
Supporting Multiple Isolation Levels in
Replicated Environments

Departamento de Sistemas Informáticos y Computación

Tesis Doctoral

Presentada por:
José Maŕıa Bernabé Gisbert

Dirigida por:
Dr. Francisco Daniel Muñoz Escóı

Junio de 2013

Contents

Abstract 1

Resumen 3

Resum 5

Aknowledgements 7

Preface 9

I Introduction 11

1 Introduction 13

1.1 Database replication . 14

1.2 Replication transparency . 17

1.3 Benefits of supporting multiple isolation levels 17

1.4 Objectives . 18

1.5 Contributions . 19

1.6 Roadmap . 19

2 Related work 21

II Theoretical conditions 25

3 Background 27

3.1 General model . 27

3.2 Communication model . 28

3.3 Databases and transactions . 28

3.4 Execution of transactions . 29

3.5 Logical time . 31

3.6 Graphs Theory . 33

i

ii CONTENTS

4 Stand-alone systems 35
4.1 Concurrency control mechanisms 35
4.2 Isolation levels . 36
4.3 Snapshot Isolation . 38

5 Alternative definition of Snapshot Isolation 41
5.1 PL-SI’: an alternative definition of PL-SI 42
5.2 PL-SI’ and PL-SI equivalence . 42
5.3 PL-SI’ and SI equivalence . 49
5.4 About the time-precedes order in Snapshot Isolation 52

6 Extended mixed serialisation graph (EMSG) 53
6.1 Strict histories . 56

7 Extending EMSG to replicated environments 59
7.1 Extending EMSG to replicated systems 59
7.2 Equivalence between replicated and stand-alone histories 61
7.3 Replication protocol correctness 62

III Replication protocols 63

8 Replicated isolation support 65
8.1 Protocols classification . 65
8.2 Conflict Resolution . 67

9 Examples 83
9.1 SER-CBR . 83
9.2 Blocking SER-D . 87
9.3 Non-blocking SER-D . 89
9.4 Conclusions . 95

IV Conclusion 97

10 Conclusions 99

V Appendices 101

A Appendices 103
A.1 Chapter 5 lemmas . 103
A.2 Snapshot correctness in valid histories 104
A.3 Snapshot correctness in valid replicated histories 113
A.4 Global order of conflicting operations 114
A.5 Correctness proof of Theorem 2 115

Bibliography 117

List of Figures

4.1 DSG of H1 . 37

5.1 Write Skew example DSG . 50
5.2 Read-only transaction anomaly example DSG 50
5.3 Lost Update example DSG . 51
5.4 Read Skew example DSG . 51

6.1 Example graph . 53

7.1 Example: Na and Nb EMSGs . 59
7.2 Example: global execution . 60

9.1 SER CBR certification-based protocol. 84
9.2 MUL certification-based protocol. 85
9.3 Blocking SER-D weak-voting based protocol. 88
9.4 Blocking MUL-D weak-voting based protocols. 90
9.5 Non-blocking SER-D weak-voting protocol. 91
9.6 Non-blocking MUL-D weak-voting protocol. 93

iii

Abstract

Replication is used by databases to implement reliability and provide scalabil-
ity. However, achieving transparent replication is not an easy task. A repli-
cated database is transparent if it can seamlessly replace a standard stand-
alone database without requiring any changes to the components of the system.
Database replication transparency can be achieved if: (a) replication protocols
remain hidden for all other components of the system; and (b) the functionality
of a stand-alone database is provided.

The ability to simultaneously execute transactions under different isolation lev-
els is a functionality offered by all stand-alone databases but not by their repli-
cated counterparts. Allowing different isolation levels may improve overall sys-
tem performance. For example, the TPC-C benchmark specification tolerates
execution of some transactions at weaker isolation levels in order to increase
throughput of committed transactions. In this thesis, we show how replication
protocols can be extended to enable transactions to be executed under different
isolation levels.

1

Resumen

La replicación de bases de datos aporta fiabilidad y escalabilidad aunque hacerlo
de forma transparente no es una tarea sencilla. Una base de datos replicada es
transparente si puede reemplazar a una base de datos centralizada tradicional sin
que sea necesario adaptar el resto de componentes del sistema. La transparencia
en bases de datos replicadas puede obtenerse siempre que (a) la gestión de la
replicación quede totalmente oculta a dichos componentes y (b) se ofrezca la
misma funcionalidad que en una base de datos tradicional.

Para mejorar el rendimiento general del sistema, los gestores de bases de datos
centralizadas actuales permiten ejecutar de forma concurrente transacciones
bajo distintos niveles de aislamiento. Por ejemplo, la especificación del bench-
mark TPC-C permite la ejecución de algunas transacciones con niveles de ais-
lamiento débiles. No obstante, este soporte todav́ıa no está disponible en los
protocolos de replicación. En esta tesis mostramos cómo estos protocolos pueden
ser extendidos para permitir la ejecución de transacciones con distintos niveles
de aislamiento.

3

Resum

La replicació de bases de dades aporta fiabilitat i escalabilitat tot i que fer-ho
de forma transparent no és senzill. Una base de dades replicada és transpar-
ent en la mesura en la que es puga substituir per una base de dades central-
itzada tradicional sense requerir adaptar la resta de components del sistema.
La transparència en bases de dades replicades es pot obtindre si (a) la gestió de
la replicació queda totalment oculta a la resta de components i (b) s’ofereix la
mateixa funcionalitat que en una base de dades tradicional.

Per a millorar el rendiment general del sistema, els gestors de bases de dades cen-
tralitzades existents permeten executar de forma concurrent transaccions baix
distints nivells d’äıllament. Per exemple, l’especificació del benchmark TPC-C
permet l’execució d’algunes transaccions amb nivells d’äıllament dèbils. No ob-
stant això, aquest suport encara no està disponible en els protocols de replicació
actuals. En aquesta tesi mostrem com aquests protocols poden ser ampliats per
a permetre l’execució de transaccions amb distints nivells d’äıllament.

5

Aknowledgements

Usually, a complex and large project, such as a thesis is the result of the work
of more than one person and this is not an exception. In my case, I have been
lucky to receive very valuable help, advice and support from many people I love
and admire. Their help and support improved the result in one way or another
and even in some cases have been fundamental to get the work done.

Chronologically, this thesis would never have started without Pepe Corell’s and
Luis Irún-Briz’s help and encouragement. Pepe was my second father during
probably the worst period of my life until now (I hope). Thanks to him I started
working in my current company, the Instituto Tecnológico de Informática (ITI),
thirteen years ago where I have written this thesis. Lúıs, my fellow friend
and former workmate here, encouraged me to start researching in general, and
to aim for a PhD in particular. From the technical point of view, this work
would never be as it is without the reviews, ideas, wise advices, tireless help an
unbreakable faith of my thesis supervisor, Francesc Muñoz Escóı. Finally, some
of the main ideas in this thesis have been also reviewed and/or discussed with
Vaidė Narváez, my fellow friend and former workmate, who also made some
valuable advises. All of them are remarkable people either from professional
and personal point of views and I really feel in debt with them.

I would also like to thank professor Fernando Pedone for letting me stay for
few months at the distributed systems group at the Università della Svizzera
Italiana (USI). That stay was an invaluable experience for me and I learned a lot
from Fernando, Vaidė and the rest of the fellow mates there. I would also like
to thank my workmates and friends here at ITI and all the other researchers
I met and had with whom I have had discussions at several conferences and
via journals. Special greetings go to Idoia Ruiz, Enrique Armendáriz and the
people from the JCSD for the countless discussions on isolation and database
replication.

Last but not least, this would never been possible without the help of my family
and friends, specially without my mother, father and sister and my dear friend
Diana Pallás.

7

Preface

This thesis is the result of several years of work (from 2006 to 2013) under the
supervision of Francesc D. Muñoz Escóı in the Distributed Systems department
at the Instituto Tecnológico de Informática. During this time I have participated
in the research projects MADIS1, CONDEP2 and IDEA3. Some intermediate
results included in this thesis have been previously published in the following
papers:

J. M. Bernabé-Gisbert, R. Salinas-Monteagudo, L. Irún-Briz, and F. D. Muñoz-
Escóı. Managing multiple isolation levels in middleware database repli-
cation protocols. In 6th International Symposium on Parallel and Dis-
tributed Processing with Applications (ISPA), December 2006, volume
4330 of Lecture Notes in Computer Science, pages 511-523 Sorrento (Naples),
Italy. Springer. CORE B. Position 538/581 in CiteSeer Venue Impact
Factor 2008. Indexed in ISI Proceedings (7 cites according to ISI Web of
Knowledge. 24 cites according to Google Scholar).

J. M. Bernabé-Gisbert, J. E. Armendáriz-́Iñigo, R. de Juan-Maŕın, F. D.
Muñoz-Escóı. Providing Read Committed Isolation Level in Non-Blocking
ROWA Database Replication Protocols. XV Jornadas de Concurrencia y
Sistemas Distribuidos (JCSD), June 2007, pages 159-171 Torremolinos
(Málaga), Spain. (9 cites according to Google Scholar).

J. M. Bernabé-Gisbert. Providing support for data replication protocols with
multiple isolation levels. In On the Move to Meaningful Internet Sys-
tems (OTM) Workshops, November 2007, volume 4805 of Lecture Notes in
Computer Science, pages 265-274, Vilamoura, Algarve, Portugal. Springer.
ISSN 0302-9743. Position 396/581 in CiteSeer Venue Impact Factor 2008.
Indexed in ISI Proceedings (2 cites according to Google Scholar).

J. M. Bernabé-Gisbert, F. D. Muñoz-Escóı. Extending Mixed Serialisation
Graphs to Replicated Environment. 3rd International Conference on Avail-
ability, Reliability and Security (ARES), pages 369-375. March 2008,

1Funded by the EU FEDER and the Spanish MCYT, under grant TIC2003-09420-C02.
2Funded by the EU FEDER and the Spanish MEC, under grant TIN2006-14738-C02.
3Funded by the EU FEDER and the Spanish MICINN, under grant TIN2010-17193

9

10 PREFACE

Barcelona, Spain. IEEE-CS Press. CORE B. Position 476/581 in CiteSeer
Venue Impact Factor 2008. Indexed in ISI Proceedings (1 cite according
to ISI Web of Knowledge. 3 cites according to Google Scholar).

J. M. Bernabé-Gisbert, F. D. Muñoz-Escóı. Supporting multiple isolation levels
in database replication. Data & Knowledge Engineering (DKE), Septem-
ber 2012, volume 79-80, pages 1-16. Elsevier. ISSN 0169-023X. Impact
factor 2011: 1.422.

J. M. Bernabé-Gisbert, F. D. Muñoz-Escóı. A Compoundable Specification of
the Snapshot Isolation Level. XXI Jornadas de Concurrencia y Sistemas
Distribuidos (JCSD), June 2013, Donostia-San Sebastián, Spain.

These results have never been published as a part of any other thesis before.

During this period I have also participated in other research works which are not
part of this thesis but are related on one way or another with issues addressed
in some of the chapters. The results of those works have also been published in
conference proceedings and some of them are even referenced in this thesis:

R. Salinas-Monteagudo, J. M. Bernabé-Gisbert, F. D. Muñoz-Escóı, J. E. Ar-
mendáriz-́Iñigo, J. R. González de Mend́ıvil. SIRC: A Multiple Isolation
Level Protocol for Middleware-based Data Replication. 22nd Interna-
tional Symposium on Computer Information Sciences (ISCIS), pages 1-6,
November 2007, Ankara, Turkey, IEEE-CS Press. CORE C. Indexed in
ISI Proceedings (11 cites according to Google Scholar).

J. M. Bernabé-Gisbert, V. Zuikeviciute, F. D. Muñoz-Escóı, F. Pedone. A
Probabilistic Analysis of Snapshot Isolation with Partial Replication. 27th
International Symposium on Reliable Distributed Systems (SRDS), pages
249-258 October 2008, Napoli, Italy IEEE-CS Press. CORE A. Position
259/581 in CiteSeer Venue Impact Factor 2008. Indexed in ISI Proceedings
(3 cites according to ISI Web of Knowledge. 6 cites according to Google
Scholar).

F. D. Muñoz-Escóı, J. M. Bernabé-Gisbert, R. de Juan-Maŕın, J. E. Ar-
mendáriz-́Iñigo, J. R. González de Mend́ıvil. Revising 1-Copy Equivalence
in Replicated Databases with Snapshot Isolation. 11th International Sym-
posium on Distributed Objects, Middleware and Applications (DOA), Lec-
ture Notes in Computer Science, vol. 5870, pgs. 467-483, November 2009,
Vilamoura, Algarve, Portugal, Springer. Position 472/581 in CiteSeer
Vanue Impact Factor 2008. Indexed in ISI Proceedings (4 cites according
to Google Scholar).

The SRDS paper was made in the framework of a three months stay at the
Distributed Systems group at the Università della Svizzera Italiana, directed by
Professor Fernando Pedone4.

4Funded by the EU ESF/IMPIVA IMAETB/2007/30

Part I

Introduction

11

Chapter 1

Introduction

According to the Digital Universe Study published by EMC Corporation in 2011,
in 2010 the amount of information digitally generated exceeded the zettabyte,
increasing in a factor of 9 in only five years [30]. These data are accessed by peo-
ple and applications to perform their daily tasks and must be always available to
their users. Replication has been traditionally used to provide availability and
improve performance in databases. In a replicated database, there are several
copies of the data spread over a set of nodes. However, replication complicates
data consistency and transactions isolation, two of the four ACID properties
assumed for database management systems. The necessary data propagation
and the coordination effort to ensure consistency and isolation limits the repli-
cation protocol scalability. In the last years, several non-relational alternatives,
known as NoSQL systems, appeared showing an excellent performance and scal-
ability at the cost of weakening isolation and consistency [55]. They have been
widely used by many internet applications, usually characterized by performing
a huge amount of reads when compared with writes. That is the case of search
engines. However, those solutions cannot be used by applications with a high
portion of writes, depending on relational databases or with strong consistency
and isolation requirements for some of their operations.

In this thesis we address the replication of databases efficiently and transpar-
ently to applications built to access relational databases. Our proposal is based
on adjusting isolation guarantees to transaction requirements. Applications in-
dicate those requirements by using SQL or any of the standard interfaces like
Java database connectivity (JDBC) or Open database connectivity (ODBC), as
they do when accessing centralised and relational Database Management Sys-
tems (DBMS) like Oracle, PostgreSQL, MySQL, SqlServer, etc. That improves
performance and scalability since provides strong isolation guarantees only when
it is strictly necessary. We also provide the theoretical background to ensure the
correctness of our proposals, that is, that all our replication mechanisms man-
age isolation like existing centralised DBMSs. That will make them adequate

13

14 CHAPTER 1. INTRODUCTION

to replicate existing centralized databases transparently to applications, users
and other system components.

Existing works on relational database replication are mostly oriented to mech-
anisms with strong isolation guarantees. Few works have proposed replication
protocols supporting weak and strong isolation guarantees at the same time.
None of them have developed the necessary theoretical background to prove the
correctness of their proposals. We not only modify the main replication schemes
to provide this support but also include this background to prove the correctness
of our proposals. These correctness criteria do not depend on specific techniques
and can be applied to existing and future replication protocols.

1.1 Database replication

A database is composed by a set of data items. In a replicated database there
are multiple copies of every item. If one of the copies fails the others are still
available to users and applications. Every working copy can serve different users
concurrently, improving the system performance. To support more accesses
replicated systems add more replicas. A transaction is a sequence of read and
write operations executed atomically, i.e., all or none are executed. Atomicity
is the first of the four ACID properties that must be guaranteed for every
transaction being executed in a relational database. Consistency and Isolation
are the following two and are explained later. Durability is the last one and
indicates that the effects of successful transaction writes must be persisted and
cannot be undone even if the system fails.

1.1.1 Consistency

In databases theory, the consistency property states that a transaction must
always produce a correct state in the sense of not violating any integrity con-
straint. Otherwise, the entire transaction effects must be rolled back.

In replicated databases, when a given item copy is modified the update must be
eventually propagated to its other replicas. In this context, consistency refers
to the guarantees offered by this propagation and not to the ACID semantic
consistency. The consistency model provided by a given system is a contract
between the system and the applications and states the rules to be followed when
updates are propagated and applied. In a strong consistency model the entire
system must behave like a centralised database [17]. Thus, once a transaction
finishes, all its updates are automatically available to any following transaction.
In this thesis the word consistency always refers to replica consistency and not
to the ACID semantic consistency.

Replica consistency is achieved by propagating item updates to all replicas and
applying them in a given order. Transaction updates can be spread one by

1.1. DATABASE REPLICATION 15

one or in a single bunch (we will see later that this bunch is known as the
transaction write-set), usually propagated once the transaction is going to finish.
The guarantees offered by this propagation determine the consistency model of
a replicated database. For example, in a strong consistency model, a transaction
cannot read an item copy if a finished transaction has modified the same item but
its updates have not been applied in this copy yet. Weaker consistency models
increase concurrency since they allow different degrees of stale data reads, i.e.,
they allow to read data even if it has been modified by finished transactions at
other nodes.

1.1.2 Isolation

In a database, transactions should ideally be executed in isolation without in-
terfering with each other. However, in practice DBMSs allow some interference
in order to increase concurrency and so, improve system response time and
throughput. Unfortunately, concurrent execution of transactions may gener-
ate anomalies (or phenomena) that must be resolved at the application tier.
For example, transaction T1 reads x data item while T2, another concurrent
transaction, is updating the same data item. Such a situation is defined as non-
repeatable or fuzzy read phenomenon in [6]. If transaction T1 reads data item
x again, it may read a different value. Isolation levels are characterized by the
anomalies that are forbidden in the execution of transactions [6].

The strongest isolation level is a serial execution of transactions (i.e., transac-
tions cannot be executed concurrently). Due to performance issues, serialis-
ability is usually the strongest isolation level provided by a commercial DBMS.
Serialisability allows concurrency as long as the final result can be considered
equivalent to a serial execution. Not all transactions require such strong guaran-
tees. Therefore, commercial DBMSs also support weaker isolation levels. Many
DBMSs (e.g., PostgreSQL [48], Oracle [45], and Microsoft SQL Server [42])
use by default the read committed [6] (RC) isolation level. This level is much
weaker than the serialisable level since it allows non-repeatable reads and phan-
tom reads [6] (a transaction may obtain different results if it executes the same
read operation twice). These DBMSs delegate strong isolation levels for sensi-
tive transactions with strong isolation restrictions. For example, a transaction
T1 that withdraws cash from a bank account requires stronger isolation than a
transaction T2 that only retrieves a list of account balances. Notice that trans-
action T1 probably first reads the balance to check if there is enough money
to withdraw. Meanwhile if another transaction T3 modifies the same account
balance, the application may take incorrect decisions since the account balance
changed when T1 updated the account. However, this anomaly would never be
produced by T2. Therefore, transaction T2 may be executed under a weaker
isolation level.

Although multiple commercial DBMSs agree on using RC by default they do not
agree on how the American National Standards Institute (ANSI) serialisable [27]

16 CHAPTER 1. INTRODUCTION

isolation level should be implemented. Several DBMSs provide a slightly weaker
isolation level known as snapshot isolation (SI) [6] that is faster but may produce
non-serialisable executions. Some commercial DBMSs, such as Microsoft SQL
Server [42], allow applications to decide if they want to use serialisable or SI. It is
uncommon for applications to mix serialisable and SI transactions; yet this may
happen when multiple applications accessing the same database select different
isolation levels for transactions with strong isolation requirements. As a result,
these DBMSs may face situations in which serialisable, SI and RC transactions
need to be executed concurrently.

In a replicated database, some sort of coordination is necessary when concur-
rent transactions operate over different copies of the same items. A replication
protocol correctly manages isolation if the result of executing a set of transac-
tions is equivalent to a serialisable execution of the same set in a centralised
DBMS. That is known as one-copy serialisability or 1SR [14]. Surprisingly, only
few works studied what happens when weak isolation is used for some transac-
tions and none of them has proposed the necessary theoretical background to
prove the correctness in that case. The implementation of this feature in existing
replication protocols not only will improve their performance and scalability but
also their ability to integrate with applications developed to access relational
databases. They can also be used to improve the performance of replication
protocols based on group communication systems.

1.1.3 Scalability of replication protocols

Consistency and isolation require data propagation and replica coordination.
This process limits the system scalability because it usually involves all replicas
in the system and cannot be mitigated just adding more replicas. Notice that,
regardless of the number of nodes, all of them must apply the updates and check
the isolation guarantees for each transaction. In the 90s, group communication
systems were introduced. They provide a set of primitives to propagate messages
to groups of nodes and with a given guarantee. For example, a reliable atomic
broadcast [18] ensures that all live replicas deliver a given message and that
any two messages are delivered in the same order in any two replicas. Replica-
tion protocols using group communication protocols improve performance and
scalability but, in practice, they are still limited to small clusters.

In the last years, several non-relational alternatives have appeared showing
great performance and scalability, specially when most transactions perform
only reads, by weakening ACID Isolation and Consistency properties. However,
some applications still require strong guarantees for some of their operations.
Some others have been developed to access relational databases using standard
interfaces and do not integrate well with non-relational and non-standard sys-
tems. The main goal of this thesis is to provide correct mechanisms to improve
performance and flexibility of replication protocols. Our mechanisms can be
used to replicate existing relational databases transparently to applications and

1.2. REPLICATION TRANSPARENCY 17

users.

1.2 Replication transparency

Replication transparency states that although the same data item may be repli-
cated at several nodes of the network, the programmer may treat the item as if
it were stored as a single item at a single node [56]. Thus, the replication of a
database is transparent if it can be implemented and deployed in existing sys-
tems without requiring changes to system components or external applications.

Existing replication protocols hide replication management by implementing a
standard database access interface such as JDBC. Unfortunately, these solutions
do not really implement all the functionality available in stand-alone databases.
A typical database management system (DBMS) simultaneously executes trans-
actions under different isolation levels, but most replication protocols support
a single level, which is usually either serialisable [14] or snapshot isolation [6].
The authors of [16] identified this problem as one of the challenges in database
replication. Both TPC-C and TPC-W benchmarks also demonstrate that typi-
cal applications need to execute transactions at different isolation levels, mainly
for performance reasons.

1.3 Benefits of supporting multiple isolation lev-
els

Weak isolation levels may provide performance and economical benefits.

1.3.1 Performance benefits

Weak isolation levels reduce the complexity of concurrency control manage-
ment and so may improve the performance of DBMSs. Note that these lev-
els can allow higher degrees of concurrency than the strictest isolation levels
[12, 33, 38, 4, 31]. Performance improvements are especially appealing for
ROWAA (read-one, write-all-available) [14] replication protocols since in these
protocols isolation management usually involves all database replicas. In several
ROWAA replication solutions, transactions are executed optimistically at a sin-
gle replica (local replica); and updates are propagated to all replicas before the
transaction finishes. Once updates are delivered, a validation step is executed to
guarantee that no forbidden phenomena occur due to conflicts with transactions
executed in other replicas. The stronger the isolation level, the larger the set
of phenomena that must be checked. Therefore, the complexity of the valida-
tion step depends on the isolation level. Furthermore, the stronger the isolation
level of a transaction, the greater is the probability that the transaction will

18 CHAPTER 1. INTRODUCTION

abort. For example, as we explain later in Chapter 8, serialisable transactions
require either the inclusion of the accessed values when updates are broadcast;
or the propagation of the local replica validation result. However, this step is
unnecessary when weak isolation levels are used. Under high workloads repli-
cas spend resources validating transactions that cannot be mitigated by adding
more replicas, since all replicas have to perform the same validation step. If
many transactions can be executed under weaker isolation levels such as RC,
then network and CPU loads, as well as transaction abort rates, can be reduced
significantly. For instance, the performance results presented in [53] show that
with the SIRC replication protocol and for a given type of update transactions,
only 60% of the completion time needed with SI was required when RC isolation
was used. Additionally, the abortion rate with RC isolation was 26 times lower
than with SI.

In other ROWAA protocols (for example, primary copy replication protocols)
all transactions are validated by the same replica (usually known as the primary
replica or the central validator). In these cases, the validation gains obtained
by weak isolation levels are negligible since no data propagation is demanded
to complete the validation step. Note, however, that in a system based on a
central validator the performance may degrade under medium and high work-
loads because the central validator does most of the work and so easily becomes
a bottleneck [60]. It also might become a single point of failure. As a result,
there is no optimal deployment for the validation tasks, and relaxed isolation
levels can always increase concurrency.

1.3.2 Economical benefits

Recently, public clouds have emerged as software as a service (SaaS) hosting
platforms based on a pay-as-you-go business model. In those systems, resources
are assigned dynamically depending on the application load and the more re-
sources consumed the more have to be paid to the cloud provider. Adjusted
consumption may make the difference between a profitable and a non profitable
system. In data intensive systems, a wise use of isolation and consistency may
reduce memory, CPU and network consumption and, at the end, save money
[36].

1.4 Objectives

The main goal of this thesis is to support multiple isolation levels in database
replication protocols as a way to improve performance and transparency at the
same time. This allows to correctly fit the isolation guarantees to every transac-
tion isolation needs in existing replication protocols as centralised concurrency
control mechanisms do. We not only provide the necessary theoretical back-
ground but also modify the main replication schemes to include this feature.

1.5. CONTRIBUTIONS 19

We also modify some well known replication protocols with this support.

1.5 Contributions

The main contributions of this thesis are the following:

• Snapshot Isolation level alternative definition: this work extends
Mixed Serialisation Graphs or MSG, Adya’s way to represent dependen-
cies among transactions in executions involving several isolation levels at
the same time. The main weaknesses of MSG are the lack of support of
Snapshot Isolation level and its stand-alone systems orientation. Snap-
shot Isolation is not supported because its definition is not based on the
same abstraction than the rest of the main isolation levels. Our Snap-
shot Isolation definition separates the isolation requirements (to execute
a transaction over a committed state of the database) from some consis-
tency issues (the freshness of the snapshot observed by the transaction)
and it can be easily integrated in Adya’s theory.

• The theoretical background to support multiple isolation levels
correctly and transparently. It can be used to prove the correctness
of replication protocols when they support several isolation levels. Notice
that correctness in this context means to behave like existing commercial
DBMS.

• The upgrade of the principal database replication schemes to
support multiple isolation levels. A lot of replication protocols have
been proposed in literature. Several works have categorized them in a
few replication schemes which represent the main techniques to replicate
relational databases. We modify such mechanisms and prove their correct-
ness. In most cases, only a few changes are necessary to correctly support
the main isolation levels. The result can be used as a guide to provide this
feature in existing replication protocols. This will allow to adjust isolation
guarantees to transaction isolation requirements, improving performance
and scalability without affecting existing applications. Those mechanisms
have been widely used in commercial centralised systems but have not
been successfully exported yet to database replication.

• Included support of multiple isolation levels in some well known
replication protocols by using the modified schemes.

1.6 Roadmap

Chapter 2 summarizes previous contributions related to this thesis. In Chapter
3 we provide a basis for this work by introducing the assumed system model.

20 CHAPTER 1. INTRODUCTION

Chapter 4 discusses the existing definitions and why they cannot be used in
our case. Chapter 5 introduces our alternative definition of snapshot isolation.
Chapter 6 updates Adya’s Mixed Serialisation Graphs to contemplate trans-
actions requesting Snapshot Isolation. Chapter 7 identifies the conditions a
replication protocol must satisfy to behave like a stand-alone DBMS. Chapter
8 shows a general scheme to upgrade existing replication protocols to simulta-
neously support multiple isolation levels. Chapter 8.2 shows how the suggested
scheme can be applied to some existing ROWAA update-everywhere replica-
tion protocols; and example protocols are presented in Chapter 9. Chapter 10
concludes the work. Some lemmas, theorems and proofs are detailed at the
Appendices.

Chapter 2

Related work

The results presented here summarize and extend our previous works in [11],
[53], [7], [10] and [9]. The problem is identified in [11], later pointed in [16] as
one of the existing challenges in database replication. In [11] we also explain
how existing replication protocols may be extended to include multiple isolation
levels support. It also informally suggests how concrete PL-1, PL-2, PL-2.99
and PL-3 levels [2] can be supported and presents an example protocol. Another
protocol is presented in [53], which also includes some empirical results over our
distributed middleware MADIS [28, 43]. This paper concludes that supporting
weaker isolation levels may reduce the abort rate without impacting the response
time. Early results were also presented in [7], which defines the main goals and
introduces correctness, equivalence and replication schemes modification as the
main challenges of this research. Our work [8] introduces for the first time the
idea of extending Mixed Serialisation Graphs [2] as a way to prove replication
protocol correctness, even in the presence of several isolation levels. This idea is
later extended and formalised in [9] and applied to certification-based replication
scheme [60] and an example protocol. This formalisation is completely redefined
in this thesis by using the new Snapshot Isolation level definition we present in
[9], also revisited in this thesis, which extends the time-precedes order definition
used by Adya in [1]. The final conclusions are implemented to all the eager
replication schemes identified in [60] and to some existing replication protocols.

One of the main goals of this work is to specify the correctness criteria needed
to decide whether a replication protocol is correct when it supports multiple
isolation levels. Traditionally, serialisability theory has been used as a correct-
ness criterion for centralised systems [14]. The execution of a set of transactions
is considered correct if the result is equivalent to one possible serial execution
of the same set of transactions. If the same set is executed in a replicated sys-
tem, it is considered correct if it is equivalent to one possible execution of the
same set of transactions in a serialisable centralised DBMS. This criterion was
introduced by Bernstein et al. [14] as one-copy serialisability or 1SR. However,

21

22 CHAPTER 2. RELATED WORK

serialisability can be expensive and existing DBMSs improve performance by
allowing transactions to be executed with weaker isolation guarantees. Most
DBMSs support the set of isolation levels defined by ANSI [27]. Unfortunately,
ANSI definitions have proven to be ambiguous and incomplete [6] and some sys-
tems that apparently provided serialisability were actually providing a slightly
weaker isolation level defined as snapshot isolation (SI) by Berenson et al. [6].
SI is supported today by many commercial DBMSs (Oracle, PostgreSQL, MS
SQL Server, etc.) and is widely used by applications. Some works extended
Bernstein equivalence theory to one-copy-SI [38, 40] to define under which cir-
cumstances a replicated system behaves as a centralised DBMS providing SI.

However, sometimes even SI is too expensive and regular applications use weaker
isolation levels for some transactions [57]. This may be reasonable in some cases.
Note that some isolation guarantees may be ensured at the application tier. In
other cases, the appearance of some phenomena (such as the reading of stale
data) in the execution of some transactions is considered a minor problem and
can be accepted if there are some performance improvements (e.g., a higher
degree of concurrency that enables a faster transaction completion time). Un-
fortunately, as far as we know, existing one-copy equivalence definitions are not
general enough and cannot be used when multiple isolation levels are supported
concurrently in a replicated system. This thesis tries to fill this void.

A.J. Bernstein et al. [12] also highlighted the importance of using weak isolation
levels to improve the overall system performance. They focus on when the
execution of a transaction or a set of transactions is semantically correct. The
execution of a set of transactions is semantically correct if none of the database
and applications semantic restrictions are violated and the final result reflects
the cumulative expected results of all transactions in some serial order. Since
the semantic restrictions and the expected results may not be as restrictive as
serialisation, semantic correctness is weaker than serialisable. A.J. Bernstein et
al. also describe whether a transaction can be executed at a given isolation level
without violating any semantic restrictions but they do not explain when the
selected isolation level has been successfully ensured and that is the main goal
of our work.

Some of our previous works [11, 53] present specific protocols that support
several isolation levels simultaneously ([53] includes some empirical results).
However, these papers do not present a general solution, nor do they formally
demonstrate the correctness of their proposals.

Previous works also pointed out the importance of using weak isolation levels
to improve performance and concurrency in replicated databases but they only
suggest one separated protocol per isolation level instead of a single one sup-
porting all levels [33]. In [49, 52], the authors present a meta-protocol that can
execute several replication protocols at the same time. Before the execution of
a transaction, one of the supported replication protocols is selected based on
the transaction requirements. This approach is more modular and general than
[11, 53] since isolation is only one possible criterion to match a protocol to a

23

given transaction. However, sometimes modifying an existing and implemented
protocol is a more straightforward solution than deploying a meta-protocol and
developing at least one protocol per supported isolation level. Furthermore, the
work in [49, 52] does not prove the correctness of the protocols, since it only dis-
cusses the architecture and performance of the meta-protocol. The specifications
presented here can be applied to prove the correctness of a given combination
of protocols managed by the meta-protocol.

In [31, 4] the authors present two replication protocols supporting serialisable,
snapshot isolation (SI) and generalised SI (GSI) [19], a variation of SI more suit-
able to distributed databases (in GSI, each transaction may start immediately in
its local replica by reading from its currently available database snapshot, whilst
a strict interpretation of SI semantics requires the latest system-wide database
snapshot to be obtained and this might demand an additional synchronisation
step at each transaction start). Our work can be used to prove the correctness
of these protocols and all their variations.

The correctness theory presented here to prove the correctness of replication
protocols mixes serialisation graphs and one-copy-equivalence concepts intro-
duced by Bernstein et al. [14] with the mixing theorem introduced by Adya [1]
for centralised systems.

Serialisation graphs represent dependencies among transactions during an exe-
cution in a DBMS. Since Bernstein’s work focuses on the serialisable isolation
level, we use Adya’s mixed serialisation graphs (MSG) and mixing-correct defi-
nition [1] to support other isolation levels as well. With Adya’s MSG a conflict is
represented as an edge if it matters to the involved transactions isolation levels.
An execution preserves all transactions isolation needs if the associated MSG
does not show any cycle. Unfortunately, Adya’s mixing theory does not include
the SI level and, most importantly, his specifications are not directly applicable
to replicated systems, as illustrated by Lin et al.’s [40] extensions. In Chapter
6 we extend MSG and mixing-correct definitions to examine the SI level. In
Chapter 7.1 we make a further extension to support replicated systems.

One-copy-equivalence is needed to decide, from the user point of view, whether
the execution of a set of transactions in a replicated system can be considered
equivalent to an execution of the same set in a correct stand-alone system. We
use our serialisation graph extensions to make that comparison. Some other
works use similar concepts and methodologies but none support multiple iso-
lation levels. For example, Lin et al.’s 1-copy-SI [40] focuses on SI replication
protocols. Our paper extends this approach since our correctness criteria can be
applied to any replication protocol supporting one, all, or a subset of the main
isolation levels.

The protocol SER CBR used in Chapter 9 is a serialisable version of existing SI
CBR [50] that supports snapshot isolation. Both can be considered variations
or interpretations of well known serialisable and snapshot isolation protocols
[32, 19, 38, 17]. MUL CBR combines SER CBR and SI CBR to support the
four main isolation levels considered in this work (see Chapter 4).

24 CHAPTER 2. RELATED WORK

Finally, this work uses the Adya isolation level definitions [1] with minor changes
that are explained later in Chapter 4.

Part II

Theoretical conditions

25

Chapter 3

Background

This chapter introduces the main models, assumptions and concepts further
used in the following chapters. First we introduce the general model and the
communication model assumed. Next, we focus on database and transactions
models and definitions, including histories as a way to represent transactions
execution in a system. We also discuss about the concept of concurrency and
logical time in a distributed system. Finally, we also introduce some basic graphs
theory later referenced in this thesis.

3.1 General model

We assume an asynchronous system composed of a set of nodes N . A system is
asynchronous if bounds are not assumed in communication delays and in nodes
local clock drifts [26]. Each node in N has a complete copy of the database
managed by a typical stand-alone DBMS locally supporting several isolation
levels. Thus, this work focuses on full replication but the main results can be
easily applied to partially replicated and distributed databases. Replication is
implemented by a middleware [13] deployed on top of the DBMS.

Transactions are issued by clients. A transaction can be initially submitted to
any node in the system and which then becomes its local node.

Nodes may fail by crashing. However, note that node failures and their recoveries
are not the focus of this paper. Database replication protocols should deal with
failures, and many papers have provided solutions to this problem, including
[29, 34]. The recovery subprotocols that are needed to manage this problem
do not have any effect on our specifications nor on the architectural protocol
details needed for adequately managing multiple isolation levels. Therefore, no
further discussion on failures is given.

27

28 CHAPTER 3. BACKGROUND

3.2 Communication model

Communication takes place by exchanging messages. The middleware has access
to a group communication system with an atomic broadcast primitive [26]. An
atomic broadcast is a reliable broadcast with a total order property. Every
message m propagated includes its sender sender(m) and a sequence number
seq(m). A reliable broadcast is characterized by two primitives, broadcast(m)
and deliver(m), and the following properties:

• Validity: if a correct node broadcasts a message m, then all correct nodes
eventually deliver m.

• Agreement: if a correct node delivers a message m, then all correct
processes eventually deliver m.

• Integrity: for any message m, every correct node delivers m at most
once, and only if m was previously broadcast by sender(m).

The Total order property is defined as follows: if correct processes Na and Nb

both deliver messages m and m’, then Na delivers m before m’ if and only if
Nb delivers m before m’.

3.3 Databases and transactions

A database is a set of items that can be read and written. Updates, inserts and
deletes are all treated as writes. Clients (usually applications) read and write
database items through transactions. A transaction is a sequence of read and
write operations plus an initial start operation and a final commit or abort op-
eration. Operations in a transaction are executed atomically. If the transaction
is committed all its writes are persisted in the database. If it is aborted all
writes are rolled back.

Operation wi(xi) represents transaction Ti’s write on item x, being xi the value
written. Operation ri(xj) represents Ti’s read of the value xj written by trans-
action Tj . We represent the set of items read and written by Ti as RSi and
WSi, respectively. We call a transaction read-only if it does not contain any
write operations (WSi = ∅), and update otherwise. A transaction is initiated
with a start operation si and terminates with a commit operation ci or an abort
operation ai. Note that ci and ai are mutually exclusive, i.e., transactions either
commit or abort. If a transaction performs several writes on item x, wi(xi.n)
represents the n-th write on item x performed by Ti. If no suffix is present,
xi represents the last value established by Ti. Operation ri(xj.n) indicates a
Ti’s read of the n-th Tj ’s write on x and ri(xj) Ti’s read of Tj ’s last write on
x. Finally, x0 is the initial value of an item x and oi represents any operation
performed by Ti. Hereafter, we present a formal definition of a transaction:

3.4. EXECUTION OF TRANSACTIONS 29

Definition 1 (Transaction). Once completely executed, a transaction Ti is a
totally ordered set of operations with a binary relation < where:

• Ti ⊆ {ri(xj), wi(xi)|x is a data item} ∪ {si, ai, ci}.

• si ∈ Ti.

• ci ∈ Ti iff ai 6∈ Ti
1

• For any Ti’s operation oi, if oi 6= si then si < oi.

• If ci ∈ Ti then, for any operation oi 6= ci, oi < ci.

• If ai ∈ Ti then, for any operation oi 6= ai, oi < ai.

• For any two Ti’s operations o1 and o2, o1 < o2 or o2 < o1.

If it is necessary to explicitly refer to a replicated system, a copy of data item
x at node Na is represented by xa; while T a

i denotes the subset of transaction
Ti operations executed at Na. The notation of read, write, commit, and abort
operations is also extended in the same way. For example, rai (xj) represents
transaction Ti’s read operation executed at node Na over the last update on x

performed by transaction Tj on node Na.

3.4 Execution of transactions

When a set of transactions is executed in the system, the operation execution
order is determined by a system scheduler. A history represents how transac-
tions have been ordered during the execution. Given two operations o1 and o2,
o1 <H o2 in a history H if they have been executed in that order and either
belong to the same transaction or are conflictive. Operations o1 and o2 conflict
if they operate over the same item and at least one of them is a write. Thus,
two read operations of distinct transactions never conflict and are not directly
ordered in H. Formally:

Definition 2 (History). Given a set of transactions T = {T1, ..., Tn}, a history
H is a partially ordered set of the operations in T ’s transactions with a binary
relation <H where:

• For any transaction Ti ∈ T and any operation oi ∈ Ti, oi ∈ H.

• For any transaction Ti ∈ T and any two operations o1, o2 ∈ Ti, if o1 <

o2 ∈ Ti then o1 <H o2 ∈ H.

1Commit or abort operations would not appear when transactions still in execution are
represented but, in this work, only completed transactions are considered.

30 CHAPTER 3. BACKGROUND

• If ri(xj) ∈ H then wj(xj) ∈ H, wj(xj) <H ri(xj) ∈ H and 6 ∃wk(xk) such
that wj(xj) <H wk(xk) <H ri(xj).

• For any two conflicting operations o1, o2 ∈ H, o1 <H o2 ∈ H or o2 <H

o1 ∈ H.

For the sake of simplicity and readability we use < instead of <H except in
cases of ambiguity. Hence, oi < oj ∈ H is equivalent to oi <H oj ∈ H.

The committed projection of a history H is the portion of H including only the
operations of committed transactions [14]. More formally:

Definition 3 (Committed Projection). Given a history H over the operations
of a transaction set T and Tc ⊆ T the subset of committed transactions, the
committed projection of H or C(H) is a history such that:

• For any transaction Ti and any operation oi ∈ Ti, oi ∈ C(H) iff oi ∈ H

and Ti ∈ Tc

• For any transactions Ti, Tj ∈ T and any two operations oi ∈ Ti and
oj ∈ Tj, oi <H oj ∈ C(H) iff oi, oj ∈ C(H) and oi <H oj ∈ H.

In replicated systems, a transaction execution history over the replicated nodes
is composed of all the local executions. Given a set of transactions T , T a is
the subset of T executed in node Na. Thus, if Ti ∈ T , T a

i ∈ T a. Hence, the
replicated history is defined as follows:

Definition 4 (Replicated history). Given a set of transactions T = {T1, ..., Tn}
and a set of nodes N = {N1, ..., Nn}, a replicated history Hr is the partially
ordered set composed by all the operations of T ’s transactions executed in every
one of the nodes in N with a binary relation <r where:

• For every Ti ∈ T and every operation oi ∈ Ti, exists Na ∈ N such that
T a
i ∈ T a and oai ∈ T a

i (oi is executed at least in one node).

• For every two conflicting operations oi, oj, exists Na ∈ N such that T a
i , T

a
j ∈

T a, oai ∈ T a
i and oaj ∈ T a

j (at least one node detects a conflict).

• For every T a
i ∈ T a and every operation oak ∈ T a

i : oak ∈ Hr.

• For every T a
i ∈ T and every two operations oa1 , o

a
2 ∈ T a

i : if oa1 < oa2 ∈ T a
i ,

then oa1 <r oa2 ∈ Hr.

• If rai (xj) ∈ Hr then wa
j (xj) ∈ Hr, w

a
j (xj) <r rai (xj) ∈ Hr and 6 ∃wa

k(xk)
such that wa

j (xj) <r wa
k(xk) <r rai (xj).

• For any two conflicting operations oai (x), o
a
j (x) ∈ Hr executed in node Na:

oai (x) <r oaj (x) ∈ Hr ∨ oaj (x) <r oai (x) ∈ Hr.

3.5. LOGICAL TIME 31

For the sake of readability we use oai < oaj ∈ Hr instead of oai <r oaj ∈ Hr.
We use oi ∈ Hr to indicate that at least one node has executed operation oi.
oi < oj ∈ Hr states that the operations are executed in that order in at least
one node and there is no other node where operations execute in different order
(i.e., ∃Na ∈ N such that oai < oaj ∈ Hr and ∄Nb ∈ N such that obj < obi ∈ Hr).
Ti < Tj ∈ Hr indicates that oi < oj ∈ Hr for any two conflicting operations
oi ∈ Ti and oj ∈ Tj . Finally, H

a
r is the subset ofHr including only the operations

executed at node Na and the orderings among those operations.

As with normal histories, the committed projection of a replicated history Hr or
C(Hr) is the part ofHr including only the operations of committed transactions.

Although the core of this work does not depend on specific technologies, most
of the replicated schemes modified in Chapter 8.2 and the examples shown later
in Chapter 9 use ROWAA update everywhere replication solutions. In those
protocols, the read operations of a transaction only execute at the local node
and write operations must be applied in all the database replicas. More formally:

Definition 5 (ROWA transaction). Given a transaction Ti and a node Na, T
a
i

is a ROWA transaction if:

• T a
i is a subset of Ti .

• If T a
i 6= ∅ and ci ∈ Ti, then cai ∈ T a

i .

• If T a
i 6= ∅ and ai ∈ Ti, then aai ∈ T a

i .

• If ri(x) ∈ Ti, then rai (x) ∈ T a
i iff Ti is local to Na.

• If o1 < o2 ∈ Ti, and oa1, o
a
2 ∈ T a

i , then oa1 < oa2 ∈ T a
i .

• If ci ∈ Ti, then ∀wi(x) ∈ Ti : w
a
i (x) ∈ T a

i .

3.5 Logical time

The scheduler assigns transaction start and end points. They represent when
transactions start and finish and determine which committed database state is
observed by every transaction when it is started. A committed state includes the
last committed values in the database at some moment in time. A time-precedes
order [1] is defined in the following way:

Definition 6 (Time-precedes order). Given a history H and E the subset of
H including only the start and commit operations of committed transactions, a
time-precedes order <t is a partial order on E such that:

a) For any transaction Ti committed in H, si <t ci.

b) Given Ti, Tj transactions committed in H, ci <t sj or sj <t ci.

32 CHAPTER 3. BACKGROUND

Two transactions Ti and Tj are concurrent in H if si <t cj and sj <t ci.

Definition 7 (Conflict-aware time-precedes order). Given a history H and E

the subset of H including only the start and commit operations of committed
transactions, a conflict-aware time-precedes order <c is a partial order on E

such that:

a) <c is a time-precedes order of E.

b) if wi(xi) <H rj(xi) ∈ H or wi(xi) <H wj(xj) ∈ H then ci <c sj.

c) if ri(xk) <H wj(xj) ∈ H then si <c cj.

In a replicated system, multiple nodes may be involved in a transaction Ti

execution. To decide which transactions are concurrent, nodes must agree on
how start and commit points are ordered. In these environments, the time-
precedes order can be generalised in the following way:

Definition 8 (Replicated time-precedes order). Given a replicated history Hr

representing the execution of a set of transactions T in a replicated system
with N nodes. Given E the subset of Hr including only the start and commit
operations of committed transactions, a replicated time-precedes order <tr is a
partial order on E such that:

a) For any node Na ∈ N , <tr is a time-precedes order of Ea, where
Ea is the subset of E containing only start and commit operations
executed in node Na.

b) For any transaction Ti ∈ T committed in Hr and any node Na ∈
N where Ti operations are executed, sai <tr cai in Ha

r . We represent
that as si <tr ci.

c) For any two transactions Ti, Tj ∈ T committed in Hr, if Nij ⊂ N
is the subset of nodes where both Ti and Tj are executed, ∀Na ∈ Nij

cai <tr saj or ∀Na ∈ Nij saj <tr cai . We represent that as ci <tr sj or
sj <tr ci.

Two transactions Ti and Tj are concurrent in Hr if si <tr cj and sj <tr ci.

Definition 9 (Replicated conflict-aware time-precedes order). Given a repli-
cated history Hr and E the set of start and commit operations of transactions
committed in Hr, a replicated conflict-aware time-precedes order <cr is a partial
order on E such that:

a) <cr is a replicated time-precedes order.

b) if wi(xi) <r rj(xi) ∈ Hr or wi(xi) <r wj(xj) ∈ Hr then ci <cr sj.

c) if ri(xk) <r wj(xj) ∈ Hr then si <cr cj.

3.6. GRAPHS THEORY 33

Given a protocol P , two time-precedes orders are equivalent if they order start
and commits points in the same way for any possible execution of P .

In centralised systems, the time-preceding order usually relies on the system
local clock to timestamp transactions start point and commit. Thus, ci <t sj
if Ti committed before Tj started in the system. However, in a distributed
system nodes local clocks may drift in an unbounded amount of time. If two
transactions are executed at different nodes local clocks cannot be used to assign
timestamps. In those situations, another kind of logical time should be defined
to designate transactions starts and commits orderings.

3.6 Graphs Theory

From now on, we introduce some graph theory definitions later used in this
work, specially in chapters 4 to 7.

A graph G = (V,E) is a pair of sets such that V is the set of vertices and
E ⊆ {{u, v}|u, v ∈ V, u 6= v} the set of edges. A pair {u, v} is usually written
as uv.

G is a directed graph if the pairs in E are ordered such that uv 6= vu. Every
pair is composed by a source vertex and a target and is represent as u −→ v.

G is a labeled graph if a label is assigned to every vertex, edge or both.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E.

A walk P in a graph G = (V,E) is a sequence v1e1v2e2...en−1vn of vertices and
edges such that VP = {v1, ..., vn} ⊂ V , Ep = {e1, ..., en−1} ⊂ E and every edge
ei = vivi+1. v1 and vn are the P ’s end vertices. The rest are inner vertices.
Similarly, e1 and en−1 are P ’s end edges and the rest P ’s inner edges. Notice
that P = (Vp, Ep) is a subgraph of G.

P is a directed walk if every edge ei = vi −→ vi+1. In that case, v1 and vn are
the source and target vertices of P .

A walk P = (Vp, Ep) is a path if u 6= v ∀u, v ∈ Vp. P is a directed path if it is a
path and a directed walk.

A directed walk P = (Vp = {v1, ..., vk}, Ep) of a graph G = (V,E) is a cycle if
u 6= v ∀u, v ∈ Vp except that v1 = vk. A cycle P is chord-free if ∀u, v ∈ Vp, if
u −→ v 6∈ Ep then u −→ v 6∈ E. The cycle of minimun length in G is necessarily
chord-free [21].

Given a walk P = (Vp, Ep), l = |Vp| is the number of elements in Vp or the
length of P .

A walk P ′ = (Vp′ , Ep′) is a subwalk of a walk P = (Vp, Ep) if P
′ is a subgraph

of P . The walk P ′ is a directed subwalk, a subpath or a directed subpath of P if
P is a directed walk, path or directed path.

34 CHAPTER 3. BACKGROUND

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are equal if E1 = E2 and V1 = V2.
If the graph is labeled then the labels must be equal too.

The graph G1∪G2 = (V1 ∪ V2, E1 ∪E2). G1∩G2 = (V1 ∩ V2, E1 ∩E2). Recall
that two labeled edges e1 and e2 are equal if they involve the same vertices and
show the same label. If e1 and e2 are directed, their source and target vertices
must be the same too.

Two edges e1, e2 ∈ E are adjacent in graph G = (V,E) if a vertex v ∈ V is in
e1 and e2. If e1 and e2 are directed, v must be e1’s target and e2’s source. We
also say that v is shared by e1 and e2.

Chapter 4

Stand-alone systems

Ensuring a strict isolation is costly and, depending on the concrete mechanism
being used, this implies many blocked transactions and/or many aborts. To
improve performance, commercial DBMSs allow transactions to be executed
with weaker isolation levels at the cost of allowing certain types of interferences
or phenomena, which must be either managed by the application tier or accepted
by the user. An example is the phenomenon known as Write Skew [6]. Assume
a database with two items x and y and an integrity constraint requiring that
x + y > 0. If two transactions Ti and Tj concurrently read x = 50 and y = 50
and later Ti is allowed to write x = −10 and Tj y = 0, both will think that
the integrity constraint is preserved but it is actually violated in the final state.
If a transaction is executed with an isolation level which does not prevent this
phenomenon we must be sure that such scenario is managed by the application
logic avoiding that kind of concurrent transactions.

In this section we present the isolation level definitions used in the rest of this
work.

4.1 Concurrency control mechanisms

In stand-alone systems, isolation is managed by concurrency control protocols
that usually rely on locks, versions, or both to manage concurrency. With a lock-
based concurrency control [6], transaction operations acquire locks to access data
items that block the operations of other transactions until the lock is released.
A blocked operation can execute once the lock is released. There are two kinds
of locks: read and write; and they can be used for different durations: long and
short. Read locks only block write operations while write locks block both reads
and writes since read locks can be shared but write locks are exclusive. Long
locks are released when the transaction finishes, short locks are released when

35

36 CHAPTER 4. STAND-ALONE SYSTEMS

the operation finishes. The isolation level provided depends on the locks used
during transactions execution.

Version-based concurrency control mechanisms store multiple versions per item
[14, 58]. A new version of a data item is created in every write operation, but
it becomes definitive (i.e., visible to new transactions) only when the transac-
tion commits. In order to commit, a validation test must be applied to abort
transactions that violate isolation constraints. The isolation level is determined
by phenomena forbidden by this test.

4.2 Isolation levels

Several isolation level classifications have been proposed in the literature [27, 6,
1, 2]. The majority identify possible phenomena that may appear when transac-
tions are executed concurrently and categorise isolation levels depending on the
forbidden phenomena. The ANSI/INCITS specification [27] is widely accepted
but, as Berenson et al. [6] showed up, it is ambiguous. Berenson et al. [6] re-
fined ANSI definitions and extended the classification with new phenomena and
isolation level definitions. Actually, they suggested one of the first definitions of
Snapshot Isolation, supported at that moment by some commercial DBMS as
Serialisable due to a loose interpretation of ANSI phenomena. They proved that
SI allows some non-serialisable executions. Indeed, other papers [23] showed up
that there were other anomalies in SI histories. However, Berenson’s specifica-
tion focuses on lock-based concurrency control, ignoring other mechanisms like
multi-versioning, widely used to provide Snapshot Isolation.

Due to that fact, Adya [1] presented an alternative specification that is inde-
pendent of concrete concurrency control mechanisms. Adya used a variation
of Bernstein’s serialisation graphs to represent histories as graphs showing de-
pendencies among transactions. Phenomena are defined as properties in those
graphs.

4.2.1 Direct serialisation graphs (DSG)

A history H’s direct serialisation graph or DSG(H) is a labeled directed graph
such that V is the set of committed transactions in H and E represents depen-
dencies between transactions based on conflicts in H.

Definition 10 (DSG). Given a history H, DSG(H) = (V,E) is a labeled
directed graph containing one vertex per committed transaction in H and an
edge Ti −→ Tj if one of the following dependencies occurs1:

• Tj directly read-depends on Ti, denoted as Ti
wr−→ Tj, if rj(xi) ∈ H. Ti

wr−→
Tj is a read-dependency edge.

1We refer to the definitions given in [2] instead of those presented in [1].

4.2. ISOLATION LEVELS 37

• Tj directly write-depends on Ti, denoted as Ti
ww−→ Tj, if wi(xi) <H

wj(xj) ∈ H and it does not exist any other operation wk(xk) such that
wi(xi) <H wk(xk) <H wj(xj) ∈ H. Ti

ww−→ Tj is a write-dependency edge.

• Tj directly anti-depends on Ti, denoted as Ti
rw−→ Tj, if ri(xm) <H wj(xj) ∈

H and it does not exist any other operation wk(xk) such that ri(xm) <H

wk(xk) <H wj(xj) ∈ H. Ti
rw−→ Tj is an anti-dependency edge.

Notice that DSG(H) = DSG(C(H)) since it only considers committed trans-
actions.

We say that Tj directly depends or depends on Ti if Tj directly read- or write-
depends on Ti. We also say that Tj anti-depends on Ti if it directly anti-
depends on Ti. Similarly, write-dependency edges and read-dependency edges
are dependency edges.

As an example of DSG, given the following history (this is the flatten repre-
sentation of H1 but remember that a history is a partial order and not a total
order):

H1 = w0(x0)w0(y0)w0(z0)c0ri(x0)wi(xi)ri(y0)ciwj(yj)wj(xj)cj

The associated DSG(H1) is depicted in Figure 4.1.

T0 Ti Tjwr/ww rw/ww

ww

Figure 4.1: DSG of H1

Adya used DSG to define a set of possible isolation phenomena. The main ones
are the following:

• G0: Write Cycles: a history H exhibits phenomenon G0 if DSG(H)
contains a directed cycle composed only by write-dependency edges.

• G1a: Aborted Reads: a history H exhibits phenomenon G1a if it
contains an aborted transaction Ti and a committed transaction Tj such
that wi(xi.m) <H rj(xi.m) ∈ H.

• G1b: Intermediate Reads: a history H exhibits phenomenon G1b if a
transaction Ti reads in H a value written by Tj which is not the last write
of Tj over the item. Formally, wi(xi.m) <H rj(xi.m) <H wi(xi.n) ∈ H and
cj ∈ H.

38 CHAPTER 4. STAND-ALONE SYSTEMS

• G1c: Circular Information Flow: a history H exhibits phenomenon
G1c if DSG(H) contains a directed cycle composed only by dependency
edges.

• G2: Anti-dependency Cycles: a history H exhibits phenomenon G2 if
DSG(H) contains a directed cycle containing at least one anti-dependency
edge.

Based on the previous phenomena, the following isolation levels are defined:

• PL-1: it forbids phenomenon G0 and provides a generalised specification
for Read Uncommitted.

• PL-2: it forbids phenomena G0, G1a, G1b and G1c and provides a gen-
eralised specification for Read Committed.

• PL-3: it forbids phenomena G0, G1a, G1b, G1c and G2 and provides a
generalised specification for Serialisable.

Instead of focusing on what should be observed in every transaction execution
to determine if its isolation requirements have been ensured, Adya’s definitions
indicate what should happen in an entire history to guarantee a given isolation
level to all committed transactions. Thus, if PL-1, PL-2 and PL-3 transactions
are executed, we do not know if isolation requirements have been ensured to
every transaction but which isolation level is ensured to the whole transaction
set execution represented by H. To fill that void, Adya suggested a variation of
serialisation graphs named Mixed Serialisation Graphs (MSG). Given a history
H and its DSG(H), MSG(H) has all DSG(H) nodes but only those edges rep-
resenting obligatory dependencies for one of the involved transactions isolation
levels. The overall execution is correct if MSG(H) does not have cycles and
does not show G1a and G1b phenomena for PL-2 and PL-3 transactions. The
obligatory dependencies are the following:

• All direct write-dependencies.

• Direct read-dependencies ending in PL-2 and PL-3 transactions.

• Direct anti-dependencies starting from a PL-3 transaction.

4.3 Snapshot Isolation

Unfortunately, MSGs do not consider transactions requesting the SI level. The
reason is that the SI specification proposed by Adya, named PL-SI, is not based
on DSGs but on another variation named Start-dependency Serialisation Graphs
(SSGs). Given a history H and a time-precedes order <t, SSG(H,<t) has all
DSG(H) nodes and edges plus start-dependency edges:

4.3. SNAPSHOT ISOLATION 39

• Tj start-depends on Ti, denoted as Ti
s−→ Tj , if ci <t sj . Ti

s−→ Tj is a
start-dependency edge.

SSGs consider new phenomena:

• G-SIa: Interference: a history H and a time-precedes order <t ex-
hibit the phenomenon G-SIa if Ti

ww−→ Tj ∈ SSG(H,<t) or Ti
wr−→ Tj ∈

SSG(H,<t) but Ti
s−→ Tj 6∈ SSG(H,<t).

• G-SIb: Missed Effects: a history H and a time-precedes order <t

exhibit the phenomenon G-SIb if SSG(H,<t) contains a directed cycle
with exactly one direct anti-dependency edge.

PL-SI isolation level forbids phenomena G0, G1a, G1b, G1c, G-SIa and G-SIb.

4.3.1 An alternative definition for G-SIb

As other works already pointed out [39], PL-SI actually forbids more cycles
than those explicitly forbidden by G0, G1c and G-SIb. Thus, we provide an
alternative definition which explicitly excludes all graphs representing non PL-
SI executions:

Definition 11 (New G-SIb: Missed Effects). A history H and a time-precedes
order <t exhibit the phenomenon New G-SIb if SSG(H,<t) contains a directed
cycle with at least one direct anti-dependency edge but does not contain two
adjacent direct anti-dependency edges.

Lemma 1 proves that both G-SIb definitions can be indistinctly used in PL-SI
definition.

Lemma 1 (G-SIb and New G-SIb are equivalent). Given a history H and a
time-precedes order <t, SSG(H,<t) forbids G0, G1a, G1b, G1c, G-SIa and
GSI-b phenomena iff SSG(H,<t) forbids G0, G1a, G1b, G1c, G-SIa and New
G-SIb phenomena.

Proof. New G-SIb encompasses more histories than the original G-SIb and, thus,
when New G-SIb is proscribed, it is admitting less histories than the original
definition. Conversely, we prove that any history H and time-precedes order <t

proscribing G0, G1a, G1b, G1c, G-SIa and G-SIb proscribes also New G-SIb.
This implies that both conditions sets are equivalent. By absurd reduction, we
assume SSG(H,<t) is PL-SI and it has a cycle with anti-dependency edges but
without two adjacent anti-dependency edges. Since SSG(H,<t) is PL-SI, it has
not any cycle with a single anti-dependency edge and, thus, the cycle has at least
two of those edges. Assume that one of them goes from Ti to Tj , Ti

rw−→ Tj .
Thus, si <t cj because, otherwise, cj <t si and there is a start-dependency
edge from Tj to Ti which closes a cycle with a single anti-dependency edge

40 CHAPTER 4. STAND-ALONE SYSTEMS

which violates G-SIb. Since there are not two adjacent anti-dependency edges,
there must be an edge from another node Tk to Ti and another one from Tj

to Tl, both dependency or start-dependency edges. Thus, by G-SIa and start-
dependency definitions, ck <t si and cj <t sl. Since si <t cj , then ck <t sl
and this implies that Tk

s−→ Tl ∈ SSG(H,<t). Consequently, there is a shorter
cycle without Ti

rw−→ Tj anti-dependency edge. We can iteratively apply the
same criterion until getting a cycle with a single anti-dependency edge which
contradicts the initial assumption saying that H and <t avoid the original G-SIb
phenomenon.

Chapter 5

Alternative definition of
Snapshot Isolation

In this chapter we present an alternative definition of SI suitable to be included
in MSG (see Chapter 6). This definition is equivalent to the original PL-SI
definition and forbids the same phenomena than the original Snapshot Isolation
level as defined by Berenson et al [6].

A history H is PL-SI if it has been generated by a scheduler S(E,<t) such
that E is the set of start and commit events of committed transactions in H,
<t is a time-precedes order on E and SSG(H,<t) does not show G0, G1a,
G1b, G1c, G-SIa and G-SIb phenomena. Actually, <t is also a conflict-aware

time-precedes order since for any dependency edge Ti
ww/wr
−→ Tj ci <t sj due to

G-SIa and for any edge Ti
rw−→ Tj then si <t cj due to G-SIb (if cj <t si then a

start-dependency appears closing a cycle with a single anti-dependency, which
is forbidden by G-SIb). Notice that start-dependency edges based on conflicts
can be deduced from DSG(H) itself. If the scheduler generates PL-SI histories

and Ti
ww/wr
−→ Tj then ci <t sj . Furthermore, if Ti

rw−→ Tj then si <y cj since,
otherwise, there will be a start-dependency from Ti to Tj closing a cycle with a
single anti-dependency edge. If Ti

ww−→ Tj
wr−→ Tk then ci <t sk too. Similarly,

if Ti
ww−→ Tj

rw−→ Tk
wr−→ Tl then ci <t sl. The orderings of starts and commits

of transactions not connected in DSG(H) are meaningless. Then, a scheduler
S is PL-SI if a conflict-aware time-precedes order <t can be defined over the
set of start and commit operations of C(H) for every H it generates. This <t

actually represents how the scheduler ordered conflicting transactions. That is
the basis of our alternative definition of snapshot isolation. Informally, given a
PL-SI’ history H:

• The starts and commits of committed transactions in H can be ordered
following a conflict-aware time-precedes order <c.

41

42CHAPTER 5. ALTERNATIVE DEFINITION OF SNAPSHOT ISOLATION

• SSG(H,<c) is PL-SI.

As we are going to prove now, if that happens PL-SI and PL-SI’ can be consid-
ered equivalent.

5.1 PL-SI’: an alternative definition of PL-SI

G-SIb can be redefined in the following way:

Definition 12 (G-SIb’: Missed Effects). A history H exhibits the phenomenon
G-SIb’ if DSG(H) contains a directed cycle with at least one direct anti-depen-
dency edge but without two adjacent direct anti-dependency edges.

This definition is quite similar to G-SI* presented in [39] but our definition gets
rid of start-dependency edges and that will help us later to support Snapshot
Isolation level in Adya’s Mixed Serialisaton Graphs.

Thus, PL-SI’ can be defined in the following way:

Definition 13 (PL-SI’). A history H is PL-SI’ if it forbids G0, G1a, G1b, G1c
and G-SIb’.

As this definition states, the really important thing about Snapshot Isolation is
not when the snapshot is taken considering real time but that the snapshot iso-
lation level observed by transactions is consistent for some time-precedes order,
which actually represents the virtual time followed by the system scheduler to
order transactions.

5.2 PL-SI’ and PL-SI equivalence

PL-SI’ and PL-SI do not represent actually the same isolation level, basically
because PL-SI’ is based on dependencies in H but PL-SI also contemplates
dependencies among start and commit operations in E. However, a PL-SI’
history H is also PL-SI if it represents a correct PL-SI execution or, in other
words, if exists a time-precedes order <t such that SSG(H,<t) is PL-SI. Thus,
PL-SI’ is equivalent to PL-SI if for any PL-SI’ history H exists at least one
scheduler S(E,<t) such that SSG(H,<t) is PL-SI. In this section we prove
that any PL-SI’ history H can be generated by a PL-SI scheduler S based on a
conflict-aware time-precedes order <c.

The inverse assertion is trivially true. If H and <c are PL-SI then H is PL-SI’
since DSG(H) ⊆ SSG(H,<c). If there is not any cycle with anti-dependencies
but without two adjacent anti-dependencies in SSG(H,<c) then this cycle ob-
viously does not exist in DSG(H). Thus if G-SIb is proscribed in SSG(H,<c),
G-SIb’ does not appear in DSG(H).

5.2. PL-SI’ AND PL-SI EQUIVALENCE 43

We split this proof in two complementary parts. First, given a PL-SI’ history H

and a conflict-aware time-precedes order <c over the set E of start and commit
operations of H’s committed transactions, we prove that SSG(H,<c) is PL-
SI. Next, we prove that at least one conflict-aware time-precedes order can be
defined over E if H is PL-SI’.

5.2.1 SSG(H,<c) is PL-SI

Thus, assume a PL-SI’ history H and a conflict-aware time-precedes order <c

over the set E of starts and commits in C(H). We prove that SSG(H,<c) is
PL-SI.

Both PL-SI and PL-SI’ forbid G0, G1a, G1b and G1c phenomena. Then, H is
PL-SI if SSG(H,<c) does not show G-SIa and G-SIb. Notice that <c actually
represents how SI orders transactions depending on which committed state they
observe. If Tj observed something from Ti then a transaction Ti is in Tj snapshot
then Ti committed before Tj started. On the contrary, if Ti is not part of Tj

snapshot then Ti committed after Tj started. Thus, a scheduler S following a
conflict-aware time-precedes order forbids G-SIa b) condition of Definition 7.
Lemma 2 proves that SSG(H,<c) also forbids New G-SIb.

Lemma 2 (H forbids New G-SIb). Given a PL-SI’ history H and a scheduler
S ensuring a conflict-aware time-precedes order <c, SSG(H,<c) does not show
New G-SIb phenomenon.

Proof. By absurd reduction, assume SSG(H,<c) shows a New G-SIb forbidden
cycle C (i.e., a directed cycle with at least one anti-dependency edge but without
two adjacent anti-dependency edges). SSG(H,<c) has all DSG(H) vertices
and edges plus the start-dependency edges. Thus, given S the set of start-
dependency edges generated from <c and DSG(H) = (V,E), SSG(H,<c) =
(V,E ∪ S). Since H is PL-SI’, there are no cycles in DSG(H) composed by
dependency and anti-dependency edges where two no adjacent anti-dependency
edges appear. Then, C must include at least one start-dependency. Assume
e = Ti

s−→ Tj is one of those start-dependency edges. Since e is part of a New
G-SIb cycle, there is a directed path from Tj to Ti without two adjacent anti-
dependency edges. From Lemma 8 we deduce sj <c ci but, since e is a start-
dependency edge, ci <c sj also which is a contradiction. Then, SSG(H,<c)
does not show New G-SIb phenomena.

Theorem 1. If H is PL-SI’ then SSG(H,<c) is PL-SI.

Proof. G0, G1a, G1b, G1c are avoided by definition since H is supposed to be
PL-SI’. Thus, we only have to prove that G-SIa and G-SIb are avoided too:

• G-SIa: It is trivially avoided by Condition b) of Def. 7.

44CHAPTER 5. ALTERNATIVE DEFINITION OF SNAPSHOT ISOLATION

• G-SIb: Lemma 2 proves that New G-SIb never shows up in a PL-SI’
historyH produced by a scheduler based on a conflict-aware time-precedes
order. Lemma 1 shows that a history H avoiding G0, G1a, G1b, G1c, G-
SIa and New G-SIb also proscribes G-SIb.

Thus, a history H produced by a PL-SI’ scheduler S ensuring a conflict-aware
time-precedes order <c is also a PL-SI history.

Now we prove that any history PL-SI’ H can be produced by a scheduler en-
suring a conflict-aware time-precedes order.

5.2.2 A conflict-aware time-precedes order <c can be de-
fined over a PL-SI’ history H

By absurd reduction, assume a PL-SI’ history H such that the set O of start
and commit operations of committed transactions in H can never be ordered by
a conflict-aware time-precedes order <c. That can only happen if the conflict-
aware time-precedes order restrictions based on conflicts necessarily produce a
contradiction like si <c cj and cj <c si.

Given an order <t of O, <t is a time-precedes order if it is a partial order,
any pair si, cj ∈ O composed by a start and a commit operations are ordered
(i.e., si <t cj or cj <t si) and si <t cj if i = j. For example, the order <r

such that ∀si, cj ∈ O, si <r cj is a time-precedes order. A scheduler based on
<r executes all transactions concurrently (no transaction is allowed to commit
unless all transactions have started).

In a conflict-aware time-precedes order <c some extra restrictions are added to
force a specific order when a conflict appears among two transactions. Those
restrictions are based on the snapshot isolation level definition. If Ti overwrites
or reads a value established by Tj then cj <c si. If a value read by Ti is
updated by Tj then si <c cj . The start and commit operations of a history H

cannot be ordered by a conflict-aware time-precedes order if those restrictions
are contradictory in H. For example, if Ti overwrites a value established by
Tj and Ti reads a value overwritten by Tj in H then cj <c si and si <c cj
for any possible conflict-aware time-precedes order <c, which is a contradiction.
There are other possible contradictions as well. For example, if Ti

ww−→ Tj and
Tj

wr−→ Ti in DSG(H) then ci <c sj and cj <c si. Since si <c ci and sj <c cj
also then si <c ci <c sj <c cj <c si which is a contradiction. We prove that if
a contradiction appears then H is not PL-SI’.

First we introduce what a fixed ordering is.

Definition 14 (Fixed ordering). Given a history H and O the set of starts and
commits of transactions in C(H), the ordering of ci, sj ∈ O is fixed if it can be
deduced from the conflict-aware time-precedes order restrictions.

5.2. PL-SI’ AND PL-SI EQUIVALENCE 45

For example, if Ti
ww−→ Tj ∈ DSG(H) then ci <c sj is fixed by Definition 7’s

condition b). Since si <c ci and sj <c cj by Definition 7’s condition a) and
Definition 6 condition a), si <c sj , ci <c cj and si <c cj are also fixed. If also
Tj

rw−→ Tk ∈ DSG(H) then, by Definition 7’s condition c), sj <c ck and si <c ck
are fixed too and so on.

It can be proved that the ordering of operations si and cj (i 6= j) is fixed under
the presence of certain type of paths in DSG(H). More specifically, Lemma 3
proves that si <c cj is fixed iff there is in DSG(H) a directed path P from Ti to
Tj without two adjacent anti-dependency edges. Furthermore, Lemma 4 shows
that ci <c sj is fixed iff P ends are dependency edges.

Assume a PL-SI’ history H such that its commit and start operations in O

cannot be ordered by any conflict-aware time-precedes order because a contra-
diction like si <c cj and cj <c si arises due to fixed orderings. From Lemmas 3
and 4, we deduce that it must exist a directed path from Ti to Tj without two
adjacent anti-dependency edges and another path from Tj to Ti also without
two adjacent anti-dependency edges and with dependency edges at the ends.
Thus, there is a directed cycle in DSG(H) involving Ti and Tj without two
adjacent anti-dependences and, hence, H is not PL-SI’, contradicting the initial
assumption. Thus, if H is PL-SI’ that kind of contradiction never appears and,
hence, no contradictions will arise due to fixed orderings. Since the rest of the
orderings can be freely established, O can be always ordered by a conflict-aware
time-precedes order <c and SSG(H,<c) is PL-SI.

Lemma 3 (Fixed ordering 1). Given a PL-SI’ history H and its DSG(H) =
(V,E), the set O of start and commit operations of transactions in C(H), si, cj ∈
O and <c a conflict-aware time-precedes order, si <c cj is fixed iff there is a
directed path P = (Vp ⊆ V,Ep ⊆ E) from Ti to Tj without two adjacent anti-
dependency edges.

Proof. The proof is split in two:

a) si <c cj is fixed if there is a directed path P from Ti to
Tj without two adjacent anti-dependency edges in DSG(H).
We prove it by induction over the length n of P .

• Base case (n = 2): P is composed by a single edge e = Ti −→
Tj . If e is a dependency edge then ci <c sj by Definition 7’s
condition b) and, then, si <c ci <c sj <c cj from Definition 6
condition a). If e is an anti-dependency edge we get si <c cj
directly by Definition 7’s condition c). In both cases si <c cj .

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P length is n = l > 2. Then,
P = Ti −→ Tk −→ Tj where e = Tk −→ Tj is P ’s last edge

46CHAPTER 5. ALTERNATIVE DEFINITION OF SNAPSHOT ISOLATION

and P ′ the subpath from Ti to Tk. P
′ is a n−1 length directed

path without two adjacent anti-dependency edges and, thus,
from the induction hypothesis si <c ck. Depending on e’s type
two possibilities arise:

– e is a dependency edge. In that case, by Definition 7’s
condition b) we get ck <c sj . Then, si <c ck <c sj . By
Definition 6 condition a), si <c sj <c cj .

– e is an anti-dependency edge. By Definition 7’s condition
c) we get sk <c cj . Since P length n > 2 then the length

of P ′ is at least two. Then, P ′ = Ti
P ′′

−→ Tk−1
e′−→ Tk. e

′ is
a dependency edge since P does not has two adjacent anti-
dependency edges. Thus, ck−1 <c sk and, then, ck−1 <c

sk <k cj . If P
′′ is length 1 (the only two edges are e and e′)

then Tk−1 = Ti. Since si <c ci (from Definition 6 condition
a)), si <c ci <c sk <c cj . If P ′′’s length is greater than 1,
by the induction hypothesis si <c ck−1 since P ′′ is also a
subpath of P and, hence, it is a directed path without two
adjacent anti-dependency edges of length < l. In that case
si <c ck−1 <c sk <c cj . In both cases we get si <c cj .

b) There is a directed path P from Ti to Tj without two
adjacent anti-dependency edges in DSG(H) if si <c cj is
fixed. Since Definition 7 only directly fixes conflicting operations
which produce an edge in DSG(H), if si <c cj then there must be
a walk P connecting Ti and Tj . We do the rest of the proof by
induction over the length n of P .

• Base case (n = 2): since P is composed by a single edge e,
no two adjacent anti-dependency edges may exist in P . As
si <c cj then, by Definition 7 conditions, e must be either a
dependency edge or an anti-dependency edge starting from Ti

and ending in Tj . Thus P is a directed path from Ti to Tj .

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P ’s length is n = l > 2. Take any
edge e ∈ Ep such that P = P ′Tk −→ TlP

′′, P ′ and P ′′ are
subwalks of P in DSG(H), P ′ starts with edge Ti and P ′′ ends
with edge Tj and e = Tk −→ Tl. P ′ and P ′′ are of length < l

and at least one of them is of length > 1 since n > 2. e must
be of one of the following types:

– e = Tk
ww/wr
−→ Tl is a dependency edge. By Definition 7’s

condition b) we get ck <c sl. Since si <c cj is fixed due to
P , si <c ck <c sl <c cj and, hence, si <c ck and sl <c cj
are fixed. From the induction hypothesis, P ′ and P ′′ are

5.2. PL-SI’ AND PL-SI EQUIVALENCE 47

directed paths without two consecutive anti-dependency
edges. P ′ goes from Ti to Tk and P ′′ from Tl to Tj . Since
the connecting edge e is not an anti-dependency edge, the
resulting concatenated walk P is also a directed path with-
out two consecutive anti-dependency edges.

– e = Tk
rw−→ Tl is an anti-dependency edge. By Definition

7’s condition c) sk <c cl is fixed. Since we assume si <c cj
is also fixed due to P , si <c sk and cl <c cj . Since sk <c ck
and sl <c cl (from Definition 6 condition a)), si <c ck and
sl <c cj . If P

′ and P ′′ are of length > 2, by the induction
hypothesis, P ′ and P ′′ are directed paths without two adja-
cent anti-dependency edges, the first goes from Ti to Tk and
the second one from Tl to Tj . Assume e′ = Tk−1 −→ Tk the
edge just before e and e′′ = Tl −→ Tl+1 the edge just after
e. Since sk <c cl then si <c ok−1 <c sk <s cl <s ol+1 <c cj
where ok−1 and ol+1 are either the start or commit opera-
tion of Tk−1 and Tl+1. Since Definition 7’s condition only
explicitly orders starts with commits for a given edge, never
starts with starts or commits with commits, ok−1 must be
commit and ol+1 must be a start. Then, e′ and e′′ are
necessarily dependency edges. Thus, the path composed
by P ′, e and P ′′ is a directed path from Ti to Tj with-
out two adjacent anti-dependency edges. The cases when
P ′ and P ′′ are of length 1 can be similarly deduced. In
the first case Ti = Tk and P ′′ is a directed path from
Tl to Tj without two anti-dependency edges. Thus, if
e′′ = Tl −→ Tl+1 is the edge after e and the first edge
of P ′′, si <c cl <c ol+1 <c cj , ol+1 must be start, e′′ is a
dependency edge and, thus, the concatenation of e and P ′′

is a directed path from Ti to Tj without two adjacent anti-
dependency edges. If P ′′ is of length 1 then P ′ is a directed
path from Ti to Tk without two adjacent anti-dependency
edges. If e′ = Tk−1 −→ Tk is the edge just before e and
the last edge of P ′ then si <c ok−1 <c sk <c cj and, thus,
ok−1 is a commit, e′ is a dependency edge and, then, the
concatenation of P ′ and e is a directed path from Ti to Tj

without two adjacent anti-dependency edges. In any case,
the resulting path is a directed path from Ti to Tj without
adjacent anti-dependency edges.

Lemma 4 (Fixed ordering 2). Given a PL-SI’ history H and its DSG(H) =
(V,E), the set O of start and commit operations of transactions in C(H), ci, sj ∈
O and <c a conflict-aware time-precedes order, ci <c sj is fixed iff there is a

48CHAPTER 5. ALTERNATIVE DEFINITION OF SNAPSHOT ISOLATION

directed path P = (Vp ⊆ V,Ep ⊆ E) from Ti to Tj without two adjacent anti-
dependency edges and dependency edges in the ends.

Proof. The proof is split in two:

a) ci <c sj is fixed if there is a directed path P from Ti to
Tj without two adjacent anti-dependency edges in DSG(H)
and dependency edges on the ends. We prove it by induction
over the length n of P .

• Base case (n = 2): P is composed by a single edge e = Ti
ww−→

Tj . Since e is a dependency edge then ci <c sj by Definition
7’s condition b).

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P is length n > 2 and the ends are

dependency edges. If n = 3 then P = Ti
ww/wr
−→ Tk

ww/wr
−→ Tj .

By Definition 7’s condition b) we get ci <c sk and ck <c sj .
Since by Definition 6’s condition a) sk <c ck, ci <c sj . If
n > 3 then there is a subpath P ′ of P such that P = Ti

e−→
Tk

P ′

−→ Tl
e′−→ Tj where e and e′ are P ’s ends and, hence, de-

pendency edges. Since P ′ is a directed path without adjacent
anti-dependency edges, from Lemma 3 sk <c cl.Since e and
e′ are dependency edges and, by Definition 7’s condition b),
ci <c sk and ck <c sj . Then, ci <c sk <c cl <c sl. As a result,
ci <c sj is fixed.

b) There is a directed path p from Ti to Tj without two ad-
jacent anti-dependency edges in DSG(H) and dependency
edges on the ends if ci <c sj is fixed. From Definition 6’s con-
dition a) si <c ci, sj <c cj and, hence, si <c cj . Then, there is
a directed path P from Ti to Tj without adjacent anti-dependency
edges. We prove by induction over the length n of P that P ends
are dependency edges.

• Base case (n = 2): P is composed by a single edge e = Ti −→
Tj . Since ci <c sj , by Definition 7’s condition b), e only can be
a dependency edge.

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P is length n > 2. Since ci < sj
due to a conflict-aware time-precedes order and n > 2, nec-
essarily ci < ok < ol < sj . If n = 3 then Tk = Tl. Since
only dependencies order commits with other operation in a
conflict-aware time-precedes order then ok = sk and ol = ck

5.3. PL-SI’ AND SI EQUIVALENCE 49

and P = Ti
ww/wr
−→ Tk

ww/wr
−→ Tj . If n > 3 then Tk 6= Tl. Anyway,

conflict-aware time-precedes order conditions only order com-
mits with starts and, hence, ok = sk and ol = cl, so, P = eP ′e′

where e = Ti
ww/wr
−→ Tk and e′ = Tk

ww/wr
−→ Tj . Since sk < cl then

P ′ is a directed path from Tk to Tl without two consecutive
anti-dependency edges. Since e and e′ are dependencies, P is a
directed path without two consecutive anti-dependency edges
which starts and ends with dependency edges.

5.3 PL-SI’ and SI equivalence

PL-SI’ correction can be also proved by showing that PL-SI’ and SI forbid and
tolerate the same phenomena. Instead of using Adya’s phenomena definitions,
now we use the original definitions presented by Berenson et al [6]. This time
we don’t do a formal correctness proof but just informally prove that histories
representing the different phenomena tolerated and forbidden by SI, including
the read-only transaction anomaly detected by Fekete et al [23], are also respec-
tively tolerated and forbidden by PL-SI’. We do not contemplate histories with
reads of intermediate or aborted values since they are explicitly prohibited by
PL-SI’ (G1a and G1b).

Berenson et al detected that two possible interpretations of ANSI phenomena
definitions are possible and concluded that loose interpretations of those defi-
nitions should be used to truly support a serialisable isolation level. Actually,
they proved that some DBMS (like Oracle) were not providing serialisable as
they claimed but a slighty relaxed isolation level named Snapshot Isolation level
or SI. However, that loose interpretation also proscribes some serialisable execu-
tions and Berenson serialisable is stricter than it should be [1]. For example the
history w1(x1)r2(x1)c1c2 violates Berenson’s Dirty Read but it is a serialisable
history. That is one of the reasons why our work is based on Adya phenomena
definitions and not on Berenson’s ones. Thus, instead of focusing on Berenson’s
phenomena definitions, we focus on the histories Berenson and Fekete used to
explain SI forbidden and allowed phenomena and show that PL-SI’ forbids and
allows the same things than SI.

Write-Skew phenomenon The Write-Skew phenomenon is allowed by SI
[6] and appears when transactions T1 and T2 read items x and y concurrently
and, later, T1 updates x and T2 y. The history is non-serialisable because T1

and T2 never see each other updates.

r1(x0)r1(y0)r2(x0)r2(y0)w1(x1)w2(y2)c1c2

50CHAPTER 5. ALTERNATIVE DEFINITION OF SNAPSHOT ISOLATION

As Figure 5.1 shows up this history generates a cycle with two adjacent anti-
dependencies and, thus, it is not PL-3 (serialisable) but it is PL-SI’.

T1 T2

rw

rw

Figure 5.1: Write Skew example DSG

Read-Only Transaction Anomaly The Read-Only Transaction Anomaly is
also allowed by SI [23] and represents a variation of the classical bank account
example. Assume x and y are two empty accounts (x = 0, y = 0) and an
application logic rule stating that there is a withdrawal penalty if x + y goes
below 0. Now, assume a transaction T1 reads x and deposits 20$ on y, T2 reads
x and y and subtracts 10$ from x and transaction T3 reads x and y and prints
the result to the costumer. Depending on how those transactions are scheduled,
with SI that execution may result in the following history:

r2(x0)r2(y0)r1(x0)w1(y1)c1r3(x0)r3(y1)c3w2(x2)c2

This execution is not serialisable since transaction T2 does not observe T1 update
but overwrites T3 reads which observes T1 updates at the same time. Figure 5.2
shows the resulting DSG cycle.

T1 T2

T3

rw

wr rw

Figure 5.2: Read-only transaction anomaly example DSG

As expected, the DSG shows a PL-SI’ legal cycle and, hence, the resulting
execution is also PL-SI’ but not PL-3.

Lost Update SI forbids the Lost Update anomaly [6]. This phenomenon ap-
pears when a transaction T1 reads an item x, another transaction T2 overwrites
the same item and finally T1 updates x again based on the previous value, the
one it has read. The execution is represented in the following history:

r1(x0)w2(x2)c2w1(x1)

5.3. PL-SI’ AND SI EQUIVALENCE 51

As Figure 5.3 shows, these lost updates are neither allowed by PL-SI’ because of
the cycle with a single anti-dependency edge. Notice that this is neither allowed
by PL-3 but it is allowed by PL-2 (read committed).

T1 T2

rw

ww

Figure 5.3: Lost Update example DSG

Dirty Read and Dirty Write phenomena Dirty read and Dirty Write
phenomena, both forbidden by SI, are already forbidden by PL-2 as Adya al-
ready proved.

Read Skew Read Skew phenomena, also proscribed by SI, is also forbidden by
PL-SI’ as the following example shows. Read skew appears when a transaction
T1 reads x, another transaction T2 updates x and y and, finally, T1 reads y.
T1 has seen an inconsistent state of the database. The resulting history is the
following:

r1(x0)w2(x2)w2(y2)c2r1(y2)c1

As Figure 5.4 shows, that history DSG shows a cycle with a single anti-dependency
and, thus, it does not represent a PL-SI’ execution. As expected, it neither is
PL-3 but it is PL-2.

T1 T2

rw

wr

Figure 5.4: Read Skew example DSG

Non-Repeatable or Fuzzy Read Another phenomenon also forbidden by
SI is the Non-Repeatable or Fuzzy Read. This phenomenon appears when a
transaction T1 reads an item x, this item is updated by T2 which commits
and finally T1 reads the same item again but observing a different value. The
resulting DSG is identical to the one in Figure 5.3 and, thus, it does not represent
a PL-SI’ history.

52CHAPTER 5. ALTERNATIVE DEFINITION OF SNAPSHOT ISOLATION

Thus, all anomalies allowed by SI are also allowed by PL-SI’ and all anoma-
lies forbidden by SI are not allowed by PL-SI’. Thus, both isolation levels are
equivalent.

5.4 About the time-precedes order in Snapshot
Isolation

As we previously concluded in Section 5.3, any PL-SI’ historyH is also the result
of executing a set of transactions in a PL-SI scheduler. PL-SI schedulers also
ensure a conflict-aware time-precedes ordering of transactions start and commit
operations. This ordering reflects how these operations have been virtually
ordered by the concurrency control mechanism which might or might not be
similar to the order expected by applications and users or to the order we obtain
considering the real time.

Thus, given the PL-SI’ history H representing the execution of a set of trans-
actions, its set of start and commit operations can be ordered in three possible
ways:

• <s represents the ordering observed by one possible PL-SI scheduler equiv-
alent to H execution.

• <u represents the ordering observed by the user or application.

• <r represents the real time ordering.

For example, assume three transactions Ti = wi(xi)ci, Tj = rj(x)rj(y)cj and
Tk = wk(yk)ck. Assume that rj(x0) <h wi(xi) ∈ H and rj(y0) <h wk(xy),
considering x0 and y0 both items values before any of those transactions started
their executions. If we assume H is PL-SI’ then sj < ci and sj <s ck. The user
thinks that ci < sj and sj < ck because he or she executed Ti first, Tk before
receiving Ti response and Tj after receiving Ti response but before observing Tk

result. However, in the real time ci < sj and ck < sj .

The previous example might not make sense in a centralised database since, in
that case, the last state is always available. However, that may happen in a
replicated or distributed database. For example, Ti executed at node Ni, Tj

at node Nj and Tk at node Nk. When Tj started its execution at Nj Ti and
Tj already committed at Ni and Nk but not at Nj due to some sort of delay.
However, the user sent Tj when Ni already sent Ti’s result back to the user. In
any case the execution is Snapshot. However, the closer <s is to <u and <r

the more transparent will be our replicated database (i.e., the more similar will
be to a centralised system). Actually, this similarity is closely related to the
replica consistency level provided by a replicated scheduler. Consistency among
replicas is outside the scope of this thesis but it might be an interesting research
field in further works.

Chapter 6

Extended mixed
serialisation graph (EMSG)

As we have seen in Chapter 4, Adya introduced MSG to analyse isolation cor-
rectness when multiple isolation levels come concurrently into play. The follow-
ing example explains why DSGs cannot be used in such cases:

Ti Tj

ww

wr

Figure 6.1: Example graph

The DSG in Figure 6.1 depicts the dependencies between transactions Ti and
Tj . The execution is correct if both Ti and Tj requested PL-1; if Ti and Tj

requested PL-2 the given execution is incorrect since it shows G1c phenomena
(see Section 4.2). If transaction Ti requested PL-1 and transaction Tj requested
PL-2, the given DSG is insufficient to detect if the given execution history is
correct. EMSGs are instead used to define correct execution histories if different
isolation levels are used for different transactions.

MSGs represent dependencies among PL-1, PL-2 and PL-3 transactions in his-
tories. Given a history H and its DSG(H) = (V,E), MSG(H) = (V, {e|e ∈ E

and e is obligatory}) is a labeled directed graph. Which edges are obligatory
depend on the isolation levels of their source and target transactions. All direct
write-dependencies are considered obligatory since they matter to all isolation
levels (all levels forbid G0 phenomenon). Only direct read-dependencies edges
ending in a PL-2 or PL-3 transaction are considered obligatory since only those

53

54 CHAPTER 6. EXTENDED MIXED SERIALISATION GRAPH (EMSG)

levels are concerned on what they read (PL-1 transactions are allowed to see
dirty values). Finally, only direct anti-dependencies starting with a PL-3 trans-
action are considered obligatory since only transactions requesting this isolation
level are worried about who is overwriting the values they read (that’s why PL-3
forbids G2).

Unfortunately, MSGs do not contemplate the snapshot isolation level because
it is defined using SSG instead of DSG. In this section, we take profit of our SI
definition, PL-SI’, to extend MSG with full support to executions including SI
transactions:

Definition 15 (EMSG). Given a history H and its DSG(H) = (V,E),
EMSG(H) = (V, {e|e ∈ E and a is obligatory}) is a labeled directed graph.
An edge a is obligatory if either:

• e is a direct write-dependency edge, or

• e is a direct read-dependency edge and e’s target is executed under PL-2,
PL-3 or PL-SI’, or

• e is a direct anti-dependency edge and e’s source is executed under PL-SI’
or PL-3.

The extension is based on the PL-SI’ definition given in Chapter 5. Notice that
PL-SI’ forbids cycles including direct write-dependencies, direct read-depen-
dencies and even in some cases including also anti-dependencies. PL-SI’ trans-
actions are concerned about what they read and overwrite (only values coming
from their snapshot) and about who overwrites their reads (only transactions
not included in their snapshot) and, hence, all types of dependencies matter to
PL-SI’ transactions.

Adya’s mixing-correct [1] definition can also be extended to identify valid his-
tories involving PL-1, PL-2, PL-SI’ and PL-3 transactions:

Definition 16 (Valid history). A history H is valid if:

(a) PL-2, PL-3 or PL-SI’ transactions do not read aborted or intermediate
values.

(b) EMSG(H) does not contain any directed cycle unless it contains two ad-
jacent anti-dependency edges sharing a PL-SI’ transaction.

The main difference between Adya’s definition and ours is that we support
PL-SI’ transactions and, thus, allow the presence of cycles with two adjacent
anti-dependency edges as long as they are connected by a PL-SI’ transaction,
like in PL-SI’ definition. Theorem 7 formally proves that a valid H history cor-
rectly manages Snapshot Isolation level (see page 112 in Chapter A). Fekete and

55

other authors reached to similar conclusions [21, 39]. Fekete detected which phe-
nomena should be avoided to provide serialisable executions when transactions
only request serialisable or Snapshot Isolation. The execution is serialisable if
its serialisation graph does not show cycles and the only possible cycles in a
scheduler supporting serialisable and SI transactions are those with two adja-
cent anti-dependencies pivoting on a PL-SI transaction. Notice that we reach
exactly to the same conclusion, a valid scheduler supporting PL-3 and PL-SI’
only allows cycles including two adjacent anti-dependencies sharing a PL-SI’
transaction. Note also that we are not interested on providing serialisable ex-
ecutions in the presence of PL-SI’ transactions but under wich circumstances
every transaction involved in a given execution gets the isolation level it re-
quests. Thus, unless all transactions request PL-3, the final result might not
be serialisable. Furthermore, Fekete work is not based on Adya’s DSGs but on
Bernstein serialisation graphs. However his conclusions are equivalent to ours.
Lin et al work was only focused on Snapshot Isolation and cannot be applied
to histories observing transactions with different isolation needs. Unlike our
G-SIb’ phenomena in Definition 13 (see Chapter 5 in page 41), their G-SIb*
phenomenon still keeps start-dependency edges and cannot be applied in our
case but they also point out that cycles with two consecutive anti-dependency
edges must be avoided in histories including only SI transactions.

Thus, the execution history presented in Figure 6.1 is valid if transaction Ti

is executed under PL-1 and transaction Tj is executed under PL-2. In that
case the edge Tj

wr−→ Tj is not obligatory and the EMSG does not show any
cycle. However, the history is invalid if Ti requested PL-2 and Tj requested
PL-1 since, in that case, both edges are obligatory and there is a cycle in the
resulting EMSG.

Definition 16 does not necessarily mean that concurrency control protocols
should search for cycles in EMSGs. It only points out what should be con-
sidered to detect valid execution histories and not how that should be done.
Actually, as we previously explained in Chapter 4, existing DBMSs supporting
serialisable and snapshot use multi-version and lock-based concurrency control
to ensure every transaction isolation needs.

Unfortunately, EMSGs and Definition 16 cannot be used in replicated environ-
ments. In those systems there is one transaction execution history per node
and so Definition 16 cannot be applied directly because it does not account
for dependencies between nodes. For example, two conflicting transactions can
execute at two distinct nodes in different order but the local graphs at each
node could still satisfy the conditions of Definition 16. This case is studied in
Chapter 7.

56 CHAPTER 6. EXTENDED MIXED SERIALISATION GRAPH (EMSG)

6.1 Strict histories

Regular centralised DBMS (PostgreSQL, MySql, SqlServer, Oracle, etc.) disal-
low some correct executions to avoid some undesirable effects from the recover-
ability point of view [14]. The DBMS recovery system is in charge of ensuring
that the database behaves as if only the committed transactions effects are
present in the database. If all transactions commit the recovery is rather easy.
However, if transactions may abort the system must deal with some tricky ex-
ecutions. For example, the PL-3 isolation level definition as exposed by Adya
allows something like this:

wi(xi)rj(y0)rj(xi)wj(yj)rk(yj)cicjck

This execution is serialisable since it is equivalent to the serial execution

wi(xi)ri(y0)cirj(xi)wj(yj)cjrk(yj)ck.

However, from the recoverability point of view, if Ti aborts then Tj and Tk

should be aborted too. To prevent cascading aborts, centralised DBMS usually
avoid PL-2, PL-SI’ and PL-3 transactions to read values written by uncommitted
transactions (PL-1 allow dirty reads). Lock-based systems use long write locks
and read locks (long for PL-3, short for PL-2) to block reads until writes are
committed. In version-based systems reads get the last committed version of
items. In both cases the value obtained comes from a committed transaction at
the time the read is performed.

Similar problems may arise when multiple and concurrent writes are performed
over the same item. In the general case, when a transaction updates an item x

and aborts, the original image of x is restored. However, in executions like the
following one the recovery is not that easy:

wi(xi)wj(xj)cicj .

If Ti aborts the value to be restored should be xj . If Tj also aborts the previous
value was xi but Ti has been aborted too. Thus, the original value has been lost.
To overcome that effect, again DBMS’s do not allow transactions to overwrite
values written by non-committed transactions. Lock-based systems use long
locks for writes to not allow concurrent updates. Alternatively, in version-based
systems new versions are established at commit time. Thus, when a transaction
commits its updates overwrite the last committed version. In both cases the
DBMS does not allow a transaction to overwrite uncommitted values.

In [14], the authors defined an execution as strict if avoids both problems by
delaying reads and writes (i.e., using a lock-based approach). We generalise that
terminology in the following way:

6.1. STRICT HISTORIES 57

Definition 17 (Strict history). A history H is strict if the following conditions
hold:

1. If wi(xi) < rj(xi) ∈ H, ci ∈ H and Ti
wr−→ Tj ∈ EMSG(H) then wi(xi) <

ci < rj(xi) ∈ H.

2. If wi(xi) < wj(xj) ∈ H and ci ∈ H then wi(xi) < ci < wj(xj) ∈ H.

3. If wi(xi) < wj(xj) ∈ H and ai ∈ H then wi(xi) < ai < wj(xj) ∈ H.

This definition fits with lock-based and version-based concurrency control mech-
anisms. The first one will delay operations by using locks while the second one
will update at commit time the last committed version. Note that PL-1 trans-
actions are allowed to see uncommitted value. Notice only reads from PL-2,
PL-SI’ and PL-3 transactions are expected to see committed values in strict
histories since PL-1 transactions are allowed to see dirty reads.

Chapter 7

Extending EMSG to
replicated environments

In this chapter we extend EMSG to evaluate isolation correctness in replicated
histories. Firstly, we extend EMSGs to model replicated executions; then, in
Section 7.2 we define when a replicated and a stand-alone histories are con-
sidered equivalent; independently of the isolation level used by transactions.
Finally, in Section 7.3 we identify the conditions under which the transaction
history produced by a replication protocol is correct.

7.1 Extending EMSG to replicated systems

A replicated system is composed by a set of nodes N . When a transaction
is processed its operations might be executed at several nodes in N . Although
EMSGs can be used to separately model and evaluate the execution of each node,
they cannot represent a transaction execution history of the whole replicated
system. For example, assume two transactions Ti and Tj update the same data
item x at nodes Na and Nb but in a different order. The EMSGs representing
the two executions are depicted in Figure 7.1.

Ti Tj Ti Tj

ww

ww

Figure 7.1: Example: Na and Nb EMSGs

59

60CHAPTER 7. EXTENDING EMSG TO REPLICATED ENVIRONMENTS

Taken separately each EMSG presents a valid execution history, but unfortu-
nately, the global execution is invalid. The cycle is depicted in Figure 7.2.

Ti Tj

ww

ww

Figure 7.2: Example: global execution

Some authors have proposed to combine serialisation graphs to represent exe-
cutions in replicated systems. Lin et al. [40] defined union serialisation graphs
(USG) to present 1-copy-SI, a set of conditions to ensure valid SI-only exe-
cutions. Previously, Bernstein et al. [14] used a similar approach to define
1-copy-serialisability. Those solutions are oriented to single isolation-level exe-
cutions and are not suitable to represent the execution in Figure 7.2 if Ti and
Tj have different isolation requirements.

What we suggest is to extend EMSG by combining local EMSGs into a single
graph — a replicated mixed serialisation graph or RMSG – to admit executions
involving transactions with different isolation levels.

Definition 18 (Replicated mixed serialisation graph (RMSG)). Given a repli-
cated history Hr over a set of nodes N = {n0, ..., nk} and a set of transactions

T = {T0, ..., Tn}, RMSG(Hr) =
k
⋃

a=0

EMSG(Ha
r), being Ha

r the local execution

at node Na and EMSG(Ha
r) its extended mixed serialisation graph.

Then, for instance, Ti
ww−→ Tj ∈ RMSG(Hr) if Ti

ww−→ Tj is in at least one local
EMSG.

Now, we refine the latter definition stating when a RMSG is well-formed.

Definition 19 (Well-formed RMSG). Given a replicated history Hr over a set
of transactions T and the set of local histories H, RMSG(Hr) is well-formed if
the following holds:

(a) Every local history Ha
r ∈ H satisfies Def. 16.

(b) RMSG(Hr) does not contain any directed cycle unless it includes two
adjacent anti-dependency edges sharing a PL-SI’ transaction.

7.2. EQUIVALENCE BETWEEN REPLICATED AND STAND-ALONE HISTORIES61

7.2 Equivalence between replicated and stand-
alone histories

To the best of our knowledge, all research on equivalence between transaction
histories is based on a single isolation level. Conflict and view equivalences
were defined for protocols that guarantee serialisability [14]; SI-equivalence was
proposed in [38]. Hereafter we propose a new definition that is suitable for
transaction executions where multiple isolation levels are supported.

Informally, a replicated history is equivalent to a stand-alone history if all the
following conditions are held:

• Uniform writes : all replicas and the stand-alone system see the same
sequence of updates on each database item (however, note that this does
not imply that every replica sees exactly the same sequence of database
states since updates on different items may be served in different orders
in different replicas),

• Uniform reads : a read operation obtains the same value in the replica
histories and in the stand-alone history,

• Uniform isolation management : all replicas and the stand-alone system
implement isolation levels in the same way.

The above concepts are formalised as follows:

Definition 20 (Equivalence definition). A replicated history Hr and a stand-
alone history H are equivalent if:

C1: H and Hr execute the same set of transactions T and C(H) = C(Hr).

C2: ri(xj) ∈ C(H) iff ri(xj) ∈ C(Hr).

C3: wi(x) < wj(x) ∈ C(H) iff wi(x) < wj(x) ∈ C(Hr).

If Hr and H execute the same set T of transactions, Hr is equivalent to H iff
C(Hr) is equivalent to C(H) since C2 and C3 only consider committed trans-
actions.

C1, C2 and C3 adapt Bernstein et al. [14] view-equivalence definition to our
context. Actually, our definition is a bit stricter since it expects the same
sequence of states in both histories instead of only the same final state. C1
ensures that H and Hr are over the same sets of transactions and commit the
same subset. C2 guarantees that every committed transaction read sees the
same value in Hr and in H. C3 ensures that both H and Hr see the same
sequence of states on every database item.

62CHAPTER 7. EXTENDING EMSG TO REPLICATED ENVIRONMENTS

7.3 Replication protocol correctness

Traditionally, correctness in replication has been associated to 1SR. An execu-
tion of a set of transactions in a replicated system is correct if it is equivalent
to a serial execution of the same set in a centralised system. This correct-
ness criterion ensures ACID properties to transactions and a reasonable replica
consistency level (the exact level depends on the concrete replication strategies
used by the replication protocol [51, 62]). However, for performance reasons
nowadays commercial DBMSs allow applications to weaken the isolation guar-
antees for some transactions, usually because some of them are provided by
the application logic or because the effects of some phenomena are a smaller
problem than the performance impact of avoiding them. Thus, for us a repli-
cated system correctly executes a set of transactions if the result is one-copy
equivalent to an execution of the same set in one of those centralised DBMS,
considering that transactions may have different isolation needs. Now we will
state such a correctness definition based on the equivalence concept introduced
previously. Notice that we are not addressing the issue of whether an appli-
cation can request a weaker isolation level for a given transaction (some other
works have dealt with that issue [12]). What we try to define is under which
circumstances from the external user point of view a replicated system is be-
having like a one-copy system supporting several isolation levels. Thus, we are
addressing replication transparency.

Definition 21 defines when a replicated history can be considered valid.

Definition 21 (Valid replicated history). A replicated history Hr is considered
valid if RMSG(Hr) is well-formed.

Definition 22 states when a valid replicated history Hr should be considered
correct.

Definition 22 (Correct replicated history). A valid replicated history Hr is
correct if there is an equivalent valid history H.

Theorem 2 says that all valid replicated histories are correct.

Theorem 2 (Correctness). Every valid replicated history Hr has an equivalent
valid history H. Therefore, every valid Hr is correct.

A correctness proof and a set of interesting properties can be found in the
appendices.

Part III

Replication protocols

63

Chapter 8

Supporting multiple
isolation levels in
replication protocols

Theorem 2 meets one of the main goals of this work by showing when a repli-
cation protocol correctly manages isolation when transactions with different
isolation requirements are executed concurrently. This part focuses on adding
this support to existing replication protocols.

8.1 Protocols classification

There have been several attempts in the past to classify replication protocols
[24, 25, 61, 59, 60, 17]. In this thesis we focus on the classification presented in
[60].

A replication protocol is composed by a subset of the following atomic steps:

• Submit: the user submits a new transaction to a replica, wich becomes
its local replica.

• Forward: local replica propagates at least the transaction updates. The
data sent and its format depend on the concrete replication scheme and
transaction. It can contain the set of updated values (write-set or WS), the
set of read values (read-set or RS) or even the transaction itself. Notice
that we have slightly varied this step original use. In [60] the Forward
step represents the entire transaction propagation and is used only in the
active replication scheme. We use it in all schemes to represent when
the transaction operations are propagated without expecting any specific

65

66 CHAPTER 8. REPLICATED ISOLATION SUPPORT

format (transaction, WS, RS) and even assuming that reads might not be
propagated at all.

• Processing: transaction operations are executed on the local database
copy.

• Certification: the transaction is certified against concurrent transactions
to ensure the isolation guarantees.

• Termination: replica starts an agreement protocol to consistently decide
the transaction’s fate.

• Update: once received and certified, updates are applied in the local
replicas.

• End: transaction result is sent back to the user.

Submit, Forward, Processing and End steps are mandatory but the others may
appear depending on the concrete replication scheme used. In [60] the authors
identify the following replication schemes:

• Active Replication: a transaction is initially sent by the user to any of
the nodes in the system, which becomes its local replica. The transaction
is immediately forwarded to be deterministically processed by all replicas.
All replicas send the result back to the user to prevent failures.

• Certification-Based Replication: transaction is processed in the local
replica and, before committing, its RS and WS are forwarded to be deter-
ministically certified by all replicas. If it passes the certification step, the
WS is applied and the transaction committed. Otherwise, it is aborted.
The local replica sends the result back to the user.

• Weak Voting Replication: similar to Certification-Based Replication
but certification is performed only in the local replica and the result prop-
agated in a termination step.

• Primary Copy Replication: all transactions are executed by the same
replica (primary copy) and the updates forwarded to the other replicas
(secondary or backup copies). The primary copy also sends the result
back to the user. This one is the simplest replication technique since
isolation is fully managed by the primary copy local DBMS.

Lazy Replication it is not considered here since it might violate some basic
ACID properties [17, 60].

The replication schemes as presented in [60] were supposed to provide serialis-
able (PL-3) isolation level. To support other isolation the following steps should
be extended:

8.2. CONFLICT RESOLUTION 67

• Forward: transaction isolation level should be included as a part of the
propagation message.

• Processing: when transaction operations are executed in the replica local
copy of the database, it should be provided locally the same isolation level
requested globally.

• Certification: the certification process should contemplate the isolation
level requested by the transaction.

• Termination: the termination strategy should also consider the transac-
tion isolation level requested.

From now on, we suggest how the previous replication schemes can be extended
to correctly support PL-1, PL-2, PL-SI and PL-3 transactions concurrently.
We also prove the correctness of those extensions by showing that any possible
execution will ensure Theorem 2.

8.2 Conflict Resolution

In this chapter we describe in detail the main eager serialisable replication
schemes (active, certification-based, weak-voting and primary copy) and present
modified versions to support several isolation levels. Changes are highlighted to
stress the slight differences between both versions. New schemes correctness is
also proved by using Theorem 2.

Schemes pretend to show the big picture of managing multiple isolation levels
with the main eager replication techniques and that is why they do not go into
implementation details. They have been constructed to be simple and easy to
understand. Actually, some of the existing protocols include some optimiza-
tions which derive in subtle variations of the scheme behaviour. Although those
variations have not been included in the schemes due to simplicity, they are com-
mented in the explanations, as footnotes or in the complete example protocols
detailed in Chapter 9.

The algorithms presented hereafter assume that every node database local copy
is managed by a DBMS which ensures correct and strict executions (see Defini-
tion 17 at page 57). If wi(xi) < wj(xj) then ci < wj(xj) and if wi(xi) < rj(xi),
Ti is PL-2, PL-SI’ or PL-3 and Ti commits then ci < rj(xi). So, given a history
H, if Ti

wr−→ Tj ∈ EMSG(H) or Ti
ww−→ Tj ∈ EMSG(H) then ci < cj ∈ H.

Assuming an item x in the database with a value x0, a side effect of most cen-
tralised DBMS is that, if ri(x0)wj(xj), Ti requests PL-3 and commits then
ri(x0)ciwj(xj). The reason depends on the technique used. In lock-based
systems, PL-3 is ensured by using long locks for reads and writes [6, 42].
That forbids some phenomena like non-repeatable read (i.e., executions like
ri(x0)wj(xj)ri(xj)) since ensures that never an item x is overwritten if it has

68 CHAPTER 8. REPLICATED ISOLATION SUPPORT

been read or written by an uncommitted transaction. In version-based sys-
tems, to ensure PL-3 reads are treated as writes by using SELECT FOR UPDATE

sentences[22, 45] or similar mechanisms [48, 44]. Summarizing, locks and ver-
sions ensure that if ri(x0)wj(xj) and Ti commits then ri(x0)ciwj(xj). Thus, if
Ti

rw−→ Tj then ci < cj .

Once a transaction reaches the update step to be committed in a given node,
it may be aborted if an integrity constraint is violated. Existing standalone
DBMS check integrity constrains during the execution and, hence, during the
processing step. In this case that will not affect the following schemes since
the transaction is aborted in the local replica before propagation in the case
of certification, weak-voting and primary-copy schemes and deterministically in
all replicas in the active replication scheme. However, some protocols proposed
in literature [37, 15, 41] suggest to perform those checks at commit time. If
that happens, transactions may abort once they have been validated by replicas
and are going to be persisted in the local DBMS [50, 40]. That would be easily
supported in the schemes presented since all nodes will deterministically abort
or commit the transaction but it will make the proofs slightly more complex.
In order to make them more readable, we assume that once a scheme decides to
commit a transaction during the validation step then this transaction is never
aborted by the local DBMS during the update state.

Finally, some schemes are based on a virtual clock to calculate start and commit
timestamps for transactions executed in the system. When a reliable total order
broadcast primitive is used, those clocks are usually implemented by counting
committed or validated update transactions (counting committed transactions
can be used only if transactions commit in delivery order). In this section we
do not use any specific implementation but we do assume a transformation
function clock with the following properties. Given a transaction Ti and any
possible replicated history Hr generated by the scheme:

• All nodes involved in Ti’s execution share the same value for clock(si) and
clock(ci). clock(si) is usually calculated at the local replica and propa-
gated to the rest of the nodes while clock(ci) is deterministically calculated
at every node.

• clock is a time-precedes order over C(Hr) and, hence:

– for any transaction Ti, clock(si) < clock(ci) and

– given Ti, Tj transactions committed in Hr, clock(ci) < clock(sj) or
clock(sj) < clock(ci).

• Given Ti and Tj two committed and conflicting transactions, if ci < cj ∈
Hr then clock(ci) < clock(cj).

To simplify the notation, we define as sti = clock(si) the start-timestamp of Ti

and cti = clock(ci) as the commit-timestamp.

8.2. CONFLICT RESOLUTION 69

8.2.1 Active replication scheme

An active replication protocol propagates every transaction to all replicas using
an atomic broadcast. Once delivered, transactions are deterministically exe-
cuted to ensure consistency.

In this context, deterministically means that all replicas resolve conflicts in
the same way. Expressed in terms of dependencies, if two conflicting oper-
ations o1 and o2 are executed in replicas Na and Nb and produce edges ea
in EMSG(Ha) and eb in EMSG(Hb), then ea = eb. If a protocol propa-
gates all transactions and executes them deterministically in all replicas, then
EMSG(Na) = EMSG(Nb). Two possible mechanisms to achieve determin-
ism are to request all necessary locks in an atomic step before any transaction
operation is executed [35] and to propagate every operation separately [20].

A general PL-3 replication schema is depicted here:

1. Submit : a replica Ni receives a transaction Ti from client Ci.

2. Forward : Ti is atomically broadcast to all replicas.

3. Processing : when Ti is delivered at a replica Na:

• Ti operations are executed deterministically.

4. End : once Ti operations have been completely executed in Na:

• Ti is committed.

• If Ni = Na, the transaction result is sent back to Ci.

Some active protocols propagate only update operations [54]. For the sake of
simplicity and according to [60], we assume all transactions are propagated and
all operations are executed by all replicas in the system. This approach may be
used to provide fault tolerance even in the presence of byzantine errors [47].

The previous schema represents active replication as presented in [60] and sup-
ports only PL-3 isolated transactions. Because it is active replication, all trans-
actions are executed in all replicas which limits the system scale-out capabilities
[24]. Since all transactions require PL-3 isolation, all conflicts among operations
of distinct transactions are treated as obligatory edges and hence make replicas
EMSG and the global RMSG more dense. Determinism implies ordering among
operations in obligatory edges and ordering can either be ensured using locks
(operations wait until all previous ordered operations are executed), which de-
creases concurrency and increases execution time, or optimism (operations are
optimistically executed without wait and ordering violations are solved aborting
affected transactions), which increases abort rate. Allowing weaker isolation lev-
els does not solve the intrinsic problem of executing everything everywhere (i.e.,

70 CHAPTER 8. REPLICATED ISOLATION SUPPORT

scale-out limit) but reduces locking/aborting rate and the number of ordering
restrictions to be checked or managed.

Active replication scheme does not need to be changed to support multiple
isolation levels. We only must be sure that every replica executes every trans-
action deterministically with the specified isolation level. That is automatically
achieved if every transaction explicitly establishes its isolation level with a SET

TRANSACTION ISOLATION LEVEL sentence or all nodes use the same level by de-
fault. In other cases, the protocol might have to include the isolation level in
every transaction propagation message and be sure that it is notified to the local
DBMS when transactions are going to be locally executed.

Since all replicas execute deterministically and in the same order the same set
of transactions and local DBMS are supposed to be valid and strict, the re-
sulting replicated executions are trivially correct. Notice that EMSG(Ha) =
RMSG(Hr) for any node Na. More formally:

Theorem 3 (Active scheme correctness). Any possible history Hr produced by
an active-based protocol is correct.

Proof. Assume an active protocol P executes a set of transactions T in a system
composed by N nodes. Hr represents the global execution produced in the sys-
tem and H is the set of local histories representing the executions produced in
every node in N . Since active protocols execute all transactions entirely and de-
terministically in all replicas, for any two histories Ha, Hb ∈ H, EMSG(Ha) =
EMSG(Hb). From Definition 18, RMSG(Hr) =

⋃

Ha∈H

EMSG(Ha). Thus,

∀Ha ∈ H, RMSG(Hr) = EMSG(Ha). Since nodes are supposed to produce
correct local histories, Hr should be correct also, i.e., RMSG(Hr) is well-formed
as we prove below:

• Every local history Ha ∈ H satisfies Def. 16. Active replication is
based on the assumption that every local DBMS produces correct local
histories. Thus, this condition is ensured by definition of active replication.

• RMSG(Hr) does not contain any forbidden cycle. Since every node
is assumed to produce correct local histories, EMSGs do not have forbid-
den cycles. Since RMSG has exactly the same edges and vertices than any
EMSG, it will not have any cycle forbidden either.

8.2.2 Certification-based replication scheme

In a certification-based replication protocol, a transaction is initially executed
in its local replica. Once it requests to commit, the write-set is gathered and
broadcast to the entire set of replicas. When it is delivered in a replica, passes

8.2. CONFLICT RESOLUTION 71

a certification step to check if conflicting transactions have been executed else-
where. If it succeeds, the updates are applied and the transaction committed.
Otherwise, the write-set is discarded and the transaction aborted. During the
certification step, no communication is performed with other nodes. Read-only
transactions are entirely executed and committed in the local replica without
being broadcast. The original scheme for PL-3 transactions is depicted here:

1. Submit : when a replica Ni receives a transaction Ti from a client Ci:

• Ti is started at the underlying DBMS with PL-3 isolation level.

2. Processing : when replica Ni is ready to execute Ti:

• Ti’s operations are executed until commit is requested1. A read oper-
ation over item x will observe at least the last update of x performed
by a transaction Tj with the biggest commit timestamp such that
ctj < sti.

3. Forward : when Ci requests to commit Ti:

• Ti’s writes and reads are collected into WSi and RSi.

• If WSi = ∅, Ti is committed.

• If WSi 6= ∅, WSi and RSi are atomically broadcast to all replicas.

4. Validation: when WSi is delivered at a replica Na:

• WSi is discarded if there is a committed transaction Tj such that
RSi ∩WSj 6= ∅ and sti < ctj .

5. Update: if Ti terminates the validation step at Na:

• If Ni = Na, Ti is aborted if WSi is discarded during the valida-
tion step. Otherwise, it is committed, the updates are persisted and
become available at Na to other transactions executed at this node.
Notice that local transaction writes are persisted in committing order,
not in execution order. Fortunately, all known concurrency control
mechanisms ensure such a restriction.

• If Ti passes the validation step and Ni 6= Na, WSi is applied. The
implementation of the protocol must ensure that WSi is not aborted
by the replica’s DBMS.

6. End : if Na = Ni, Ti’s result is sent back to Ci.

1Some protocols [32] delay writes until the termination step.

72 CHAPTER 8. REPLICATED ISOLATION SUPPORT

The previous scheme contemplates only PL-3 transactions. Once a transaction
commits in a given replica, the scheme assumes that its updates are available
to any transaction executed at that replica.

From now on, we modify the Submit, Forward and Validation steps to also
support PL-1, PL-2 and SI isolation levels. We also show how Theorem 2 can
be used to prove the correctness of the new scheme.

Multiple Isolation Levels Certification-Based Scheme or MCBS:

1. Submit : when a replica Ni receives a transaction Ti and its isolation
level from a client Ci:

• Ti is started at the underlying DBMSwith the requested isolation
level.

2. Processing : when replica Ni is ready to execute Ti:

• Ti’s operations are executed until commit is requested2. In PL-
2 and PL-3, a read operation over item x will observe at least
the last update of x performed by a transaction Tj with the biggest
commit timestamp such that ctj < sti. For PL-1 transactions,
read dependencies are not obligatory and so there are no
restrictions on reads. If Ti is PL-SI’, Ti’s snapshot includes
the updates performed by the last available transactions or,
in other words, if Ti sees or overwrites xk version of item x then
ctk < sti. For any newer version xl, sti < ctl.

3. Forward : when Ci requests to commit Ti:

• Ti’s writes are collected into WSi. For PL-3 transactions, reads
are also gathered into RSi.

• If WSi = ∅, Ti is committed.

• If WSi 6= ∅, WSi, RSi (only for PL-3 transactions) and Ti’s
isolation level are atomically broadcast to all replicas.

4. Validation: when WSi is delivered at a replica Na:

• If Ti is PL-3, WSi is discarded if there is a committed transaction
Tj such that RSi ∩WSj 6= ∅ and sti < ctj .

• If Ti is PL-SI’, WSi is discarded if there is a committed
transaction Tj such that WSi ∩WSj 6= ∅ and sti < ctj .

• PL-1 and PL-2 do not need to be validated.

5. Update: if Ti terminates the validation step in Na:

2Some protocols [32] delay writes until the termination step.

8.2. CONFLICT RESOLUTION 73

• If Ni = Na, Ti is aborted if WSi is discarded during the valida-
tion step. Otherwise, it is committed, the updates are persisted and
become available to other transactions executed at Na. Notice that
local transaction writes are persisted in committing order, not in exe-
cution order. Fortunately, all known concurrency control mechanisms
ensure such a restriction.

• If Ti passes the validation step and Ni 6= Na, WSi is applied. The
implementation of the protocol must ensure that WSi is not aborted
by the replica’s DBMS.

6. End : if Na = Ni, Ti’s result is sent back to Ci.

Notice that validation, update and end steps are executed as a single atomic step.
To increase the performance of the system, some existing protocols [32, 38, 5]
execute validation and termination separately, allowing validation even if the
previous write-sets are not yet applied.

Given a PL-SI’ transaction Ti, the algorithm also assumes that Ti’s snapshot
includes any transaction Tj such that ctj < sti. That actually means that Ti’s
snapshot gets the last committed state existing at Ti’s local replica. Existing
centralised DBMS fit that restriction if the number of validated or committed
transactions at the local replica is used to calculate the start timestamp.

Below we first prove that all replicas apply write-sets in the same order. Then,
we show that the conditions of Definition 21 are satisfied.

Lemma 5 (MCBS applies write-sets in the same order). Given a replicated
history Hr over a set of transactions T and a set of nodes N .

• For any two replicas Na, Nb ∈ N that apply WSi and WSj, they apply
WSi and WSj in the same order.

• If a replica Na ∈ N applies WSi then every other replica Nb ∈ N applies
WSi.

Proof. Write-sets are propagated using an atomic broadcast and, hence, are
delivered to all replicas in the same order. Validation, update and end are
executed in a single atomic step and so all the write-sets are applied in order of
their delivery, and this fact proves the first part of Lemma 7.

Assume WSi is going to be validated. We prove by induction over the number n
of previously committed update transactions that the second part of the Lemma
holds once WSi is applied.

• Base case (n = 0): no update transaction has been previously delivered
and committed and, thus, Ti commits at Na and Nb.

74 CHAPTER 8. REPLICATED ISOLATION SUPPORT

• Induction hypothesis (n < l): the lemma holds when Ti is applied if
less than l update transactions committed.

• Induction step (n = l): l update transactions committed previously.
From the induction hypothesis, when the last update transaction commit-
ted the lemma was not violated and, thus, all Na and Nb applied the same
set U of update transactions and in the same order. When Ti is applied
the behaviour of MCBS varies depending on the isolation level:

– Ti is PL-1 or PL-2 : If Ti requests a PL-1 or PL-2 isolation level it
is directly validated and applied in both replicas.

– Ti is SI : if Ti is PL-SI’, since both nodes observe the same set U of
previously committed transactions when Ti is going to be validated,
the validation result will be different in both replicas if there is a
committed transaction Tj ∈ U for whichWSi∩WSj 6= ∅ and sti < ctj
in Na; but ctj < sti at Nb. Since we assume both nodes share the
same values for sti and ctj Ti’s will get the same validation result.

– Ti is PL-3 : the same proof can be applied for PL-3 transactions.
The only difference is that RSi is used instead of WSi. However, in
both cases, it is compared against previously applied write-sets.

Therefore, Ti never obtains a different validation result at Na and Nb and this
proves the Lemma’s second assertion.

Theorem 4 (MCBS protocols are correct). Any history Hr produced by a
MCBS protocol is correct.

Proof. Hr is correct if RMSG(Hr) is well-formed (see Def. 21 and Theorem 2).
To begin with, we prove each condition of Definition 19 separately:

• Every local history Ha ∈ H satisfies Def. 16. MCBS is based on the
assumption that every local DBMS produces correct local histories. Thus,
this condition is ensured by definition of MCBS.

• RMSG(Hr) does not contain any forbidden cycle. Only the cycles
with two consecutive anti-dependency edges sharing a PL-SI’ transaction
are allowed. RMSG(Hr) only includes obligatory edges and an edge e is
obligatory if:

– e = Ti
ww−→ Tj : since we assume strict histories and update transac-

tions are applied in the same order at all nodes, ci < cj ∈ Hr and
cti < ctj . If Tj is PL-SI’ then also cti < stj since otherwise is aborted
in the validation step.

8.2. CONFLICT RESOLUTION 75

– e = Ti
wr−→ Tj and Tj is PL-2, PL-SI’ or PL-3: since we only al-

low strict histories then ci < cj in Tj ’s local node. The total order
broadcast ensures that ci < cj in the other nodes if Tj is an update
transaction and, otherwise, Tj is executed only at the local node.
Consequently, ci < cj ∈ Hr and, hence, cti < ctj . If Tj is PL-SI’
MCBS also assumes that every read gets the value written by the
transaction Ti with biggest commit timestamp such that cti < stj .

– Ti
rw−→ Tj and Ti is PL-SI’ or PL-3: if Ti is PL-SI’ and reads a value

xk from its snapshot, ctk < sti and there is no other transaction Tl in
that snapshot which updates x and ctk < ctl. Then, sti < ctj . If Ti

is PL-3 then, by assumption, ci < cj (see this chapter introduction)
in Ti’s local node. Recall that, if Ti is an update transaction and is
propagated, the total order delivery and the atomicity in validation
and update steps ensure that all nodes commit the writesets in the
same order. Thus, ci < cj ∈ Hr and the virtual clock ensures that
cti < ctj .

By absurd reduction, assume there is a cycle C = {V,E} = T1e1T2e2...enT1 ∈
RMSG(Hr) without two consecutive anti-dependency edges sharing a PL-
SI’ transaction. We differentiate two possible situations:

– C does not include any anti-dependency edge starting with a PL-SI’
transaction. In that case, for any edge e = Ti −→ Tj ∈ E, cti < ctj
and, hence, for every vertex Ti ∈ V , cti < cti which is a contradiction.

– C includes anti-dependencies starting with a PL-SI’ transaction. As-
sume e = Ti

rw−→ Tj ∈ E is one of those anti-dependency edges.
Then sti < ctj . Since C does not contain two consecutive anti-
dependencies sharing a PL-SI transaction, the previous edge e′ in

C is a dependency edge. If e′ = Tk
ww/wr
−→ Ti then ctk < sti be-

cause Ti is PL-SI. Then, ctk < ctj . For any other edge Ta −→ Tb ∈
C, cta < ctb and, thus, excluding PL-SI’ transactions starting an
anti-dependency edge in C, cti < cti for any transaction Ti ∈ C,
which is a contradiction. More formally, for every path P ⊆ C

such that P = Tie
′
pT

si
p epTj , T si

p is a PL-SI’ transaction and ep is
an anti-dependency edge, we say that P is a virtual path of C, e′p
is the dependency edge in P , ep is the anti-dependency edge. Since
ctk < ctj , e

v
P = Ti −→ Tj is the virtual start-dependency edge of

P . Given P the set of virtual paths in C, we define Ep =
⋃

P∈P

evP ,

ESI =
⋃

P∈P

ep∪
⋃

P∈P

e′p and VSI =
⋃

P∈P

esiP . We can define a new cycle

Cv = {Vv = V − VSI , Ev = (E − ESI) ∪ Ep}. Notice that for any
edge Ti

v−→ Tj ∈ Ev, ctk < ctj and, then, for every vertex Ti ∈ Cv,
cti < cti which is a contradiction.

Concluding, RMSG(Hr) does not include cycles without two consecutive
anti-dependency edges sharing a PL-SI’ transaction.

76 CHAPTER 8. REPLICATED ISOLATION SUPPORT

As a result, every replicated history Hr generated by a MCBS protocol is valid.
Hence, Theorem 2 is applicable to Hr and the valid replicated history is correct.

8.2.3 Weak voting replication scheme

As with a certification-based scheme, every transaction is initially executed in its
local replica. However, once it requests to commit, a weak voting protocol only
propagates the write-set. When it is delivered, the local replica validates and
broadcasts the result. The other replicas hold the write-set until the validation
result message arrives. At that moment, the write-set is committed or discarded
depending on the result type (commit or abort). The original scheme for PL-3
transactions is outlined here:

1. Submit : when a replica Ni receives a transaction Ti from a client Ci:

• Ti is started at the underlying DBMS with PL-3 isolation level.

2. Processing : when replica Ni is ready to execute Ti:

• Ti operations are executed until commit is requested3. A read opera-
tion over item x will observe at least the last update of x performed by
a transaction Tj with biggest commit timestamp such that ctj < sti.

3. Forward : when Ci requests to commit Ti:

• Ti’s writes and reads are collected into WSi and RSi.

• If WSi = ∅, Ti is committed.

• If WSi 6= ∅, WSi is atomically broadcast to all replicas (notice that
RSi is not propagated).

4. Validation: when WSi is delivered at a replica Na:

• If Na = Ni and an abort message has been previously sent for Ti,
WSi is discarded. Otherwise the validation continues.

• If Na = Ni and Ti has not been previously aborted, WSi is discarded
if a transaction Tj has been previously validated, RSi∩WSj 6= ∅ and
sti < ctj . The result is propagated.

5. Termination: if Ti terminates the validation step in Na:

• Wait for the validation result delivery.

3As with certification-based protocols, some protocols delay writes until the termination
step.

8.2. CONFLICT RESOLUTION 77

6. Update: when Ti’s validation result is delivered at Na:

• If Ni = Na, Ti is aborted if WSi is discarded during the valida-
tion step. Otherwise, it is committed, the updates are persisted and
become available at Na to other transactions executed at this node.
Notice that local transaction writes are persisted in committing order,
not in execution order. Fortunately, all known concurrency control
mechanisms ensure such a restriction.

• If Ti passes the validation step and Ni 6= Na, WSi is applied. The
implementation of the protocol must ensure that WSi is not aborted
by the replica’s DBMS. If Ti is aborted then WSi is discarded.

7. End : if Na = Ni, Ti’s result is sent back to Ci.

As suggested in Chapter 8, we modify the Submit, Forward and Validation steps
of the original scheme to also support PL-1, PL-2 and SI isolation levels. We also
show how Theorem 2 can be used to prove the correctness of the new scheme
which we call Multiple Weak Voting Scheme or MWVS:

1. Submit : when a replica Ni receives a transaction Ti and its isolation
level from a client Ci:

• Ti is started at the underlying DBMSwith the requested isolation
level.

2. Processing : when replica Ni is ready to execute Ti:

• Ti operations are executed until commit is requested. For PL-3 and
PL-2 transactions, a read operation over item x will observe at
least the last update of x performed by a transaction Tj with biggest
commit timestamp such that ctj < sti. For PL-1 transactions,
read dependencies are not obligatory and so there are no
restrictions on reads. If Ti is PL-SI’, Ti’s snapshot includes
the updates performed by the last available transactions or,
in other words, if Ti’s sees or overwrites xk version of item x then
ctk < sti. For any newer version xl, sti < ctl.

3. Forward : when Ci requests to commit Ti:

• Ti’s writes and, only for PL-3 transactions, also reads are col-
lected into WSi and RSi.

• If WSi = ∅, Ti is committed.

• If WSi 6= ∅, WSi and Ti isolation level are atomically broadcast
to all replicas (notice that RSi is not propagated).

4. Validation: when WSi is delivered at a replica Na:

78 CHAPTER 8. REPLICATED ISOLATION SUPPORT

• If Na = Ni and an abort message has been previously sent for Ti,
WSi is discarded. Otherwise the validation continues.

• If Ti is PL-3, Na = Ni and Ti has not been previously aborted,
WSi is discarded if a transaction Tj has been previously validated,
RSi ∩WSj 6= ∅ and sti < ctj . The result is propagated.

• If Ti is SI, WSi is discarded if there is a committed transac-
tion Tj, that has already been validated, WSi ∩WSj 6= ∅ and
sti < ctj .

• PL-1 and PL-2 do not need to be validated.

5. Termination: if Ti terminates the validation step in Na:

• If Ti is PL-3, wait for the validation result delivery.

6. Update: when Ti’s validation result is available at Na:

• If Ni = Na, Ti is aborted if WSi is discarded during the validation
step. Otherwise, it is committed, the updates persisted and become
available at other transactions executed at Na. Notice that local
transaction writes are persisted in committing order, not in execution
order. Fortunately, all known concurrency control mechanisms ensure
such a restriction.

• If Ti passes the validation step and Ni 6= Na, WSi is applied. The
implementation of the protocol must ensure that WSi is not aborted
by the replica’s DBMS. If Ti is aborted then WSi is discarded.

7. End : if Na = Ni, Ti’s result is sent back to Ci.

Like in MCBS, Validation, Termination, Update and End steps are executed as
a single atomic step.

The correctness proof of MWVS follows a similar approach to the one for MCBS.
We first prove that all replicas apply write-sets in the same order, and then we
show that the conditions of Definition 21 are satisfied.

Lemma 6 (MWVS applies write-sets in the same order). Given a replicated
history Hr over a set of transactions T and a set of nodes N .

• for any two replicas Na, Nb ∈ N that apply WSi and WSj, they apply
WSi and WSj in the same order.

• if a replica Na ∈ N applies WSi then every other replica Nb ∈ N applies
WSi.

8.2. CONFLICT RESOLUTION 79

Proof. The correctness proof is almost identical to the proof of Lemma 7. The
only difference is related on how PL-3 transactions are validated in both schemes
and affects the correctness of second part of the Lemma. In this case, the
validation is performed only at Ti’s and the result propagated to the rest of the
replicas. Thus, the termination result is trivially the same in all of them.

Theorem 5 (MWVS protocols are correct). Any possible history Hr that can
be produced by a MWVS protocol is correct.

Proof. The proof is identical to the correctnes proof of Theorem 4.

8.2.4 Primary copy replication scheme

In a pure primary copy replication protocol, all transactions are completely
executed by the same local replica. Before committing, updates are propagated
to the rest of the replicas, known as secondary or backup, using a reliable
broadcast and applied in the same order to preserve consistency. Since the
sender is always the primary replica, order can be easily ensured by numbering
update messages and taking care replicas apply them in order.

Unfortunately, the performance is limited by the primary replica and, hence,
primary copy protocols do not scale well. To improve scalability, most protocols
execute read-only transactions at backup nodes while the primary replica focuses
on update transactions. This approach may work for small/medium read-only
intensive systems with short update transactions but not in the general case
[60].

A general PL-3 primary copy replication schema is depicted here:

1. Submit : when a replica Ni receives a transaction Ti from a client Ci:

• If Ni is not the primary replica Np and Ti is an update transaction,
Ni redirects Ci’s request to Np which becomes Ti’s local node.

2. Processing : when replica Ni is ready to execute Ti:

• Ti operations are executed until commit is requested. A read opera-
tion over item x will observe at least the last update of x performed by
a transaction Tj with biggest commit timestamp such that ctj < sti.

3. Forward : when Ci requests to commit Ti:

• Ti writes are collected into WSi.

• If WSi = ∅, Ti is committed.

• If WSi 6= ∅, WSi is forwarded using a reliable FIFO broadcast.

4. Update: when WSi is delivered at Na.

80 CHAPTER 8. REPLICATED ISOLATION SUPPORT

• If Na = Np, Ti is committed.

• If Na 6= Np, WSi is applied. The implementation of the protocol
must ensure that WSi is not aborted by the replica’s DBMS.

5. End : if Na = Ni the result is sent back to Ci.

It is straightforward to provide multiple isolation levels in these protocols since
concurrency is fully handled by the primary replica. As with active replica-
tion, the original scheme can be used without modifications if all replicas share
the same default isolation level and a SET TRANSACTION ISOLATION LEVEL sen-
tence is used when transactions have other isolation requirements. Otherwise,
the replication protocol only extra concern is to communicate to local replica the
isolation level requested by the client for every transaction. For update trans-
actions the primary node will be the local replica but read-only transactions
might be executed by any replica.

PL-SI’ transactions are assumed to see the last snapshot available considering

the system virtual clock. Thus, if Ti
ww/wr
−→ Tj and Tj is PL-SI’ then cti < stj .

If Ti
rw−→ Tj then sti < ctj .

In the primary copy scheme, isolation management is almost entirely delegated
to the primary replica concurrency protocol. AssumingNp is the primary replica
and Hp the resulting EMSG when a set of transactions T is executed, Hp is
supposed to be valid and strict. Since secondary replicas only execute read-
only transactions and writesets in delivery order, the resulting Hr will be also
correct. That is described in detail in Theorem 6 proof but, first, we will prove
that for any two update transactions, its writes are applied in the same order
in all replicas.

Lemma 7 (Primary Copy Scheme applies write-sets in the same order). Given
a replicated history Hr over a set of transactions T and a set of nodes N .

• for any two replicas Na, Nb ∈ N that apply WSi and WSj, they apply
WSi and WSj in the same order.

• if a replica Na ∈ N applies WSi then every other replica Nb ∈ N applies
WSi.

Proof. All update transactions are executed at the primary replica Np, which
is supposed to be valid and strict. Once a transaction Ti is going to commit,
WSi is propagated using a FIFO reliable broadcast and applied at all secondary
nodes in the same order. Thus, all nodes apply updates also in delivery order.
Concluding, all nodes apply the same updates and in the same order.

Theorem 6 (Theorem 2 conditions are satisfied). Any possible history Hr pro-
duced by a Primary copy based protocol is correct.

8.2. CONFLICT RESOLUTION 81

Proof. Hr is correct if RMSG(Hr) is well-formed (see Def. 21 and Theorem 2).
To begin with, we prove each condition of Definition 19 separately:

• Every local history Ha ∈ H satisfies Def. 16. Primary copy is based
on the assumption that every local DBMS produces correct local histories.
Thus, this condition is ensured by definition of the primary copy scheme.

• RMSG(Hr) does not contain any forbidden cycle. Only the cycles
with two consecutive anti-dependency edges sharing a PL-SI’ transaction
are allowed. We first prove that ci < cj for any edge e ∈ RMSG(Hr)
unless e is an anti-dependency edge starting with a PL-SI’ transaction.
Next we prove that RMSG(Hr) is correct. RMSG(Hr) only includes
obligatory edges. An edge e is obligatory if:

– e = Ti
ww−→ Tj : since we assume strict local histories and writes are

applied in the same order at all replicas (see Lemma 7), ci < cj at
all replicas and, hence, ci < cj ∈ Hr and cti < ctj . If Ti is PL-SI’
then the protocol also ensures that cti < stj .

– e = Ti
wr−→ Tj and Tj is PL-2, PL-SI’ or PL-3. Since we assume

strict local histories, ci < cj at Tj ’s local node. If Tj is a read-only
transaction then it is executed only at Tj , ci < cj ∈ Hr and cti < ctj .
If it is an update-transaction then all nodes execute the writes in the
same order ci < cj ∈ Hr anyway and cti < ctj . If Tj requested PL-SI’
then the replication protocol ensures cti < stj .

– e = Ti
rw−→ Tj and Ti is PL-SI’ or PL-3. Since we assume strict

histories, if Ti is PL-3 then ci < cj in Ti’s local node. As with
read-dependencies, if Ti is read only then cti < ctj ∈ Hr since Ti

is executed only at its local node. If it is an update-transaction
then ci < cj ∈ Hr because all nodes execute and commit the same
writesets in the same order and, hence, cti < ctj anyway. However,
if Ti is PL-SI’ we only can say that si < cj at Ti’s local node. If Ti

is read-only then the protocol ensures that sti < ctj .

By contradiction, assume RMSG(Hr) shows a cycle without two consec-
utive anti-dependency edges sharing a PL-SI’ transaction. Then, for any
edge e = Ti

rw−→ Tj such that Ti is PL-SI’, the previous edge in the cycle

is a dependency edge, say e′ = Tk
ww/wr
−→ Ti, and ctk < sti < ctj . For any

other edge e′′ = Tn −→ Tn+1 in the cycle ctn < ctn+1, since it is not an
anti-dependency starting with a PL-SI’ transaction. Then, if there is such
a cycle we will get a contradiction ctn < ctn and, thus, those cycles do not
appear in RMSG(Hr).

Chapter 9

Examples

In this chapter we show how the changes suggested in Chapter 8.2 can be applied
to some existing protocols. We focus on weak voting and certification-based al-
gorithms because in active and primary copy protocols isolation is fully managed
by local DBMS and do not need any extra changes except including the isolation
level in the transaction propagation message.

9.1 SER-CBR

In this section we show how the changes suggested in Section 8.2.2 can be
applied to an existing certification-based protocol. We have taken SER CBR,
a variation of the SI CBR protocol from [50] (also an adaptation from [33, 46])
which supports only PL-3, and extended it to also support SI, PL-2 and PL-1.
We call the new protocol multiple isolation level certification-based replication
protocol or MUL CBR. SER CBR and SI CBR are combinations and variations
of other well known protocols [32, 19, 38, 17] and the changes suggested in this
chapter can be easily exported to those protocols.

SER CBR (see Figure 9.1) needs transaction read-sets in order to validate trans-
actions (see its certify method). The first difference revealed by MUL CBR
(see Figure 9.2) is that it includes transaction isolation level as a part of the
broadcast message (line 14). The second difference is that read-set propaga-
tion is used only for PL-3 transactions (lines 15-16). In contrast to SER CBR,
the certify method of MUL CBR validates transactions depending on their
isolation level. PL-2 and PL-1 transactions do not require validation: atomic
broadcast together with local DBMS concurrency control are sufficient to forbid
the phenomena. PL-SI’ transactions only require checks for conflicts between
writes. Thus, reads are only involved in PL-3 transactions validation and, hence,
only in those cases the readset should be propagated. Notice that only a few
changes are required to the original protocol.

83

84 CHAPTER 9. EXAMPLES

1 Init at Na 23 Upon 〈rs, ws〉 reception at Na

2 count ← 0 24 mutex.lock
3 Upon t received at Na 25 statust ← certify(rs, ws, wslista)
4 t.start ← count 26 if (statust = COMMIT) then
5 Execute t. 27 count ← count +1
6 On t commit request at Na 28 ws.commit ← count
7 ws.data ← wset(t) 29 if (ws.local 6= Na) then
8 ws.start ← t.start 30 DB.apply(ws)
9 ws.local ← Na 31 statust ← DB.commit(t)
10 if (ws.data = ∅) then 32 if (statust = COMMIT) then
11 t.commit ← count 33 append(wslista, ws)
12 send(c,COMMIT) 34 else DB.abort(t)
13 else 35 mutex.unlock
14 rs.data ← rset(t) 36 if (ws.local = Na) then
15 TO-bcast(N, 〈rs, ws〉) 37 send(c, statust)
16 certify(rs, ws, wslista)
17 for (old ws ∈ wslista) do
18 if (ws.start 〈 old ws.commit) and
19 (rs.data ∩ old ws.data 6= ∅) and
20 (ws.local 6= old ws.local) then
21 return ABORT
22 return COMMIT

Figure 9.1: SER CBR certification-based protocol.

MUL CBR fits perfectly with the MCBS scheme in Chapter 8.2.2 (page 70).
There is only one significant variation related on how conflicts between writesets
and local unvalidated transactions are resolved. This protocol assumes that a
certified writeset might be aborted by the local DBMS after certification due
to some integrity constraint. This process is assumed to be deterministic and,
thus, all local DBMS make the same decision about a given writeset. That may
increase the number of aborted transactions since some certified transactions
may abort. Then, RMSG histories may show less edges compared to the original
scheme but the scheme correctness can be applied anyway in this case.

To show that MUL CBR is correct we only need to prove that the virtual
clock based on counting committed updated transactions is consistent with the
assumptions made at the start of Chapter 8.2. Unfortunatelly, the partial order
associated to the timestamp calculation method used ni MUL CBR is not a
time-precedes order since, for example, sti = cti if Ti is a read-only transaction
and no other transaction commits in Ti’s local replica while Ti is being executed.
However, it is possible to define the following transformation function f such
that the resulting transformed timestamps met with the assumptions made in
Chapter 8.2.

Definition 23 (Transformation funcion). Given a transaction Ti, the transfor-
mation function f is defined as follows:

f(sti) = sti + 0.1

9.1. SER-CBR 85

1 Init at Na 32 Upon 〈rs, ws〉 reception at Na

2 count ← 0 33 mutex.lock
3 Upon t received at Na 34 statust ← certify(rs, ws, wslista)
4 t.start ← count 35 if (statust = commit) then
5 Execute t. 36 count ← count +1
6 On t commit request at Na 37 ws.commit ← count
7 ws.data ← wset(t) 38 if (ws.local 6= Na) then
8 ws.start ← t.start 39 DB.apply(ws)
9 ws.local ← Na 40 statust ← DB.commit(t)
10 if (ws.data = ∅) then 41 if (statust = COMMIT) then
11 t.commit ← count 42 append(wslista, ws)
12 send(c,COMMIT) 43 else DB.abort(t)
13 else 44 mutex.unlock
14 ws.level ← t.level 45 if (ws.local = Na) then
15 if (t.level = PL-3) 46 send(c, statust)
16 rs.data ← rset(t)
17 else
18 rs.data ← 0
19 TO-bcast(N, 〈rs, ws〉)
20 certify(rs, ws, wslista)
21 for (old ws ∈ wslista) do
22 if (level = PL-3) and
23 (ws.start 〈 old ws.commit) and
24 (rs.data ∩ old ws.data 6= ∅) and
25 (ws.local 6= old ws.local) then
26 return abort
27 else if (level = SI) and
28 (ws.start 〈 old ws.commit) and
29 (ws.data ∩ old ws.data 6= ∅) then
30 return abort
31 return commit

Figure 9.2: MUL certification-based protocol.

86 CHAPTER 9. EXAMPLES

f(cti) =

{

cti + 0.2 if Ti is read-only
cti if Ti is update

We prove now that, given a history MUL CBR Hr over a set T of transactions,
Hr fulfils every of the Chapter 8.2’s assumptions:

• All nodes share the same start and commit timestamps : in this protocol
every transaction start timestamp is calculated at the local replica and
propagated to the rest of the nodes. Thus, all of them share this value.
The commit timestamp is calculated after the transaction is certified and
is going to commit. The certify function is deterministic if update trans-
actions are validated in the same order at all replicas and that is ensured
by the reliable total-order primitive used to propagate transaction write-
sets (and reads for PL-3 transactions). Hence, all nodes get the same
commit timestamp for every transaction. The transformation function is
also deterministic and, hence, all nodes share the same values.

• f(sti) < f(cti) for any Ti ∈ T committed in Hr: the timestamp calcula-
tion is based on counting committed transactions. The transaction com-
mit timestamp (lines 11 and 37) is calculated after the start timestamp
(line 5) and, thus, sti ≤ cti. If the transaction is an update transaction,
the commit timestamp is calculated in line 37 after increasing the local
timestamp counter and, hence, in that case sti < cti. The transformation
funcion adds 0.1 to all transactions start timestamp and 0.2 only to read-
only transactions commit timestamps. Then, f(sti) < f(cti) regardless of
the transaction type.

• Given Ti, Tj ∈ T two committed transactions in Hr, f(sti) < f(ctj) or
f(ctj) < f(sti). The protocol assigns a start and commit timestamp to any
committed transaction and, hence, either sti < ctj , ctj < sti or sti = ctj .
In the first case f(sti) < f(ctj) since the function f only adds decimals
to the original timestamps which are always natural integers. Similarly,
f(ctj) < f(sti) in the second case. In the third case f adds 0.1 to sti and,
either, 0 (if Tj is an update transaction) or 0.2 (if Tj is read-only) to ctj .
Then, either, f(ctj) < f(sti) or f(sti) < f(ctj). So, f(sti) < f(ctj) or
f(ctj) < f(sti).

• Given two conflicting and committed transactions Ti and Tj, if ci < cj ∈
Hr then f(cti) < f(ctj). Notice that two transactions conflict if both
operate over the same item and at least one of them updates it. If Tj

is an update transaction then cti < ctj since cti and ctj are the number
of committed transactions when Ti and Tj commit, including their own
commit if they are update transactions, and Tj is an update transaction
and commits later. Since f only adds decimals and the commit timestamps
are natural numbers, f(cti) < f(ctj). If Ti is an update transaction but
Tj is read-only then cti ≤ ctj , f(cti) = cti and f(ctj) = ctj + 0.2. Hence,
f(cti) < f(ctj) anyway.

9.2. BLOCKING SER-D 87

Given a PL-SI’ transaction Ti, this protocol also ensures that Ti’s snapshot
will include the updates of any other transaction Tj whose f(ctj) < f(sti).
If f(ctj) < f(sti) and Tj is an update transaction then necessarily ctj ≤ sti
since ctj and stj are natural numbers, f(cti) = cti and f(sti) = sti + 0.1. The
protocol assumes that Ti observes the last available snapshot at the local replica
when Ti starts and, hence, if ctj ≤ sti then, necessarily, Tj committed before
Ti started and, hence, is part of Ti’s snapshot. If f(sti) < f(ctj) and Tj is an
update transaction then, necessarily sti < ctj and, hence, Tj committed after
Ti started and is not included in its snapshot.

9.2 Blocking SER-D

In this section we present a blocking version of Kemme’s weak-voting SER-D
protocol [32] and extend it to support other isolation levels. We call it blocking
because validation, update and end are executed as a single atomic step instead
of separated and a transaction will get blocked before starting its validation
step if any other transaction has been previously delivered and has not finished
yet. As the original SER-D, the blocking version is based on the deferred up-
dates technique [3] to simplify the validation process. Deferred update protocols
execute only read operations during the processing step and delay writes until
transactions reach the validation or update steps. The serialisable version of
the blocking SER-D is presented in Figure 9.3.

When a transaction is delivered at its local replica only reads are executed. At
commit time, the deferred writes are gathered in a writeset and propagated to
all nodes in the system using a total-ordered multicast. Once a writeset WSi is
delivered in a node, the validation process starts aborting all active conflicting
transactions which have not been validated yet. Since those transactions have
not yet executed their writes, only conflicts involving local transaction reads and
the writeset writes are checked. If a transaction is aborted after propagating its
writeset, an abort message is also sent to all replicas. If a writeset is successfully
applied and an abort message has not been previously sent for that transaction,
a commit message is propagated instead. Notice that only a reliable message is
necessary to propagate abort and commit messages.

Blocking SER-D does not explicitly define any logical time but relies on the lock-
based concurrency control to prevent isolation anomalies. Instead of aborting a
transaction in its validation step, with this protocol a transaction Ti is aborted in
its local node if a concurrent writeset is validated first and modifies items read by
Ti. With this early detection technique most transactions may be aborted before
propagating their writesets which improves the aborted transaction response
time and makes the protocol more network-effective than the original scheme.
If Ti is aborted after propagating its writeset, an abort message must be also
disseminated.

Blocking SER-D is highly inefficient since, once a transaction Ti starts its vali-

88 CHAPTER 9. EXAMPLES

1 Upon t received at Na 25 Upon 〈ws〉 reception at Na

2 mutex.lock 26 mutex.lock
3 t.state ← LOCAL 27 if (ws.t.state 6= ABORTED) then
4 t.local ← Na 28 conflicting← DB.getConflicts(ws)
5 Execute t reads 29 for (t in conflicting) do
6 mutex.unlock 30 if (t.state = LOCAL) then
7 On t commit request at Na 31 DB.abort(t)
8 mutex.lock 32 t.state ← ABORTED
9 ws.data ← wset(t) 33 send(C, ABORT)
10 ws.t ← t 34 if (t.state = SENT) then
11 if (ws.data 6= ∅) then 35 R-bcast(N,〈abort,t〉)
12 t.state ← SENT 36 t.state ← ABORTED
13 TO-bcast(N,〈ws〉) 37 DB.requestLocks(ws)
14 else 38 DB.apply(ws)
15 t.state ← COMMITTED 39 ws.t.state ← WRITE
16 DB.commit(t) 40 if (ws.t.local = Na) then
17 mutex.unlock 41 R-bcast(N,〈commit,ws.t〉)
18 getConflicts(ws) 42 msg ← waitForConfirmationMessage()
19 conflicts ← ∅ 43 if (msg.status=COMMIT) then
20 active ← DB.getActiveTransactions() 44 ws.t.state ← COMMITTED
21 for (t in active) do 45 DB.commit(ws.t)
22 if (rset(t) ∩ ws.data 6= ∅) 46 else if (msg.status=ABORT) then
23 append(conflicts,t) 47 ws.t.state ← ABORTED
24 return conflicts 48 DB.abort(ws.t)

49 if (ws.t.local = Na) then
50 send(c,msg.status)
51 mutex.unlock

Figure 9.3: Blocking SER-D weak-voting based protocol.

9.3. NON-BLOCKING SER-D 89

dation in a given node, the next transactions delivered at that node must wait
until Ti is committed or aborted. However, with this protocol all writesets are
validated, applied and committed (or aborted) in delivery order and that is a
big advantage to support Snapshot Isolation.

As we see in Figure 9.4 and was also pointed out in Section 8.2.3, the final vot-
ing step is only necessary for PL-3 transactions since only that isolation level
requires to validate reads which are not propagated. Notice also that a explicit
logical time based on counting validated writesets is used to certify PL-SI’ trans-
actions. Since all steps among validation and end are applied in a single atomic
step, we guarantee that any PL-SI’ Ti transaction gets a snapshot including the
updates of all transactions with a commit-timestamp smaller or equal to Ti’s
start timestamp. If that is not ensured, the lost-update phenomenon [6], for-
bidden by Snapshot Isolation, and other inconsistencies may appear during the
execution of a PL-SI’ transaction. As we show later with MUL-D and has been
also studied in other works [38], a variation of the original SER-D supporting
Snapshot Isolation does not ensure this unless PL-SI’ transactions get blocked
until any pending validated PL-3 transaction commit or aborts, specially if it
writes something the PL-SI’ transaction reads.

As MWVS, the blocking version of MUL-D ensures that all nodes commit the
same writesets in the same order. Notice that the certification process and the
timestamp rely on the validation order, which is the same at all nodes, PL-3
transactions fate is exclusively decided by their local node and PL-1 and PL-2
transactions are always committed by the protocol. Hence, MUL-D correctness
can be proved similarly to the MWVS scheme if we use the transformation
function presented in Definition 23.

9.3 Non-blocking SER-D

This protocol shows how the original SER-D protocol [32] can be modified to
support other isolation levels as well. Unlike Blocking SER-D, the non-blocking
version updates and commits transactions in two separated steps such that two
non-conflictive transactions can be executed in any order at two different repli-
cas. This protocol is also based on the deferred writes optimisation which con-
sists in delaying the execution of write operations until the end of the validation
step to simplify the conflict resolution.

As the blocking version, non-blocking SER-D takes advantage of local lock-based
DBMSs. Instead of aborting the transaction being validated, in the validation
step a writeset will abort conflicting transactions not yet validated and will get
blocked by those waiting for the confirmation message. Locks ensure that never
two conflicting transactions writesets are applied in different order at different
replicas.

Once WSi is validated at its local node, a commit message is propagated unless
an abort message for this transaction was previously sent. Notice that abort

90 CHAPTER 9. EXAMPLES

1 Init at Na 37 Upon 〈ws〉 reception at Na

2 counta ← 0 38 mutex.lock
3 wslista ← ∅ 39 if (ws.t.state 6= ABORTED) then
4 Upon t received at Na 40 counta ← counta+1
5 mutex.lock 41 ws.t.commit ← counta
6 t.start ← counta 42 conflicting← DB.getConflicts(ws, wslista)
7 t.state ← LOCAL 43 for (t in conflicting) do
8 t.local ← Na 44 if (t.state = LOCAL) then
9 Execute t reads 45 DB.abort(t)
10 mutex.unlock 46 t.state ← ABORTED
11 On t commit request at Na 47 send(c, ABORT)
12 mutex.lock 48 if (t.state = SENT) then
13 ws.data ← wset(t) 49 R-bcast(N,〈abort,t〉)
14 ws.t ← t 50 t.state ← ABORTED
15 if (ws.data 6= ∅) then 51 DB.requestLocks(ws)
16 t.state ← SENT 52 statust ← certify(ws,wslista)
17 TO-bcast(N,〈ws〉) 53 if (statust = ABORT) then
18 else 54 if (ws.t.local = Na) then
19 t.state ← COMMITTED 55 DB.abort(ws.t)
20 DB.commit(t) 56 send(c, statust)
21 mutex.unlock 57 else
22 getConflicts(ws) 58 DB.apply(ws.t)
23 conflicts ← ∅ 59 if (ws.t.level 6= PL-3) then
24 active ← DB.getActiveTransactions() 60 DB.commit(ws.t)
25 for (t in active) do 61 append(wslista,ws)
26 if (t.level = PL-3) and 62 ws.t.state ← COMMITTED
27 (rset(t) ∩ ws 6= ∅) then 63 send(c, statust)
28 append(conflicts,t) 64 else
29 return conflicts 65 ws.t.state ← WRITE
30 certify(ws, wslista) 66 if (ws.t.local = Na) then
31 if (ws.t.level = PL-SI) then 67 R-bcast(N,〈commit,ws.t〉)
32 for (old ws ∈ wslista) do 68 msg ← waitForConfirmationMessage()
33 if (ws.start < old ws.commit) and 69 if (msg.status = COMMIT) then
34 (old ws.data ∪ ws.data 6= ∅) then 70 ws.t.state ← COMMITTED
35 return ABORT 71 DB.commit(ws.t)
36 return COMMIT 72 append(wslista,ws)

73 if (ws.t.local = Na) then
74 send(c, COMMIT)
75 else
76 ws.t.state ← ABORTED
77 DB.abort(ws.t)
78 if (ws.t.local = Na) then
79 send(c, ABORT)
80 mutex.unlock

Figure 9.4: Blocking MUL-D weak-voting based protocols.

9.3. NON-BLOCKING SER-D 91

1 Upon t received at Na 31 DB.requestLocks(ws)
2 mutex.lock 32 DB.apply(ws)
3 t.state ← LOCAL 33 ws.t.state ← WRITE
4 t.local ← Na 34 if (ws.t.local = Na) then
5 Execute t reads 35 ws.t.state ← COMMITTED
6 mutex.unlock 36 R-bcast(N,〈commit,ws.t〉)
7 On t commit request at Na 37 mutex.unlock
8 mutex.lock 38 Upon 〈commit,t〉 reception at Na

9 ws.local ← Na 39 mutex.lock
10 ws.data ← wset(t) 40 DB.commit(t)
11 ws.t ← t 41 if (t.local = Na) then
12 if (ws.data 6= ∅) then 42 send(c,COMMIT)
13 t.state ← SENT 43 mutex.unlock
14 TO-bcast(N,〈ws〉) 44 Upon 〈abort,t〉 reception Na

15 else 45 mutex.lock
16 t.state ← COMMITTED 46 DB.abort(t)
17 DB.commit(t) 47 if (t.local = Na) then
18 mutex.unlock 48 send(c,ABORT)
19 Upon 〈ws〉 reception at Na 49 mutex.unlock
20 mutex.lock 50 getConflicts(ws)
21 if (ws.t.state 6= ABORTED) then 51 conflicts ← ∅
22 conflicting← DB.getConflicts(ws) 52 active ← DB.getActiveTransactions()
23 for (t in conflicting) do 53 for (t in active) do
24 if (t.state = LOCAL) then 54 if (rset(t) ∩ ws.data 6= ∅)
25 DB.abort(t) 55 append(conflicts,t)
26 t.state ← ABORTED 56 return conflicts
27 send(C, ABORT) 57
28 if (t.state = SENT) then
29 t.state ← ABORTED
30 R-bcast(N,〈abort,t〉)

Figure 9.5: Non-blocking SER-D weak-voting protocol.

92 CHAPTER 9. EXAMPLES

and commit messages are sent using only a reliable multicast. WSi commits
once the commit message is delivered. If an abort message arrives instead, the
writeset is aborted.

As Figure 9.6 shows up, the multiple isolation level version of the SER-D, named
as Non-blocking MUL-D or simply MUL-D, has many differences with the orig-
inal protocol. MUL-D mixes SER-D with SI-D, the Snapshot Isolation version
also presented by Kemme. SER-D and SI-D differ in many aspects. One of
them is how writesets are validated. As SI-D, with MUL-D a PL-SI’ writeset is
aborted if there is a write-dependency with any concurrent transaction previ-
ously validated. Whether two transactions are considered concurrent depend on
their start and commit timestamps which are calculated by counting the number
of validated writesets (count in the algorithm) when a transaction starts in the
system (t.start) and when enters the validation step (t.commit) respectively.
The absence of a final voting round is another big difference among SI-D and
SER-D and that is also reflected in MUL-D. Thus, in MUL-D, all nodes can de-
cide every transaction’s fate by themselves without waiting for the local node’s
decision unless for PL-3 transactions, which still need a final voting step. So,
from that point of view, SI-D is a symmetric protocol (like certification-based
ones) while SER-D is asymmetric due to this final voting round and that’s why
MUL-D acts like a weak-voting protocol only for PL-3 transactions and as a
certification-based protocol when transactions request any other isolation level.

To ensure the protocol correctness, it assumes that every PL-SI’ transaction Ti

must get the snapshot including the updates of any transaction Tj such that
ctj ≤ sti. As with original SI-D, that is ensured by using write locks even for
PL-SI’ transactions. Those locks are taken during validation and released once
the transaction finishes committing or aborting. A solution based on counting
timestamps on commit time instead than in validation process can not be used
since PL-3 commit and abort messages are sent using only a reliable broadcast
and are not totally ordered. Hence, their delivery order may vary among nodes
and transaction may get a different commit timestamp at different nodes.

PL-2 and PL-1 transactions are never aborted during the validation step. Notice
that writes are deferred and their locks requested in delivery order which ensures
the absence of cycles composed only by write-dependency edges. Local DBMSs
also ensure that only committed values are seen by PL-2 transactions which also
avoids all G1 phenomena. Thus, no extra validation is needed.

Since the protocol is based on locks, PL-3 and PL-2 reads will get blocked by
the local node DBMS if any other transaction is holding a write lock on the
same item. Since write locks are requested in an atomic step during validation,
those transactions will always see the update performed by the last validated
transaction by the time the read is performed, as soon as that transaction finally
commits. Hence, if a PL-2 or PL-3 transaction Ti reads a value xj established
by Tj then ctj ≤ cti.

The correctness proof is almost identical to the MWVS one. Actually, the main
difference is that, in this case, non-conflicting PL-3 transactions may abort in

9.3. NON-BLOCKING SER-D 93

1 Init at Na 43 else
2 counta ← 0 44 DB.apply(ws)
3 wslista ← ∅ 45 if (ws.t.level 6= PL-3) then
4 Upon t received at Na 46 DB.commit(ws)
5 mutex.lock 47 append(wslista,ws)
6 t.start ← counta 48 ws.t.state ← COMMITTED
7 t.state ← LOCAL 49 send(c, statust)
8 t.local ← Na 50 else
9 Execute t reads 51 ws.state ← WRITE
10 mutex.unlock 52 if (ws.local = Na) then
11 On t commit request at Na 53 ws.t.state ← COMMITTED
12 mutex.lock 54 R-bcast(N,〈commit,ws.t〉)
13 ws.local ← Na 55 mutex.unlock
14 ws.data ← wset(t) 56 Upon 〈commit,t〉 reception at Na

15 ws.t ← t 57 mutex.lock
16 if (ws.data 6= ∅) then 58 DB.commit(t)
17 t.state ← SENT 59 append(wslista,ws)
18 TO-bcast(N,〈ws〉) 60 if (t.local = Na) then
19 else 61 send(c, COMMIT)
20 t.state ← COMMITTED 62 mutex.unlock
21 DB.commit(t) 63 Upon 〈abort,t〉 reception Na

22 mutex.unlock 64 mutex.lock
23 Upon 〈ws〉 reception at Na 65 DB.abort(t)
24 mutex.lock 66 if (t.local = Na) then
25 if (ws.t.state 6= ABORTED) then 67 send(c, ABORT)
26 counta ← counta+1 68 mutex.unlock
27 ws.t.commit ← counta 69 getConflicts(ws)
28 conflicting← DB.getConflicts(ws, wslista) 70 conflicts ← ∅
29 for (t in conflicting) do 71 active ← DB.getActiveTransactions()
30 if (t.state = LOCAL) then 72 for (t in active) do
31 DB.abort(t) 73 if (t.level = PL-3) and
32 t.state ← ABORTED 74 (rset(t) ∩ ws.data 6= ∅) then
33 send(c, ABORT) 75 return conflicts
34 if (t.state = SENT) then 76 append(conflicts,t)
35 R-bcast(N,〈abort,t〉) 77 certify(ws, wslista)
36 t.state ← ABORTED 78 if (ws.t.level = PL-SI) then
37 DB.requestLocks(ws) 79 for (old ws ∈ wslista) do
38 statust ← certify(ws,wslista) 80 if (ws.start < old ws.commit) and
39 if (statust = ABORT) then 81 (old ws.data ∩ ws.data) then
40 if (ws.local = Na) then 82 return ABORT
41 DB.abort(ws.t) 83 return COMMIT
42 send(c, statust)
43 ws.t.state ← ABORTED

Figure 9.6: Non-blocking MUL-D weak-voting protocol.

94 CHAPTER 9. EXAMPLES

different order which messes up Lemma 6 and first part of Theorem 4, the
one in which we explain how commit and start timestamps are ordered for
every type RMSG obligatory edge. Thus, we now prove that Non-blocking
MUL-D orders starts and commits exactly in the same way MWVS does and,
hence, the second part of the theorem can be safely applied to finally prove the
protocol correctness. Even read-only transactions commit-timestamps are never
calculated in the protocol, we assume it is the number of validated transactions
when the transaction commits at its local replica. As with MUL CBR and
MUL-D, we also use the transformation function f from Definition 23.

Given a history Hr, an edge e is obligatory in RMSG(Hr) if:

• e = Ti
ww−→ Tj : since the protocol validates writesets in delivery order

and in a single atomic step, the commit-timestamp is calculated during
that step which is atomic and the write locks are requested at the end
of validation, Tj ’s writeset has been delivered after Ti’s one and, hence,
cti < ctj and f(cti) < f(ctj). Recall that the function f only adds
decimals to the timestamps which are natural numbers.

• e = Ti
wr−→ Tj and Tj is PL-2, PL-SI’ or PL-3: since we assume a lock-

based correct DBMS, PL-2, PL-3 and PL-SI’ transactions only observe
committed values. Furthermore, reads are executing at the beginning in
the local replica and writes at the end of the validation step, after propa-
gation. Hence, if Tj observes a Ti update necessarily Ti has been validated
before Tj and cti ≤ ctj . If Tj is an update transaction then also cti < ctj
and f(cti) < f(ctj) since the timestamp is increased before assigning the
commit-timestamp to every validated transaction. If Tj requested PL-SI’
then the protocol itself assumes that it will see the updates performed
by transactions with a commit-timestamp lower or equal to Tj ’s start-
timestap. Then, in that case, cti ≤ stj . Since Ti is an update transaction,
f(cti) = cti and f(stj) = stj + 0.1. Thus, f(cti) < f(stj).

• e = Ti
rw−→ Tj and Ti is PL-SI’ or PL-3: since the protocol assumes that

a PL-SI’ transaction observes the updates of all transactions validated
before the PL-SI’ transaction started, if Ti is PL-SI’ then sti < ctj and,
hence, f(sti) < f(ctj) because the timestamps are natural numbers and
f only adds decimals. If Tj is PL-3 then WSj will abort Ti if WSj is
validated while Ti is active but before it is validated. Hence, either Ti is
validated first or Ti starts after Tj is validated. In the first case, cti < ctj
and, then, f(cti) < f(ctj). In the second case, Ti reads will get blocked
by Tj writes and the anti-dependency will never happen. Concluding,
f(cti) < f(ctj).

The rest of the correctness proof is identical to the last part of Theorem 4.

9.4. CONCLUSIONS 95

9.4 Conclusions

It seems that certification-based protocols are easier to adapt to support multiple
isolation levels and, most important, it can be extended in a more optimized way
when PL-SI’ transactions come into play. Weak-voting protocols need to block
at least some PL-SI’ transactions to avoid inconsistencies and that may have
an important impact in their performance. However, weak-voting may be an
interesting alternative when most transactions request PL-3 isolation level since
readsets do not need to be propagated. Furthermore, weak-voting is specially
appealing to properly support integrity constraints and we also suggest to use
that kind of protocols when those constraints are an important issue.

Part IV

Conclusion

97

Chapter 10

Conclusions

Nowadays, most information systems are distributed and have high availability
requirements. Usually, the applications used on top of such a distributed system
are unaware of the underlying architecture. Hence, it is important that database
replication protocols provide the same functionality of a stand-alone DBMS
without compromising any of the replication advantages, i.e., availability and
scalability. Unfortunately, achieving true transparent replication is not a trivial
task.

We have addressed the problem of supporting multiple isolation levels in exist-
ing ROWAA replication protocols. The authors of [16] identified this problem
as one of the challenges in database replication. Most existing replication so-
lutions support a single isolation level which is generally one of the strictest:
serialisability or snapshot isolation.

In this Ph.D. Thesis we have identified the conditions under which replication
protocols may manage multiple isolation levels transparently and proven that
protocols that satisfy these conditions are correct. To this end, we suggest a new
Snapshot Isolation level definition which fits better with the dependency graphs
used as a base representation of transaction conflicts [1]. This definition unifies
the base SI definition and the generalised version [6] suggested in other works
[1, 19]. We have then modified the popular ROWAA-based replication scheme to
support different isolation levels. As an example, we have further demonstrated
how these extensions can be applied to specific protocols. The majority of the
replication solutions under consideration require only minor changes to support
multiple isolation levels, which may result in an improved degree of concur-
rency and minor transaction completion times for those transactions that can
be executed in a relaxed isolation level.

Our model is general enough to be applied to any database replication protocol.
As a possible future work we plan to use this model in order to prove the cor-
rectness of several existing metaprotocols (e.g., [49]) that concurrently support

99

100 CHAPTER 10. CONCLUSIONS

several replication protocols, each being able to support a different isolation
level.

Part V

Appendices

101

Appendix A

Appendices

The aim of these appendices is to provide the necessary basis for proving the
correctness of Theorem 2 (given in Chapter A.5). To this end, Section A.1 in-
troduces a Lemma referenced during Theorem 1 correctness proof in Chapter 5
(page 41). Section A.2 proves that valid histories H correctly manage Snapshot
Isolation. Section A.3 proves that valid replicated histories also correctly man-
age SI transactions. Section A.4 presents several properties derived from Def.
21 that will provide lemmas needed in Section A.5, where Theorem 2 correctness
is detailed.

A.1 Chapter 5 lemmas

Lemma 8 (Start and commit orderings by <c in PL-SI’ histories). Given a PL-
SI’ history H produced by a scheduler based on a conflict-aware time-precedes
order <c, si <c cj if

a) A path P in SSG(H) connects nodes Ti and Tj and

b) P is a directed path from Ti to Tj and

c) P does not contain two consecutive anti-dependency edges.

Proof. The proof is separated in two complementary parts. The first one focuses
on paths without anti-dependency edges and the second one covers paths with
at least one anti-dependency edge:

a) P is composed only by start and dependency edges: then

trivially si <c cj . Given p = Ti
s/ww/wr
−→ T0

...−→ Tm
s/ww/wr
−→ Tj , by <c

first condition ci <c s0, ..., cm <c sj . Since <c is a time-precedes

103

104 APPENDIX A. APPENDICES

order, sk <c ck for any node Tk, si <c ci <c s0 <c ... <c cm <c

sj <c cj and, thus, si <c cj .

b) P has at least one anti-dependency edge: we prove si <c cj
by induction over the length of P , n:

• Base case (n = 2): P contains a single edge e which necessar-
ily is an anti-dependency. By <c third condition, si <c cj .

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): imagine e = Tk
rw−→ Tk+1 is one of

the anti-dependency edges of P . Thus, by <c third condition,
sk <c ck+1. The previous and the next edges Tk−1 −→ Tk and
Tk+1 −→ Tk+2 are start or dependency edges because there
aren’t two consecutive anti-dependency edges. Thus, by <c

second condition, ck−1 <c sk and ck+1 <c sk+2. The paths
from Ti to Tk−1 and from Tk+2 to Tj are less than l − 1 and,
by the induction hypothesis, si <c ck−1 and sk+2 <c cj . Thus,
si <c ck−1 <c sk <c ck+1 <c sk+2 <c cj . Exactly the same
proof can be used when e is the first or last edge in P . In this
case, the next or previous edge must be a dependency and the
induction hypothesis is applied to the subpath from this edge
to Tj if e is the first edge or to Ti if it is the last one.

A.2 Snapshot correctness in valid histories

Adya restates the Snapshot Isolation definition by introducing two properties
which must be ensured in any SI history [1]. He calls those properties Snap-
shot Read and Snapshot Write. Snapshot Read says that all reads performed
by a transaction Ti occur at its start point. Snapshot Write is equivalent to
first-committer wins rule which states that Ti cannot commit if it modifies the
same item that Tj , both transactions are concurrent and Tj commits first. We
slightly modify those properties to be suitable in executions when not all trans-
actions request Snapshot Isolation. Later we proof that any valid history H

fulfils Snapshot Read and Snapshot Write for all involved committed PL-SI’
transactions.

Definition 24 (Snapshot Read). Being H a history representing an execution
of a set of transactions T , H has the Snapshot Read property if a time-precedes
order <t is defined over H such that for every PL-SI’ transaction Ti and any
other transaction Tj:

(a) If Tj
wr−→ Ti ∈ DSG(H) then cj <t si.

A.2. SNAPSHOT CORRECTNESS IN VALID HISTORIES 105

(b) If Ti
rw−→ Tj ∈ DSG(H) then si <t cj.

Definition 25 (Snapshot Write). Being H a history representing an execution
of a set of transactions T , H has the Snapshot Write property if a time-precedes
order <t is defined over H such that for every PL-SI’ transaction Ti and any
other transaction Tj:

(a) If Tj
ww−→ Ti ∈ DSG(H) then cj <t si.

(b) If Ti
ww−→ Tj ∈ DSG(H) then ci <t cj.

Unlike Adya’s Snapshot Write property, we cannot assure in condition (b) that
ci <t sj because Tj may request any possible isolation level. If it requests SI
then condition (a) ensures that ci <t sj as Adya states.

Before proving that any valid history H correctly manages SI we first need to
introduce the concept of fixed ordering and some lemmas.

Definition 26 (SI Fixed Ordering). Given a history H, the set O of start and
commit operations of transactions committed in H and a time-precedes order <t

such that it fulfils Snapshot Read and Snapshot Write properties, oi <t oj is SI
fixed in <t if their ordering can be deduced from Snapshot Read and Snapshot
Write conditions.

The following lemmas introduce some cases where two operations in O are fixed.

Lemma 9 (SI start and commit ordering 1). Given a valid history H and its
DSG(H) = (V,E), the set O of start and commit operations of transactions
committed in H, si, cj ∈ O and <t a time-precedes order of O which fulfils
Snapshot Read and Snapshot Write properties, si <t cj is fixed iff there is
a directed path P = (Vp ⊆ V,Ep ⊆ E) from Ti to Tj without two adjacent
anti-dependency edges and composed only by the kind of edges contemplated in
Snapshot Read and Snapshot Write properties (dependency-edges ending in a
PL-SI’ transaction and anti-dependencies and write-dependency edges starting
with a PL-SI’ transaction).

Proof. This proof is very similar to Lemma 3 proof. Snapshot Read and Snap-
shot Write conditions only directly order start and commit operations if they
are connected by a write-dependency edge in DSG(H) involving a PL-SI’ trans-
action, a read-dependency edge ending in a PL-SI’ transaction or an anti-
dependency starting in a PL-SI’ transaction. Thus, if si <t cj there must
be a path P connecting Ti and Tj and composed only by those kind of edges.
Similarly to Lemma 3, we prove that this path P fulfils the conditions described
in the lemma. We split the proof in two parts:

a) si <c cj is fixed if there is a directed path P which fulfils
Lemma 9 conditions. We prove it by induction over the length n

of P .

106 APPENDIX A. APPENDICES

• Base case (n = 2): P is composed by a single edge e =
Ti −→ Tj . If e is a dependency edge ending with a PL-SI’
transaction then ci <t sj by conditions (a) of Snapshot Read
and Snapshot Write. Since <t is a time-precedes order (See
Definition 6 condition (a)), si <t ci, sj <t cj and, hence, si <t

ci <t sj <t cj . If e is an anti-dependency edge we get si <t cj
directly from Snapshot Read condition (b). Finally, if e is a
write-dependency edge starting with a PL-SI’ transaction we
get ci <t cj . Again, since si <t ci from Definition 6 condition
(a), si <t ci <t cj . In all cases si <t cj .

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P length is n = l > 2. Then,
P = Ti −→ Tk −→ Tj where e = Tk −→ Tj is P ’s last edge and
P ′ the subpath from Ti to Tk. P

′ is a l−1 length directed path
without two adjacent anti-dependency edges and, thus, from
the induction hypothesis si <t ck. Depending on e’s type the
following possibilities arise:

– e is a read-dependency edge. In that case, by Snapshot
Read condition (b) we get ck <t sj . Then, si <c ck <c sj .
By Definition 6 condition (a), si <c sj <c cj .

– e is a write-dependency edge. If e finishes with a PL-SI’
transaction then, by Snapshot Write condition (a), ck <t sj
and, like with read-dependencies, si <t ck <t sj <t cj . If e
starts with a PL-SI’ transaction then ck <t cj and, hence,
si <t ck <t cj .

– e is an anti-dependency edge. By Snapshot Read condi-
tion (b) we get sk <c cj . Since P length n > 2 then the

length of P ′ is at least two and P ′ = Ti
P ′′

−→ Tk−1
e′−→ Tk.

e′ is a dependency edge ending with a PL-SI’ transac-
tion since P has not two adjacent anti-dependency edges
(Tk is PL-SI’ because we assume P only contains anti-
dependencies starting with PL-SI’ transactions and e is an
anti-dependency). Thus, ck−1 <c sk and, then, ck−1 <c

sk <k cj . If P ′′ is length 1 (the only two edges are e and
e′) then Tk−1 = Ti. Since si <c ci (from Definition 6 con-
dition (a)), si <c ci <c sk <c cj . If P ′′’s length is greater
than 1, by the induction hypothesis si <c ck−1 since P ′′

is also a subpath of P and, hence, it is a directed path
without two adjacent anti-dependency edges of length < l.
In that case si <c ck−1 <c sk <c cj . In both cases we get
si <c cj .

b) There is a directed path P from Ti to Tj composed only by
dependencies ending with a PL-SI’ transaction and write-

A.2. SNAPSHOT CORRECTNESS IN VALID HISTORIES 107

dependencies and anti-dependencies starting with a PL-
SI’ transaction and without two adjacent anti-dependency
edges in DSG(H) if si <c cj is fixed. As we previously said,
Snapshot Read and Snapshot Write only fix si and cj if Ti and Tj

are connected by a path P ∈ DSG(H) composed by such kind of
edges. We prove by induction that P is also a directed path and fits
with all the lemma conditions.

• Base case (n = 2): since P is composed by a single edge e, no
two adjacent anti-dependency edges may exist in P . As si <c

cj then, by Snapshot Read and Snapshot Write conditions e

must be a dependency edge or an anti-dependency edge starting
from Ti and ending in Tj . If e = Ti

ww−→ Tj then ci <t sj
if Tj is PL-SI’ or ci <t cj if Ti is PL-SI’ by Snapshot Write
conditions (a) and (b). In the first case, si <t ci <t sj <t

cj by Definition 6 condition (a). In the second case we get
si <t ci <t cj . Similarly, if e = Ti

wr−→ Tj then ci <t sj
from Snapshot Read condition (a) and si <t cj by Definition 6
condition (a). Finally, if e = Ti

rw−→ Tj then directly si <t cj
by Snapshot Read condition (b). If e goes from Tj to Ti we can
never deduce si <t cj from Snapshot Read, Snapshot Write
and time-precedes order conditions. Thus P is a directed path
from Ti to Tj .

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P ’s length is n = l > 2. Take any
edge e ∈ Ep such that P = P ′Tk −→ TlP

′′, P ′ and P ′′ are
subwalks of P in DSG(H), P ′ starts with edge Ti and P ′′ ends
with edge Tj and e = Tk −→ Tl. P ′ and P ′′ are of length < l

and at least one of them is of length > 1 since n > 2. e must
be of one of the following types:

– e is a read-dependency edge: Tl must be PL-SI’ since only
those read-dependencies fix operations due to Snapshot
Read condition (a). Then, ck <c sl. Since si <c cj is
fixed due to P , si <c ck <c sl <c cj and, hence, si <c ck
and sl <c cj are fixed. From the induction hypothesis, P ′

and P ′′ are directed paths and fulfil this lemma conditions.
P ′ goes from Ti to Tk and P ′′ from Tl to Tj . Since the con-
necting edge e is not an anti-dependency edge, the resulting
concatenated walk P is also a directed path without two
consecutive anti-dependency edges.

– e is a write-dependency edge: in this case at least Tk or
Tl are PL-SI’ since only in those cases operations of dif-
ferent transactions are fixed in Snapshot Read and Snap-
shot Write. If Tl is PL-SI’ then ck <t sl and the rest

108 APPENDIX A. APPENDICES

of the proof is identical to the read-dependency case. If
Tl is not PL-SI’ then Tk is PL-SI’ and, hence, ck <t cl
and si <t ck <t cl <t cj . By the induction hypothesis,
since si <t ck then P ′ subpath fulfils the lemma conditions.
Since cl <t cj and sl <t cl due to Definition 6 condition
(a), sl <t cj and hence P ′′ is a directed edge from Tl to Tj

and so it is P = P ′eP ′′.

– e is an anti-dependency edge: since P only includes anti-
dependencies starting with a PL-SI’ transaction, sk <t cl
by Snapshot Read condition (b). Since we assume si <t cj
is also fixed due to P , si <t sk and cl <t cj . Since sk <t ck
and sl <t cl (from Definition 6 condition (a)), si <t ck and
sl <t cj . If P ′ and P ′′ are of length > 2, by the induction
hypothesis, P ′ and P ′′ are directed paths without two adja-
cent anti-dependency edges, the first goes from Ti to Tk and
the second one from Tl to Tj . Assume e′ = Tk−1 −→ Tk the
edge just before e and e′′ = Tl −→ Tl+1 the edge just after
e. Since sk <t cl then si <t ok−1 <t sk <s cl <s ol+1 <t cj
where ok−1 and ol+1 are either the start or commit opera-
tion of Tk−1 and Tl+1. Since Snapshot Read and Snapshot
Write conditions only explicitly order starts with commits
or commits with commits for a given edge but never starts
with starts, ok−1 must be ck−1 and e′ is a dependency
edge since only Snapshot Read and Snapshot Write condi-
tions (a) order those operations that way. If ol+1 = sl+1

then e is a dependency edge ending in a PL-SI’ transac-
tion. If ol+1 = cl+1 then Tl is PL-SI’ and e′′ is a write-
dependency edge. Thus, the path composed by P ′, e and
P ′′ is a directed path from Ti to Tj without two adjacent
anti-dependency edges. The cases when P ′ or P ′′ are of
length 1 can be similarly deduced but taking into account
that Tl = Tj or Ti = Tk respectively.

Lemma 10 (SI start an commit ordering 2). Given a valid history H and its
DSG(H) = (V,E), the set O of start and commit operations of transactions
committed in H, si, cj ∈ O and <t a time-precedes order of O which fulfils
Snapshot Read and Snapshot Write properties, ci <t cj is fixed iff there is
a directed path P = (Vp ⊆ V,Ep ⊆ E) from Ti to Tj without two adjacent
anti-dependency edges and composed only by the kind of edges contemplated in
Snapshot Read and Snapshot Write properties (dependency-edges ending in a
PL-SI’ transaction and anti-dependencies and write-dependency edges starting
with a PL-SI’ transaction) and P starts with a dependency edge.

Proof. a) ci <c cj is fixed if there is a directed path P which

A.2. SNAPSHOT CORRECTNESS IN VALID HISTORIES 109

fulfils Lemma 10 conditions. We prove it by induction over the
length n of P .

• Base case (n = 2): P is composed by a single edge e =
Ti −→ Tj which is a dependency edge. If Tj is PL-SI’ then, by
Snapshot Read condition (a) and Snapshot Write condition (a),
ci <t sj . Since sj <t cj by Definition 6 condition (a), ci <t cj .
If e is a write-dependency starting with a PL-SI’ transaction
then, by Snapshot Write condition (b), ci <t cj directly.

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P length is n = l > 2. Then, P = eP ′

where e = Ti −→ Tk is P ’s first edge, which by assumption is a
dependency edge, and P ′ the subpath from Tk to Tj . P and P ′

fulfil Lemma 9 conditions and, hence, sk <t cj . If Tk is a PL-SI’
transaction then, by Snapshot Read condition (a) and Snapshot
Write condition (a), ci <t sk and, hence, ci <t cj . Otherwise,
e is a write-dependency starting with a PL-SI’ transaction and
Tk is not PL-SI’. Hence ci <t ck and the first edge in P ′ must
be a dependency edge since, by assumption, P only contains
anti-dependencies starting with a PL-SI’ transaction and Tk is
not PL-SI’. By the induction hypothesis, ck <t cj and ci <t cj .

b) There is a directed path P fulfilling Lemma 10 conditions
if ci <c cj is fixed. As we previously said, Snapshot Read and
Snapshot Write only directly fix ci and cj if Ti and Tj are connected
by a path P ∈ DSG(H). We prove by induction that P fits with all
the expected conditions.

• Base case (n = 2): since P is composed by a single edge e, no
two adjacent anti-dependency edges may exist in P . As ci <t cj
then, by Snapshot Read and Snapshot Write conditions (a) and
(b) e must be a dependency edge starting from Ti and ending
in Tj . If Tj is PL-SI’ then, by Snapshot Read condition (a)
and Snapshot Write condition (a), ci <t sj and, by Definition
6 condition (a), ci <t sj <t cj . If e is a write-dependency and
Ti is PL-SI’ then, by Snapshot Write condition (b) ci <t cj .

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P ’s length is n = l > 2, P = eP ′ and
ci <t cj due to P . Since si <t ci by Definition 6 condition (a),
si <t ci <t cj and P fulfils Lemma 9. Hence, e = Ti −→ Tk and
P ′ goes from Tk to Tj . Since P

′ also fulfils Lemma 9 conditions,
sk <t cj . If the first edge of P ′ is a dependency edge then also
ck <t cj by the induction hypothesis. Since P = eP ′ and

110 APPENDIX A. APPENDICES

ci <t cj due to P , ci <t sk <t cj or ci <t ck <t cj if Tk is a
dependency edge. Then, by Snapshot Read condition (a) and
Snapshot Write conditions (a) and (b), necessarily e must be
a dependency edge ending in a PL-SI’ transaction or a write-
dependency starting with a PL-SI’ transaction. Note that if e
is an anti-dependency then ci <t sk or ci <t ck are never fixed.

Lemma 11 (SI start an commit ordering 3). Given a valid history H and its
DSG(H) = (V,E), the set O of start and commit operations of transactions
committed in H, si, cj ∈ O and <t a time-precedes order of O which fulfils
Snapshot Read and Snapshot Write properties, si <t sj is fixed iff there is
a directed path P = (Vp ⊆ V,Ep ⊆ E) from Ti to Tj without two adjacent
anti-dependency edges and composed only by the kind of edges contemplated in
Snapshot Read and Snapshot Write properties (dependency-edges ending in a
PL-SI’ transaction and anti-dependencies and write-dependency edges starting
with a PL-SI’ transaction) and P ends with a dependency edge ending with a
PL-SI’ transaction.

Proof. We can proof this Lemma in a similar way we done for Lemma 10.

a) si <c sj is fixed if there is a directed path P which fulfils
Lemma 11 conditions. We prove it by induction over the length
n of P .

• Base case (n = 2): P is composed by a single edge e = Ti −→
Tj which is a dependency edge ending in a PL-SI’ transaction.
By Snapshot Read condition (a) and Snapshot Write condition
(a), ci <t sj . Since si <t ci by 6 condition (a), si <t sj .

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P length is n = l > 2. Then, P = P ′e

where e = Tk −→ Tj is P ’s last edge and P ′ the subpath from Ti

to Tk. P and P ′ fulfil Lemma 9 conditions and, hence, si <t ck.
By assumption e is a dependency edge and Tj is PL-SI’ and,
by Snapshot Read condition (a) and Snapshot Write condition
(a), ck <t sj . Hence, si <t sj .

b) There is a directed path P fulfiling Lemma 11 conditions if
si <c sj is fixed. Snapshot Read and Snapshot Write only directly
fixes si and sj if Ti and Tj are connected by a path P ∈ DSG(H).
We prove by induction that P fits with all the expected conditions.

• Base case (n = 2): since P is composed by a single edge e,
no two adjacent anti-dependency edges may exist in P . As

A.2. SNAPSHOT CORRECTNESS IN VALID HISTORIES 111

si <t sj then, by Snapshot Read condition (a) and Snapshot
Write conditions (a), e must be a dependency edge starting
from Ti and ending in Tj and Tj is PL-SI’. In that case, ci <t sj
and, from 6 condition (a), si <t ci and si <t sj . In any other
case si <t sj cannot be fixed with a single edge.

• Induction hypothesis (n < l): the lemma holds if P is n < l

length.

• Induction step (n = l): P ’s length is n = l > 2, P = P ′e and
si <t sj due to P . Since sj <t cj by Definition 6 condition (a),
si <t sj <t cj and P fulfils Lemma 9. Hence, e = Tk −→ Ti and
P ′ goes from Ti to Tk. Since P

′ also fulfils Lemma 9 conditions,
si <t ck. Since P = P ′e and si <t sj due to P , si <t ck <t sj
or, by induction hypothesis, si <t sk <t sj if Tk is a dependency
edge ending in a PL-SI’ transaction. In the first case e must
be a dependency edge and Tj is a PL-SI’ transaction since,
otherwise, ck <t sj can never be deduced from Snapshot Read
and Snapshot Write conditions. In the second case, again by
induction hypothesis e is a dependency edge ending with a PL-
SI’ transaction.

Lemma 12 (SI start an commit ordering 4). Given a valid history H and its
DSG(H) = (V,E), the set O of start and commit operations of transactions
committed in H, si, cj ∈ O and <t a time-precedes order of O such that it
fulfils Snapshot Read and Snapshot Write conditions, ci <t sj is fixed iff there
is a directed path P = (Vp ⊆ V,Ep ⊆ E) from Ti to Tj without two adjacent
anti-dependency edges and composed only by the kind of edges contemplated in
Snapshot Read and Snapshot Write properties (dependency-edges ending in a
PL-SI’ transaction and anti-dependencies and write-dependency edges starting
with a PL-SI’ transaction), P starts and finishes with a dependency edge and
the last vertex in the path is PL-SI’.

Proof. This proof is a combinations of previous Lemmas.

If ci <t sj is fixed then, since si <t ci and sj <t cj from Definition 6 condition
(a), ci <t cj , si <t sj and si <t cj . Then, exists a directed path P which fulfils
Lemmas 9, 10 and 11 conditions, starts with a dependency edge and ends with
a dependency edge finishing in a PL-SI’ transaction which proves one of the
directions of the Lemma.

If we assume exists a path P from Ti to Tj which fulfils this Lemma conditions
then P also fulfils Lemma 9, 10 and 11 conditions. Then, si <t cj , ci <t cj and
si <t sj . Since the last edge e = Tk −→ Tj in P is a dependency edge and Tj

is PL-SI’, ck <t sj . If Ti = Tk (P length is 2) then this is it. Otherwise, from
Lemma 10 ci <t cj due to P and, hence, ci <t ck <t sj <t cj and ci <t sj .

112 APPENDIX A. APPENDICES

Notice that edges considered in Snapshot Read and Snapshot Write properties
are actually obligatory edges in EMSG. Thus, Lemmas 9, 10, 11 and 12 are also
true if we use EMSG instead of DSG.

Theorem 7 (Snapshot Correctness). Being H a valid history representing an
execution of a set of transactions T , a time-precedes order <t is defined over H
such that both fulfil Snapshot Read and Snapshot Write properties.

Proof. This proof is very similar to 1 proof. By absurd reduction, we assume
that the set O of start and commit operations of committed transactions in H

cannot be ordered by a time-precedes order <t such that Snapshot Read and
Snapshot Write conditions are fulfilled. That ordering is impossible only if a
contradiction may appear when O is scheduled following <t. In other words, if
it is possible to have oi ∈ Ti and oj ∈ Tj (oi 6= oj) such that oi, oj ∈ O, oi <t oj
and oj <t oi.

If oi = si and oj = cj then si <t cj and cj <t si. From Lemma 9 there is
a directed path P1 ∈ EMSG(H) from Ti to Tj without two anti-dependency
edges. From Lemma 12 there is another directed path P2 ∈ EMSG(H) from
Tj to Ti also without two consecutive anti-dependency edges and the first and
last edges are dependences. Then, there is a directed cycle C = P1P2 without
two consecutive anti-dependency edges and H is not valid, which contradicts
the initial assumption. The same happens if oi = ci and oj = sj .

If oi = si and oj = sj then, from Lemma 11 there is a directed path P1 ∈
EMSG(H) from Ti to Tj without two consecutive anti-dependency edges and
the last edge is a dependency edge. From the same Lemma, there is a similar
directed path P2 ∈ EMSG(H) from Tj to Ti. Since the last edge of every path
is a dependency, the directed cycle C = P1P2 does not have two consecutive
anti-dependency edges and, hence, H is not valid which contradicts the initial
assumption.

If oi = ci and oj = cj then, from Lemma 11, there is a directed path P1 ∈
EMSG(H) from Ti to Tj without two anti-dependencies which starts with a
dependency and there is also another similar directed path P2 ∈ EMSG(H)
from Tj to Ti. Since the first edge of both paths is a dependency, the directed
cycle C = P1P2 does no show two consecutive anti-dependency edges and H is
not valid, which contradicts the initial assumption.

Resuming, in any possible case, if H is valid then it fulfils the Snapshot Read
and Snapshot Write properties for any PL-SI’ transaction.

A.3. SNAPSHOT CORRECTNESS IN VALID REPLICATED HISTORIES113

A.3 Snapshot correctness in valid replicated his-
tories

The Snapshot Read and Snapshot Write properties defined in Section A.2 can
be also used in replicated environments by just using RMSGs instead of DSGs
or EMSGs.

Definition 27 (Replicated Snapshot Read). Being Hr a replicated history rep-
resenting an execution of a set of transactions T over a system composed by a
set of nodes N , Hr has the Replicated Snapshot Read property if a time-precedes
order <t is defined over Hr such that for every SI transaction Ti and any other
transaction Tj:

(a) If Tj
wr−→ Ti ∈ RMSG(Hr) then cj <t si.

(b) If Ti
rw−→ Tj ∈ RMSG(Hr) then si <t cj.

Definition 28 (Replicated Snapshot Write). Being Hr a replicated history rep-
resenting an execution of a set of transactions T over a system composed by a
set of nodes N , Hr has the Replicated Snapshot Write property if a time-precedes
order <t is defined over Hr such that for every SI transaction Ti and any other
transaction Tj:

(a) If Tj
ww−→ Ti ∈ RMSG(Hr) then cj <t si.

(b) If Ti
ww−→ Tj ∈ RMSG(Hr) then ci <t cj.

Theorem 8 (Replicated Snapshot Correctness). Being Hr a valid replicated
history representing an execution of a set of transactions T over a system com-
posed by a set of nodes N , a time-precedes order <t is defined over the set of
start and commit operations of Hr’s committed transactions such that both fulfil
Replicated Snapshot Read and Replicated Snapshot Write properties.

Proof. Exactly the same methodology followed to prove Theorem 7 correctness
in the previous section can be also used here to prove that every valid replicated
history Hr correctly manages Snapshot Isolation. Furthermore, Theorem 2 also
proves that valid replicated histories are correct in the general case and a specific
proof for Snapshot Isolation is not necessary.

Actually, since Hr is valid, local histories are also valid and local time-precedes
orders fulfil Snapshot Read and Snapshot Write properties for PL-SI’ transac-
tions. Since RMSG(Hr) is just the combination of all local EMSG(Ha) edges,
an edge considered in Replicated Snapshot Read and Write properties appears
also in one or another local EMSG. Then, <t must include all orderings fixed
by the local time-precedes orders. If oi <a

t oj is fixed in node Na, oi <t oj
must be also fixed in Hr. Replicated Snapshot Read and Write properties will

114 APPENDIX A. APPENDICES

be fulfilled only if a contradiction does not show up when fixings coming from
different nodes are mixed up in <t. It can be proved that if that happens then
a cycle forbidden by valid histories appears, which is a contradiction and proves
the theorem. The formal proof is not included here since it is very similar to
previous proofs. Informally, we prove that, if oi <t oj is fixed in Hr due to an
edge e and oj <t oi is also fixed due to a combination of edges in RMSG(Hr),
this combination of edges is actually a directed path P such that, combined
with e, conforms a forbidden cycle. Assume oj <t oi is fixed due to a sequence
of fixed orderings oj <t o0 <t ... <t on <t oi such that ok <t ok+1 is locally
fixed in at least one node Nk. Every ok ∈ {sk, ck}. From Lemmas 9, 10, 11
and 12 there is a directed path Pk ∈ EMSG(Hk) from Tk to Tk+1 without two
consecutive anti-dependency edges sharing a PL-SI’ transaction and this path
appears also in RMSG(Hr). If ok = ck then the first edge of Pk is a dependency
edge. If ok+1 = sk then the last edge is also a dependency edge. Having that
in mind, the concatenation of all those paths in RMSG(Hr) makes a directed
path P with the same properties. P combined with e makes a cycle without
two consecutive anti-dependency edges sharing a PL-SI’ transaction. For ex-
ample, if si <t cj due to e then e is an anti-dependency edge. Since cj <t si
due to P , P starts and ends with dependency edges and the combination with
e makes a forbidden cycle. If ci <t sj then e is a dependency edge then the
combination with P is forbidden anyway. The same happens if ci <t cj due to e

(notice that si <t sj cannot be directly fixed due to a Snapshot Read or Write
condition).

A.4 Global order of conflicting operations

The following lemma states that given any pair of conflicting operations oi, oj ,
if ∃Na for which oai < oaj ∈ Ha then oi < oj ∈ Hr.

Lemma 13 (Global order of conflicting operations). Given a valid replicated
history Hr over a set of transactions T , for any two conflicting operations oi, oj
of committed transactions Ti, Tj ∈ T , oi < oj ∈ Hr ∨ oj < oi ∈ Hr.

Proof. Recall that oi < oj ∈ Hr if ∃Na for which oai < oaj ∈ Ha but ∄Nb for

which obj < obi ∈ Hb. If oi and oj meet only in one replica then their order in
Hr is determined by how are they ordered in that replica.

If both are executed in more than one node and both operations are writes, then
they are executed in all of them in the same order because otherwise there would
be a cycle in the RMSG. By absurd reduction, assume wa

i (xi) < wa
j (xj) ∈ Ha

but wb
j(xj) < wb

i (xi) ∈ Hb. Write-dependencies are always obligatory edges,

so, Ti
ww−→ Tj ∈ EMSG(Ha) and Tj

ww−→ Ti ∈ EMSG(Hb). Since RMSG(Hr)
is the union of all local EMSG, from Ha we obtain Ti

ww−→ Tj ∈ RMSG(Hr)
and from Hb we obtain Tj

ww−→ Ti ∈ RMSG(Hr), which close the cycle and
RMSG(Hr) is not valid, which contradicts the initial assumption.

A.5. CORRECTNESS PROOF OF THEOREM 2 115

If one operation is a read, then it logically reads the same value in all replicas1. If
the read operation is ri(xj), by the history definition (see Definition 2) wa

i (x
a
j) <

rai (x
a
j) in any replica Na where that read is executed. Assume ri(xj) and wk(xk)

both executed at Na and Nb. We prove by absurd reduction that they are
always ordered in the same direction. Thus, assume rai (xj) < wa

k(xk) ∈ Ha
r but

wb
k(xk) < rbi (xj) ∈ Hb

r . Thus, wa
j (xj) < rai (xj) < wa

k(x
a
k) ∈ Ha

r but wb
k(xk) <

wb
j(xj) < rbi (x

b
j) ∈ Hb

r . Then, there is a cycle in RMSG(Hr) composed by two
dependency edges involving Ti and Tk but RMSG(Hr) is supposed to be valid
which is a contradiction. Then, in any case both operations are executed in the
same order in all replicas.

A.5 Correctness proof of Theorem 2

Hereafter, we prove the correctness of Theorem 2; i.e. if Hr is valid (see Defini-
tion 21), then there is a valid and equivalent H. To this end, we firstly suggest a
methodology to extract a stand-alone history H from the RMSG of a replicated
history Hr. We then show that H is equivalent to Hr and fulfils the conditions
of Definition 16. Theorem 2 is therefore proven.

Definition 29 (Replicated Projection). Given a replicated history Hr repre-
senting the execution of a set of transactions T in set of nodes N , the replicated
projection P (Hr) is a partially ordered set of the operations in T with a binary
relation <p where:

1. If operation o ∈ Hr then o ∈ P (Hr).

2. ∀Ti ∈ T and ∀o1, o2 ∈ Ti, if o1 < o2 ∈ Ti then o1 <p o2 ∈ P (Hr).

3. ∀oi, oj ∈ Hr, if oi <r oj ∈ Hr then oi <p oj ∈ P (Hr).

Notice that P (Hr) might not order any pair of conflicting operations. For
example, given wi(xi) and wj(xj) two conflicting operations executed in Hr,
if they have been executed in different order in two of the nodes in N then
wi(xi) 6<r wj(xj) and wj(xj) 6<r wi(xi). Recall that wi(xi) <r wj(xj) if ∃Na ∈
N such that wi(xi) <a wj(xj) and 6 ∃Nb ∈ N such that wj(xj) <b wi(xi).

Definition 30 (Complete projection). Given a replicated history Hr, its repli-
cated projection P (Hr) is complete if it is a history (i.e., it fits with Definition
2).

As we are going to prove now, if Hr is valid then P (Hr) is complete, valid and
equivalent to Hr. Then, if Hr is valid then it is also correct.

1If reads are executed in more than one replica we assume that the logical value read is the
one accepted by the client. Usually protocols fit with this either by taking a ROWA approach
or by using deterministic or consensus algorithms

116 APPENDIX A. APPENDICES

Lemma 14 (Valid replicated projection). If Hr is valid then P (Hr) is complete.

Proof. Assume a valid replicated history Hr representing the execution of a set
of transactions T in a set of nodes N . P (Hr) is complete if:

• For any transaction Ti ∈ T and any operation oi ∈ Ti, oi ∈ P (Hr):
oi ∈ P (Hr) if oi ∈ Hr. oi ∈ Hr if oi is executed at least in one of the
nodes in N . Since Hr is a replicated history, all operations in T are
executed at least in one node. Hence, P (Hr) also includes all operations
in T .

• For any transaction Ti ∈ T and any two operations o1, o2 ∈ Ti, if o1 <

o2 ∈ Ti then o1 <p o2 ∈ P (Hr). This is ensured by Definition 29 condition
2.

• If ri(xj) ∈ P (Hr) then wj(xj) ∈ P (Hr) and wj(xj) <p ri(xj) ∈ P (Hr). If
ri(xj) ∈ P (Hr) then ri(xj) ∈ Hr. Then, ri(xj) has been executed at least
in one node. Since Hr is valid, all nodes local histories are also valid. For
all Ha, if ri(xj) ∈ Ha then wj(xj) ∈ Ha and wj(xj) < ri(xj) ∈ Ha. Since
both operations conflict, from Lemma 13 wj(xj) < ri(xj) ∈ Hr. From
Definition 29 condition 3, wj(xj) <p ri(xj) ∈ P (Hr).

• For any two conflicting operations o1, o2 ∈ P (Hr), o1 <p o2 ∈ P (Hr) or
o2 <p o1 ∈ P (Hr). From Lemma 13, o1 < o2 ∈ Hr or o2 < o1 ∈ Hr. From
projection definition condition 3, o1 <p o2 ∈ P (Hr) or o2 <p o1 ∈ P (Hr).

Thus, if Hr is valid then P (Hr) is complete. Now we prove that Hr and P (Hr)
are equivalent.

Lemma 15 (A replicated history and its replicated projection are equivalent).
Given a valid replicated history Hr and its replicated projection P (Hr) con-
structed as shown in Def. 29, Hr and P (Hr) are equivalent.

Proof. This can be proven by showing that all equivalence conditions are held.

C1: P (Hr) and Hr execute the same set of transactions T and commit the
same subset Tc ∈ T : by construction of P (Hr) (step 1), both execute
exactly the same operations, including commits.

C2: For any committed transaction Ti ∈ Tc, ri(xj) ∈ P (Hr) iff ri(xj) ∈ Hr.
By definition, every operation executed in Hr appears also in P (Hr).
Furthermore, a read executed in several nodes in a replicated system is
assumed to see the same values in all of them. Hence, the value read will
be always xj .

A.5. CORRECTNESS PROOF OF THEOREM 2 117

C3: For every two transactions Ti, Tj ∈ Tc, wi(x) < wj(x) ∈ P (Hr) iff wi(x) <
wj(x) ∈ Hr: from Lemma 13, if wi(xi) < wj(xj) in one node then wi(xi) <
wj(xj) ∈ Hr and, hence wi(xi) <p wj(xj) ∈ P (Hr). Since Hr and P (Hr)
see the same operations, both also see the same states sequence.

Therefore, we have proved that given any valid Hr, its replicated projection
P (Hr) is an equivalent stand-alone history. However, is P (Hr) valid?

Lemma 16 (A replicated history projection is valid). Given a valid replicated
history Hr and its replicated projection P (Hr) constructed as shown in Def. 29,
P (Hr) is valid.

Proof. It is valid if the conditions (a) and (b) of Def. 16 are held:

(a) PL-2, PL-3 or PL-SI’ transactions do not read aborted or intermediate
values : that condition is trivially held since reads obtain the same value
in P (Hr) and Hr which is supposed to be valid and, hence, reads never
obtain aborted or intermediate values.

(b) EMSG(P (Hr)) does not contain any directed cycle unless it contains two
adjacent edges sharing a PL-SI’ transaction: the form in which P (Hr)
is constructed ensures that it contains all Hr dependencies and hence,
EMSG(P (Hr)) has all RMSG(Hr) edges. However, is it possible for
P (Hr) to show dependencies not present in Hr? The answer is no since H
and Hr are both over the same set of operations, Lemma 13 proves that
any pair of conflicting operations are ordered in Hr and Replicated Projec-
tion condition 4 (Definition 29) forces the same ordering in P (Hr). Then,
EMSG(Hr) and RMSG(Hr) have the same vertices and edges. Since
RMSG(Hr) does not show those cycles, neither appears in EMSG(P (Hr)).

Therefore, given any valid replicated history Hr, we have proven that it is
equivalent to its replicated projection P (Hr) which is also a stand-alone valid
history. As a result, Hr is correct and Theorem 2 is proven.

Bibliography

[1] A. Adya. Weak Consistency: A Generalized Theory and Optimistic Imple-
mentations for Distributed Transactions. PhD thesis, Massachusetts Insti-
tute of Technology, March 1999.

[2] A. Adya, B. Liskov, and P. O’Neil. Generalized isolation level definitions.
In IEEE Intnl. Conf. on Data Engineering, pages 67–78, San Diego, CA,
USA, March 2000.

[3] Divyakant Agrawal, Gustavo Alonso, Amr El Abbadi, and Ioana Stanoi.
Exploiting atomic broadcast in replicated databases (extended abstract).
In 3rd Intnl. Euro-Par Conf., volume 1300 of Lect. Notes Comput. Sc.,
pages 496–503, Passau, Germany, 1997. Springer.

[4] José Enrique Armendáriz-Iñigo, J. R. Juárez-Rodŕıguez, José
Ramón González de Mend́ıvil, Hendrik Decker, and Francesc D. Muñoz-
Escóı. k-bound GSI: a flexible database replication protocol. In Yookun
Cho, Roger L. Wainwright, Hisham Haddad, Sung Y. Shin, and Yong Wan
Koo, editors, SAC, pages 556–560. ACM, 2007.

[5] J.E. Armendáriz-Iñigo, J.R. Juárez-Rodŕıguez, J.R. González de Mend́ıvil,
J.R. Garitagoitia, L. Irún-Briz, and F.D. Muñoz-Escóı. A formal char-
acterization of SI-based ROWA replication protocols. Data & Knowledge
Engineering, 70(1):21 – 34, 2011.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A
critique of ANSI SQL isolation levels. In Intnl. Conf. on Manag. of Data
(SIGMOD), pages 1–10, San José, CA, USA, May 1995. ACM Press.

[7] J. M. Bernabé-Gisbert. Providing support for data replication protocols
with multiple isolation levels. In OTM 2007 Workshops, Vilamoura, Al-
garve, Portugal, November 2007. Springer.

[8] J. M. Bernabé-Gisbert and F. D. Muñoz. Extending mixed serialisation
graphs to replicated environments. In 3rd Intnl. Conf. on Avail., Reliab.
and Security (ARES), pages 369–375, Barcelona, Spain, March 2008. IEEE-
CS Press.

119

120 BIBLIOGRAPHY

[9] J. M. Bernabé-Gisbert and F. D. Muñoz-Escóı. A compoundable specifica-
tion of the snapshot isolation level. Technical Report ITI-SIDI-2012/007,
Instituto Tecnológico de Informática, June 2012.

[10] J. M. Bernabé-Gisbert and F. D. Muñoz-Escóı. Supporting multiple isola-
tion levels in replicated environments. Data And Knowledge Engineering,
79 - 80(0):1 – 16, 2012.

[11] J. M. Bernabé-Gisbert, R. Salinas-Monteagudo, L. Irún-Briz, and F. D.
Muñoz-Escóı. Managing multiple isolation levels in middleware database
replication protocols. In 6th Intnl. Symp. on Paral. and Distrib. Proces.
and Appl. (ISPA), volume 4330 of Lect. Notes Comput. Sc., pages 511–523,
Sorrento (Naples), Italy, December 2006. Springer.

[12] Arthur J. Bernstein, Philip M. Lewis, and Shiyong Lu. Semantic conditions
for correctness at different isolation levels. In ICDE, pages 57–66, 2000.

[13] Philip A. Bernstein. Middleware: a model for distributed system services.
Commun. ACM, 39:86–98, February 1996.

[14] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.

[15] Stephanie Cammarata, Prasadram Ramachandra, and Darrell Shane. Ex-
tending a relational database with deferred referential integrity checking
and intelligent joins. In Proceedings of the 1989 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’89, pages 88–97, New
York, NY, USA, 1989. ACM.

[16] E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based database repli-
cation: The gaps between theory and practice. In Intnl. Conf. on Manag.
of Data (SIGMOD), Vancouver, Canada, June 2008. ACM Press.

[17] Bernardette Charron-Bost, Fernando Pedone, and André Schiper. Replica-
tion: Theory and Practice. Springer, 2010.

[18] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group com-
munication specifications: a comprehensive study. ACM Comput. Surv.,
33:427–469, December 2001.

[19] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication providing
generalized snapshot isolation. In 24th Intnl. Symp. on Reliab. Distrib. Syst.
(SRDS), pages 73–84, Orlando, FL, USA, October 2005. IEEE-CS Press.

[20] Javier Esparza Peidro, Francesc D. Muñoz-Escóı, Luis Irún-Briz, and
José M. Bernabéu-Aubán. RJDBC: A simple database replication engine.
In ICEIS (1), pages 587–590, 2004.

[21] Alan Fekete. Allocating isolation levels to transactions. In 24th Intnl. Symp.
Princ. Database Syst. (PODS), pages 206–215, New York, NY, USA, 2005.
ACM Press.

BIBLIOGRAPHY 121

[22] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and
Dennis Shasha. Making snapshot isolation serializable. ACM Trans.
Database Syst., 30:492–528, June 2005.

[23] Alan Fekete, Elizabeth J. O’Neil, and Patrick E. O’Neil. A read-only trans-
action anomaly under snapshot isolation. SIGMOD Record, 33(3):12–14,
2004.

[24] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers
of replication and a solution. In Intnl. Conf. on Manag. Data (SIGMOD),
pages 173–182, Montreal, Quebec, Canada, June 1996. ACM Press.

[25] Rachid Guerraoui and André Schiper. Software-based replication for fault
tolerance. IEEE Computer, 30(4):68–74, 1997.

[26] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related prob-
lems. In S. Mullender, editor, Distributed Systems, chapter 5, pages 97–145.
ACM Press, 2nd edition, 1993.

[27] INCITS. ANSI/INCITS 135-1992 (R1998).- Information Systems -
Database Language - SQL. InterNational Committee for Information Tech-
nology Standards, 1101 K Street NW, Suite 610, Washington, DC 20005,
USA, January 1992.

[28] Luis Irún-Briz, Hendrik Decker, Rubén de Juan-Maŕın, Francisco Castro-
Company, José Enrique Armendáriz-Iñigo, and Francesc D. Muñoz-Escóı.
MADIS: A slim middleware for database replication. Lect. Notes Comput.
Sc., 3648:349–359, August 2005.

[29] Ricardo Jiménez-Peris, Marta Patiño-Mart́ınez, and Gustavo Alonso. Non-
intrusive, parallel recovery of replicated data. In 21st Intnl. Symp. on
Reliab. Distrib. Syst. (SRDS), pages 150–159, Osaka, Japan, October 2002.
IEEE-CS Press.

[30] John Gantz and David Reinsel. The digital universe study: Extract-
ing value from chaos. http://www.emc.com/leadership/programs/digital-
universe.htm, June 2011.

[31] J. R. Juárez-Rodŕıguez, J. E. Armendáriz-Iñigo, J. R. González de
Mend́ıvil, F. D. Muñoz-Escóı, and J. R. Garitagoitia. Weak voting database
replication protocols providing different isolation levels. In 7th Intnl. Conf.
on New Techn. of Distrib. Syst. (NOTERE), pages 261–268, Marrakesh,
Morocco, June 2007.

[32] B. Kemme. Database Replication for Clusters of Workstations. PhD thesis,
Swiss Federal Institute of Technology, Zürich, Switzerland, 2000.

[33] B. Kemme and G. Alonso. A new approach to developing and imple-
menting eager database replication protocols. ACM Trans. Database Syst.,
25(3):333–379, September 2000.

122 BIBLIOGRAPHY

[34] Bettina Kemme, Alberto Bartoli, and Özalp Babaoglu. Online reconfigura-
tion in replicated databases based on group communication. In Intnl. Conf.
on Depend. Syst. and Netw. (DSN), pages 117–130, Göteborg, Sweden, July
2001. IEEE-CS Press.

[35] Bettina Kemme, Fernando Pedone, Gustavo Alonso, Andre Schiper, and
Matthias Wiesmann. Using optimistic atomic broadcast in transaction
processing systems. IEEE Trans. on Knowl. and Data Eng., 15(4):1018–
1032, 2003.

[36] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann.
Consistency rationing in the cloud: Pay only when it matters. PVLDB,
2(1):253–264, 2009.

[37] Gilles M. E. Lafue. Semantic integrity dependencies and delayed integrity
checking. In Eigth International Conference on Very Large Data Bases,
September 8-10, 1982, Mexico City, Mexico, Proceedings, pages 292–299.
Morgan Kaufmann, 1982.

[38] Y. Lin, B. Kemme, M. Patiño-Mart́ınez, and R. Jiménez-Peris. Middleware
based data replication providing snapshot isolation. In Intnl. Conf. on
Manag. of Data (SIGMOD), pages 419–430, 2005.

[39] Yi Lin, Bettina Kemme, Ricardo Jiménez-Peris, Marta Patiño Mart́ınez,
and José Enrique Armendáriz-Iñigo. Snapshot isolation and integrity con-
straints in replicated databases. ACM Trans. Database Syst., 34(2):11:1–
11:49, July 2009.

[40] Yi Lin, Bettina Kemme, Ricardo Jiménez-Peris, Marta Patiño-Mart́ınez,
and José Enrique Armendáriz-Iñigo. Snapshot isolation and integrity con-
straints in replicated databases. ACM Trans. Database Syst., 34(2), 2009.

[41] François Llirbat, Eric Simon, and Dimitri Tombroff. Using versions in up-
date transactions: Application to integrity checking. In Matthias Jarke,
Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Pericles
Loucopoulos, and Manfred A. Jeusfeld, editors, VLDB, pages 96–105. Mor-
gan Kaufmann, 1997.

[42] Microsoft Corp. URL: http://www.microsoft.com/sqlserver/en/us/default.aspx,
May 2011.

[43] Francesc D. Muñoz, J. Pla, Maŕıa Idoia Ruiz, Luis Irún, Hendrik Decker,
José Enrique Armendáriz, and J. R. González de Mend́ıvil. Managing
transaction conflicts in middleware-based database replication architec-
tures. In Intnl. Symp. Reliab. Distrib. Syst. (SRDS), Leeds, UK, October
2006. IEEE-CS Press.

[44] Oracle Corp. MySQL, developer zone. URL: http://dev.mysql.com/,
September 2011.

BIBLIOGRAPHY 123

[45] Oracle Corp. Oracle Database 11g. URL:
http://www.oracle.com/us/products/database/index.html, September
2011.

[46] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine
approach. Distrib. and Paral. Databases, 14(1):71–98, 2003.

[47] Frank M. Pittelli and Hector Garcia-Molina. Reliable scheduling in a TMR
database system. ACM Trans. Comput. Syst., 7(1):25–60, January 1989.

[48] PostgreSQL Global Development Group. PostgreSQL, the world’s most ad-
vanced open source database. URL: http://www.postgresql.org/, Septem-
ber 2011.

[49] M. I. Ruiz-Fuertes, R. de Juan-Maŕın, J. Pla-Civera, F. Castro-Company,
and F. D. Muñoz-Escóı. A metaprotocol outline for database replication
adaptability. In 2nd Intnl. Wshop. on Reliab. in Decentr. Distrib. Syst.
(RDDS), pages 1052–1061, Vilamoura, Portugal, November 2007. Springer.

[50] M. I. Ruiz-Fuertes, F. D. Muñoz-Escóı, H. Decker, J. E. Armendáriz-Iñigo,
and J. R. González de Mend́ıvil. Integrity dangers in certification-based
replication protocols. In 3rd Intnl. Wshop. on Reliab. in Decentr. Dis-
trib. Syst. (RDDS), pages 924–933, Monterrey, Mexico, November 2008.
Springer.

[51] M. Idoia Ruiz-Fuertes. On the Consistency, Characterization, Adaptability
and Integrity of Database Replication Systems. PhD thesis, Universidad
Politécnica de Valencia, September 2011.

[52] Maŕıa Idoia Ruiz-Fuertes and Francesc D. Muñoz-Escóı. Performance eval-
uation of a metaprotocol for database replication adaptability. In SRDS,
pages 32–38. IEEE, 2009.

[53] R. Salinas-Monteagudo, J. M. Bernabé-Gisbert, F. D. Muñoz-Escóı, J. E.
Armendáriz-Iñigo, and J. R. González de Mend́ıvil. SIRC: A multiple
isolation level protocol for middleware-based data replication. In 22nd
Intnl. Symp. on Comput. Inf. Sc. (ISCIS), Ankara, Turkey, November 2007.
IEEE-CS Press.

[54] Fred B. Schneider. Implementing fault-tolerant services using the state ma-
chine approach: a tutorial. ACM Comput. Surv., 22(4):299–319, December
1990.

[55] Michael Stonebraker and Rick Cattell. 10 rules for scalable performance in
’simple operation’ datastores. Commun. ACM, 54(6):72–80, June 2011.

[56] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, and Bruce G. Lindsay.
Transactions and consistency in distributed database systems. ACM Trans.
Database Syst., 7:323–342, September 1982.

124 BIBLIOGRAPHY

[57] Transaction Processing Performance Council (TPC). TPC benchmark C.
Standard Specification, 2005.

[58] S. Verma, M. L. Mcauliffe, S. Listgarten, S. Haldar, and C. K. Hoang.
Patent 7243088: Database management system with efficient version con-
trol. Oracle Intnl. Corp., July 2007.

[59] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme,
and Gustavo Alonso. Understanding replication in databases and dis-
tributed systems. In Distributed Computing Systems, 2000. Proceedings.
20th International Conference on, pages 464 –474, 2000.

[60] Matthias Wiesmann and André Schiper. Comparison of database replica-
tion techniques based on total order broadcast. IEEE Trans. Knowl. Data
Eng., 17(4):551–566, 2005.

[61] Matthias Wiesmann, André Schiper, Fernando Pedone, Bettina Kemme,
and Gustavo Alonso. Database replication techniques: A three parameter
classification. In 19th Intnl. Symp. on Reliab. Distrib. Syst. (SRDS), pages
206–215, Nürnberg, Germany, 2000. IEEE-CS Press.

[62] Vaidė Zuikevičiūtė and Fernando Pedone. Correctness criteria for database
replication: Theoretical and practical aspects. In Proceedings of the OTM
2008 Confederated International Conferences, CoopIS, DOA, GADA, IS,
and ODBASE 2008. Part I on On the Move to Meaningful Internet Sys-
tems:, OTM ’08, pages 639–656, Berlin, Heidelberg, 2008. Springer-Verlag.

	Abstract
	Resumen
	Resum
	Aknowledgements
	Preface
	I Introduction
	Introduction
	Database replication
	Replication transparency
	Benefits of supporting multiple isolation levels
	Objectives
	Contributions
	Roadmap

	Related work

	II Theoretical conditions
	Background
	General model
	Communication model
	Databases and transactions
	Execution of transactions
	Logical time
	Graphs Theory

	Stand-alone systems
	Concurrency control mechanisms
	Isolation levels
	Snapshot Isolation

	Alternative definition of Snapshot Isolation
	PL-SI': an alternative definition of PL-SI
	PL-SI' and PL-SI equivalence
	PL-SI' and SI equivalence
	About the time-precedes order in Snapshot Isolation

	Extended mixed serialisation graph (EMSG)
	Strict histories

	Extending EMSG to replicated environments
	Extending EMSG to replicated systems
	Equivalence between replicated and stand-alone histories
	Replication protocol correctness

	III Replication protocols
	Replicated isolation support
	Protocols classification
	Conflict Resolution

	Examples
	SER-CBR
	Blocking SER-D
	Non-blocking SER-D
	Conclusions

	IV Conclusion
	Conclusions

	V Appendices
	Appendices
	Chapter 5 lemmas
	Snapshot correctness in valid histories
	Snapshot correctness in valid replicated histories
	Global order of conflicting operations
	Correctness proof of Theorem 2

	Bibliography

