presence of
faults. J. ACM, 33(3):499–516, 1986.

[47] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[48] COmputing Research Education. Final 2007 australian
ranking of ict conferences, 2007. Accessible in URL:
http://www.core.edu.au/rankings/Conference%20Ranking%20Main.html.

[49] Sameh Elnikety, Steven Dropsho, and Willy Zwaenepoel. Tashkent+:
Memory-aware load balancing and update filtering in replicated databases.
In Proc. EuroSys 2007, pages 399–412, March 2007.

[50] Sameh Elnikety, Fernando Pedone, and Willy Zwaenepoel. Database repli-
cation using generalized snapshot isolation. In 24th IEEE Symposium on
Reliable Distributed Systems, pages 73–84, Orlando, FL, USA, October
2005.

[51] Elmootazbellah N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. A survey of rollback-recovery protocols in message-passing sys-
tems. ACM Comput. Surv., 34(3):375–408, 2002.

[52] Elmootazbellah N. Elnozahy and Willy Zwaenepoel. On the use and im-
plementation of message logging. In FTCS, pages 298–307, 1994.

[53] Michael J. Fischer. The consensus problem in unreliable distributed sys-
tems (a brief survey). In Proceedings of the 1983 International FCT-
Conference on Fundamentals of Computation Theory, pages 127–140, Lon-
don, UK, 1983. Springer-Verlag.

172 BIBLIOGRAPHY

[54] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985.

[55] Steve Fogel and Paul Lane. Oracle database administrator’s
guide, 10g release 2 (10.2) b14231-02, 2006. Accessible in URL:
http://www.oracle.com/pls/db102/db102.homepage.

[56] Fusionio. iodrive, 2007. Accessible in URL: http://www.fusionio.com.

[57] Luis H. Garćıa-Muñoz, José Enrique Armendáriz-Iñigo, Hendrik Decker,
and Francesc D. Muñoz-Escóı. Recovery protocols for replicated databases
- a survey. In Workshop FINA-07, in the AINA-07 Conference, pages 220–
227. IEEE-CS Press, 2007.

[58] Luis H. Garćıa-Muñoz, Rubén de Juan-Maŕın, José Enrique Armendáriz,
and Francesc Daniel Muñoz-Escóı. Improving Recovery in Weak-Voting
Data Replication. In 7th International Symposium on Advanced Parallel
Processing Technologies, Guangzhou, China, pages 131–140, November
2007.

[59] David K. Gifford. Weighted voting for replicated data. In SOSP ’79: Pro-
ceedings of the seventh ACM symposium on Operating systems principles,
pages 150–162, New York, NY, USA, 1979. ACM.

[60] Google. Google scholar, 2008. Accessible in URL:
http://scholar.google.com/.

[61] Jim Gray. Notes on data base operating systems. In Operating Systems,
An Advanced Course, pages 393–481, London, UK, 1978. Springer-Verlag.

[62] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers
of replication and a solution. In SIGMOD ’96: Proceedings of the 1996
ACM SIGMOD international conference on Management of data, pages
173–182, New York, NY, USA, 1996. ACM Press.

[63] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1992.

[64] Vasfi Gucer, Satoko Egawa, David Oswald, Geoff Pusey, John Webb,
and Anthony Yen. High Availability Scenarios with IBM Tivoli Work-
load Scheduler and IBM Tivoli Framework, 2004. Accessible in URL:
http://www.redbooks.ibm.com/abstracts/sg246632.html.

[65] Rachid Guerraoui, Michel Hurfin, Achour Mostéfaoui, Rui Carlos Oliveira,
Michel Raynal, and André Schiper. Consensus in Asynchronous Dis-
tributed Systems: A Concise Guided tour. In Advances in Distributed
Systems, Advanced Distributed Computing: From Algorithms to Systems,
pages 33–47, London, UK, 1999. Springer-Verlag.

BIBLIOGRAPHY 173

[66] Rachid Guerraoui, Rui Oliveira, and André Schiper. Atomic updates of
replicated data. In EDCC-2: Proceedings of the Second European Depend-
able Computing Conference on Dependable Computing, pages 365–382,
London, UK, 1996. Springer-Verlag.

[67] Rachid Guerraoui and André Schiper. Software-based replication for fault
tolerance. IEEE Computer, 30(4):68–74, 1997.

[68] Vassos Hadzilacos. Issues of fault tolerance in concurrent computations
(databases, reliability, transactions, agreement protocols, distributed com-
puting). PhD thesis, 1985.

[69] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related
problems. In S. Mullender, editor, Distributed Systems, chapter 5, pages
97–145. ACM Press, 2nd edition, 1993. ISBN 0-201-62427-3.

[70] JoAnne Holliday. Replicated database recovery using multicast commu-
nication. In NCA, pages 104–107. IEEE-CS Press, 2001.

[71] Yennun Huang and Chandra M. R. Kintala. Software implemented fault
tolerance technologies and experience. In FTCS, pages 2–9, 1993.

[72] Yongqiang Huang and Hector Garcia-Molina. Exactly-once semantics in
a replicated messaging system. In ICDE, pages 3–12. IEEE Computer
Society, 2001.

[73] Informix Corporation. Informix red brick decision server administrator’s
guide, version 6.0, 1999.

[74] Luis Irún, Francisco Castro, Félix Garćıa, Antonio Calero, and Fran-
cisco Daniel Muñoz. Lazy recovery in a hybrid database replication pro-
tocol. In XII Jornadas de Concurrencia y Sistemas Distribuidos, pages
295–307, 2004.

[75] Luis Irún, Hendrik Decker, Rubén de Juan, Francisco Castro, José Enrique
Armendáriz, and Francesc D. Muñoz. MADIS: a slim middleware for
database replication. In 11th Intnl. Euro-Par Conf., pages 349–359, Monte
de Caparica (Lisbon), Portugal, September 2005.

[76] Luis Irún-Briz. Implementable Models for Replicated and Fault-Tolerant
Geographically Distributed DataBases. Consistency Management for Glob-
Data. PhD thesis, Polytechnic University of Valencia, 2003.

[77] JBoss. Jboss clustering. Accessible in URL:
http://docs.jboss.org/jbossas/jboss4guide/r4/html/cluster.chapt.html,
2007.

[78] JGroups. Reliable multicasting with the
jgroups toolkit. Accessible in URL:
http://www.jgroups.org/javagroupsnew/docs/manual/html/index.html,
2007.

174 BIBLIOGRAPHY

[79] Ricardo Jiménez, Marta Patiño, and Gustavo Alonso. An algorithm for
non-intrusive, parallel recovery of replicated data and its correctness. In
SRDS, pages 150–159. IEEE-CS Press, 2002.

[80] Bettina Kemme. Database Replication for Clusters of Workstations. PhD
thesis, Swiss Federal Institute of Technology Zürich, Switzerland, August
2000. No. 13864.

[81] Bettina Kemme and Gustavo Alonso. A new approach to developing and
implementing eager database replication protocols. ACM Trans. Database
Syst., 25(3):333–379, 2000.

[82] Bettina Kemme, Alberto Bartoli, and Özalp Babaoǧlu. Online reconfig-
uration in replicated databases based on group communication. In DSN,
pages 117–130. IEEE C.S., 2001.

[83] Frank Kyne, Alan Murphy, and Kristoffer Stav. Clustering solutions
overview: Parallel sysplex and other platforms, 2007. Accessible in URL:
http://whitepapers.silicon.com/0,39024759,60301022p,00.htm.

[84] Leslie Lamport. The part-time parliament. ACM Transanctions on Com-
puter Systems, 16(2):133–169, 1998.

[85] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[86] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. On the implementa-
tion of unreliable failure detectors in partially synchronous systems. IEEE
Trans. Computers, 53(7):815–828, 2004.

[87] Edmond Lau and Samuel Madden. An integrated approach to recovery
and high availability in an updatable, distributed data warehouse. In
VLDB, pages 703–714, 2006.

[88] Yi Lin, Bettina Kemme, Marta Patiño-Mart́ınez, and Ricardo Jiménez-
Peris. Middleware based data replication providing snapshot isolation. In
Fatma Ozcan, editor, SIGMOD, pages 419–430. ACM, 2005.

[89] David B. Lomet. Process structuring, synchronization, and recovery using
atomic actions. In Language Design for Reliable Software, pages 128–137,
1977.

[90] Sam Tueg Marcos Kawazoe Aguilera, Wei Chen. Failure detection and
consensus in the crash recovery model. In DISC, pages 231–245, 1998.

[91] Sergio Mena and André Schiper. A new look at atomic broadcast in the
asynchronous crash-recovery model. In SRDS, pages 202–214. IEEE-CS
Press, 2005.

[92] Microsoft Corporation. Sql server programming reference, 2005. Accessi-
ble in URL: http://msdn2.microsoft.com/en-us/library/ms203801.aspx.

BIBLIOGRAPHY 175

[93] Francesc D. Muñoz-Escóı, Rubén de Juan-Maŕın, José Enrique Ar-
mendáriz-Iñigo, and José Ramón González de Mend́ıvil. Persistent Logical
Synchrony. In 7th International Symposium on Network Computing and
Applications, July 2008, Cambridge, MA, USA, January 2008.

[94] Francesc D. Muñoz-Escóı, Jerónimo Pla-Civera, Maŕıa Idoia Ruiz-Fuertes,
Luis Irún-Briz, Hendrik Decker, José Enrique Armendáriz-Iñigo, and
José Ramón González de Mend́ıvil. Managing transaction conflicts in
middleware-based database replication architectures. In SRDS, pages 401–
410. IEEE-CS Press, October 2006.

[95] MySQL AB. Mysql 5.1 reference manual, 2006. Accessible in URL:
http://dev.mysql.com/doc/.

[96] Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Strongly
consistent replication and recovery of fault-tolerant CORBA applications.
Comput. Syst. Sci. Eng., 17(2):103–114, 2002.

[97] Victor P. Nelson. Fault-tolerant computing: Fundamental concepts. IEEE
Computer, 23(7):19–25, 1990.

[98] Oracle. Oracle9ias containers for j2ee. ejbs developers guide, rel. 2 (9.0.4),
2003.

[99] Marta Patiño-Mart́ınez, Ricardo Jiménez-Peris, Bettina Kemme, and
Gustavo Alonso. Middle-r: Consistent database replication at the middle-
ware level. ACM Trans. Comput. Syst., 23(4):375–423, 2005.

[100] Fernando Pedone, Rachid Guerraoui, and André Schiper. Exploiting
atomic broadcast in replicated databases. In Euro-Par ’98: Proceedings of
the 4th International Euro-Par Conference on Parallel Processing, pages
513–520, London, UK, 1998. Springer-Verlag.

[101] Francisco Pérez-Sorrosal, Marta Patiño-Mart́ınez, Ricardo Jiménez-Peris,
and Bettina Kemme. Consistent and scalable cache replication for multi-
tier j2ee applications. In Middleware 2007, ACM/IFIP/USENIX 8th In-
ternational Middleware Conference, Newport Beach, CA, USA, November
26-30, 2007, Proceedings, pages 328–347, 2007.

[102] Kenneth J. Perry and Sam Toueg. Distributed agreement in the pres-
ence of processor and communication faults. IEEE Trans. Softw. Eng.,
12(3):477–482, 1986.

[103] Jerónimo Pla-Civera, Maŕıa Idoia Ruiz-Fuertes, Luis Héctor Garćıa-
Muñoz, and Francesc D. Muñoz-Escóı. Optimizing Certification-Based
Database Recovery. In 6th International Symposium on Parallel and Dis-
tributed Computing (ISPDC 2007), Hagenberg, Austria, July 2007.

176 BIBLIOGRAPHY

[104] Christian Plattner and Gustavo Alonso. Ganymed: Scalable replication
for transactional web applications. In Hans-Arno Jacobsen, editor, Mid-
dleware, volume 3231 of Lecture Notes in Computer Science, pages 155–
174. Springer, 2004.

[105] PostgreSQL Global Development Group. Postgresql 8.1.4 documentation,
2007. Accessible in URL: http://www.postgresql.org/docs/manuals/.

[106] David Powell. Failure mode assumptions and assumption coverage. In
FTCS, pages 386–395, 1992.

[107] Computer Science Conference Ranking. Conference rank-
ings, 2008. Accessible in URL: http://www.cs-conference-
ranking.org/conferencerankings/alltopics.html.

[108] Aleta M. Ricciardi and Kenneth P. Birman. Using process groups to im-
plement failure detection in asynchronous environments. In PODC ’91:
Proceedings of the tenth annual ACM symposium on Principles of dis-
tributed computing, pages 341–353, New York, NY, USA, 1991. ACM.

[109] Lúıs Rodrigues and Michel Raynal. Atomic broadcast in asynchronous
crash-recovery distributed systems and its use in quorum-based replica-
tion. IEEE Trans. Knowl. Data Eng., 15(5):1206–1217, 2003.

[110] Birgit Roehm, Balazs Csepregi-Horvath, Pingze Gao, Thomas Hikade,
Miroslav Holecy, Tom Hyland, Namie Satoh, Rohit Rana, and Hao
Wang. Ibm websphere v5.1 performance, scalability, and high
availability websphere handbook series, 2004. Accessible in URL:
www.redbooks.ibm.com/abstracts/sg246198.html.

[111] Maŕıa I. Ruiz-Fuertes, Rubén de Juan-Maŕın, Jerónimo Pla-Civera, Fran-
cisco Castro-Company, and Francesc D. Mu noz Escóı. A Metaproto-
col Outline for Database Replication Adaptability. In 2nd International
Workshop on Reliability in Decentralized Distributed Systems, Vilamoura,
Algarve, Portugal, pages 1052–1061. Springer LNCS, November 2007.

[112] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end ar-
guments in system design. ACM Transactions on Computer Systems,
2(4):277–288, November 1984.

[113] André Schiper. Dynamic group communication. Distributed Computing,
18(5):359–374, 2006.

[114] Fred B. Schneider. Byzantine generals in action: implementing fail-stop
processors. ACM Trans. Comput. Syst., 2(2):145–154, 1984.

[115] Fred B. Schneider. What good are models and what models are
good? In S. Mullender, editor, Distributed systems, pages 17–26. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 2nd edition,
1993. ISBN 0-201-62427-3.

BIBLIOGRAPHY 177

[116] Dale Skeen. Nonblocking commit protocols. In SIGMOD ’81: Proceedings
of the 1981 ACM SIGMOD international conference on Management of
data, pages 133–142, New York, NY, USA, 1981. ACM.

[117] BEA Systems. Bea weblogic server and weblogic ex-
press 8.1 documentation, 2006. Accessible in URL:
http://edocs.beasys.com/wls/docs81/index.html.

[118] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden.
Tolerating byzantine faults in transaction processing systems using com-
mit barrier scheduling. In SOSP ’07: Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, pages 59–72, New
York, NY, USA, 2007. ACM.

[119] Rui Wang, Betty Salzberg, and David Lomet. Log-based recovery for
middleware servers. In SIGMOD ’07: Proceedings of the 2007 ACM SIG-
MOD international conference on Management of data, pages 425–436,
New York, NY, USA, 2007. ACM.

[120] Andy J. Wellings and Alan Burns. Programming replicated systems in
ada 95. The Computer Journal, 39(5), pages 361–373, 1996.

[121] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme,
and Gustavo Alonso. Understanding replication in databases and dis-
tributed systems. In ICDCS ’00: Proceedings of the The 20th International
Conference on Distributed Computing Systems (ICDCS 2000), page 464,
Washington, DC, USA, 2000. IEEE Computer Society.

[122] Matthias Wiesmann and André Schiper. Beyond 1-Safety and 2-Safety
for replicated databases: Group-Safety. In 9th International Conference
on Extending Database Technology, pages 165–182, 2004.

[123] Matthias Wiesmann and André Schiper. Comparison of database repli-
cation techniques based on total order broadcast. IEEE Trans. Knowl.
Data Eng., 17(4):551–566, 2005.

[124] Matthias Wiesmann, André Schiper, Fernando Pedone, Bettina Kemme,
and Gustavo Alonso. Database replication techniques: A three parameter
classification. In SRDS, pages 206–215, 2000.

Part V

Annex

179

Appendix A

Thesis Publications

This appendix lists the papers published in the context of this thesis.

181

182 APPENDIX A. THESIS PUBLICATIONS

A.1 Publications List

The table A.1 shows the publication list. The information provided by the table
columns for each paper is the following one:

RefNum The reference number of the publication in the thesis bibliography.

JourName Journal name where the paper has been published.

ConfName Conference name where the paper has been accepted. As some
conferences publish their accepted papers in journals, filling this one does
not exclude in some cases filling the previous one.

CORE Conference class in the COmputing Research Education [48] classifica-
tion of 2007.

EIC EIC index conference value (source CSCR [107]). The value goes from 0.5
to 1 being 1 the highest possible value.

Cit Paper citations (source Google Scholar [60]).

RefNum JourName ConfName CORE EIC Cit

[4] LNCS TEAA 2005 – – 3

[11] – JCSD 2007 – – 1

[31] – – – – 0

[32] – EDCC 2006 – – 0

[33] – ARES 2008 B – 0

[34] – ARES 2007 B – 1

[35] LNCS OTM 2007 A 0.6 1

[36] LNCS ISPA 2006 – 0.55 11

[37] – ISPDC 2007 – – 0

[38] – EATIS 2007 – – 7

[39] – – – – –

[40] – EDCC 2006 – – 0

[41] – JCSD 2007 – – 1

[43] – DEXA Workshops 2005 – – 0

[58] LNCS APPT 2007 – – 1

[75] LNCS Europar 2005 A 0.68 33

[93] – NCA 2008 C – 0

[111] LNCS OTM 2007 A 0.6 0

Table A.1: Publication List.

Index

Advisory locks, 29, 154
Amnesia

Example, 39
Non-Transactional

formalization, 45
overhead support, 130

Phenomenon, 38
Recovery

information, 49
strategies, 49

Transactional
formalization, 44
overhead support, 90

Amnesia Support
Non-Transactional, 123
Transactional

constan-interaction, 81
linear-interaction, 113

Atomic Broadcast
consensus, 153
fixed sequencer, 90

Changes
Non-permanent, 127
Permanent, 127

Distributed System, 7

End-to-end argument, 135
Enriched view synchrony, 68
Error, 23
Exactly-onde semantics, 127

Failure, 23
detectors, 28

unreliable, 29
models, 24

crash-recovery with partial am-
nesia, 9

fail-stop, 9
Fault, 23
Fault Tolerance, 7
Flash Memory, 140

Group Communication System, 8

Hard Disk Drive, 140
High Availability, 7

Load-balancing algorithms, 7

membership mechanisms, 8

Node, 21
crash, 27
States, 21

Progress Condition, 23
Majority Partition, 23, 62, 76

Real time, 127
Recovery

basic schema, 48
compacting, 156
information, 23
protocol, 23
technique

Log-Based, 23, 29, 49
Version-Based, 23, 30, 51

Replicated System, 21
Non-Transactional, 23
Transactional, 22

Replication
Active, 86
Eager, 87

183

184 INDEX

Lazy, 87
Passive, 86
Protocol, 22
Update Everywhere, 86

State
External, 127
Forgotten, 45, 47, 49
In-memory, 127
Missed, 49

Successful delivery, 56, 153
System Model, 31

Non-Transactional, 33
Transactional, 32

Transaction, 22
Distributed, 22
Distributed Commit, 22
Interaction

Constant, 22, 89
Linear, 22, 89

On-going, 22, 115

View transitions, 62
Virtual Synchrony, 31, 46

