
Prioritized Atomic Multicast Protocols

Adding prioritization support to atomic multicast protocols

Departamento de Sistemas Informáticos y Computación

Tesis Doctoral

Presentada por:

Emili Miedes De Eĺıas

Dirigida por:

Dr. Francisco Daniel Muñoz Escóı

Mayo de 2012

Contents

Abstract 1

Resumen 3

Resum 5

I Introduction 7

1 Introduction 9
1.1 Group Communication . 9
1.2 Goals and Structure of the Thesis 11
1.3 Group Communication: Theoretical Issues 13
1.4 Publications . 15

2 Preliminaries 17
2.1 Reviewing Total Order Protocols 17
2.2 System Model . 22
2.3 Prioritization Properties . 23
2.4 Problems . 26

II Prioritized Total Order 29

3 Priority Management 31
3.1 Adding Priority Management . 31
3.2 Algorithms . 35
3.3 Related Work . 39
3.4 Discussion About the End-to-end Argument 41

4 Effectiveness of the Techniques 43
4.1 Environment . 43
4.2 Test Application . 44
4.3 Methodology . 46
4.4 Parameters . 47
4.5 Results . 48
4.6 Discussion . 48

i

ii CONTENTS

5 Cost of the Prioritization Techniques 53
5.1 Environment . 53
5.2 Methodology . 53
5.3 Cost Evaluation . 55
5.4 Results . 56
5.5 Conclusions . 63

6 Dynamic Protocol Replacement 65
6.1 A Dynamic Protocol Replacement Architecture 66
6.2 The Switching Protocol . 67
6.3 Discussion . 69
6.4 Properties of the Switching protocol 75
6.5 Evaluation of the Switching Protocol 79
6.6 Related Work . 95
6.7 Conclusion . 106

III Conclusion 109

7 Conclusions and Future Work 111
7.1 Conclusions . 111
7.2 Open Issues and Future Work . 112

Bibliography 113

List of Figures

2.1 Node architecture . 22

4.1 Median numbers (lower bound equal to -1000) 49
4.2 Median numbers (lower bound equal to -1200) 50

5.1 Median (a) and mean (b) delivery times in a 4-node system. . . . 58
5.2 Median (a) and mean (b) delivery times in an 8-node system. . . 60

6.1 Architecture of a node . 66
6.2 Architecture of a node (simplified version) 80
6.3 Delivery times (40 msg/s with TR and UB) 82
6.4 Delivery times (60 msg/s with TR and UB) 82
6.5 Delivery times (80 msg/s with TR and UB) 83
6.6 Delivery times (120 msg/s with TR and UB) 83
6.7 Delivery times (130 msg/s with TR and UB) 84
6.8 Messages delivered by hundredth (40 msg/s with TR and UB) . 84
6.9 Messages delivered by hundredth (60 msg/s with TR and UB) . 85
6.10 Messages delivered by hundredth (80 msg/s with TR and UB) . 85
6.11 Messages delivered by hundredth (120 msg/s with TR and UB) 86
6.12 Messages delivered by hundredth (130 msg/s with TR and UB) 86
6.13 Delivery times (40 msg/s with TR PRIO and UB PRIO) . . 87
6.14 Delivery times (60 msg/s with TR PRIO and UB PRIO) . . 87
6.15 Delivery times (80 msg/s with TR PRIO and UB PRIO) . . 88
6.16 Delivery times (120 msg/s with TR PRIO and UB PRIO) . . 88
6.17 Delivery times (130 msg/s with TR PRIO and UB PRIO) . . 89
6.18 Messages delivered by hundredth (40 msg/s with TR PRIO and

UB PRIO) . 89
6.19 Messages delivered by hundredth (60 msg/s with TR PRIO and

UB PRIO) . 90
6.20 Messages delivered by hundredth (80 msg/s with TR PRIO and

UB PRIO) . 91
6.21 Messages delivered by hundredth (120 msg/s with TR PRIO

and UB PRIO) . 92
6.22 Messages delivered by hundredth (130 msg/s with TR PRIO

and UB PRIO) . 93

iii

List of Tables

3.1 A visual classification of total order protocol classes 35

4.1 Percentage abort rate reduction 49

5.1 Delivery times (ms) with 4 and 8 nodes 56
5.2 Mean prioritization times (µs) 59
5.3 Mean numbers of garbage collection runs. 61

v

Abstract

Group communication has been studied intensively during the last decades from
a theoretical and practical point of view. Nowadays, there exists a large num-
ber of results related to various topics like group membership, reliable message
broadcast, message broadcast with some kind of additional guarantees, dis-
tributed agreement, leader election, etc. Thanks to these results, we now have a
set of techniques and tools that allow us to design, develop and validate highly
diverse complex distributed systems. Replicated systems are a type of systems
that can benefit from these techniques and tools. Such systems can be used to
build distributed applications more available and fault-tolerant.

One of these topics, the reliable message broadcast with total order guarantees,
studies how the different components of a distributed system in general (and
a replicated one, in particular) can broadcast messages so that all components
receive the same sequence of messages (this is, in the same order). To solve
this problem, different algorithms and protocols have been devised. At present,
there is a large number of theoretical results and practical tools that solve this
problem.

In this thesis, we study an extension of this problem. The goal is to study how to
add a new prioritization guarantee. This guarantee has to allow the components
of a distributed application to broadcast messages. The main difference from
the classic total order algorithms is that the application can label the messages
with a priority expressing the importance or urgency of each message. The
problem to solve is to ensure that all the components of the distributed system
will receive the same sequence of messages and moreover, to ensure that the
high-priority messages are received before the low-priority ones.

To solve this problem a new prioritized total order algorithm could be designed.
However, the approach followed in this thesis consists in studying how to modify,
from a theoretical point of view, some existing algorithms and protocols by
adding to them the necessary support of prioritized messages. The advantage
of this approach is its generic nature, since the results can be applied to existing
algorithms and protocols. In the thesis, such a study is performed and later some
practical experiments are carried out to ensure that the proposed theoretical
prioritization techniques are effective and do not impose an excessive overhead
in terms of the amount of resources used.

1

2 ABSTRACT

The thesis is completed with a proposal of a mechanism to dynamically switch
total order protocols. This mechanism allows an application to switch, in run-
time, the total order protocol it is using.

Resumen

La comunicación a grupos ha sido estudiada intensamente durante las últimas
décadas desde un punto de vista tanto teórico como práctico. Actualmente
se dispone de un gran número de resultados relacionados con diversos temas
como la pertenencia a grupos, la difusión fiable de mensajes, la difusión de
mensajes con algún tipo de garant́ıa adicional, el acuerdo distribuido, la elección
de ĺıder, etc. Gracias a estos resultados, actualmente se dispone de un conjunto
de técnicas y herramientas que permiten diseñar, desarrollar y validar sistemas
distribuidos complejos de muy diverso tipo. Los sistemas replicados son tipos de
sistemas distribuidos que pueden beneficiarse de dichas técnicas y herramientas.
Este tipo de sistemas puede usarse para construir aplicaciones distribuidas más
disponibles y tolerantes a fallos.

Uno de estos temas, la difusión de mensajes con garant́ıa de orden total, estudia
de qué manera es posible hacer que los distintos componentes de un sistema
distribuido en general (y uno replicado, en particular) puedan difundir mensajes
de manera que todos los componentes reciban la misma secuencia de mensajes
(es decir, en el mismo orden). Para resolver este problema, se han ideado
distintos algoritmos y protocolos. Actualmente se dispone de una gran cantidad
de resultados teóricos y de un buen número de herramientas prácticas que lo
resuelven.

En la presente tesis se estudia una extensión de este problema. El objetivo es
estudiar la forma de añadir una nueva garant́ıa de priorización. Esta garant́ıa
debe permitir a los componentes de una aplicación distribuida difundir mensajes.
La diferencia fundamental respecto a los algoritmos clásicos de orden total es
que la aplicación puede etiquetar los mensajes con una prioridad, que indica la
importancia o urgencia de cada mensaje. El problema a resolver es asegurar
la garant́ıa original de que todos los componentes del sistema distribuido van a
recibir la misma secuencia de mensajes y además, garantizar que los mensajes
más prioritarios van a ser recibidos antes que los menos prioritarios.

Para resolver este problema se podŕıa optar por diseñar algún nuevo algoritmo
de orden total priorizado. Sin embargo, la aproximación seguida en la tesis
consiste en estudiar de forma teórica la forma de modificar algunos algoritmos
y protocolos de orden total existentes y añadirles el soporte de mensajes prio-
rizados. La ventaja de esta aproximación es su genericidad, ya que permite

3

4 RESUMEN

que los resultados puedan ser aplicados a algoritmos y protocolos de orden to-
tal existentes. En la tesis se realiza dicho estudio y posteriormente se realizan
algunos experimentos prácticos para garantizar que realmente las técnicas de
priorización teóricas propuestas son efectivas y que no imponen un gran sobre-
coste en términos de la cantidad de recursos utilizados.

La tesis se completa con la propuesta de un mecanismo de intercambio dinámico
de protocolos de orden total. Este mecanismo permite a las aplicaciones que
utilizan un protocolo de orden total, cambiarlo en tiempo de ejecución.

Resum

La comunicació a grups ha sigut estudiada intensament durant les darreres
décades des d’un punt de vista tant teòric com pràctic. Actualment es disposa
d’un gran nombre de resultats relacionats amb diferents temes com la pertinença
a grups, la difusió fiable de missatges, la difusió de missatges amb algun tipus de
garantia addicional, l’acord distribüıt, l’elecció de ĺıder, etc. Gràcies a aquests
resultats, actualment es disposa d’un conjunt de tècniques i eines que permeten
dissenyar, desenvolupar i validar sistemes distribüıts complexes de múltiples
tipus. Els sistemes replicats són sistemes distribüıts que poden beneficiar-se
d’aquestes tècniques i eines. Aquest tipus de sistemes pot utilitzar-se per a
construir aplicacions distribüıdes altament disponibles i tolerants a les fallades.

Un d’aquests temes, la difusió de missatges amb garantia d’ordre total, estudia
de quina manera es pot aconseguir que els diferents components d’un sistema
distribüıt en general (i d’un sistema replicat, en particular) puguen difondre
missatges de manera que tots els components reben la mateixa seqüència de
missatges (és a dir, en el mateix ordre). Per a resoldre aquest problema s’han
dissenyat diferents algorismes i protocols. Actualment es disposa d’una gran
quantitat de resultats teòrics i d’un bon nombre d’eines pràctiques que el resolen.

En aquesta tesi s’estudia una extensió d’aquest problema. L’objectiu és estu-
diar la manera d’afegir una nova garantia de priorització. Aquesta garantia
ha de permetre que els components d’una aplicació distribüıda difonguen mis-
satges. La diferència fonamental front als algorismes clàssics d’ordre total és
que l’aplicació pot etiquetar els missatges amb una prioritat que indica la im-
portància o urgència de cada missatge. El problema a resoldre es garantir que
tots els components del sistema distribüıt reben la mateixa seqüència de mis-
satges i, a més, que els missatges més prioritaris siguen rebuts abans que els
menys prioritaris.

Per a resoldre aquest problema es podria optar per dissenyar algun nou algorisme
d’ordre total prioritzat. No obstant això, l’aproximació que hem seguit consisteix
en estudiar teòricament com modificar alguns algorismes i protocols d’ordre
total existents i afegir-los el suport de priorització de missatges. L’avantatge
d’aquesta aproximació és la seua genericitat, ja que permet que els resultats
puguen ser aplicats a algorismes i protocols d’ordre total existents. En la tesi es
fa aquest estudi i posteriorment es realitzen alguns experiments pràctics per a

5

6 RESUM

demostrar que realment les tècniques de priorització teòriques són efectives i que
no imposen un sobrecost excessiu en termes de quantitat de recursos utilitzats.

La tesi es completa amb la proposta d’un mecanisme d’intercanvi dinàmic de
protocols d’ordre total. Aquest mecanisme permet que les aplicacions puguen
canviar de protocol en temps d’execució.

Part I

Introduction

7

Chapter 1

Introduction

1.1 Group Communication

The design of a distributed system is a complex task because of the large number
of issues and problems that must be considered and solved. Some of them are
inherent to the distributed nature of the system.

One of the goals to cover is to reach a high level of transparency. Informally,
the system is expected to behave, at least from the point of view of the final
user, as a stand-alone system, but at the same time, it may offer a number
of advantages, like a certain degree of fault tolerance, higher availability of the
application, a better performance or a better use of the resources.

In this context, there exists a family of problems globally known as consensus
problems [44] based on a common idea: the need to reach an agreement among
the different nodes of the system (for instance, different processes running in
different geographically sparse machines). There are a number of particular well-
known cases of this problem that have been studied during the last decades. One
of these particular cases is the problem of distributed agreement that consists
in reaching some agreement among the different nodes of the system on the
value a variable shared among all of them. Another particular case is the leader
election [45] problem. This problem consists in electing a member as a leader
among all the members of a group.

Another well-known case is the problem of atomic multicast [49], also known as
total order broadcast. Informally, the members of a group broadcast messages to
all the nodes of the system and the problem to solve consists in getting all the
messages totally ordered so each node receives the same sequence of messages.

The present thesis is about total order protocols with prioritization support, a
variation of the classic problem of total order. According to the conventional
definitions of total order, all the messages broadcast by the members of the

9

10 CHAPTER 1. INTRODUCTION

system have the same importance or priority. In this thesis, we study how
to modify the existing classic total order broadcast algorithms and protocols so
they allow the applications to set the priority of each message and later consider
those priorities when deciding the global sequence of ordered messages.

The consensus problems pointed out above and in general, many other prob-
lems related with the design and development of distributed systems might be
straightforward from a theoretical point of view when a comfortable system
model is assumed. In fact, the solution of this kind of problems in ideal settings
is quite simple. Nevertheless, there are a number of issues related with the im-
plementation and, especially, with the deployment of these solutions that may
cause important complications. These complications are so large that usually
their solution can’t be directly addressed in the implementation phase. Instead,
they must be considered previously, in design time.

Some of those complications are related to the asynchronous nature of the com-
puters and communication networks that can be used nowadays to solve these
problems. They appear when the systems are moved from and ideal to a more
real setting. In particular, these complications appear when the design of a
distributed system considers the different types of asynchrony that are present
in current computers and communication networks. We can refer to two types
of well-known types of asynchrony. The first type is related to the computer
processors. If no precautions are taken, the processors that run the different
nodes of a distributed system make progress at different speeds and in general,
it is not easy to synchronize their progress.

On the other hand, there is also an important degree of asynchrony in the
communication networks and, in particular, in the time needed to send a data
packet from a sender to a receiver. A number of intermediate elements take
part in the packet sending, from physical low-level devices (network adapters,
modems, routers, bridges, etc.) to software components piled up in protocol
stacks (like TCP/IP) and each one is adding a small delay that are noticeable
as a whole by both sender and receiver as one-way and round-trip latencies.
The variability of these latencies is so large that, in general, it is not possible to
precisely know a bound of the time needed by a packet to reach its destination
or even if such a bound exists.

Another issue the designers of distributed systems must deal with is the possi-
bility of failures of different types, that may be caused by different reasons, like
physical failures (for instance, due to the regular use and wear of the physical
parts of the system), software bugs, security threats, human errors and natural
disasters.

For the system to be useful, these issues must be foreseen and solved, by means
of a number of solutions, in both design time and development time. These tasks
require a great deal of knowledge about different areas of computing (comput-
ing theory, algorithm design, software architecture and design, communication
networks, operating systems, programming languages, etc.)

1.2. GOALS AND STRUCTURE OF THE THESIS 11

Due to all these issues and their inherent complexity, the design and implemen-
tation of a distributed system becomes complicated. A number of techniques
can be applied in order to reduce this complexity or even just make these tasks
affordable. One of the always winning strategies consists in adopting a modular
methodology, by dividing the system in smaller parts, clearly isolating those
problems that are especially difficult to solve. A second step consists in getting
solutions to these problems, for instance developed by third parties, choosing
the more suitable to each problem, depending on the available resources, the
current limitations and in general, any other form of context that may be con-
sidered appropriate. Finally, those solutions must be integrated into the system
under development as building blocks, by means of well-defined interfaces.

This modular approach has a number of advantages. First, it simplifies the
design and implementation of the applications. For instance, the designer of a
distributed application does not need to be an expert in a large large number of
low level topics like networking or advanced administration of operating systems.
Instead, the designer relies on existing solutions that solve the problems in an
effective way. Moreover, it implies a significant saving, in terms of resources
like time and budget, because the design and development efforts that would be
required are no longer needed.

In this thesis, we defend the use of well-known architectures and design patterns,
based on well-defined interfaces that favor the integration of existing solutions
and also the modular development of new solutions that can be integrated in
other systems.

1.2 Goals and Structure of the Thesis

As pointed out in the previous section, the classic definition of total order
assumes that all the messages broadcast by the nodes of the distributed system
have the same importance or priority. But a distributed application running
in different nodes may need to broadcast messages with different priorities1,
so all the messages broadcast by the nodes are totally ordered, according to
the priorities set in the messages. Informally, the applications expect that the
messages with a higher priority will be delivered before the messages with a
lower priority.

Nevertheless, the classic total order protocols have not been designed to consider
prioritized messages. Instead, they consider that all the messages have the same
priority. Thus, the application designers that need to use such a service in their
applications, will need to choose one of the following alternatives.

A first alternative is to develop their own ad-hoc solutions, i.e., solutions specifi-
cally tailored to the application, as any other part or module of the application,
with the complication that it entails. Another alternative consists in designing

1In Chapter 4 we show an example and use it as a case study.

12 CHAPTER 1. INTRODUCTION

from scratch and implementing a new total order protocol, including in its de-
sign the mechanisms to consider the priorities of the messages as a criterion to
decide the total order of the messages broadcast by the nodes. A third alter-
native consists in choosing an existing implementation of a total order protocol
and modify it to consider the priorities of the messages. These alternatives
require a particular knowledge and also a considerable effort.

In this thesis we try to explore a different alternative, which we consider wider
and more general than the previous ones. Instead of modifying any existing im-
plementation of a total order protocol, our alternative consists in studying, from
a theoretical point of view, how can we modify the classic total order algorithms
and protocols so they consider the priorities of the messages. The result of this
study has to provide us with a number of techniques to be applied to existing
implementations of total order protocols in order to get their corresponding pri-
oritized versions that can then be provided to the application designers, to be
used as building blocks to develop their applications.

Besides designing and developing prioritized protocols, this thesis also proposes
a meta-protocol able to support multiple plugged-in total order broadcast pro-
tocols and dynamically exchange the one being used. Both techniques (priori-
tization and dynamic protocol exchange) are samples of adaptive strategies for
current dynamic distributed systems. Prioritization gets its best results with
high message sending rates, and current distributed systems are focused on im-
proving their scalability levels, generating such sending rates. So, prioritization
could be a complementary technique for reducing the transaction abort rates in
replicated relational databases (as explained in Chapter 4). On the other hand,
dynamic protocol exchange improves the adaptability of the system to varying
workloads, selecting the best broadcast protocol for each workload range. As a
result, this thesis presents some contributions to improve the adaptability and
dynamicity of the total order broadcast mechanisms being used in a reliable
distributed system.

Other results exist in this same area that complement our contributions, al-
though they have not been analyzed in subsequent chapters, which are only
centered in the prioritization and dynamic exchange problems for total order
broadcast protocols. A sample of these related works is the usage of system
interconnection [17] approaches, enhancing the scalability and adaptability of
the message broadcast mechanisms. Unfortunately, broadcast interconnection
algorithms can not be used for total order delivery, as proven in [9], but only for
causal or FIFO delivery. This is the reason for not studying them in the rest of
this thesis.

The thesis is structured in five main chapters. In Chapter 2, we review some
basic Group Communication concepts. In Chapter 3 we propose a number of
techniques that can be used to modify the different existing total order al-
gorithms and protocols. In Chapter 4 we apply these techniques to specific
implementations of different classic total order protocols and provide an ex-
perimental evaluation to prove their effectiveness. In Chapter 5 we provide a

1.3. GROUP COMMUNICATION: THEORETICAL ISSUES 13

second experimental evaluation to prove that the mechanisms that implement
those prioritization techniques do not impose a significant performance over-
head to the original total order protocols to which they are applied. In Chapter
6 we provide a mechanism to change dynamically (i.e. in run-time) the total
order protocol (prioritized or regular) used by an application, to increase its
adaptability to changing environments.

1.3 Group Communication: Theoretical Issues

1.3.1 Fundamental Results

During the last three decades, Group Communication has been studied from
both a theoretical and a practical point of view and a great number of results
have been produced. In this section, we present a selection of the most relevant
in the context of this thesis.

In [61], Lamport presents his definition of causal relation and uses it to define
a partial order that allows to order the events of a system in a logical manner
that is independent from the physical order in which they happened. This
work is essential for many other subsequent papers by many other authors. For
instance, it is the basis of [53], where Parker shows his definition of vector clock,
which in its turn is the basis of several causal broadcast protocols.

In [26, 27] (and some previous related papers), Birman et al. show the concept
of Virtual Synchrony, based on a number of fundamental abstractions like some
atomic multicast primitives (ABCAST, CBCAST and GBCAST) and some con-
cepts and abstractions related with groups (as the group concept itself and some
actions like group join, group leave or the monitoring of changes in the compo-
sition of groups). Informally, the Virtual Synchrony property says that given
two nodes p and q that belong to group view V, if both switch to group view W
then both nodes deliver in V the same set of messages, before switching to W2.

In [48], Hadzilacos and Toueg show a specification of different properties of
different message broadcast mechanisms, specifically, reliable message broad-
cast and ordered message broadcast mechanisms, including different ordering
semantics (FIFO, causal and total order). They give their definition of some
properties like Validity, Integrity, Agreement, Uniformity, Termination and sev-
eral properties to define different types of ordered message broadcast protocols.
This specification, unlike others, can be considered static, in the sense that it
assumes static systems, i.e. systems whose composition does not change over
time.

2Despite being a fundamental Group Communication concept, it will not be taken into too
much account in the stages of this thesis since we focus on the total order protocols included in
a regular Group Communication System and assume that this includes a membership service
that offers the Virtual Synchrony property. Nevertheless, when we talk about the correction
of the proposed protocol switching mechanism we will pay some attention to the relationship
it has with the available membership service (see Sections 6.3.3 and 6.4).

14 CHAPTER 1. INTRODUCTION

In [13], Babaoglu et al. present the concept of View Synchrony as an extension
of the concept of Virtual Synchrony for partitionable systems.

In [43], Fekete et al. provide a formal specification of the problem of group
communication in partitionable systems.

In [14, 15], Babaoglu et al. extend the work in [26] to the case of partitionable
systems, by extending the concept of Extended Virtual Synchrony previously
presented by Moser in [81]. They provide another property specification that can
be used in partitionable systems whose components may evolve independently
over time.

In [33], Chockler et al. present an extensive survey of many total order multicast
and broadcast algorithms and protocols and classify them according to their
ordering and fault-tolerance mechanisms.

Finally, it is worth mentioning the relation between group communication and
replication, which has been extensively studied. For instance, in [47, 58, 85, 104,
102, 12, 59] there are a number of proposals on how to use group communication
techniques and abstractions and services to design replicated systems.

1.3.2 Implementation Level

In [52], Chang and Maxembuck present one of the first atomic broadcast pro-
tocols, based on the setup of a logical ring with the processes of the system
and the circulation of a special message. This idea was exploited later in many
atomic broadcast algorithms and protocols.

In [54], Kaashoek and Tanenbaum present an introduction to the Amoeba dis-
tributed operating system, which includes one of the first implementations of
sequencer-based total order broadcast protocols (see Section 2.1).

Another of the well-known classical group communication systems is the Isis
Toolkit [25, 91], which is a monolithic system (i. e. all the available services like
the membership service, the broadcast primitives, etc. are tightly coupled in a
single module and are thus inter-dependent). The Horus [99, 98] and Ensemble
[97] systems are evolutions of Isis which adopt a modular architecture composed
by a configurable stack of layers. In these systems, and in many other that later
adopted the same kind of architecture, any layer is based on the services offered
by the lower layers and in its turn, offers a number of services to the upper
layers.

In [82, 11], the Totem group communication system is presented. It is another
monolithic system which also has an architecture based on a token-ring, that can
be extended with a multiple ring architecture to be used in a highly scalable
system. Unlike some other toolkits, Totem is able to deal with partitionable
systems.

In [42], the Transis toolkit is presented. As Totem, Transis offers group com-
munication services to software applications that run in partitionable systems.

1.4. PUBLICATIONS 15

In case a partition happens and the set of processes is divided in two or more
components, Transis allows all of them to make progress and later re-merge.

Among the most current implementations, we can cite a few. The Spread Toolkit
[10, 1] is an open source group communication system written in C which inherits
a number of characteristics of Totem and Transis, including its ability to deal
with partitionable systems and its token-ring architecture. The JGroups toolkit
[2], formerly known as JavaGroups is another open source group communication
system written in Java that has a fully configurable multilayer architecture
partially inspired in the Horus and Ensemble layer stacks. The Appia toolkit
[78, 3] is another open source group communication system also written in Java
which has a configurable multilayer architecture. In [18], a comparison among
Spread, JGroups and Appia can be found.

1.4 Publications

According to the requirements of the internal regulations of the PhD Program
of the Universitat Politècnica de València, in this section a selection of the
publications of the author of this thesis is presented.

1. Emili Miedes, Mari-Carmen Bañuls, and Pablo Galdámez. Compara-
ndo Protocolos mediante JavaGroups. In I Congreso Internacional de
Cómputo Paralelo, Distribuido y Aplicaciones, Linares, México, Septem-
ber 2003.

2. Emili Miedes, Mari-Carmen Bañuls, and Pablo Galdámez. An Adap-
tive Group Communication System. In 1st Polish and International PD
Forum-Conference on Computer Science, Bronislawow, Lodz, Poland, April
2005. ISBN 83-60434-25-5.

3. Emili Miedes, Mari-Carmen Bañuls, and Pablo Galdámez. Group Com-
munication Protocol Replacement for High Availability and Adaptiveness.
In Advanced Distributed Systems: 6th International School and Sympo-
sium (ISSADS), Guadalajara, México, January 2006.

4. Juan Carlos Garćıa, Mari-Carmen Bañuls, Pablo Galdámez, and Emili
Miedes. Membership Estimation Service for High Availability Support in
Ad Hoc Networks. In Advanced Distributed Systems: 6th International
School and Symposium (ISSADS), Guadalajara, México, January 2006.

5. Stefan Beyer, Francesc D. Muñoz-Escóı, Pablo Galdámez, and Emili Miedes.
DeDiSys Lite: An Environment for Evaluating Replication Protocols in
Partitionable Distributed Object Systems. In XIV Jornadas de Concur-
rencia y Sistemas Distribuidos (JCSD), San Sebastián, Spain, June 2006.
ISBN 84-689-9292-5.

16 CHAPTER 1. INTRODUCTION

6. Juan Carlos Garćıa, Mari-Carmen Bañuls, Pablo Galdámez, and Emili
Miedes. A Study of the Trade-Off Between Power Consumption and
Membership Estimation in Ad Hoc Networks. In In XIV Jornadas de
Concurrencia y Sistemas Distribuidos (JCSD), pages 271–283, San Se-
bastián, Spain, June 2006. ISBN 84-689-9292-5.

7. Emili Miedes and Francesc D. Muñoz-Escóı. Managing Priorities in Atomic
Multicast Protocols. In International Conference on Availability, Relia-
bility and Security (ARES), Barcelona, Spain, March 2008. ISBN 0-7695-
3102-4.

8. Lúıs Rodrigues, Nuno Carvalho, and Emili Miedes. Supporting Lineariz-
able Semantics in Replicated Databases. In 7th IEEE International Sym-
posium on Network Computing and Applications (NCA08), Cambridge,
MA, USA, July 2008. ISBN 978-0-7695-3192-2.

9. Emili Miedes, Francesc D. Muñoz-Escóı and Hendrik Decker. Reducing
Transaction Abort Rates with Prioritized Atomic Multicast Protocols.
In 14th International European Conference on Parallel and Distributed
Computing (Euro-Par), Las Palmas de Gran Canaria, Spain, August 2008.
Lecture Notes In Computer Science (LNCS), vol. 5168, pages 394–403.
Springer-Verlag, Heilderberg (Germany). ISBN 978-3-540-85450-0.

10. Ken Mayes, Juan Carlos Garcia Ortiz, Emili Miedes, and Stefan Beyer.
Reliable Group Communication for Dynamic and Resource-Constrained
Environments. In International Workshop on Database and Expert Sys-
tems Applications (DEXA), pages 14–18. IEEE Computer Society, Linz,
Austria, September 2009. ISBN 978-0-7695-3763-4.

11. Emili Miedes and Francesc D. Muñoz-Escóı. On the Cost of Prioritized
Atomic Multicast Protocols. In 11th International Symposium on Dis-
tributed Objects, Middleware and Applications (DOA), Vilamoura, Portu-
gal, November 2009. Lecture Notes In Computer Science (LNCS), vol.
5870, pages 585—599. Springer-Verlag, Heilderberg (Germany). ISBN
978-3-642-05147-0.

12. Emili Miedes and Francesc D. Muñoz-Escóı. Dynamic Switching of Total-
Order Broadcast Protocols. In International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), Las Vegas,
Nevada, USA, July 2010. CSREA Press. ISBN 1-60132-158-9.

From the previous listing, references 2, 3, 7, 9, 11 and 12 are directly related to
this thesis. This work is original from the author, it does not appear as part of
any other Ph.D. thesis and none of the papers in this group of publications will
support any future thesis written by any other of the paper co-authors. The
remaining references (1, 4, 5, 6, 8 and 10) are not directly related to this thesis.

Chapter 2

Preliminaries

This chapter provides a number of preliminaries. In Section 2.1 we review
an existing classification of total order protocols. In Section 2.2 we present the
system model we assume for the rest of the chapters. In Section 2.3 we propose a
formal definition of Prioritized Total Order . Finally, in Section 2.4 a number
of issues related to the prioritization of total order protocols is presented.

2.1 Reviewing Total Order Protocols

In [39], a survey of total order protocols is given. Such work classifies total
order protocols in five different classes: fixed sequencer , moving sequencer ,
privilege-based , communication history and destinations agreement

protocols.

The following sections include a review of that classification and a proposal
of how to enable the given classes of protocols to totally order messages in a
priority-based manner.

2.1.1 Fixed Sequencer Protocols

In a fixed sequencer protocol, a single process is in charge of ordering the
messages. If no process fails, this special process is fixed. There are three differ-
ent versions of the fixed sequencer basic protocol, as identified in [39], which
extends the classification in [54]: the Unicast-Broadcast (UB) protocol, the
Broadcast-Broadcast (BB) protocol and the Unicast-Unicast-Broadcast (UUB)
protocol.

In the UB version, when a sender wants to broadcast a message to a set of
processes, it first sends (unicasts) it to the sequencer. Other processes can

17

18 CHAPTER 2. PRELIMINARIES

concurrently send their own messages to the sequencer and it receives them in
some order. When the sequencer receives a message, tags the message with a
global sequence number and broadcasts it. All the processes deliver the messages
in the order set by the sequence number of each message.

In the BB version, a sender broadcasts the message to all the processes. The
sequencer receives different messages broadcast from different senders, in some
order. Every message is tagged with the sender identifier and a sequence number
local to its sender. When the sequencer receives a new message, it assigns the
message a global sequence number and broadcasts a special message containing
the original sender identifier and local sequence number, and the global sequence
number. All the processes deliver the messages according to the global sequence
numbers sent by the sequencer.

In the UUB version, a sender sends a request message to the sequencer, which
answers with a sequence number. The sender then tags the message to send with
that sequence number and broadcasts it. All the processes deliver the messages
in the right order, depending on their sequence number.

In [54], a comparison of the UB and the BB protocols (their original names are
PB and BB) can be found.

2.1.2 Moving Sequencer

In a moving sequencer protocol, sequencing is performed by a single process,
as in a fixed sequencer protocol, but in this case the sequencer is not a fixed
process. The sequencer role is transferred from one process to another, among
a set of processes that can be the whole set of processes in the system or just a
subset.

In several implementations [39], all the processes in the system form a logical
ring and the sequencer role is transferred along the ring by means of some kind
of token message.

The actual method to order the messages can be any of the methods used by a
fixed sequencer (UB, BB or UUB), but some details must be considered when
merging the UB, BB or UUB ordering methods with the ring-based method of
transferring the sequencer role.

For instance, the combination of the UB method and a logical ring presents an
important disadvantage. Whenever the sequencer role is transferred to another
process, the current sequencer must send to the new sequencer the whole set
of incoming messages that have not been sequenced yet. If there are too many
pending messages, this transfer may involve a significant bandwidth cost and
impose a significant delay in the regular message ordering.

2.1. REVIEWING TOTAL ORDER PROTOCOLS 19

2.1.3 Privilege-Based Protocols

In a privilege-based protocol, processes can only send messages when they
are allowed to do it. If just one process is allowed to send messages at every
moment, then the total order can easily be set using just a global sequence
number.

Common implementations (e.g. [82, 10]) use a logical ring composed of all the
processes in the system. A special message or token is sent along the ring. Only
the owner of the token is allowed to send messages. A process that wants to
send some messages must wait until it receives the token.

The token contains a global sequence number. Before sending a message, the
current token holder tags it with the current sequence number in the ring and
then increments it, so the next message, sent by the current sender or by another
one, gets the next sequence number. Once the sender has sent its messages,
forwards the token to the next process in the ring. Processes deliver the message
according to the sequence number set in it.

This protocol is restricted to closed groups (i. e., all the senders know each
other), which fits the system model. Some kind of static configuration or mem-
bership service is needed.

Moreover, some kind of flow control is needed, to ensure that processes do not
send too many messages in its turn and do not keep the token for too much
time.

2.1.4 Communication History Protocols

In a communication history protocol, processes use historical information
about message sending, reception and delivery to totally order messages.

In [39], two different types of communication history protocols are identified:
causal history protocols and deterministic merge protocols.

Causal History Protocols

The class of causal history protocols is based on the total order mechanism
proposed in [61]. The idea is to causally order messages tagged with Lamport
clocks, and extend this causal order into a total order. Although causal or-
der imposes a partial order on the messages that are logically dependent, it is
not enough to totally order concurrent messages (informally, messages that are
causally independent). These are ordered using the identifier of the message
sender.

20 CHAPTER 2. PRELIMINARIES

Deterministic Merge Protocols

In a deterministic merge protocol, messages are also broadcast with some
kind of timestamp, but unlike causal history protocols, these timestamps do
not reflect causal relations among messages. In practice, this timestamp can
even be a local sequence number. On the other hand, receivers use some local
deterministic mechanism to totally order the messages.

In [39], several deterministic merge protocols are presented ([34, 57, 7, 36,
37, 21]), although most of them impose significant constraints on the system
they may be used in (there are protocols for synchronous systems, protocols
that depend on physical clocks or even on redundant reliable channels) so they
will not be considered.

A particular deterministic merge protocol. In [39], a couple of deter-
ministic merge protocols ([20, 19]) based on a round-robin algorithm are cited.
As they are good examples of the deterministic merge class of protocols, here
it is presented how they can be adapted to consider properties when deciding
the total order of the messages.

According to those algorithms, all the processes send a constant flow of mes-
sages (that may be dummy messages if the user application does not send enough
messages), that are tagged with a local sequence number. In each round of the
protocol, every process waits for and delivers a message from the first process,
then another one from the second process and so on. Once a process has re-
ceived and delivered a message from all the processes in the system, another
round is started. As all the processes are deterministically ordered (by its pro-
cess identifier) and all the messages sent by a process are also deterministically
ordered (by its local sequence number), total order can be easily guaranteed.

This protocol works in a static scenario, in which the set of processes is fixed
and their identities are well-known. For this protocol to work in a more dynamic
environment, some additional group membership support is needed, to allow a
node to know about processes that join the group, leave the group or fail.

On the other hand, this protocol only makes an efficient use of the network
when all the nodes have a constant flow of messages to send. If not, dummy
messages need to be sent, thus wasting network bandwidth.

2.1.5 Destinations Agreement Protocols

In a destinations agreement protocol, some kind of agreement protocol is
run to decide the order of one or more messages.

In [39], three subclasses of destinations agreement protocols are identified,
according to the type of agreement performed: (1) agreement on the order
(sequence number) of a single message, (2) agreement on the order (sequence

2.1. REVIEWING TOTAL ORDER PROTOCOLS 21

numbers) of a set of messages and (3) agreement on the acceptance of an order
(sequence numbers) of a set of messages, proposed by one of the processes.

Destinations Agreement on the Order of a Single Message (Subclass
1)

An example of such a protocol is an algorithm originally proposed by Skeen
and later modified and formalized in [27]. In this protocol, message ordering is
performed in three phases (including a broadcast phase). First of all, a process
broadcasts a message. Receivers propose a sequence number, and also send their
own process identifiers. The sender collects all the proposed sequence numbers
and then deterministically decides the final sequence number. Process identifiers
are used to break ties, in case that two or more processes propose the same local
identifier.

Destinations Agreement on the Order of a Set of Messages (Subclass
2)

An example of this class of protocols is the protocol proposed in [30]. This
protocol tries to run a sequence of consensus runs. Each of them is used to
agree on the order of a set of messages. All the messages whose order is decided
in a consensus run are delivered before any message whose order is decided in the
next run. In a particular run, total order is decided in a deterministic manner
(for instance, according to the order imposed by the message identifiers, using
process identifiers to break ties).

In such a protocol, besides the consensus protocol itself, a reliable message
transport is needed. A mechanism to decide the scope of each consensus run (i.
e. which messages are ordered by the current consensus run and which ones are
ordered by the next one) is also needed.

Destinations Agreement to Accept a Suggested Order (Subclass 3)

An example of this class of protocols is the protocol described in [65]. According
to this protocol, when a process broadcasts a message, every process locally saves
it in a list of incoming messages. Periodically, some starter process decides to
start a new consensus run to order a set of messages. To take part in a consensus
run, a process sends to the starter process some information about the messages
contained in its incoming list. The started process waits for, at least, a majority
of responses and then decides a total order for the set of messages. This proposed
order is sent to all the processes, which vote to accept or reject it. If the starter
process receives a majority of positive votes, the order is accepted and applied
by all the processes.

22 CHAPTER 2. PRELIMINARIES

2.2 System Model

The system considered is composed of a set S = {node1, node2, ..., noden} of
physical nodes. In each node, a process is run. The set of processes in the
system is P = {p1, p2, ..., pn}.

Processes communicate through message passing by means of a fair lossy chan-
nel. Informally, a fair lossy channel is a channel that is subject to the loss of
messages, due to network issues like node disconnections or network partitions,
process failures or other reasons. However, a fair lossy channel does not lose
all the messages, does not produce new spurious messages, does not duplicate
messages and does not change the contents of the messages.

Each node has a multilayer structure, as shown in Figure 2.1. The user level
is represented by a distributed client application that uses the services offered
by a group communication system (GCS), that is composed of one or more
group communication protocols (GCP). Each GCP provides some guarantees
like reliable message transport or atomic multicast. The GCS sends to and
receives messages from the network and delivers them to the client application
according to the guaranties provided by the GCPs.

GCPk

Physical network

Client application

send

deliversend

GCP1 ...

Group comm. system

GCP2

deliver

Figure 2.1: Node architecture

Only closed groups are considered. A closed group is a group in which every
message sender is also a destination, so no external processes are allowed to
multicast messages. If an external process needs to multicast a message to
the group, it simply forwards the message to a group member that actually
multicasts such message.

The system is partially synchronous [41]. Although several definitions exist
on partial synchrony, it is considered that on the one hand, processes run on
different physical nodes and the drift between two different processors is not
known. On the other hand, the time needed to transmit a message from one
node to another is bounded but the bound is not known. In practice, the system
does not need more synchrony than that offered by a conventional network which

2.3. PRIORITIZATION PROPERTIES 23

offers a reasonably bounded message delivery time.

Processes can fail due to several reasons (for instance, hardware failures, soft-
ware bugs or human misoperation). Processes are also subject to network fail-
ures that keep them from sending or receiving messages. Network partitions
may also occur. Nevertheless, since this work focuses on the comparison of
prioritization techniques, these issues will not be addressed here. An implemen-
tation of these techniques may rely on some mechanisms like group membership
services and fault-tolerance protocols to take care of them.

2.3 Prioritization Properties

Ideally, a priority-based total order broadcast protocol should offer well defined
properties regarding the order in which high-priority messages are delivered
respect to low-priority messages. Informally, such a property should guarantee
that high-priority messages are delivered first and low-priority messages can
then be delivered.

In this section, the definition of the properties offered by a prioritized total order
protocol is formalized.

2.3.1 Previous definitions

As stated in Section 2.2, the system is composed of a set S = {node1, node2, ..., noden}
of physical nodes. In each node, a process is run and the set of processes in
the system is P = {p1, p2, ..., pn}. A client application is run in each process.
The application uses the services offered by a GCS. In a given process, the
client application broadcasts a possibly infinite sequence of messages. Thus
M = {m1,m2, . . .} is the set of messages in the system.

Events. As shown in Figure 2.1, in a process, the client application interacts
with the GCS by means of some events. A send(p,m) event is triggered when
process p broadcasts a message m through its GCS, where p ∈ P and m ∈ M . A
deliver(p,m) event is triggered when the GCS delivers a message m to process
p, where p ∈ P and m ∈ M .

Traces. A trace is a finite or infinite sequence of events. For instance T =
t1, t2, t3, . . . is a trace, in which event t1 happens before t2 which in turn happens
before t3, etc. As in [33], it is assumed that given events ti and tj , then i = j ⇔
ti = tj , this is, two different events cannot happen at the same time.

Functions. The following definitions are assumed:

24 CHAPTER 2. PRELIMINARIES

• sender(m) = p iff process p sends message m.

• sender index(m) = i iff sender(m) = pi.

• prio(m) is the priority of message m.

• prio(m) > prio(m′) means that message m has more priority than m′.

It is also assumed the definition of a function seq used to know the relative order
of two given messages. In particular, seq(m,m′) > 0 means that message
m is delivered prior to m′ to the application. Conversely, seq(m,m′) < 0
means that message m′ is delivered prior to m to the application. Moreover,
seq(m,m′) 6= 0, ∀m,m′ ∈ M : m 6= m′

2.3.2 Properties

A prioritized total order broadcast protocol guarantees the following properties:
Validity , Agreement , Integrity and Prioritized Total Order .

P1 Validity. The Validity property ensures that if a process p sends a mes-
sage m, then p eventually delivers m (by means of the deliver event). More
formally:

ti = send(p,m) ⇒ ∃j : j > i ∧ tj = deliver(p,m)

This property is similar to the Validity property specified in [49].

P2 Agreement. TheAgreement property ensures that if a process p delivers
a message m, then all processes eventually deliver m. More formally:

ti = deliver(p,m) ⇒ ∀q ∈ P ∃j : tj = deliver(q,m)

This property is similar to the Agreement property specified in [49]. More-
over, the union of the validity and agreement properties is equivalent to the
Multicast Liveness property specified in [33].

P3 Integrity. The Integrity property ensures that a) a message is delivered
by a node at most once and b) it is delivered only if it was sent by its sender
(this is, messages are not duplicated and there are no spurious messages). More
formally:

a) ti = deliver(p,m) ∧ tj = deliver(p,m) ⇒ i = j

b) ti = deliver(p,m) ⇒ ∃q ∃j (j < i ∧ tj = send(q,m))

These integrity a) and b) parts are similar to the No Duplication and Delivery
Integrity properties specified in [33], respectively.

2.3. PRIORITIZATION PROPERTIES 25

P4 Prioritized Total Order. The Prioritized Total Order property ex-
presses that if two processes deliver two messages, they deliver them in the same
order. More formally:

seq(m,m′) > 0 ⇒ ti = deliver(p,m) ∧ tj = deliver(p,m′) ∧ i < j, ∀p ∈
P, ∀m,m′ ∈ Q ⊆ M

This property is similar to the Total Order property in [49]. It is also similar
to several definitions of total order in [33] once conveniently tailored to ignore
view management details (Strong Total Order, Weak Total Order and Reliable
Total Order).

The definition of the seq function can be refined to fit a specific class of total
order protocols, thus yielding a refined specification of the Prioritized Total

Order property.

Definition of seq for fixed sequencer protocols.

seq(m,m′) =

{

prio(m)− prio(m′), if prio(m) 6= prio(m′)
detfseq(m,m′), if prio(m) = prio(m′)

∀p ∈ P, ∀m,m′ ∈ Q, where

a) detfseq is a deterministic function used to order two messages that have the
same priority (for instance, according to the identifiers of their senders, the
local sequence numbers of the messages, etc.)

b) Q = F is the set of messages sent to the sequencer process that have not
been sequenced yet.

Definition of seq for privilege-based protocols.

seq(m,m′) =

{

prio(m)− prio(m′), if prio(m) 6= prio(m′)
detpv(m,m′), if prio(m) = prio(m′)

∀p ∈ P, ∀m,m′ ∈ Q, where

a) detpv is a deterministic function used to order two messages that have the
same priority (for instance, according to the local sequence numbers of the
messages, etc.)

b) Q = Gp is the set of messages sent by process p that have not been sequenced
yet.

26 CHAPTER 2. PRELIMINARIES

Definition of seq for causal history protocols.

seq(m,m′) =

1, if m → m′

−1, if m′ → m

prio(m)− prio(m′), if m ‖ m′ ∧ prio(m) 6= prio(m′)
detch(m,m′), if m ‖ m′ ∧ prio(m) = prio(m′)

∀p ∈ P, ∀m,m′ ∈ Q, where

a) m → m′ means that message m is causally precedent to m′ and m ‖ m′

means that message m is concurrent to m′

b) detch is a deterministic function used to order two messages that are concur-
rent and have the same priority (for instance, according to the identifiers of
their senders, the local sequence numbers of the messages, etc.)

c) Q = Hp is the set of messages received by process p that have not been
delivered yet.

2.4 Problems

Priority-based ordering usually undergoes two common problems: starvation
([84]) and priority inversion ([94, 16, 31, 101, 100]).

Starvation happens when the delivery (or even the sending) of a low priority
message is delayed for a long period of time due to, for instance, a flow of high
priority messages. For instance, consider the following scenario. A process sends
a constant flow of high priority messages. Another process sends a constant flow
of low priority messages. Some priority-based total ordering protocol is ran. The
protocol decides that high priority messages must always be delivered prior to
any available low priority message. As there is a constant flow of high priority
messages, low priority messages never get a chance to be ordered. If no special
care is taken in such a situation, low priority messages are never delivered.

However, due to the nature of the applications that may be run over such a
priority-based total order broadcast protocol, the starvation problem is not ad-
dressed in this work. Several solutions can be applied to at least minimize the
impact of message starvation. For instance, in [83] a time division technique is
used to avoid message starvation, without introducing too much priority inver-
sion, which is the other common issue to care about.

Moreover, dynamic priority scheduling techniques [86] used by operating system
process schedulers may be useful to prioritize too old low priority messages. A
common solution consists in dynamically increase the priority of a message if it
has been waiting too much time in the sending queue.

Priority inversion happens when high priority messages are forced to wait until
some lower priority messages are delivered. This is a typical effect of applying

2.4. PROBLEMS 27

a very strict solution to avoid starvation. In the scenario described above,
consider the following solution. The protocol may be modified to force the
ordering of a message that is older enough. With such a solution, messages that
have been waiting too much time are ordered as soon as possible. If there are
some high priority messages ready to be ordered, they are forced to wait until
low priority messages are ordered, (i. e., high priority messages have to wait
because priorities have been inverted).

In [94, 16, 31], priority inversion is addressed when scheduling the access pro-
cesses make to certain resources. In [101, 100], the group priority inversion is
addressed in the context of actively replicated database applications that run in
timed asynchronous systems. In that work, priority inversion affects complete
user requests, rather than single messages. Priority inversion is also addressed
in [6], in the context of real-time database transactions.

Part II

Prioritized Total Order

29

Chapter 3

Priority Management

In this chapter we present some techniques for adding priority management
to existing total order protocols and show how can they be applied by means
of pseudocode sketches. Moreover we briefly review some related work. The
chapter is concluded with a revision of the End-to-end Argument in the context
of the prioritization of total order protocols.

3.1 Adding Priority Management to Total Or-

der Protocols

We have identified four basic techniques for adding priority management to
total order protocols, mostly depending on the point in the life-cycle of the
messages in which priorities are considered. These techniques may be called
priority sequencing , priority sending , priority delivery and priority-

based consensus, respectively, and are explained in the following sections.

3.1.1 Priority Sequencing

Priority sequencing may be applied to sequencer-based total ordering pro-
tocols like fixed sequencer (Section 2.1.1) or moving sequencer protocols
(Section 2.1.2). As the name suggests, the priorities of the messages are taken
into account when the sequencer is about to sequence each message.

The idea is to keep a list of incoming items. These items may be the messages
themselves (as in the fixed or moving UB and BB sequencer protocols) or re-
quests to the sequencer to get a sequencer number (as in the fixed or moving
UUB sequencer protocol). Prior to sending the item, the sender tags it with a
priority. According to this priority, the item is inserted in its proper place in
the list, so the list is ordered by priority.

31

32 CHAPTER 3. PRIORITY MANAGEMENT

To sequence the next item (a message or a request), the sequencer just gets
the first available message in the incoming list, this is, the item with highest
priority, and sequences them. The meaning of sequencing an item depends
on the particular version (UB, BB or UUB) of the protocol, as explained in
Sections 2.1.1 and 2.1.2.

This scheme is quite simple but low priority messages may undergo a starvation
problem (see Section 2.4) that can be solved using a periodic timeout. When the
timeout expires, the sequencer can block the reception of incoming items, assign
sequence numbers to all the items currently in the list, broadcast all of them in
decreasing order of priority and finally unblock the reception of incoming items.
This way, low priority items have a chance of being finally sequenced.

The Cost of Priority Sequencing

The priority of an item (a message or a request) is just an integer so it does not
impose a significant overhead in the size of the items and no significant overhead
in the use of the network is appreciated.

On the other hand, there is a computational cost related to the reception of the
items by the sequencer. Every time a new item is received by the sequencer, it
must be inserted in its right place in the list of incoming items, which is ordered
in decreasing order of priority. This insertion has a cost in time which is linear
to the current size of the list, which in turn depends on several factors, like the
sending rate of all the processes and the throughput of the sequencer (number
of items sequenced per time unit).

3.1.2 Priority Sending

Priority sending differs from priority sequencing in that the priorities
of the messages are taken into account in the moment the messages are sent.
This kind of modification applies to privilege-based protocols (Section 2.1.2),
some protocols of the deterministic merge subclass of the communication

history protocol class (Section 2.1.4) like the one presented in Section 2.1.4
and the first class of destinations agreement protocols (see Section 2.1.5),
presented in [39].

The idea behind this kind of modification is to send messages in a priority-based
order. To this end, each node has a priority-ordered list of outgoing messages
quite similar to the one used in Section 3.1.1.

Each outgoing message is placed in its right position in the list, according to its
priority. Messages are taken from the head of the list and sent. They then may
be treated according to the final protocol used to totally order the messages.

As messages are sent according to the order set by their priorities, if a sender
has several outgoing messages pending to be sent, it may send first the most

3.1. ADDING PRIORITY MANAGEMENT 33

priority one. This also means that low priority messages are retained in the last
places of the list, so a starvation problem may occur. A solution similar to the
one proposed in 3.1.1 may be applied here if needed.

The Cost of Priority Sending

The cost of adding priorities by means of this modification is similar to that in
Section 3.1.1.

3.1.3 Priority Delivery

The protocols of the causal history subclass of the communication history

class of [39] can be modified to order messages according to the priorities of the
messages.

In the original protocol, causal timestamps are used to causally relate messages.
These timestamps are enough to totally order causally dependent messages.
Concurrent messages, this is, those that are not causally dependent on each
other, are totally ordered by means of a deterministic mechanism, that usually
makes use of the identifier of the sender and the sequence number of the message
(local to its sender).

The priority delivery modification proposed consists in taking into account
the priority of concurrent messages prior to any other criteria. Note that
causally dependent messages must still be ordered according to the causal re-
lation imposed by their timestamps, in spite of their priorities, because the
modified protocol must still provide the same causal and total order guarantees
provided by the original protocol.

According to this, if some node broadcasts a low priority message and then
broadcasts a high priority message, as the first one is causally precedent to the
second one, the delivery of the latter must be delayed until the first is delivered,
regardless of their priorities.

In the original protocol, causally dependent messages are totally ordered by
means of their causal timestamps. Concurrent messages are ordered by means
of a local deterministic mechanism, applied in delivery time. As the modification
proposed is used to modify the way concurrent messages are totally ordered, it
is also applied in delivery time.

To solve this issue, priority delivery can be combined with priority send-

ing . This way, messages are sent according to their priorities and as causality
is enforced by the delivery mechanism, the local priority-based order is ensured.
Moreover, according to the priority delivery modification, concurrent mes-
sages are also ordered according to their priorities.

34 CHAPTER 3. PRIORITY MANAGEMENT

The Cost of Priority Delivering

As in the previous modifications proposed, no significant overhead is imposed
on message traffic. The computational cost is similar to that in other classes of
protocols and basically depends on the message sending rates.

The proposed modification imposes no significant overhead in the size of the
messages. The computational cost mainly depends on the message sending
rate. Whenever a message is received by a processor, it is inserted in its right
place in the list of incoming messages, depending on its timestamp, the priority
and the sender identifier of the incoming message and the existing messages.

The cost of this insertion is linear to the number of messages currently in the
list, but to be precise, part of this overhead was already present in the original
version of the protocol (that corresponding to the comparison of the timestamp
of the incoming message against the timestamps of other messages in the list).

Anyway, the size of the incoming list of a process directly depends on the sending
rate of the processes in the system and the productivity of the local process
(measured in messages locally ordered per time unit).

3.1.4 Priority-based Consensus

To end this classification of modification techniques, the priority-based con-

sensus modification is presented, which is applicable to the second and third
classes of destinations agreement protocols (see Section 2.1.5), presented in
[39].

The modification, which is actually quite similar to that of Section 3.1.3, consists
in taking into account the priorities of the messages, prior to other criteria, to
reach the consensus about the order of a set of messages.

The Cost of Priority Consensus

This modification imposes no significant overhead on message traffic. The com-
putational overhead is also low and, as in other cases, it directly depends on
the message sending rates of all the nodes. Moreover, in order to perform the
consensus, some additional memory space for message buffering purposes may
be needed.

3.1.5 A Visual Classification

Table 3.1 shows, in a visual format, which modification type corresponds to each
of the total order protocol classes (and subclasses) presented in [39]. It is also
shown, for each protocol class, which is the agent that decides the total order.

3.2. ALGORITHMS 35

Modification Who orders
Protocol PQ PS PD PC Q S L O
Fixed UB x x
Fixed BB x x
Fixed UUB x x
Moving UB x x
Moving BB x x
Moving UUB x x
Privilege-based x x
Comm. hist.-causal hist. x x
Comm. hist.-det. merge x x
Dest. agreement 1 x x
Dest. agreement 2 x x
Dest. agreement 3 x x

Table 3.1: A visual classification of total order protocol classes

The Modification keys PQ, PS, PD and PC correspond to priority sequenc-

ing , priority sending , priority delivery and priority-based consensus,
respectively. The Who orders keys Q, S, L and O correspond to sequencer,
sender, local node and other, respectively.

3.2 Algorithms

In this section four algorithms that implement the priority-based total order
broadcast service are shown. Each algorithm corresponds to each of the four
techniques presented in Section 3.1. These algorithms are just sketches and have
not been formally proved. Instead, they just try to illustrate the four techniques
of modifying existing total order broadcast protocols.

The algorithms shown are sketches that are not fault-tolerant, since fault-
tolerance is not addressed in this work. Issues like node failures or network
partitions are usually covered by other parts of a Group Communication Sys-
tem, like the underlying message transport layers and the group membership
system. Our algorithms try to show the basic protocols and how they can
be modified, in the same way of [40], discarding additional issues like fault-
tolerance mechanisms. Nevertheless, any solution to address fault-tolerance in
similar protocols may be easily applied to the sketches presented here. This
approach allows us to compare how the basic protocols operate and perform,
without the influence of additional tasks and mechanisms. This way we can
focus on comparing the prioritization techniques and the resulting protocols.

In Algorithms 1, 2 and 3, a modification of the original fixed UB algorithm
presented in [39] is shown (underlined text shows the main differences). The

36 CHAPTER 3. PRIORITY MANAGEMENT

modification corresponds to the priority sequencing class of algorithms and it
is actually very similar to the original fixed UB algorithm. The main difference
is that incoming messages are not immediately sequenced and sent to all the
destinations but queued according to their priority and later sent.

Algorithm 1 Modified fixed UB (sender)
1: Procedure TO-broadcast(m, prio):

2: prio(m)← prio

3: send m to sequencer
4:

Algorithm 2 Modified fixed UB (sequencer)
5: Initialization:
6: seqnum← 1
7: incoming ← {}

8:
9: Parallel: when receive (m):

10: insert m in incoming, according to prio(m)

11:
12: Parallel: after initialization:
13: while incoming is not empty do

14: m← first message in incoming

15: incoming ← incoming \ {m}

16: sn(m)← seqnum
17: send (m, sn(m)) to all
18: seqnum + +
19: end while

20:

Algorithm 3 Modified fixed UB (destination)
21: Initialization:
22: nextdeliver ← 1
23: pending ← ∅
24:
25: When receive (m, seqnum):
26: pending ← pending ∪ {(m, seqnum)}
27: while ∃(m, seqnum) ∈ pending : seqnum = nextdeliver do

28: deliver m
29: nextdeliver + +
30: end while

31:

A modification of the privilege-based algorithm of [39] is shown in Algorithms
4 and 5. This modification corresponds to the priority sending class of algo-
rithms.

In Algorithm 6, the modification of the causal history algorithm presented
in [39] is shown. This modification corresponds to the priority delivery class
of algorithms. As the original algorithm, it assumes that a FIFO multicast
algorithm is available.

Finally, Algorithms 7, 8 and 9 show a destinations agreement algorithm that
fits into the third subclass identified in [39] and corresponds to the priority-

based consensus class of algorithms. This sketch is presented just as an illus-

3.2. ALGORITHMS 37

Algorithm 4 Modified privilege-based algorithm of process p (sender)
1: Initialization:
2: tosend← {}

3: if p = s1 then

4: token.seqnum← 1
5: send token to s1
6: end if

7:
8: Procedure TO-broadcast (m, prio):

9: insert m in tosend according to prio

10:
11: When receive token:
12: if tosend 6= ∅ then

13: m← first message in tosend
14: send (m, token.seqnum) to destinations
15: token.seqnum + +
16: tosend← tosend \ {m}
17: end if

18: send token to si+1 mod n

19:

Algorithm 5 Modified privilege-based algorithm (destination)
20: Initialization:
21: nextdeliver ← 1
22: pending ← ∅
23:
24: When receive (m, seqnum):
25: pending ← pending ∪ {(m, seqnum)}
26: while ∃(m, seqnum) ∈ pending : seqnum = nextdeliver do

27: deliver m
28: nextdeliver + +
29: end while

30:

Algorithm 6 Modified communication-history algorithm of process p

(sender/destination)
1: Initialization:
2: received← ∅
3: delivered← ∅
4: LC ← {0, . . . , 0}
5:
6: Procedure TO-broadcast(m, prio)

7: LC[p]← LC[p] + 1
8: ts(m)← LC[p]
9: prio(m) = prio

10: send FIFO (m, ts(m)) to all
11:
12: When receive (m, ts(m)):
13: LC[p]← max(LC[p], ts(m)) + 1
14: if p 6= sender(m) then

15: LC[sender(m)]← ts(m)
16: end if

17: received← received ∪ {m}
18: deliverable← ∅
19: for each message m in received \ delivered do

20: if ts(m) ≤ minq∈Π{LC[q]} then

21: deliverable← deliverable ∪m
22: end if

23: end for

24: deliver all messages in deliverable in increasing order of (ts(m), prio(m), sender(m))

25: delivered← delivered ∪ deliverable
26:

38 CHAPTER 3. PRIORITY MANAGEMENT

trative example about how to apply this technique. According to this protocol,
the messages received by the nodes are not directly delivered to the application
but queued in a list. From time to time, a starter node decides to start a consen-
sus round by sending to all the nodes a special START CONSENSUS message.
When a node receives such a message, sends a response that contains a set with
the identifiers of the pending messages. When the starter receives a minimum
number k of responses then it decides the common subset to all the received
sets. The starter then decides a suggested total order of the selected messages,
taking into account the priorities of the messages. This suggested order is sent
to all the nodes (by means of an APPLY ORDER message) so they can deliver
the selected messages in the proper priority-based total order.

In the proposed algorithm, the order procedure is used to select the common
subset of messages and to order them according to their priorities. The vote
procedure is used to locally decide if the order proposed by the starter node is
accepted. The voting mechanism is not addressed, but nevertheless, keeping this
procedure apart from the order procedure makes possible to use any consensus
[96] mechanism.

Algorithm 7 Modified destinations agreement, subclass 3 (starter)
1: Initialization:
2: incomingIds← ∅
3: votes← {}
4:
5: When start consensus:
6: send START CONSENSUS to all
7:
8: When receive (ids):
9: add ids to incomingIds

10: if |incomingIds| ≥ k then

11: orderAndPropose()
12: end if

13:
14: When receive (vote v):
15: add v to votes
16: if there is a majority of positive votes then

17: send APPLY ORDER(orderedIds) to all
18: end if

19:
20: Procedure orderAndPropose:
21: orderedIds← order(incomingIds)
22: send orderedIds to all
23:

Algorithm 8 Modified destinations agreement, subclass 3 (sender)
24: Procedure TO-bcast(m, prio):
25: prio(m)← prio
26: send m to all
27:

3.3. RELATED WORK 39

Algorithm 9 Modified destinations agreement, subclass 3 (destination)
28: Initialization:
29: incoming ← {}
30: ids← {}
31:
32: When receive (m):
33: add m to incoming
34: add id(m) to ids
35:
36: When receive (START CONSENSUS) from starter:
37: send ids to starter
38:
39: When receive (orderedIds):
40: vote← vote(orderedIds)
41: send vote to starter
42:
43: When receive (APPLY ORDER(orderedIds)):
44: ids← ids \ orderedIds
45: while orderedIds is not empty do

46: id← first id in orderedIds
47: orderedIds← orderedIds \ {id}
48: m← message in incoming with id
49: deliver m
50: incoming ← incoming \ {m}
51: end while

52:

3.3 Related Work

Unlike plain total order broadcast, priority-based total order broadcast has not
been too much studied and few results have been presented. In this section, the
most interesting results are commented.

In [84] (an extension of [83]), a starvation-free priority-based total order protocol
is presented. The protocol sits on top of an existing total order broadcast service
so the protocol in all the processes receives the messages in the same order. It
then locally and deterministically orders messages according to their priorities.

Time is divided in time parts, and the protocol ensures that all the messages that
belong to the same part are totally ordered according to their priorities. This
time-based solution is also used to avoid starvation of low-priority messages.

The protocol keeps a queue of incoming messages that is ordered according to the
priorities of the messages. Messages with the same priority are queued according
to their arrival order. Incoming messages are queued in their corresponding
place.

High priority messages are in the head of the queue and low priority are in the
tail of the queue. To deliver messages according to their priority, messages are
taken from the head of the queue and delivered to the application. To avoid
starvation of low priority messages a periodic timer is used. Every time the
timer expires, the reordering of incoming messages is temporarily paused. The
protocol then forces the delivery of as many messages as possible, so low priority
messages have a chance to be delivered to the application.

40 CHAPTER 3. PRIORITY MANAGEMENT

Such protocol is an extension of some existing total order protocol rather than
a total order broadcast protocol itself and does not integrate the priority man-
agement in the total order protocol core. For this reason, it cannot be classified
according to the taxonomy of [39].

In [87], another priority-based total order protocol is presented. This protocol
guarantees that a message that has been received by all the processes will be
delivered in the same order by all the processes, before any other message of a
lower priority that has not been delivered by any process yet. To achieve this
guarantee, a Priority accounting property is stated. According to this property,
if a message of a given priority has not been delivered at any process, when a
message of a higher priority is received, then the latter will be delivered prior to
the former. Thus, a priority-based total order multicast protocol is defined as a
broadcast protocol that preserves the Priority accounting property in addition
to a regular Total order property.

The protocol keeps a list of incoming messages that is ordered according to the
priority of the messages. This list has a common suffix in all the processes. As
some processes are faster than others, they deliver messages to the application
faster than others, so the head of the list is, in general, different.

When a message is sent, all the processes receive it (unless they fail). When a
process receives a message, it blocks part of the list of the incoming messages
(the part that contains messages of a lower priority). The process then sends
some information related to the blocked part of the list of incoming messages to
a special process that acts as a coordinator. It also sends information about the
last messages delivered to the application. The coordinator uses all this infor-
mation to decide in which point of the list processes must insert the incoming
message.

This protocol undergoes starvation of low priority messages if too many high
priority messages are sent. According to the authors, this protocol is especially
suitable “for state machine-like applications where the time to consume a mes-
sage is far greater than the time involved in the communication rounds” so
no starvation issues are expected to appear, no solution is given nor even the
problem itself is pointed at.

This problem may be solved as suggested in previous sections. From time to
time, regular prioritization may be blocked, and lower priority messages are
given a chance to be delivered. As previously said, this solution may cause
priority inversion, as high priority messages may have to wait for low priority
messages.

Regarding the classification of [39], as the delivery history is used to decide
the order of the messages (as well as the priorities of the incoming and existing
messages), this protocol may be classified in the deterministic merge subclass
of the communication history protocol class.

In [16, 101] another common problem of this kind of protocols, known as priority
inversion, is addressed.

3.4. DISCUSSION ABOUT THE END-TO-END ARGUMENT 41

3.4 Discussion About the End-to-end Argument

The end-to-end argument [90, 80] is a design principle that can be applied to
many different kinds of systems. According to this principle, functionality used
by an application and often packed as a library or any other external form (e.
g. as a service somehow offered by the operating system) is better placed in the
application level. Several reasons are given in favor of the end-to-end argument
and against the opposite low-level argument.

Regarding prioritized total ordering, the end-to-end alternative means taking
into account message priorities at the application level while the low-level al-
ternative means considering the priorities at the group communication system
level, as presented in Section 3.1.

In the end-to-end alternative, the application tags its messages with a priority
level (as in the proposed modifications in Section 3.1). Each node may send its
messages according to their priorities. The messages are broadcast and totally
ordered by means of a regular group communication system, and delivered to
the application (in every node) according to a total order.

As this order does not reflect any priority order, the application is in charge of
reordering the incoming messages according to their priorities. This reordering
must be done in such a way that the total order property of the sequence of
delivered messages is kept.

The reordering can be done in a distributed manner, by using some additional
message rounds, which increase the cost of the priority-based total ordering
service.

The reordering can alternatively be done in a local manner, by means of a
deterministic method. In a first alternative, time can be logically divided as
in [84]. Some special control message, periodically sent by some coordinator
node and totally ordered respect regular messages can be used to decide the
duration of the time parts. Messages in each time period can be locally ordered
(also guaranteeing the total order property).

A second alternative consists in forcing each node to wait for a predefined num-
ber of incoming messages and then deterministically reorder them according to
their priorities. This way, the control messages used in the first alternative are
avoided.

Such end-to-end approaches offer the advantage of being compatible with any
total order broadcast protocol. In [90], another advantage of such application-
level kind of solutions is argued. An application may have some information
which is not accessible by a lower level and this information may allow the ap-
plication to tune the operation of the service in order to get better performance
numbers. Regarding the prioritization of total order broadcast protocols, there
is no special information accessible only to the application1 that could be used

1Keep in mind that we are not comparing the use of an application-level priority-based

42 CHAPTER 3. PRIORITY MANAGEMENT

to get a better performance so, in our case, this argument is actually not a real
advantage.

On the other hand, these application-level solutions have some disadvantages
that must also be considered. First of all, both solutions impose a delay in the
delivery of the incoming messages (until the next control message arrives or the
expected number of messages are received) which depends on the duration of
each time part or the number of required messages.

Furthermore, in case a node fails and later recovers it must ask another node
for the messages it has missed. If the priority management is performed at the
application level, the application is in charge of keeping a list of recent incoming
messages in order to forward them to the recovering node. In the first solution,
each node must save, at least, all the messages from the last control message.
In the second case, each node must save all the messages received since the
last reordering took place. In both cases, this need complicates the design and
implementation of the application. Instead, a middleware-based alternative, like
any of the modifications proposed in Section 3.1, offers a simple and powerful
solution that allows the application designer to focus on the relevant aspects of
the application.

Besides that, these application-level solutions are not much reusable. If no
special efforts are made to keep this priority-based reordering in a modular
component, then the solutions are not reusable at all.

Moreover, the design and the implementation of the application is more compli-
cated, as pointed above. Indeed, the application not only must reorder messages
according to their priorities but also respect the total order property of the orig-
inal sequence of incoming messages. Application designers need to worry about
concerns that are not directly related to the application core.

So, unless application designers very carefully design these non-core aspects of
the application, there is a risk that additional software bugs are put in. Instead,
if this functionality is designed and implemented by specialized designers, this
risk can be highly reduced.

For all these reasons, the conclusion about the end-to-end argument is that, in
this particular case, is not worthy at all to move to an application-level layer
the priority-based (re)ordering of incoming totally ordered messages.

reordering of an existing total order service against a regular total order broadcast service but
against a modified total order broadcast service that takes into account message priorities.

Chapter 4

Effectiveness of the

Prioritization Techniques

In this chapter we present some experimental work we have done in order to
compare original and modified total order protocols. First of all, the environ-
ment and the application used to do the tests are described. Then, we describe
the methodology followed to run the tests as well as the parameters used. Fi-
nally, we present some figures and discuss the results.

4.1 Environment

To test the original and the prioritized protocols, we have designed a simple
application which will be described later. The application is run under different
configurations that will also be described later.

This application uses the services of a total order protocol which in turn uses
a reliable transport layer. This layer is our own implementation of the sixth
transport protocol presented in [95]. It is based on the services provided by an
unreliable transport we built on top of the bare UDP sockets provided by the
Java platform.

The experiments have been conducted in a system of four nodes with an In-
tel Pentium D 925 processor at 3.0 GHz and 2 GB of RAM, running Debian
GNU/Linux 4.0 and Sun JDK 1.5.0. The nodes are connected by means of a 24-
port 100/1000 Mbps DLINK DGS-1224T switch that keeps the nodes isolated
from any other node, so no other network traffic can influence the results.

43

44 CHAPTER 4. EFFECTIVENESS OF THE TECHNIQUES

4.2 Test Application

We have designed a test distributed application that simulates the usage of a
replicated database in which some integrity constraints have been defined. This
application issues transactions that modifiy a value that is shared among all the
instances (or nodes) of the distributed application. The application uses a total
order protocol to broadcast the writesets of the transactions. Once the writesets
are received by the instances, they evaluate the integrity constraints. If all the
constraints are fulfilled, the writeset is applied, thus modifying the shared data.
Otherwise, the corresponding writeset is discarded.

The total order protocol ensures that every instance of the application receives
the same sequence of messages. As every instance takes the same decision
regarding the acceptance or rejection of each writeset, every instance applies
the same sequence of changes to the shared data, thus keeping it consistent
among all the instances. Moreover, the use of a prioritized total order protocol
allows the application to reorder the sequence of writesets to be applied by
means of reordering the messages used to carry those writesets. This can be
used by the application to reorder the sequence of transactions to apply in order
to fulfill some application-level requirement.

Next we describe the test application in more detail. The test application keeps
track of the overall amount of money being managed by a stock trade company
for all its stock investors. Each broker of the company runs its own instance
(node) of the application and operates on the stock exchange on behalf of the
stock owners and a potentially large number of investors.

The application is composed of two main components. A first component con-
tinuously analyzes the stock market and suggests the most interesting options
(stock selling or purchasing) according to different factors. A second component
keeps track of the global balance of the stock trade company. When a broker
decides to perform some operation suggested by the first component, the second
component verifies the operation and applies the required updates to the global
balance. If the operation implies the purchase of shares, the second compo-
nent must check that it can be performed, considering the price of the purchase
and the current global balance of the company. In some cases, this component
rejects an operation (for instance, when the price of the purchase exceeds the
global balance of the company).

As there are a number of brokers working for the company buying and selling
shares, the global balance is continuously updated accordingly to the opera-
tions. In order to guarantee that the current value of the company’s balance
is consistent among all the nodes of the application, a total order protocol is
needed. The total order protocol is used by all the nodes of the application to
multicast the updates that are being applied so all the brokers see the same
sequence of operations and apply the same sequence of updates to the global
balance. This way, in every moment the global balance is consistent among all
the nodes of the application.

4.2. TEST APPLICATION 45

We use a BalanceTest application to simulate the second component. The ap-
plication is composed of a number of concurrent threads, each one representing
a node managed by a different broker. Each node creates and broadcasts a num-
ber of messages, each one representing an operation (stock selling or buying)
that may update the current balance. Each update carries an integer value. A
positive value represents a stocks selling operation and the number is an incre-
ment to be applied to the global balance. A negative value represents a stocks
purchasing operation and the number is a decrement on the global balance. To
simplify the analysis of the results, we adopted the following convention regard-
ing the range of the updates of the balance the application will allow. The
integer values belong to a range whose upper limit is 1000. The lower value of
the range can be parametrized, as we will show in Section 4.4. The value as-
signed to each message is computed by a random generator. Additional details
about the seeds used in the tests will be given in Section 4.3.

All the messages are multicast to all the nodes using a total order protocol so
all the messages are delivered by all the nodes in the same order. Nodes apply
messages in the order they are delivered by the total order protocol. Applying
a message means updating the global balance kept by the node. As all the
nodes receive the same sequence of updates, all of them keep consistent their
corresponding copy of the balance.

As described below, each node multicasts a sequence of messages, each one
representing an update of the global balance corresponding to a stocks operation
and its priority. This way we can simulate the normal operation of a regular
stock trade company that has a number of brokers performing stock operations
on behalf of several hundreds of investors.

A stock market is a very dynamic scenario in which a decision (for instance, to
buy a number of shares by a given price) applied out of time can cause disastrous
results. Due to the complexity of the stock markets, some decisions are more
urgent than others, and, in some cases, must be prioritized over others. For
this reason, a stock trading application needs some mechanism that allows the
brokers to set the priority of the operations they are issuing, in order to get the
highest benefits from them.

In our test application, each message also carries a second integer value that
represents the priority of the message. The priority of a given message expresses
the urgency of the corresponding operation. In a real stock trade application,
these priorities are usually computed taking into account a big number of factors,
like the status of the market, the recent evolution of the shares, some long-term
histories, the risk of the operation (for stocks purchasing) or the expected benefit
(for stocks selling), among many others.

In our test application we considered a simplified approach that easies the de-
sign and implementation of the application and also the analysis of the results.
The priority is computed deterministically from only the value of the operation
(purchasing or selling). Given the value v corresponding to an operation, its
priority p is computed as p = 1000− v. According to this expression, an update

46 CHAPTER 4. EFFECTIVENESS OF THE TECHNIQUES

of the global balance with a value of 1000 has a priority of 0 and an update
with a value of -1000 has a priority of 2000. Taking into account that priority
management in the modified total order protocols is implemented considering a
the lowest value, the highest priority rule, then the first update has a higher pri-
ority than the second one. In other words, we are prioritizing positive updates
(from a share sale) over negative updates (from a share purchase).

In BalanceTest, we implemented another rule to discard some negative updates.
When an update is about to be applied, the new balance is computed. If the
new balance is greater or equal to zero, then the update is applied. If the new
balance is negative, then the update is discarded. In other words, we do not allow
the global balance to be in the red. This rule is used to show the differences
between conventional (non-prioritized) and prioritized total order protocols.

4.3 Methodology

The expected behavior of an execution of BalanceTest depends on the con-
ventional or prioritized type of the total order protocol used. When using a
non-prioritized protocol, the nodes apply approximately the same number of
positive and negative updates. When using a prioritized protocol, positive up-
dates (sales) are prioritized, as stated before. This means that the balance kept
by the nodes will be increased faster than decreased and less negative updates
will be discarded.

To compare a prioritized total order protocol against the non-prioritized version
of the same protocol, we run the BalanceTest application and count the num-
ber of updates that have been discarded in both versions. A number of messages
discarded by BalanceTest using a prioritized protocol lower than the number
when it uses the corresponding non-prioritized protocol means that the priori-
tized protocol has been able to prioritize a number of messages. The higher the
difference is, the best is the prioritization achieved by the prioritized protocol.

To test the proposed techniques, we tested different protocols. For each proto-
col, we varied the number of messages broadcast by each node. We also tried
different values for the lower bound of the numeric value of the updates. For
each combination of these parameters, we executed the BalanceTest and got
the number of updates discarded. The concrete values of these parameters are
discussed in Section 4.4.

As usual, a single execution of BalanceTest is not reliable enough to test a
prioritized protocol against its non-prioritized version. To get reliable results,
each execution is repeated a number of times. Each execution yields a number
of discarded updates and we can compute the mean and median values of all
the executions of a given test. We then compare the mean and median numbers
of discarded updates by both versions of a given total order protocol.

Finally, we tried to avoid that the sequence of messages sent by each node had

4.4. PARAMETERS 47

influence on the results. We forced each node to send the same sequence of
messages (i.e. the same sequence of priorities) in each test run with the same
combination of the parameters and each protocol. This way, in the same test
(combination of the rest of the parameters) all the protocols receive the same
sequence of priorities, which allows us to notice better the differences among
the protocols. As said before, each test is run a number of times, but it is not
necessary to send exactly the same sequence of messages (priorities) in each
execution of the series. The only really needed is to guarantee that in the i-th
execution of a given test (combination of the parameters), a given node sends
the same sequence of messages with all the protocols.

4.4 Parameters

In this section we describe the values of the parameters used to test the pro-
tocols. First of all, we describe a set of fixed parameters, whose values are the
same for all the tests. Then we explain a set of variable parameters.

Each test is run by a single Java Virtual Machine that runs a single BalanceTest
instance. This instance spreads four threads, representing four nodes. Each
thread creates a sequence of messages, as described above, and sends them
using a fixed sending rate (currently, 50 messages per second).

Each message is tagged with a priority value that ranges between a fixed maxi-
mum value equal to 1000 and a variable minimum value, described below.

The variable parameters are the protocol type, the number of messages sent by
each node and the minimum bound for updates.

Regarding the protocols, we have implemented three non-prioritized total or-
der protocols and then modified them according to the techniques proposed in
Section 3.2 to get the corresponding prioritized protocols. The UB protocol is
an implementation of the UB sequencer-based total order algorithm proposed
by [55]1. The UB PRIO protocol is the corresponding prioritized version of
UB . The TR protocol implements a token ring-based algorithm, which is, in
essence, similar to the ones of [82] and [10]2. The TR PRIO protocol is the
corresponding prioritized version of TR. Finally, the CH protocol is an imple-
mentation of the causal history algorithm shown in [40] and the CH PRIO is
its corresponding prioritized version.

We have executed different tests in which each node receives 400, 2000 and 4000
messages, respectively.

Moreover, we have used two different values for the minimum lower bound of
the range for the integer values that represent the updates. The values used

1UB stands for Unicast-Broadcast, as in [40].
2In the TR protocol, when a node receives the token, it broadcasts just a message, as in

[38], instead of broadcasting multiple messages, as in [82] and [10].

48 CHAPTER 4. EFFECTIVENESS OF THE TECHNIQUES

have been -1000 and -1200. Thus, the range for the updates are [−1000, 1000]
and [−1200, 1000], respectively.

The combination of these values yields a total of 36 different settings. For each
setting, we have ran 500 executions of the BalanceTest application.

4.5 Results

For each execution of the BalanceTest application we got the number of dis-
carded messages. For each series of executions, we have got a series of 500
numbers of the discarded messages in each of those 500 executions. Then we
got the mean and median values of each series and represented the medians
graphically.

To represent the medians, we have divided them in two different groups, de-
pending on the value used as a lower bound of the range for the integer values
that represent the updates. In the first group, the medians correspond to a
lower bound equal to -1000, while in the second group, the lower bound is equal
to -1200. In Figures 4.1 and 4.2 we show the medians for the first and second
group, respectively. In the X axis we represent the number of messages received
by each node (400, 2000 and 4000 messages). In the Y axis we represent the
number of discarded messages. The value represented is the median for each
series of 500 executions.

4.6 Discussion

The experiments show that the prioritization techniques yield good results.

When the lower bound of the balance updates is -1000, the prioritized versions
of the UB and TR protocols offer a very important reduction on the number
of discarded messages, respect their original counterparts. Nevertheless, the
reduction is lower in case of the CH PRIO protocol respect to the original
CH protocol. When the lower bound is -1200, the reduction is lower but still
important in case of the UB and TR protocols.

In Table 4.1, we summarize the reduction we got in each case (in percentage
values), considering different lower bounds and number of messages received per
node.

As shown by Figures 4.1 and 4.2 and Table 4.1, the reduction offered by the
CH PRIO protocol is negligible. As explained in [70, 72], the original CH

protocol offers a message delivery service with total and causal order guar-
antees and the modified protocol must necessarily offer the same guarantees.
This means that the modified protocol must ignore message priorities when
reordering and delivering causally dependent messages and can only take into

4.6. DISCUSSION 49

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
um

be
r

of
 d

is
ca

rd
ed

 m
es

sa
ge

s
(m

ed
ia

n)

Number of received messages

Medians (-1000)

UB
UB_PRIO

TR
TR_PRIO

CH
CH_PRIO

Figure 4.1: Median numbers (lower bound equal to -1000)

-1000 -1200
400 2000 4000 400 2000 4000

UB PRIO 76% 73% 66% 35% 24% 20%
TR PRIO 66% 82% 86% 30% 28% 28%
CH PRIO 15% 3% 0% 1% 2% 1%

Table 4.1: Percentage abort rate reduction

account message priorities to order and deliver concurrent (causally indepen-
dent) messages. As the number of causally independent messages is small, the
prioritization mechanism included in the CH PRIO protocol can only offer a
very small improvement respect to the original CH protocol.

Regardless the protocol, the lower bound of the balance updates also has a high
influence on the results. When the lower bound is equal to -1000 the number of
discarded messages is significantly lower, regardless the protocol used and the
number of received messages per node, respect to the same setting run with a
lower bound equal to -1200.

In the second case, the interval is [−1200, 1000], which means that negative val-
ues are more likely than positive ones and therefore withdrawals are more likely
than deposits. As there are more withdrawals than deposits, the balance gets
smaller and smaller and withdrawals have a higher probability to be discarded.

50 CHAPTER 4. EFFECTIVENESS OF THE TECHNIQUES

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
um

be
r

of
 d

is
ca

rd
ed

 m
es

sa
ge

s
(m

ed
ia

n)

Number of received messages

Medians (-1200)

UB
UB_PRIO

TR
TR_PRIO

CH
CH_PRIO

Figure 4.2: Median numbers (lower bound equal to -1200)

Nevertheless, in the first case, the interval of possible values for a balance update
(deposit or withdrawal) is [−1000, 1000]. Positive and negative values have the
same likelihood and therefore the number of discarded messages is lower than
in the previous case.

There are other factors to consider when analyzing the effects of the prioritized
protocols. The most determining factor is probably the application and the use
it makes of the system. First of all, to benefit from a prioritized total order
protocol, an application must send messages with different priorities. Moreover,
prioritized protocols are only advantageous when there is a sustained flow of
prioritized outgoing messages, sent at a minimum sending rate. If an application
sends prioritized messages with a low sending rate, the prioritized messages are
quickly handled, ordered and delivered, without colliding with other prioritized
messages and no significant benefit is got from the prioritized protocols.

The results show that the application benefits from using prioritized versions
of total order protocols. Current group communication systems do not include
prioritization support in their total order protocols. The present results confirm
that applications can benefit by making clever use of priority options offered by
augmented versions of standard total order protocols. It is likely that existing
group communication systems may be improved by adding, to their total or-
der protocols, some prioritization support based on our techniques. The main
contribution of this experimental study is to have shown that prioritized total

4.6. DISCUSSION 51

order protocols are beneficial for applications that prioritize their transactions
by taking into account their likelihood of violating given constraints.

Chapter 5

Cost of the Prioritization

Techniques

In this chapter, we present the experimental work we have done to observe the
performance of the total order protocols and evaluate the cost overhead of their
prioritized versions. First of all, we describe the testbed, including the physical
setting. Then, we describe the parameters and the methodology used to run
the tests and finally we present and discuss the results.

5.1 Environment

To evaluate the prioritization techniques, the original and modified total order
protocols described in Section 4.1 have been used. The system used to execute
the experiments is also described in Section 4.1.

5.2 Methodology

To evaluate the performance of the prioritization techniques, in each node, the
application broadcasts a series of messages to all the nodes in the system, by
means of a total order protocol. The messages are broadcast at a uniform send-
ing rate which is constant during the whole test. We have performed tests with
different sending rates. Besides this, we have no other flow control mechanism
neither in the application nor in the total order protocols.

Each message is tagged with a uniformly-distributed random priority which is
an integer number.

The length of the messages is not fixed, but depends on the headers saved in
them by the total order protocols. Nevertheless, in all the cases it is less than the

53

54 CHAPTER 5. COST OF THE PRIORITIZATION TECHNIQUES

MTU of the network we are using (1500 bytes), so all the application messages
fit into one wire-level packet.

Each message is totally ordered and delivered by all the nodes in the system.
To evaluate the performance of a given protocol, we measure the delivery time
of each message, i.e., the time observed by the application in a given node,
from the moment in which it broadcasts the message to the moment in which
it receives back the message, once totally ordered.

For each message we have a delivery time and for each node we have a series of
delivery times, corresponding to all the messages sent by that node. If we merge
all the delivery times from all the nodes, we can compute a global mean and
median delivery time. Such a mean (median) time expresses the mean (median)
time needed by messages to get totally ordered.

This test is run with different total order protocols and also with their corre-
sponding prioritized versions. With these values we analyze the dispersion of
the series of delivery times. A significant difference between the mean and the
median values, especially when the median is lower than the mean, implies that
there is a number of (low priority) messages that have a high delivery time,
which means that the prioritization mechanism is working as expected and has
been able to prioritize a number of messages. Nevertheless, the mean value of
the test should not exceed some bound. An excessively high value for the mean
delivery time implies that too many messages are being delayed and this delay
is extending their delivery times. In this case we say that the protocol became
saturated.

In order to get more trustworthy results, we discard the first 3200 messages1

recorded in each node. These values correspond to delivery times of messages
delivered during a period of time in which the total order protocol is being
initialized so the system is not yet in a steady-state regime.

During the execution of these tests we also analyzed two additional indicators:
a) the processing time employed by the prioritization mechanisms and b) the
memory use. In Section 5.3 we provide additional details.

5.2.1 Parameters

The considered parameters are the class of total order protocol, the number of
nodes and the sending rate at which the test application broadcasts messages.

Protocol type. To perform the evaluation, we have used the three non-
prioritized total order protocols (UB , TR and CH) and their corresponding
prioritized versions (UB PRIO , TR PRIO and CH PRIO) described in
Section 4.4.

1This number has been chosen empirically, after analyzing the behavior of the data struc-
tures managed by the total order protocol implementations.

5.3. COST EVALUATION 55

Sending rate. In each test, a node broadcasts messages using a uniform send-
ing rate. We have run tests with 4 and 8 nodes and sending rates of 10, 40,
60, 80 and 100 messages sent per second and node. Note that this generates
maximum global sending rates of 400 msg/s and 800 msg/s, in systems with 4
and 8 nodes, respectively.

Number of messages delivered by each node. To ease the comparison,
in each test, each node receives the same sequence of messages. This sequence
has 32000 messages. A test ends when all the nodes deliver those messages.

To ensure a stable operation of the protocols during a test, each node sends more
messages than those strictly necessary. For instance, in a test with 4 nodes, each
node would only need to send 8000 messages. In practice, as the nodes deliver
messages at a rate lower than the sending rate, there is a final period of time
in a test in which the system is no longer stable, because the queues of the
protocols are getting empty and this may affect the measuring of the delivery
times. Moreover, the difference between the sending rate and the delivery rate is
different in each test, and depends basically on all the parameters (the protocol
used in the test, the number of nodes and the sending rate itself) and this poses
additional difficulties to the protocol comparison.

To solve this issue, each node sends as many messages as needed, to ensure a
continuous flow of messages during the whole test. This approach also solves
the lack of liveness shown by the CH and CH PRIO protocols, as described
in [40].

5.3 Cost Evaluation

To evaluate the cost employed by the prioritization mechanisms, for each original
protocol and its corresponding prioritized version we measure the time employed
to run certain parts of both protocols. We call this time the prioritization time.
The sections measured are semantically equivalent, so we can get comparable
measures.

For instance, to evaluate the sequencer-based protocols, we measure the time
lapse between the time when the sequencer starts to handle a message and
the time when it broadcasts the message, once sequenced. The corresponding
prioritized protocol has an equivalent section, in which prioritization takes place.
Measuring the time needed to run both sections and comparing both times, we
can get a very tight approximation of the time needed by the prioritization
mechanism applied by the prioritized protocol.

These measures are only comparable between a given protocol and its corre-
sponding prioritized version. For other protocol families, the parts of the pro-
tocols considered are different.

56 CHAPTER 5. COST OF THE PRIORITIZATION TECHNIQUES

Table 5.1: Delivery times (ms) with 4 and 8 nodes
UB UB PRIO TR TR PRIO CH CH PRIO

4 nodes

mean 1.45 1.25 6.69 6.33 76.77 77.00
10 1st q. 1.20 1.08 0.89 0.89 65.13 65.16

msg/s med. 1.28 1.18 1.26 1.28 81.10 81.35
3rd q. 1.36 1.26 9.30 7.52 93.38 93.44

mean 1.50 1.46 1.29 1.27 17.77 17.86
40 1st q. 1.11 1.09 0.72 0.72 13.13 13.10

msg/s med. 1.24 1.31 1.02 1.02 17.12 17.01
3rd q. 1.34 1.54 1.27 1.27 20.84 20.84

mean 1.30 1.51 1.70 1.70 12.22 11.95
60 1st q. 0.97 1.09 0.75 0.76 8.83 8.77

msg/s med. 1.09 1.32 1.07 1.08 12.60 12.61
3rd q. 1.24 1.53 1.32 1.35 12.88 12.91

mean 3.43 2.20 2.36 2.75 9.13 9.29
80 1st q. 1.17 1.27 0.87 0.77 4.97 4.96

msg/s med. 1.27 1.42 1.20 1.09 8.66 8.62
3rd q. 1.53 1.70 1.51 1.37 8.98 8.96

mean 134.25 487.36 4.85 26.14 7.10 6.71
100 1st q. 1.12 1.35 0.83 0.83 4.62 4.59
msg/s med. 1.28 1.6 1.17 1.18 4.84 4.83

3rd q. 1.79 2.75 1.51 1.52 5.14 5.20

8 nodes

mean 1.89 11.35 2.05 2.08 90.33 90.96
10 1st q. 1.34 1.53 1.37 1.39 85.21 85.40

msg/s med. 1.53 1.73 1.86 1.87 97.62 94.21
3rd q. 1.70 1.92 2.39 2.4 101.79 101.74

mean 3.84 221.37 7.85 7.60 23.62 23.20
40 1st q. 1.40 1.65 1.53 1.50 20.76 20.74

msg/s med. 1.62 1.93 2.19 2.17 21.18 21.17
3rd q. 2.04 2.86 2.91 2.86 21.89 21.68

mean 190.82 670.48 75.53 151.49 17.09 17.22
60 1st q. 1.42 1.72 1.68 1.69 12.96 12.98

msg/s med. 1.86 2.51 2.54 2.53 13.28 13.27
3rd q. 3.65 9.94 3.69 3.60 17.07 17.05

mean 6718.52 13608.62 460.35 750.16 86.96 136.80
80 1st q. 6373.32 13.32 2.24 2.21 9.02 9.18

msg/s med. 6660.33 604.56 3.8 3.70 9.88 13.80
3rd q. 6882.63 24776.30 340.26 34.26 65.51 237.24

mean 20102.49 25264.85 5477.03 5148.22 100.05 125.82
100 1st q. 14290.93 104.60 5119.25 5.14 5.78 5.70
msg/s med. 18435.50 17349.36 5517.79 65.87 9.27 9.64

3rd q. 23159.88 47670.92 5891.15 6908.98 58.16 145.75

For each test, we measure the prioritization time in each node2. Then we
compute the mean prioritization time as the mean for all the nodes. These
numbers are presented in great detail in [73, 74] and discussed in Section 5.4.

To evaluate the memory use, we analyzed how much of the total amount of
memory available by the Java Virtual Machine is being used during each test
by each node. In [73] we graphically represent this evolution in several settings
(in systems of different sizes, with different protocols and sending rates, as
explained in 5.2.1). Moreover, for each test, we count the number of times
the Java garbage collector has been run in each node and with all of them,
we compute the mean number of garbage collection runs. These numbers are
explained in Section 5.4.

5.4 Results

In Table 5.1 we show the mean and median global delivery times (in ms), as
well as the first and third quartiles in systems with 4 and 8 nodes, respectively,

2We also discard the first 3200 messages, as explained in Section 5.2.

5.4. RESULTS 57

at different sending rates.

Delivery times in a 4-node system. In this configuration (see also Fig-
ure 5.1), the UB and UB PRIO protocols perform well at sending rates up
to 80 msg/s. At 100 msg/s UB still shows low median delivery times but their
dispersion is high, because the protocol is getting saturated. This can be clearly
seen in Figure 5.1.a (median times), where both protocols are able to deliver
their messages in less than 1.6 ms, although UB PRIO needs more time than
UB . Saturation is obvious when Figure 5.1.b is considered (mean times), since
once the 80 msg/s threshold is surpassed, both protocols increase their delivery
times with an exponential trend. Note also that there are no significant differ-
ences between both variants when their mean delivery times are considered.

The TR and TR PRIO yield better performance numbers than sequencer-
based protocols, even at 100 msg/s. At 10 msg/s the mean is slightly higher
than expected although in these cases, the protocols are not saturated. When
the sending rate is low, it may happen that the node which receives a token does
not have any message to broadcast. In this case, it simply forwards the token
to the next node in the ring. If a message is then broadcast by the application
in the first node, then it will have to wait until the token arrives again to that
node, thus increasing the delivery time of that particular message and also the
mean delivery time. As this happens only to some messages, the delivery time
of the rest of messages is low (due to the low sending rate and the low contention
accessing the network). At higher sending rates this problem no longer arises.
At 100 msg/s the dispersion in TR PRIO is slightly higher as a side effect of
the prioritization mechanism, as in UB PRIO . Despite this, it is able to scale
quite better than sequencer-based protocols, since both its median and mean
values are much lower than the latter ones.

Regarding the CH and CH PRIO , we can see that at low sending rates, the
delivery time is very high but it decreases noticeably as the sending rate is in-
creased. Indeed, no value has been shown for these protocols in Figure 5.1.a.
On the other hand, they are the single family of protocols able to decrease
its delivery time when the sending rate is increased. So, whilst sequencer-
based and privilege-based protocols start to be overloaded in Figure 5.1.b, the
communication-history ones start to be shown in such figure, presenting a de-
scending trend. The design of the CH protocol forces an unordered message
received by a node to wait until messages are received from the other nodes.
Then, the order is locally (and deterministically) decided without any other
message exchange. As the sending rate is increased, messages are forced to wait
less time thus reducing the global mean and median delivery time. On the other
hand, we can see that the dispersion is kept low in all the cases, since their mean
and median always have close values. The reason of the delay experienced by
the messages is mainly because ensuring the causal property imposes a delay on
each message significantly greater than the delay imposed by the prioritization
mechanism. As the delay imposed by the causal ordering is similar for all the

58 CHAPTER 5. COST OF THE PRIORITIZATION TECHNIQUES

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

 d
el

iv
er

y
tim

e
(m

s)

Local sending rate (msg/s)

UB
UBprio

TR
TRprio

CH
CHprio

(a)

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

 d
el

iv
er

y
tim

e
(m

s)

Local sending rate (msg/s)

UB
UBprio

TR
TRprio

CH
CHprio

(b)

Figure 5.1: Median (a) and mean (b) delivery times in a 4-node system.

5.4. RESULTS 59

Table 5.2: Mean prioritization times (µs)
nodes msg/s UB UB PRIO TR TR PRIO

10 4.115 13.898 4.477 5.297
40 4.034 9.834 4.255 3.504

4 60 3.263 9.257 3.515 3.170
80 3.520 9.834 3.717 2.175
100 3.376 11.431 3.315 2.030

10 3.741 14.105 4.527 5.180
40 3.547 12.120 5.129 4.833

8 60 3.685 16.840 4.877 3.589
80 3.644 15.255 4.794 5.024
100 4.063 15.217 5.750 9.411

messages sent at a given sending rate, the dispersion of the delivery times is
kept low.

Summarizing, in Table 5.1 and Figure 5.1.b we can see that, in a system with 4
nodes, at sending rates up to 60 msg/s, the mean delivery time of any original
(non prioritized) protocol is practically equal to the mean delivery time for the
corresponding prioritized protocol, which means that the prioritization mecha-
nisms are not imposing a noticeable overhead. Something similar happens to
the median delivery times. Above 60 msg/s the numbers diverge because the
load starts to be too high and then the response depends on each particular
protocol, as already explained above.

Delivery times in an 8-node system. In such configuration (Figure 5.2.a),
we can see that UB PRIO , and TR PRIO offer good median delivery times
at sending rates up to 60 msg/s. Moreover, these numbers are comparable to
the ones for their corresponding original (non prioritized versions). At sending
rates above 60 msg/s, these protocols get saturated, in varying degrees, and the
delivery times start to get impractical.

Regarding CH and CH PRIO protocols, they show a similar trend to that
found in a 4-node system. They are able to show a decreasing trend in their
median delivery times and provide acceptable values at 80 and 100 messages
sent per second. No other protocol is able to guarantee such delivery times at
100 msg/s.

Considering mean delivery times (Figure 5.2.b), the UB PRIO protocol pro-
vides the highest increasing trend, starting with values at low sending rates
that are only surpassed by communication-history protocols. However, since its
median values are good up to 60 msg/s, this means that this family provides
the best prioritization results in the range 10 to 60 msg/s, and that it gets
completely saturated once such range is exceeded. Both privilege-based and
communication-history protocol families stand much better for high sending
rates, being CH and CH PRIO protocols the clear winners.

Prioritization time overhead. Regarding the prioritization times presented
in Table 5.2, we can analyze the differences among the values of the conventional

60 CHAPTER 5. COST OF THE PRIORITIZATION TECHNIQUES

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

 d
el

iv
er

y
tim

e
(m

s)

Local sending rate (msg/s)

UB
UBprio

TR
TRprio

CH
CHprio

(a)

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

 d
el

iv
er

y
tim

e
(m

s)

Local sending rate (msg/s)

UB
UBprio

TR
TRprio

CH
CHprio

(b)

Figure 5.2: Median (a) and mean (b) delivery times in an 8-node system.

5.4. RESULTS 61

Table 5.3: Mean numbers of garbage collection runs.
nodes msg/s UB UB PRIO TR TR PRIO CH CH PRIO

10 43.50 54.25 975.75 985.00 51.00 51.00
40 27.00 30.75 62.00 62.50 41.25 42.00

4 60 18.50 22.25 39.25 39.50 20.50 19.75
80 17.25 26.25 31.50 30.75 17.00 15.75
100 17.50 22.75 23.75 23.50 17.00 15.75

10 35.50 41.62 228.00 230.25 52.75 53.00
40 18.62 25.12 25.00 24.75 18.62 18.87

8 60 19.87 24.87 21.00 21.75 17.37 18.00
80 22.12 25.50 19.87 20.12 18.00 18.37
100 23.00 27.00 19.00 19.87 18.00 18.12

(non-prioritized) protocols and the prioritized ones. The bigger differences can
be found when comparing the UB and the UB PRIO protocols at any sending
rate and with 4 or 8 nodes in the system. At a first glance it seems that the
prioritization mechanism in UB PRIO is introducing a significant load to the
original protocol. Nevertheless, we can see that in all cases, the overhead is
around a few microseconds, which compared to the full delivery time (in the
order of milliseconds) is negligible.

In the case of the TR and TR PRIO protocols, the differences are smaller,
and again, compared to the full delivery times, are negligible. Moreover, in some
cases the prioritized protocol is able to deal with these message management
steps faster than the non-prioritized protocol. So, no overhead is introduced in
this protocol family.

Finally, the CH and CH PRIO protocols cannot be studied in this regard.
The prioritization overhead is negligible in this protocol, since the message de-
livery time (once the message has been received in their target nodes) is highly
dominated by the delays introduced in order to ensure causal delivery. Thus, the
data to be shown in this table, according to the criteria used for other protocols,
would have been approximately a 93% of the time shown in Table 5.1, but it
would not provide the information shown in the other protocols (prioritization
overhead), but mainly the causal-related delays.

Prioritization memory overhead. Memory usage is summarized in Ta-
ble 5.3. To this end, such table presents the amount of garbage collections
executed by the Java Virtual Machine in order to recover free memory that was
previously assigned to dynamic data being used in the protocol. At a glance, in
all cases a surprising trend is shown: the amount of garbage collections decreases
when the sending rate is increased. This trend can be easily explained. Since
the amount of messages being broadcast in each test is constant, the greater
the sending rate is, the shortest the test length will be. So, there is nothing
annoying in this behavior.

We can observe that in general, there are no big differences between the figures
for the TR and CH protocols and the ones for their corresponding prioritized
versions. This means that no memory-related overhead is being introduced by
the prioritization mechanism in such protocols.

62 CHAPTER 5. COST OF THE PRIORITIZATION TECHNIQUES

Significant differences exist however, among the numbers of garbage collection
runs for the UB and those for UB PRIO . The reason of these differences
is basically the memory overhead suffered by the sequencer node which typi-
cally uses more memory than the rest of the system nodes3. Note also that
UB PRIO has been the protocol providing the best prioritization results; i.e.,
for a particular workload, it was able to keep the median delivery time and
both quartiles like the non-prioritized protocol, whilst its mean delivery time
was quite longer. This means that there were multiple low-priority messages
that needed a lot of time to be delivered. Such messages were kept in the se-
quencer queue, increasing the memory demands of such sequencer process, as
Table 5.3 confirms.

On the other hand, it is also remarkable the high number of garbage collections
required by both privilege-based protocols at the lowest sending rate (around
980 collections with 4 nodes, and around 230 with 8 nodes). This partially
explains the long mean delivery time of such protocols in a 4-node system with
a sending rate of 10 msg/s.

In [73], we depict the evolution of the amount of free memory available for
the Java Virtual Machine during each test under different settings. The figures
presented in Table 5.3 can be contrasted against those graphical representations.

Scalability. The best protocols in this issue seem to be the communication
history ones, since they demand a high sending rate in order to provide accept-
able delivery times. Thus, in a 4-node system their median delivery time starts
with 81 ms at 10 msg/s and finishes with 5 ms at 100 msg/s. The same trend is
shown in an 8-node system, but in the latter no improvement is detected form
80 to 100 msg/s. So, this protocol seems to start its overloading with a global
sending rate of near 640 msg/s. Unfortunately, its prioritization quality is the
worst one, since the mean delivery time in the prioritized variant is not longer
than that of the non-prioritized one. This has been already explained: these
protocols also guarantee causal delivery, and they can only prioritize concurrent
(i.e., non-causally-related) messages.

The second best protocols, regarding scalability, are the privilege-based ones.
They are able to serve individual sending rates of 100 msg/s in a 4-node system
without any noticeable overload in both median and mean delivery times. This
means that they have been able to comfortably deal with a global load of 400
msg/s in such system. In an 8-node system, they show the first signs of over-
loading at 60 msg/s (i.e., with a global load of 480 msg/s), with a mean delivery
time of 151 ms in the prioritized version and 75 ms in the non-prioritized one,
whilst the median delivery time was still below 3 ms. Despite this, the priori-
tized variant is able to maintain a median delivery time of 66 ms with a global
sending rate of 800 msg/s.

3As stated in Section 5.2, these mean numbers are got from the numbers for all the nodes
in the system, including its sequencer in case of the UB and UB PRIO protocols.

5.5. CONCLUSIONS 63

The worst protocol family seems to be the sequencer-based one. Despite provid-
ing very good median delivery times in a 4-node system with all studied sending
rates, it finds some problems to deal with the highest sending rate of such con-
figuration (100 msg/s). In the latter case, its mean delivery times (134 ms in
the non-prioritized version and 487 ms in the prioritized one) reveal that there
were many messages with unacceptable high delivery times. The same starts
to happen with similar global sending rates in an 8-node system (at 480 msg/s,
mean delivery times exceed 190 ms in the best case), but delivery times get
unaffordable values at 640 msg/s, quite longer than those of all other protocol
families at 800 msg/s.

5.5 Conclusions

We have presented an experimental study in which we show that the prioriti-
zation techniques do not impose an important overhead (in terms of message
delivery latency, processing time and memory use) on the original total order
protocols, thus proving that, besides being easy to understand and implement,
and being useful for replicated database management (as shown in [71, 76]), the
techniques are affordable in terms of performance. The main conclusion is that
prioritized total order broadcast protocols are a valuable building block that can
be used to improve the design and implementation of distributed applications
and their performance, as well.

As a second contribution this experimental study can be seen also as a per-
formance comparison among conventional non-prioritized total order protocols.
The results of this comparison show that sequencer-based and privilege-based
protocols offer a comparable performance when the number of nodes is small
(4 or 8) and the individual sending rate is not too high (around 60 msg/s). As
the number of nodes or the sending rate is increased the sequencer-based pro-
tocols start to get saturated and the communication history ones improve their
performance. At higher sending rates, communication history protocols are the
unique ones that can stand such load.

Chapter 6

Dynamic Prioritized Total

Order Protocol

Replacement

The results presented in Chapter 5 show that there is no single total order pro-
tocol that provides the best performance under any working conditions. They
also show that the prioritization techniques provide different results depending
on several factors, like the system load.

In practice, this means that the election of a prioritized total order protocol may
have a significant impact on the performance of the application. Specifically,
the election of an inappropriate protocol may lead the application to get a worse
performance. For this reason, the election of the protocol to use must be done
carefully.

Nevertheless, there are some problems that must be considered. First of all,
it is not easy to guess the working conditions an application will have, unless
it is a very specific application that has already been carefully evaluated. On
the other hand, even when the working conditions of the application are known
beforehand, the election of the most suitable protocol requires from the designers
of the application some knowledge about the available protocols. Moreover, it
may happen that the working conditions of an application change during its
execution, so the protocol first chosen as the most suitable becomes unsuitable
due to these changes.

In practice, there should be some mechanism that allows the applications to use,
in every moment, the most suitable prioritized total order protocol, according to
different factors (application-dependent factors like the system load or message
sending patterns, system-dependent factors like the underlying network and its
topology, etc.). Moreover, such a mechanism should be transparent from the

65

66 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

point of view of the protocols and the applications.

Such a mechanism offers several advantages. First of all, application designers do
not need to guess the working conditions of the applications. They do neither
need to know too many details about the protocols available nor about the
best settings for each one of them. Moreover, such mechanism would allow an
application to adapt to changing working conditions and, in general, to get a
better performance.

6.1 A Dynamic Protocol Replacement Architec-

ture

In [69], we presented an architecture for dynamically replacing Group Com-
munication Protocols (GCPs). Such an architecture was designed to allow the
dynamic replacement of FIFO or total order broadcast protocols.

In the following sections we review the work presented in [69, 77, 75] and discuss
how such an architecture could be adapted to fit the needs presented above.

In Figure 6.1 we show a reviewed version of the high level graphical description
of the architecture proposed in [69].

User process

Membership
service

0GCP 1GCP GCPk

Switching protocol

...

view change

Reliable transport

deliversend

AGCS broadcast deliver

Switching
manager

System
monitor

Figure 6.1: Architecture of a node

This architecture is composed of a main component, called Adaptive Group
Communication System (AGCS). As shown in the figure, the user process sits
on top of this architecture and this, in turn, relies on a regular reliable mes-
sage transport layer. The AGCS wraps several standard group communication
components (a number of GCPs, for instance, total order protocols and a mem-
bership service) and also specific components.

6.2. THE SWITCHING PROTOCOL 67

The Switching protocol implements the mechanism of replacing the GCPs in
run-time. It captures the regular communication that occurs among the user
process and the GCPs and performs the GCP replacement. The Switching

manager is a component that decides when GCP changes should take place
and which GCP should be installed. The Switching manager relies on a
System monitor that keeps track of several system and application measurable
variables and parameters. The Switching manager collects the measures
provided by the System monitor and uses them to decide about GCP changes.

The original architecture presented in [69] and the one we present in Figure 6.1
include a Membership service component and a reliable transport layer. The
Membership service provides notifications about changes on the set of nodes
considered alive (due to joins of new nodes, node failures or node disconnec-
tions). Finally, the Reliable transport layer offers a regular reliable and FIFO
message transport layer which ensures that a message sent to a destination is
received by that destination unless it fails.

6.2 The Switching Protocol

In this section we present the Switching protocol . We first provide an overview
of the protocol and then we present some notation details and a pseudocode
algorithm of the protocol. We finally discuss some details not covered in the
first overview.

6.2.1 Overview

During normal operation, when no GCP replacement is being carried on, the
Switching protocol takes charge of the messages sent by the user process,
which are redirected to the current GCP. Incoming messages are received by
the current GCP and directly handled to the protocol, which in turns delivers
them to the user process. The core of the Switching protocol does not take
part in this process.

A GCP replacement starts when the Switching manager instructs the Switch-

ing protocol in a particular node to start a GCP change. The Switching

protocol in this initiator node to–bcasts a PREPARE message to inform all the
nodes about the new change. At every node, the Switching protocol stops re-
laying messages with the current GCP, instances and initializes a new GCP and
starts relaying messages with it. Moreover, each node to–bcasts a PREPARE ACK

message to tell all nodes about the number of messages it has sent with the
previous GCP and waits for a PREPARE ACK from all the nodes.

In the meantime, the Switching protocol goes on receiving messages delivered
to it by the previous GCP and forwarding them to the user application. The
Switching protocol may also receive messages delivered by the new protocol,

68 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

as it has already been started in all nodes. These messages are not delivered to
the user process yet, but queued in a local queue, until all messages broadcast
with the previous GCP are delivered to the user process.

When the Switching protocol receives all the PREPARE ACK messages it knows
how many messages were sent with the previous GCP by each node. When
all of them are finally received, the Switching protocol can finally discard
the previous GCP. Then, it delivers to the user application all the messages
broadcast with the new GCP, which were locally queued. When all of them
are delivered, the Switching protocol can go on using the new protocol as the
only available one.

The protocol receives view changes from an independent membership service, for
instance, when a node failure happens. If such a notification is received during
a protocol change, the protocol basically stops waiting for messages from the
failed node, so the protocol change can proceed when a node failure happens.
An additional discussion is provided in Section 6.3.3.

Moreover, the protocol is able to manage consecutive protocol change requests.
The protocol ensures that if a protocol change request is received by a node while
a previous request is being handled, the current protocol change is completed
and the next one is then handled. Additional details are given in Section 6.3.2.

6.2.2 Pseudocode

The pseudocode algorithm of the protocol is shown in Algorithms 10 and 11.

The protocol uses several global variables. k is a counter of the GCP changes.
It is initialized to 0 and incremented when a new GCP change is started.
changing gcp is a flag to know if there is a GCP change in progress or it has al-
ready finished. live nodes is the set of live nodes as notified by the membership
service.

The algorithm also uses a struct of type P for each GCP it manages. Thus,
P0 would be the struct for the first GCP used, P1 would be the one for the
second, etc. Such a struct contains several fields to store some state related
to a GCP. Given a struct Pk, the expression Pk.GCP is used to reference that
GCP. The Pk.k field is the number of the replacement by which the Pk.GCP

is installed. In general, Pk.k = k. Pk.sent is the number of user messages
that have been broadcast by Pk.GCP . Pk.other sent is an array that stores
the number of messages sent by all the processes in iteration Pk.k by means
of Pk.GCP . Each entry of the array is initialized to 0 and updated when a
new protocol replacement is started, using the information received from each
process. The number of messages sent by process q is Pk.other sent[q] and it
is initialized to 0. Pk.delivered is an array that stores the number of messages
sent by all the processes delivered by the local process by means of Pk.GCP .
Pk.delivered[q] is the entry corresponding to the messages sent by process q.
Each entry of the array is initialized to 0 and updated by the local process each

6.3. DISCUSSION 69

time it receives a message from Pk.GCP . Pk.deliverable is a list of messages
delivered to the protocol by Pk.GCP . If Pk.GCP is not the current protocol
but a later one, the messages delivered by it cannot be directly forwarded to the
user process. Instead, they are stored in Pk.deliverable, until all the messages
sent with all the previous GCPs are delivered.

We also assume that the managed GCPs provide a to–bcasts primitive to broad-
cast a message to all the nodes in the system. Given a message m, m.sender

denotes its sender.

The algorithm is composed by a set of handlers and functions which are executed
as a response to external messages (sent by other nodes) and events (e.g. view
change events produced by the Membership service) or called from other
event handlers and functions. These handlers and functions are atomic, i.e. we
assume that two handlers or functions can not be executed concurrently.

The INIT function is executed only once, when the whole system is started.
The TO-BCAST handler is invoked by the user application in order to broadcast
a message (in total order). The HANDLER USER MSG handler is invoked by the
GCPs to deliver incoming totally ordered messages to the Switching protocol .
The START function is executed when the Switching manager decides to start
a new protocol change. The HANDLE PREPARE and HANDLE PREPARE ACK are in-
voked by the GCPs to deliver PREPARE or PREPARE ACK messages, respectively,
to the Switching protocol . The FINISH PENDING function is invoked to try to
finish as much pending protocol changes as possible. The END function is exe-
cuted to finish a protocol change. The HANDLE VIEW CHANGE handler is invoked
by some external membership service to deliver notifications on the membership
view. The DELIVERY FINISHED function is invoked to decide if all the pending
messages needed to perform a protocol change have already been received.

6.3 Discussion

In this section we discuss some issues that were not covered in Section 6.2
to simplify the presentation of the protocol. These issues cover the normal
operation of the protocol and also its behavior in presence of failures.

6.3.1 Normal Operation

The protocol we are presenting offers a number of advantages over the protocols
reviewed in Section 6.6 and the protocol we proposed in [69].

First of all, our solution does not block the sending of user messages. When a
node is instructed to start a protocol switch, the sending of messages with the
current GCP is disabled but message sending is immediately enabled with the
new GCP.

70 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

Algorithm 10 The Switching protocol pseudocode (part I)
1: INIT(G):
2: current k ← 0
3: next k ← 0
4: changing gcp← false
5: instance, prepare and initialize G
6: call CREATE P(Pnext k, G)
7:
8: CREATE P(p, g):
9: p.GCP ← g

10: p.k ← next k
11: p.sent← 0
12: p.other sent[q]← 0, for each process q in live nodes
13: p.ack received[q]← false, for each process q in live nodes
14: p.delivered[q]← 0, for each process q in live nodes
15: p.deliverable← {}
16:
17: TO-BCAST(m):
18: if changing gcp == true then

19: to-bcast m with Pnext k.GCP
20: Pnext k.sent + +
21: else

22: to-bcast m with Pcurrent k.GCP
23: Pcurrent k.sent + +
24: end if

25:
26: HANDLE USER MSG(m):
27: if m.k == current k then

28: deliver m to the local process
29: Pcurrent k.delivered[m.sender] + +
30: if changing gcp == true then

31: call FINISH PENDING()
32: end if

33: else

34: queue m in Pm.k.deliverable
35: end if

36:
37: START(G′):
38: to-bcast PREPARE(G′) with Pcurrent k.GCP
39:
40: HANDLE PREPARE(G′):
41: next k + +
42: changing gcp← true
43: instance, prepare and initialize G′

44: call CREATE P(Pnext k, G
′)

45: bcast PREPARE ACK(current k, Pcurrent k.sent) with Pcurrent k.GCP
46:
47: HANDLE PREPARE ACK(k, sent) from process q:
48: Pk.other sent[q]← sent
49: Pk.ack received[q]← true
50: call FINISH PENDING()
51:
52: FINISH PENDING():
53: changing gcp aux← false
54: for j = current k to next k do

55: if DELIV ERY FINISHED(j) then

56: call END(j)
57: current k + +
58: else

59: changing gcp aux← true
60: break
61: end if

62: end for

63: changing gcp← changing gcp aux
64:
65: END(j):
66: for all m in Pj+1.deliverable do

67: if m is a user message then

68: call HANDLE USER MSG(m)
69: else if m is a PREPARE message then

70: call HANDLE PREPARE(m)
71: else

72: call HANDLE PREPARE ACK(m)
73: end if

74: remove m from Pj+1.deliverable
75: end for

76: destroy Pj .GCP
77:

6.3. DISCUSSION 71

Algorithm 11 The Switching protocol pseudocode (part II)
78: HANDLE VIEW CHANGE(failed nodes):
79: remove failed nodes from live nodes
80: call FINISH PENDING
81:
82: DELIVERY FINISHED(j):
83: totalOtherSent← 0
84: totalDelivered← 0
85: for all q in live nodes do

86: if Pj .ack received[q] == false then

87: return false
88: end if

89: totalOtherSent+ = Pj .other sent[q]
90: totalDelivered+ = Pj .delivered[q]
91: end for

92: if totalOtherSent == totalDelivered then

93: return true
94: else

95: return false
96: end if

97:

Algorithm 12 The Switching protocol pseudocode (part III)
98: INIT(G, sending):
99: ...
100: provide sending view ← sending
101: changing view ← false
102:
103: TO-BCAST(m):
104: if changing view == true and provide sending view == true then

105: block call
106: end if

107: if changing gcp == true then

108: to-bcast m with Pnext k.GCP
109: Pnext k.sent + +
110: else

111: to-bcast m with Pcurrent k.GCP
112: Pcurrent k.sent + +
113: end if

114:
115: HANDLE VIEW CHANGE(new nodes, failed nodes):
116: changing view ← true
117: remove failed nodes from live nodes
118: to-bcast NEW V IEW (new nodes, failed nodes) with Pnext k.GCP
119: call FINISH PENDING()
120:
121: HANDLE NEW VIEW(new nodes, failed nodes):
122: add new nodes to live nodes
123: for all q in new nodes do

124: for j = current k to next k do

125: Pj .other sent[q]← 0
126: Pj .ack received[q]← false
127: Pj .delivered[q]← 0
128: end for

129: end for

130: deliver (new nodes, failed nodes) to the local process
131: if provide sending view == true then

132: unblock call to TO-BCAST (if any)
133: end if

134: changing view ← false
135:

72 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

Moreover, it allows both protocols to coexist and work (i.e. to order messages)
in parallel during the protocol change, until the old protocol is no longer needed.
An important consequence is that the normal flow of messages is not delayed
by slower processes.

Even more, the delivery of messages to the user process is neither blocked. In-
deed, when the old protocol is finally discarded and uninstalled, the Switching

protocol immediately delivers to the user process the queued messages deliv-
ered by the new GCP. After this step, regular delivery with the new protocol is
enabled, thus keeping a normal flow of messages delivered to the user process.

On the other hand, for this mechanism to properly work, some issues must be
considered. These have not been included in the protocol algorithm to simplify
its presentation.

First of all, it is needed some way to distinguish the messages broadcast with
each GCP. A first solution consists in adding some header data in the regular
messages but this solution would imply the need of knowing some implementa-
tion details, thus making the Switching protocol dependent on specific GCP
implementations.

A second option, general enough to fulfill this requirement is to encapsulate
the regular user messages in other messages whose format is only known by the
Switching protocol . The protocol can include in these messages additional
headers with all the needed meta-data. One of these headers can be used to
save an identifier of the GCP used to broadcast the encapsulated user message.
From the point of view of the GCPs managed by the Switching protocol ,
these protocol-dependent messages are as opaque as the regular user messages.

6.3.2 Concurrent Starts

Another issue that can be discussed is the ability of the Switching protocol

to face concurrent starts of the switching procedure. Indeed, in case several
protocol switches are started concurrently by different nodes or even the same
node, the use of a total order broadcast protocol to broadcast the PREPARE

messages forces that all the nodes receive the same PREPARE messages in the
same order.

First of all, multiple PREPARE messages can be received by a node. When a
PREPARE message is received by a node, it starts a new next k iteration, by
creating a new Pnext k structure. The protocol starts sending messages with
the new GCP and queueing in Pnext k.deliverable the messages delivered by it.
Each time a new PREPARE message is received, a new iteration is started, even
if there are some previous GCPs receiving messages.

When the current GCP delivers a message to the Switching protocol it checks
if that message delivery allows to finish the execution of one or more iterations.
For this, the FINISH PENDING function is invoked. The only issue to worry

6.3. DISCUSSION 73

about is the proper finalization of the iterations, in the same order they were
started. This function checks that, for each iteration started, a corresponding
PREPARE ACK message has already been received from all the live processes and
all the messages sent by them with the corresponding GCP have also already
been received. In this case, the iteration can be considered finished, and the
following iteration can be checked.

6.3.3 View Management

When no node failure happens, the behavior of the protocol is that shown in
Algorithms 10 and 11.

Nevertheless, the Switching protocol is able to react to failure notifications
provided by an independent membership manager. These are received in the
HANDLE VIEW CHANGE handler. In this handler, we just update the local copy of
the set of nodes considered alive and call the FINISH PENDING function. This
call is needed because it may happen that the only messages required to finish
one or more iterations were sent by processes declared failed. In this call, all
the pending iterations are checked, considering only the alive nodes.

The reaction to view changes we present in these algorithms is actually mini-
mum. In Algorithm 12 we extend the initial pseudocode shown in Algorithms 10
and 11. These extensions allow the protocol to provide view change notifications
to the upper user process and also manage the join of new nodes. Regarding
the first issue, two different alternative guarantees can be provided: Same View
Delivery and Sending View Delivery [33].

If the Sending View Delivery property has to be provided, the Switching pro-

tocol has to ensure that all the messages broadcast by the user processes are
delivered to them in the view they were sent. In particular, the protocol has to
ensure that all the messages broadcast with any of the pending GCPs are deliv-
ered before delivering the following view change notification to the user process.
Moreover, once the Switching protocol learns about a node failure, it has to
prevent the user process from sending more messages until the corresponding
view change is delivered to it.

For this, we propose the following procedure. When the Switching protocol

is informed about a node failure, it first blocks the sending of user messages.
Then, it broadcasts a special NEW VIEW message, with the last GCP started
(Pnext k.GCP). This message is broadcast with the last GCP started because
it is not guaranteed that the previous GCPs are still available in all nodes. The
NEW VIEW message includes the set of nodes that compose the new view. After
delivering all the pending user messages (those broadcast with any of the started
GCPs, including the current one), this NEW VIEW message is eventually delivered
to the Switching protocol . The Switching protocol can then forward the
NEW VIEW message to the user process, in order to notify the new view. Finally,
it unblocks the sending of user messages.

74 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

A few assumptions must be made for this procedure to be correct. First of all, if
the Sending View Delivery property has to be provided by the Adaptive Group
Communication System, it must be ensured by the wrapped GCPs. This means
that the GCPs must have some kind of flush mechanism that must ensure that
in case a node fails, before installing the new view, the pending messages are
flushed. This mechanism may resend and forward messages, if needed, so all the
alive nodes receive and deliver the pending messages, although the Switching

protocol does not need to be aware of the details of the flush procedures.
The second assumption that we need to make is that the NEW VIEW messages
broadcast by the Switching protocol by means of the GCPs, to inform about
the view changes are not considered as regular application-level messages by the
GCPs but interpreted as membership messages. When the Switching protocol

sends a NEW VIEW message through a GCP, informing about a view change, and
especially about node failures, the GCP may start its flush protocol. This way
we can ensure that the pending user messages are finally delivered.

If the Sending View Delivery property is not needed, then the sending of user
messages does not need to be blocked. The procedure to follow is thus the
same than in the previous case except that the sending of user messages is not
blocked. In this case, the user process can go on broadcasting messages after
the Switching protocol receives the node failure notification. Nevertheless,
these messages may be delivered to the user process (once totally ordered) after
the Switching protocol delivers the view change to the user process, i.e., in a
different view from the one they were sent in, although the total order property
provided by all the GCPs ensures that, at least, each message is delivered in the
same view to all the user processes. This way, the Same View Delivery property
is ensured.

The Switching protocol is also able to manage the join of new nodes. Joins
are notified as view changes. In fact, a view change can be viewed as a set of
new nodes (nodes that join the system) and a set of nodes that fail.

To implement these features, we propose a number of changes, in Algorithm 12.
First we add two new global variables. The provide sending view variable is a
flag used to know if the Sending View Delivery property has to be ensured. It’s
value is set to the value of the sending parameter of the INIT handler. This
way, it can be decided externally. If it is set to false, then the Same View
Delivery property is offered instead. Moreover, we use a changing view global
flag, used to know if there is a view change in progress.

The TO-BCAST handler is also modified. As a first action, it checks if a view
change has been started and if the Sending View Delivery property has to be
ensured. In this case, the user call to the TO-BCAST is blocked. The rest of the
handler is the same that the one shown in Algorithm 11.

The HANDLE VIEW CHANGE handler is also modified. First of all, a new parameter
is added, to receive a set of new nodes (i.e., nodes that join the system). Then,
it broadcasts a special NEW VIEW message, by means of the last GCP started.
Finally, the FINISH PENDING function is invoked, as in Algorithm 11.

6.4. PROPERTIES OF THE SWITCHING PROTOCOL 75

The NEW VIEW message is received in the new HANDLE NEW VIEW handler. First,
the new nodes are added to the local copy of the set of nodes considered alive.
The P data structures from Pcurrent k to Pnext k are updated, to initialize the
state corresponding to the new nodes. Then the view change is delivered up
to the user process. Finally, in case the Sending View Delivery property was
required, it unblocks the execution of the TO-BCAST handler.

Another issue related to the notification of node failures must be addressed.
When a node fails, it may happen that, in several nodes, the corresponding
membership service notifies to the Switching protocol , which would broadcast
its NEW VIEWmessage. The result is a number of NEW VIEWmessages representing
the same node failure are broadcast and received by all nodes. To avoid the
multiple notification of a view change to the user processes a simple solution
can be adopted.

The Switching protocol keeps a view counter as a global variable. It is initial-
ized to 0 and incremented each time a NEW VIEW is delivered to the Switching

protocol and then forwarded to the user process. Each NEW VIEW message
is tagged with the current value of the counter when it is broadcast. If the
Switching protocol receives different NEW VIEW messages with the same value
of the view counter, it considers the first one and then discards the rest. As the
NEW VIEW messages are broadcast in total order, using the last GCP started, all
nodes keep the same NEW VIEW message and discard the same other messages.

6.4 Properties of the Switching protocol

In this section we provide some properties of the Switching protocol and some
reasoning about their correctness. First, we propose some lemmas used to prove
the properties.

Lemma 1: Downwards Validity. If a user process in a correct node broad-
casts a message m, then exactly one of the GCPs of that node eventually broad-
casts m exactly once.

Proof. In the TO-BCAST handler, each message sent by the user process is im-
mediately broadcast exactly once, by any of the GCPs currently managed by
the Switching protocol (lines 18–24).

If we consider the modifications presented in Algorithm 12, then, in case the
Sending View Delivery property is requested and a view change happens, the
following message broadcast by the user process may be blocked. In this case,
we have to show that the sending is not blocked infinitely.

First, when a view change is notified, then a NEW VIEW message is broadcast
(line 118). By the Validity property of the GCP used to broadcast the NEW VIEW

76 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

message, this is eventually delivered by the local node and handled in the HAN-
DLE NEW VIEW handler. In this handler, the user process is finally unblocked
(line 132) and the message can finally be broadcast, exactly once and using ex-
actly one GCP (lines 107–113).

Lemma 2: Upwards Validity. If a GCP delivers a message m to the
Switching protocol, then the Switching protocol eventually delivers m to
the user process.

Proof. It has to be shown that the Switching protocol does not indefinitely
retain a message delivered to it by a GCP. First, if a message m is delivered to
the Switching protocol by Pcurrent k.GCP , then it is immediately delivered
to the user process (line 28). If the message is delivered by Pk′ .GCP (where
current k < k′ ≤ next k), then it is stored in Pk′ .deliverable. In this case, it
has to be shown that the message is not retained in that queue infinitely. In
other words, it has to be shown that all iterations of the protocol previous to
k′ are eventually finished.

Ifm was broadcast with Pk′ .GCP (with current k < k′), then we know that a fi-
nite number of messages were broadcast with Pj .GCP (∀j : current k ≤ j < k′).
By the Validity and Uniform Agreement properties of these GCPs, it is known
that all those messages are eventually delivered to the Switching protocol and,
by Lemma 1, eventually delivered to the user process. For the same reason, we
also know that all the corresponding PREPARE ACK and PREPARE messages (used
to finish an iteration and start the next one, respectively) are eventually deliv-
ered to the Switching protocol . Then, all the iterations previous to Pk′ are
eventually finished. An iteration Pj is finished when all the messages broadcast
with the Pj .GCP are delivered to the Switching protocol (as decided by the
DELIVERY FINISHED function). At the end of the iteration Pj , all the pending
messages broadcast with Pj+1.GCP (those stored in Pj+1.deliverable) are de-
livered to the user process (lines 66–75). Then, current k is incremented (line
57). Eventually, current k reaches k′ and message m is finally delivered to the
user process.

Lemma 3: Local Integrity The Switching protocol delivers a message
m to the user process at most once, and only if m has been delivered to the
Switching protocol by exactly one of the GCPs of the local node.

Proof. First of all, the Switching protocol delivers the message to the user pro-
cess at most once. If the message is delivered by the current GCP (Pcurrent k.GCP)
then, it is directly delivered (line 28). If the message is delivered by a later GCP
(Pk′ .GCP , with current k < k′), then it is first queued (in Pk′ .deliverable). By
Lemma 2, we know that the message is eventually delivered to the user process,
exactly once (lines 66–75).

6.4. PROPERTIES OF THE SWITCHING PROTOCOL 77

On the other hand, it has to be proved that a single message can not be deliv-
ered to the Switching protocol by more than one GCP. Let’s suppose that a
message is delivered to the Switching protocol by two different GCPs. The
Uniform Integrity property offered by these GCPs ensures that they previously
sent the message. Nevertheless, this is not possible since the Switching pro-

tocol sends each message only with one of the GCPs (lines 28 and 34).

Lemma 4: Change Safety The Switching protocol does not deliver to
the user process a message m delivered to the protocol by Pk.GCP after having
delivered to the user process a message m′ which was delivered to the protocol
by Pk′ .GCP , where k < k′.

Proof. If no view change happens, the TO-BCAST handler broadcasts the user
messages by means of Pcurrent k.GCP (line 22). As the Switching protocol

does not keep a Pk previous to Pcurrent k, then no message can be broadcast
with a previous GCP.

If a GCP change happens, the TO-BCAST handler broadcasts the user messages
by means of Pnext k.GCP (line 19). The value of next k is incremented each
time a GCP change is started (line 41), so Pnext k.GCP is always the last GCP
that has been started. If a message is broadcast with Pnext k.GCP , then we
know that any message subsequently broadcast will be sent with the same GCP
or a later one.

Property 1: Validity. If a process in a correct node broadcasts a message
m, then the Switching protocol eventually delivers m to it.

Proof. If no GCP change happens, message m is sent with the current GCP
(Pcurrent k.GCP). By its V alidity property, the GCP eventually delivers m to
the Switching protocol (in the same node). According to Lemma 3 (Local In-
tegrity) stated above, the Switching protocol eventually delivers the message
to the user process.

If a GCP change happens, Lemmas 1 (Downwards Validity) and 2 (Upwards
Validity) ensure that the Switching protocol does not indefinitely retain the
outgoing messages sent to it by the user process nor the up-going messages
delivered to it by the GCP.

Property 2: Uniform Agreement If the Switching protocol in a node,
whether correct or faulty, delivers a message m to the user process, then the
Switching protocol in all correct nodes eventually deliver m to their corre-
sponding user processes.

Proof. Let’s suppose that, in one of the nodes, the Switching protocol delivers
a message to the user process. By Lemma 3 (Local Integrity), the message must

78 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

have been delivered to the Switching protocol by one of the GCPs. By the
Uniform Agreement property of the GCPs, in all the correct nodes, the GCP
delivers the message to the Switching protocol and by Lemma 2 (Upwards
Validity), the Switching protocol eventually delivers up the message to the
user process in all correct nodes.

In case the GCPs do not satisfy the Uniform Agreement property but just a
Non-uniform Agreement property, then the property satisfied by the Switching

protocol is not Uniform Agreement but just the corresponding Non-uniform
Agreement property.

Property 3: Uniform Integrity For any message m, the Switching pro-

tocol of every node, whether correct or faulty, delivers m at most once to the
user process and only if m was previously broadcast by its sender.

Proof. First of all, it has to be shown that a user process does not deliver a
message twice.

First, by Lemma 3, we know that the Switching protocol can not deliver twice
the same message. It delivers a message twice only if the GCP has delivered
twice that message to it.

By the Uniform Integrity property of the GCP, this can only happen if the GCP
in the sender node has broadcast twice the message. By Lemma 1 (Downwards
Validity), we know that this is only possible if the sender node broadcasts twice
the same message through the GCP, and this can only happen if the user process
in the sender node broadcasts twice the same message.

Moreover, it has to be shown that the Switching protocol only delivers a
message to the user process if the message was previously broadcast by its
sender node.

First, it is known that the Switching protocol only delivers to the user process
messages that have previously been delivered to it by one of the GCPs (lines
28). By the Uniform Integrity of the GCPs, this only happens after the GCP
in the sender node has broadcast the message. The Switching protocol itself
ensures that this can only happen after it has broadcast the message through
the corresponding GCP in the sender node.

Property 4: Uniform Total Order If the Switching protocol in any
nodes p and q, whether correct or faulty, both deliver messages m and m′, then
the Switching protocol in p delivers m to its user process before m′ if and
only if the Switching protocol in q delivers m to its user process before m′.

Proof. Let’s suppose that the Switching protocol in both nodes p and q deliv-
ers two messages m and m′. If p delivers both m and m′ using the same GCP,
by the Uniform Total Order property of the GCP and by protocol construction,

6.5. EVALUATION OF THE SWITCHING PROTOCOL 79

it is known that all the nodes will deliver m and m′ in the same order, using
the same GCP.

Now let’s suppose that p delivers m using Pk.GCP and delivers m′ using
Pk′ .GCP , with k < k′. Then, q also delivers m using Pk.GCP and m′ using
Pk′ .GCP . Moreover, by Lemma 4 (Change Safety), as m has been broadcast
using Pk.GCP , q delivers m to the user process before delivering any other
message broadcast by Pk′ .GCP , which means that q delivers m prior to m′.

The reasoning is also valid if p or q fail after delivering m and m′, respectively.
On one hand, p and q deliver m and m′, as long as Pk.GCP and Pk′ .GCP

satisfy the Uniform Total Order property. On the other hand, by Lemma 4
(Change Safety), both nodes deliver all the messages broadcast by Pk.GCP

before starting to deliver messages broadcast by Pk′ .GCP . As a result, both p

and q deliver m before delivering m′.

6.5 Experimental Evaluation of the Switching

protocol

In this section we describe an experimental evaluation of the Switching proto-

col we performed in order to provide a proof of concept of its operation. First,
we describe the environment and the methodology used to perform the evalua-
tion. Then, we provide some results to show the effectiveness of the protocol.

6.5.1 Introduction

To test the Switching protocol , we have implemented a simple Java test ap-
plication, to be ran in a number of nodes. The overall architecture of the system
running in each node is shown in Figure 6.2, which is a simplified version of that
depicted in Figure 6.1. The application acts as a client of the Switching pro-

tocol which in turn wraps several of the total order protocols we implemented
to perform the experimental evaluations.

The message transport layer used in this experimental evaluation is a new trans-
port layer we implemented on top of the JBoss Netty 3.2.4 networking library [4].
Netty is a client/server library that implements the Java NIO specification [5]
and offers asynchronous event-driven abstractions for using I/O resources. In
our system, Netty allowed us to build a reliable, high performance, stream ori-
ented, TCP-like message transport layer used by the group communication pro-
tocols to unicast and broadcast messages. The reason why we decided to switch
to Netty is because its non-blocking architecture allows the system in general,
and the group communication protocols in particular, to perform better.

On the other hand, the implemented system does not include a Membership
service since we are not considering view changes in this evaluation. Moreover,

80 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

User process

0GCP 1GCP GCPk

Switching protocol

...

Reliable transport

deliversend

AGCS broadcast deliver

Switching
manager

System
monitor

view change

service
Membership

Figure 6.2: Architecture of a node (simplified version)

the implemented system does not include the System monitor or the Switching
manager shown in the original figure. Instead, the test application itself is in
charge of issuing the start-of-change events to request a GCP change, to any of
the available pre-loaded GCPs (UB , TR, etc.), as described later.

6.5.2 Environment

The environment is very similar to the one used in the previous experimental
evaluations. The application is executed in a system composed of four nodes.
Each node is a different physical machine with an Intel Pentium D 925 processor
running at 3.0 GHz and 2 GB of RAM, running Debian GNU/Linux 4.0 and
Sun JDK 1.5.0. The nodes are connected by means of a 24-port 100/1000 Mbps
DLINK DGS-1224T switch. As in the previous experimental evaluations, the
switch keeps the nodes isolated from any other node, so no other network traffic
can influence the results.

6.5.3 Test Application and Methodology

The test application is a regular Java console application that is run in each of
the four nodes of the system. In each node, the application broadcasts to all
nodes a sequence of messages by handling them to the Switching protocol as
if it were a regular total order protocol.

As in Section 5.2, the messages are broadcast at a uniform sending rate, con-
figured externally. We have performed a number of tests with different sending
rates. As in Section 5.2, no other message flow control mechanism has been
used. Moreover, messages are also tagged with random priorities in a similar

6.5. EVALUATION OF THE SWITCHING PROTOCOL 81

way and the length of the messages is also variable but they still fit into one
wire-level packet.

To perform the evaluation of the Switching protocol , we have run the test
application under different configurations. In a first set of executions, we con-
figured the Switching protocol to use the UB (sequencer-based) and the TR

(privilege-based) regular (non-prioritized) protocols. The application was con-
figured to periodically request a GCP change each 5000 ms. Thus, the Switch-

ing protocol starts using the TR protocol and after 5000 ms the Switching

protocol is asked to switch to UB . After the next 5000 ms, the application
asks to change to TR and so on.

In each test, the application was configured to broadcast messages at a fixed
sending rate. We ran different tests using rates of 40, 60, 80, 120 and 130
messages broadcast per second and node. Thus, the global sending rates range
from 160 to 520 messages per second.

In each execution we measure the delivery time of the messages, computed as
the time observed by the application in a given node, from the moment in which
it broadcasts the message to the moment in which it receives back the message,
once totally ordered, exactly in the same way as we did in Section 5.2. This
means that for each node, we get a series of delivery times corresponding to the
series of messages broadcast by that node.

Moreover, in order to know about the distribution in time of the message deliv-
eries, we also count the number of messages that are delivered in each hundredth
of a second. This numbers allow us to know if there is a regular flow of messages
being delivered.

This set of experiments is repeated, using the UB PRIO and TR PRIO

protocols.

6.5.4 Results

In Figures 6.3, 6.4, 6.5, 6.6 and 6.7 we show the delivery times recorded by
a single node of the system in the first set of experiments, with TR and UB

and a sending rate of 40, 60, 80, 120 and 130 messages broadcast per second
and node, respectively. In Figures 6.8, 6.9, 6.10, 6.11 and 6.12 we show the
corresponding count of messages delivered in each hundredth of a second, using
a sending rate of 40, 60, 80, 120 and 130 messages broadcast per second and
node, respectively.

In Figures 6.13, 6.14, 6.15, 6.16 and 6.17 we show the delivery times recorded by
a single node of the system in the second set of experiments, with TR PRIO

andUB PRIO and a sending rate of 40, 60, 80, 120 and 130 messages broadcast
per second and node, respectively. In Figures 6.18, 6.19, 6.20, 6.21 and 6.22 we
show the corresponding count of messages delivered in each hundredth of a
second, using a sending rate of 40, 60, 80, 120 and 130 messages broadcast per
second and node, respectively.

82 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.3: Delivery times (40 msg/s with TR and UB)

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.4: Delivery times (60 msg/s with TR and UB)

6.5. EVALUATION OF THE SWITCHING PROTOCOL 83

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.5: Delivery times (80 msg/s with TR and UB)

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.6: Delivery times (120 msg/s with TR and UB)

84 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.7: Delivery times (130 msg/s with TR and UB)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.8: Messages delivered by hundredth (40 msg/s with TR and UB)

6.5. EVALUATION OF THE SWITCHING PROTOCOL 85

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.9: Messages delivered by hundredth (60 msg/s with TR and UB)

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.10: Messages delivered by hundredth (80 msg/s with TR and UB)

86 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500 4000

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.11: Messages delivered by hundredth (120 msg/s with TR and UB)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.12: Messages delivered by hundredth (130 msg/s with TR and UB)

6.5. EVALUATION OF THE SWITCHING PROTOCOL 87

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.13: Delivery times (40 msg/s with TR PRIO and UB PRIO)

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.14: Delivery times (60 msg/s with TR PRIO and UB PRIO)

88 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.15: Delivery times (80 msg/s with TR PRIO and UB PRIO)

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.16: Delivery times (120 msg/s with TR PRIO and UB PRIO)

6.5. EVALUATION OF THE SWITCHING PROTOCOL 89

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
el

iv
er

y
tim

e
(m

s)

Message

Figure 6.17: Delivery times (130 msg/s with TR PRIO and UB PRIO)

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000 6000 7000

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.18: Messages delivered by hundredth (40 msg/s with TR PRIO and
UB PRIO)

90 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.19: Messages delivered by hundredth (60 msg/s with TR PRIO and
UB PRIO)

6.5. EVALUATION OF THE SWITCHING PROTOCOL 91

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.20: Messages delivered by hundredth (80 msg/s with TR PRIO and
UB PRIO)

92 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.21: Messages delivered by hundredth (120 msg/s with TR PRIO and
UB PRIO)

6.5. EVALUATION OF THE SWITCHING PROTOCOL 93

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500

M
es

sa
ge

s
de

liv
er

ed

Hundredth of a second

Figure 6.22: Messages delivered by hundredth (130 msg/s with TR PRIO and
UB PRIO)

94 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

6.5.5 Discussion

In Figures 6.3 to 6.7 we show the delivery time of the messages. After each
test we get a series of messages, which have been delivered in total order. In a
given series, the ith message is represented by x = i and its delivery time (in
milliseconds) is y(i). As explained in Section 6.5.3, in these tests the Switching

protocol switches between two total order protocols (e.g. TR and UB). This
means that in any test, the application delivers a sub-series of the messages
with the first protocol (in Figure 6.3, about 200 messages with TR), then it
delivers another sub-series with the second protocol (in Figure 6.3, another 200
messages, with UB) and so on.

These figures show that the Switching protocol does not increase the delivery
time of the messages.

In these figures we can notice two different distributions of the message delivery
times. The delivery times of the messages delivered with TR show a higher
variability than the times corresponding to messages delivered with UB . The
reason of this behavior is because according to the TR protocol, a node needs to
have the privilege to send messages. InTR andTR PRIO , this is implemented
by means of a rotating token message. To broadcast a (totally ordered) message,
the nodes typically have to wait some variable time, until they get the token.
This extra delay is the main responsible of the higher variability observed in
Figures 6.3 to 6.7.

As the sending rate is increased, the delivery times got with UB tend to in-
crease because the sequencer node is more and more busy sequencing messages.
The time increment becomes more and more variable, thus increasing the vari-
ability of the final message delivery times. Nevertheless, these differences are
not actually so important, since even in these cases, the figures show that the
Switching protocol is not introducing any significant delay in the message
delivery times. This can be checked by analyzing the delivery times in each
sub-series. In case that the Switching protocol introduced a delay in the de-
livery times, this delay would have been noticeable. Specifically, the delivery
times at the beginning of each sub-series would have been noticeably higher
than the delivery times of the rest of the sub-series. As the figures show, the
delivery times in a given series are quite similar and comparable among them
(apart from several punctual times that can be considered anomalous). From
this behavior, we can draw the conclusion that the Switching protocol is not
introducing any significant delay in the message delivery times.

On the other hand, those figures allow us to assess the cost of delivering each
message but they do not provide any information about how that message de-
livery is being distributed over time. Figures 6.8 to 6.12 show the number of
messages delivered every hundredth of a second (i. e. the interval [0:100] cor-
responds to one second). These figures allow us to know about the message
delivery over time.

For instance, in Figure 6.8 we can see that in most of the one hundredth of a sec-

6.6. RELATED WORK 95

ond intervals, the Switching protocol is delivering between 1 and 3 messages.
As the sending rate is increased (Figures 6.9 to 6.12), this delivery rate also
increases. For instance, in Figure 6.12, between 5 and 6 messages are delivered
in one hundredth interval.

The importance of these figures is that in all cases, the number of messages
delivered by hundredth of a second follow a quite regular distribution, in spite
of the successive protocol changes that have happened. These figures also show
a small number of anomalous values but it can be seen that they do not happen
at instants of time which are multiple of 500 hundredths of second (5000 ms)
but at any time, which means that they are not directly caused by a protocol
switch, but by some other reason (for instance, due to the thread scheduling
policies of the operating system or the Java Virtual Machine). Thus, we can
assert that the number of messages delivered per time unit does not depend on
whether a protocol switching is being carried on and for this reason, we can
finally conclude that the Switching protocol is not producing interruptions or
delays in the flow of message deliveries.

Figures 6.13 to 6.22 show the corresponding results when using the TR PRIO

and UB PRIO protocols. These results are very similar to those depicted in
Figures 6.3 to 6.12, which allows us to conclude that the Switching protocol

is working properly when switches among any kind of total order protocols
(prioritized or not): it does not impose significant time overheads in the message
delivery times and it does not interrupt or delay the message delivery.

This shows that the Switching protocol is useful to adapt an application to
changing requirements and load conditions. The figures we have presented show
that some total order protocols are able to minimize the dispersion of the mes-
sage delivery times while others lead to a reduction in the mean delivery time
of the messages. The proposed switching support we have proposed allows the
applications to switch among different total order protocols under changing con-
ditions, without suffering significant performance penalties during the protocol
switch.

6.6 Related Work

In this section we briefly review some previous work that is related to our
concern. The reviewed papers are divided into two different groups. In a first
group, we include those papers that propose some configurable architecture
or mechanism that is able to adapt to changing environments or settings, by
means of tuning its behavior, but without performing structural changes like
the ones carried on by a switching protocol. We also include some other work
directly related to adaptable systems. In a second group, we include those
papers that use some dynamic switching mechanism that is able to replace the
current implementation of one or several services. The papers in both groups
are presented chronologically. Some of the references cited present a solution

96 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

based on a switching algorithm while others present work related to adaptive
systems from a more general point of view.

6.6.1 Configurable Systems

Composability in x-kernel (Hutchinson et al., 1991) and Coyote (Bhatti
et al., 1995)

The x-kernel operating system kernel [51] was designed to ease the design and
development of network protocols. It is considered one of the first systems
based on composable stacks of protocols. For instance, it includes protocols
that implement different communication standards like IP, UDP, TCP and even
low level protocols like ARP.

In x-kernel, the composition of the protocol stacks to use is defined statically, in
configuration time. In boot time, each protocol communicates with its under-
lying protocol in order to agree on the relationship. Once the kernel is booted,
there is no mechanism to dynamically change the composition of the protocol
stacks used by x-kernel.

The Coyote system [23] is based on x-kernel and proposed the decomposition of
regular x-kernel protocols into a set of micro-protocols. In configuration time,
a first construction step if performed, by combining the micro-protocols of a
protocol. Then, a regular x-kernel configuration step is carried, to build regular
x-kernel protocol stacks.

As in x-kernel, the configuration of Coyote is static and no dynamic reconfigu-
ration mechanism is available.

ADAPTIVE (Schmidt, 1993)

The ADAPTIVE system [93] is an environment to develop network protocols,
designed to adapt to heterogeneous and changing environments. First of all, it
offers a number of high-level abstractions to specify the behavior of the network
services that will be finally offered to the user application, according to the
current setting (e.g. the topology and type of the network) and the application
quality-of-service needs. The specifications of the services are used to instantiate
protocol machines, which are protocol implementations available in a repository
and tuned to fit such requirements and needs. Moreover, in configuration time,
user applications can refine the specification of the network protocols to use. The
reconfiguration mechanism is then able to tune the current protocol machines
or create new ones, in order to adapt to the application needs.

6.6. RELATED WORK 97

About the Use of Standard Interfaces (Wiesmann et al., 2003)

Several efforts have been made to propose a set of standard interfaces that
express a wide range of group communication services like group membership,
or communication primitives.

In [103], the authors propose the use of middleware architectures built up from
components that follow standard and well-known interfaces. The architecture
they propose can be used to build distributed systems and it includes a mem-
bership service, a fault detector service and some messaging services. These
services are implemented by components that must offer well-defined and stan-
dard interfaces to the components above them (i.e., components that use the
services they offer). These components, in turn, use the services offered by the
components below them.

The benefit of using standard interfaces is twofold. First, as the knowledge
of the standards to use can be reused, the design and implementation of new
components is easier and simpler. Moreover, the use of standard interfaces
allows the replacement of the implementation of a given component by a new
one, as justified in previous sections.

In [103], for each service, several standard alternatives are considered. For
instance, TCP/IP UDP/IP, IP-multicast, BEEP, APEX and JMS are considered
as standards to define the behavior of the messaging components while LDAP
and SNMP standards are considered for the membership service and SNMP and
CMIP, for the fault detection service.

A Survey of Middleware Software (Sadjadi, 2003)

In [89], a survey of configurable and adaptive middleware is presented. This
work is actually a first version of [68], which is reviewed in a later section. In
the survey, a number of solutions are classified into different classes.

The survey first identifies four key technologies that offer composability and
adaptability : a) computational reflection [66], based on the use of introspec-
tion, b) component-based design, c) aspect-oriented programming [60] and d)
software design patterns.

A first classification in [92] classifies middleware software depending on the
abstraction layer in which they may be placed: a) Host-infrastructure, b) dis-
tribution, c) common-services and d) domain-services.

A second classification proposed in [89] classified middleware software accord-
ing to its adaptation level: a) configurable, b) customizable, c) tunable, and d)
mutable. The mutable class is the only one that can be considered completely
dynamic and may include some techniques like introspection, aspect-based pro-
gramming and dynamic code loading.

Finally, in [89] a third classification is proposed that classifies middleware ac-

98 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

cording to its application domain: a) QoS-oriented systems, b) dependable sys-
tems, and c) embedded systems.

In the survey a big number of solutions are reviewed, many of them related to
CORBA. Nevertheless, none of them can be compared to the switching mecha-
nism proposed in Section 6.2 or the other solutions reviewed in this section.

A Taxonomy of Compositional Adaptation (McKinley et al., 2004)

In [68] (an extended version of [67]), a survey of adaptive systems is presented.

In this survey, two main types of adaptation are identified. Parameter adapta-
tion is present in systems that are able to modify the values of their parameters
and variables in order to adapt to changes in their settings, environments, work-
ing conditions, etc. On the other hand, compositional adaptation involves the
ability to algorithmically or structurally change a system in order to perform
such adaptation. In the survey, a taxonomy of compositional adaptation is pre-
sented.

The taxonomy is multidimensional. The solutions surveyed are classified ac-
cording to three different criteria: a) how, b) when and c) where to compose
(i.e. perform a system’s adaptation).

Regarding to how to compose, several mechanisms can be used.

• Redirection of function pointers. The pointers that point to the functions
that contain the code to change or adapt can be redirected to point to
different functions (for instance, proxy functions).

• Wrappers. The use of the wrapper pattern allows business objects to be
encapsulated by wrapper objects that can control the original objects.

• Proxies. According to the proxy pattern, some proxy code can be inserted
in the original code, to intercept and manage regular invocations to busi-
ness logic.

• The strategy pattern. Each service implementation is encapsulated under
an interface. This allows the replacement of a given implementation by
another one, as long as both share the same interface.

• Virtual components. A virtual component is a placeholder that allows
the loading and unloading of service code in an application-transparent
manner.

• Meta-Object Protocols. A specific protocol can be used to dynamically
replace the implementation of a service.

• Aspect weaving. Aspect Oriented Programming can be used to inject or-
thogonal functionality to existing service implementations.

6.6. RELATED WORK 99

• Middleware interception. Regular service requests and the corresponding
responses are intercepted at a middleware-level layer. Adaptation can be
performed in such layer.

• Integrated middleware. Besides indirectly using a middleware layer, the
user applications can also explicitly make use of their services.

Additional subcriteria are considered regarding this criterion: transparency of
the solution, granularity, coverage and support of standards.

The transparency criterion expresses the transparency level of the adaptation
mechanism respect to the functional code of the application, the adaptive code,
the distribution middleware services (if any) and the virtual machine (if any).
The granularity criterion is useful to know the granularity of the adaptation
mechanism (per system, per class, per object, per method or per invocation).
The coverage criterion distinguishes systems that only are appliable to local
invocations from those that also consider remote invocations. Moreover, the
ability to apply the adaptive mechanism to just a subset of the invocations
is also checked. Finally, the standards support criterion allows to know which
standard like CORBA/CCM, Java RMI/J2EE and DCOM/.NET are supported
by the systems.

Regarding to when to compose, two first categories can be distinguished: static
composition and dynamic composition. Static composition is performed in con-
figuration, compilation, deployment, linking or even loading time while dynamic
composition, is performed in run-time. Static composition is usually easier to
perform but it is usually less flexible and powerful than dynamic composition,
which is, on the other hand usually more complex to perform.

As there are different levels of static composition, it can be achieved in different
manners. Simpler static composition can be performed by tuning hardwired
parameters and code and recompiling the system. More flexible mechanisms
perform the adaptation in deploy time, by choosing the proper components
and modules to use. The most powerful alternatives include late binding and
dynamic class loading.

On the other hand, systems that use dynamic composition can be tunable ormu-
table. Tunable software can be dynamically configured and adapted by run-time
tuning some of their parameters and variables. Mutable software offers the pos-
sibility of altering the functionality of the system, for instance, by dynamically
replacing the code of some of their components.

Regarding to where to compose, middleware-level and application-level alterna-
tives can be considered. Middleware-level alternatives include constructing a
layer of adaptable software and attach it to the user application and modifying
a virtual machine in order to add some adaptive support. Application-level al-
ternatives imply adapting part of the application itself. Different alternatives
exist like the use of programming languages that natively offer some adaptation
support (like CLOS or Python), the extension of the programming language

100 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

run-time mechanism used by the application or the use of Aspect Oriented Pro-
gramming libraries.

In the survey, more than forty solutions are classified according to this taxonomy,
including classic Group Communication Systems (Ensemble, Totem and others)
and CORBA middlewares (ACE, TAO, CIAO and others).

A Standard GCS Interface (GORDA project, 2007)

In [29], another proposal is presented. The idea is to have a middleware layer
that provides an abstract Application Program Interface to be used by conven-
tional distributed systems. This layer is placed between an application and a
Group Communication System, thus acting as an adapter of the latter.

This strategy yields two major benefits. First, it avoids the use of implementation-
specific semantics and interfaces. Moreover, it isolates applications from a spe-
cific GCS implementation and thus allowing a future replacement of the current
implementation. As a side effect, this independence also eases the evaluation of
the behavior and performance of an application using different GCS implemen-
tations, for instance, in order to choose one of them.

This strategy is implemented in the Group Communication Service project [35].
Nowadays, this project includes bindings to existing GCS implementations like
Appia, JGroups and Spread and other communication services like an IP-based
multicast service and NeEM.

Unfortunately, this middleware architecture can only be statically configured
and no dynamic reconfiguration or switching is possible for the moment.

6.6.2 Dynamic Switching Systems

Ensemble’s Protocol Switch Protocol (van Renesse et al., 1998)

The Ensemble system [50] is a group communication system based on the con-
figuration and use of a stack of protocols, as in its predecessor Horus [99]. Each
protocol of the stack provides a different service (message transport, group mem-
bership, ordering, etc.) to the application or to other protocols of the stack.

In [97], the Protocol Switch Protocol (PSP) is proposed. The PSP is an En-
semble protocol that allows the dynamic replacement of the full protocol stack
used by Ensemble.

The PSP is a two-phase commit protocol (2PC) [46, 62]. In the first phase, one
of the participant nodes takes a coordinator role and broadcasts a FINALIZE

message, to ask to all nodes to start a protocol stack replacement. This message
includes the composition of the new protocol stack. Upon reception of the
FINALIZE message, each node stops the protocols in its current protocol stack,
builds up the new protocol stack and then sends back a FINALIZE-ACK message

6.6. RELATED WORK 101

to the coordinator. When the coordinator has received all the acknowledgement
messages, it starts the second phase.

In the second phase, the coordinator broadcasts a START message. When a node
receives the START message, it discards its current protocol stack and starts the
regular operation with the new protocol stack.

The protocol includes some fault-tolerance support that tolerates the loss of
messages (by means of retransmissions) and the node failures or disconnections.

On the other hand, in the coarse description of the protocol in [97] no details
are given about the guarantees needed to multicast the FINALIZE and START

control messages. Moreover, nothing is said about the need to block incoming
or outgoing messages.

The PSP presents a significant disadvantage. As it is composed of two indepen-
dent parts and the second part is not started until the first one is completed,
the regular operation of the application is somehow blocked. The fact that the
whole protocol stack is replaced is actually another inconvenience. Indeed, there
is no way to replace a single protocol in a given protocol stack without having
to stop and replace all the protocols of the stack.

Protocol Switching Based on State Transformation (Liu et al., 2000)

In [63], the authors present a mechanism alternative to the switching protocols
based on a 2PC technique. The idea is to make the switching more scalable,
by avoiding the dependency on a single coordinator node and reduce the delay
imposed by the transition from the older protocol to the new one. This alter-
native consists in defining switching functions that are used to switch from the
state kept by a protocol to the state used by another protocol.

In run-time, during a dynamic protocol switching, the use of such functions allow
the nodes to go on working with the new protocol, which starts by managing
the messages inherited from the first protocol and then goes on with the new
messages.

Ensemble’s Second Switching Protocol (Liu et al., 2001)

In [64] a second Switching Protocol (SP) is presented. Unlike the protocol
presented in [97], the SP allows the replacement of a single protocol of the
Ensemble’s protocol stack.

The protocol is presented as a wrapping protocol that sits on top of a number
of alternative protocols that offer the same service, i.e. the same guarantees.
This wrapping protocol offers those guarantees to the protocol layered about
it, which, in fact, does not need to know about its wrapping nature. When it
operates in normal mode, it just forwards up and down the messages sent by
and delivered to its neighbor layers. When it operates in switching mode, it

102 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

performs a protocol replacement. As in [97], the SP assumes some mechanism
that decides about when the current protocol has to be changed. Thus, the
protocol replacement starts when some oracle chooses a node as a replacement
manager.

The protocol operation is similar to that of [97] but there are some differences.
First of all, the communication among the manager and the rest of nodes is no
longer based on broadcasts. Instead, a logical ring is formed among all nodes
and a token is forwarded from node to node along the ring. The token has a
mode field that identifies the phase of the protocol.

When no protocol change is being performed, the nodes forward a token whose
mode is NORMAL. To start a protocol change, a manager node waits until it
receives a NORMAL token. Then it changes the mode to PREPARE and forwards
the token to the next node in the ring. When a node receives a PREPARE token,
it saves in some field of the token the number of messages it has sent with
the current protocol and then forwards the token. When the manager node
receives back the PREPARE token, it contains the numbers from all nodes. Then,
it changes the token to SWITCH and forwards it again.

When a node receives a SWITCH token, it gets the number of messages sent by
each node. When the manager node receives the SWITCH token, it changes the
token mode to FLUSH and then forwards it once more.

When a node receives the FLUSH token it waits until it has received all the
messages sent by all nodes with the current protocol. Then, it changes the
current protocol to the new one and forwards the token. When the FLUSH token
is finally received by the manager node, the protocol replacement is finished.

This protocol has some drawbacks related to its blocking nature. First of all,
it prevents nodes from sending messages with both the current and the new
protocol until they are in the third token round. Indeed, as the new protocol is
not started until the third round of the switching protocol, no messages can be
sent using the new protocol until then1. Moreover, the structure of the protocol,
based on three rounds along the ring imposes a significant delay. Furthermore,
this delay is increased by the blocking third round.

To argue about the correctness of the protocol, in [64] the authors formulate six
meta-properties (safety, asynchrony, delayable, send-enabled, memory-less and
composable) which are properties that describe other properties. Then, they
argue that the switching protocol preserves these meta-properties. In short,
they argue that if two protocols (for instance, two total order protocols) offer
some property P (for instance, a Total Order property), and P satisfies those
six meta-properties, then the switching protocol is a protocol that in turn offers
P. This is formally proved in [24], by means of the NuPRL theorem prover [8].

1Although it is not explicitly said in [97], it is assumed that once a protocol change is
started, i. e. once a node receives a PREPARE token, the message sending with the current
protocol is stopped.

6.6. RELATED WORK 103

Adaptive Architecture in Cactus (Chen et al., 2001)

In [32, 28], another adaptive architecture for run-time protocol switching is
proposed. This architecture is designed for Cactus [22], a framework for building
distributed protocols and applications.

As in other distributed middlewares and frameworks, a Cactus application is
based on a stack of layered components and each one of these offers a service.
Some of these components may be adaptive, which means that they include
different implementations of the same service. Initially, one of the available
implementations of a given component is chosen. This architecture allows to
change, in run-time, the current implementation of a service to one of the other
available implementations of the service, in order to adapt to changing environ-
ments or contexts. For this, each adaptive component also includes an adaptor,
which is a module that collaborates with the service implementations to perform
the replacement.

The protocol change procedure is actually an abstract generic protocol, com-
posed of three phases. A first phase is the detection of some changing envi-
ronment or application parameters. A second phase, closely related to the first
one, includes the election of the new implementation of the service. As in the
solutions proposed by other authors, very little detail about these phases is
given.

The third phase is the adaptation phase, which in turns consists of three steps:
a) preparation, b) outgoing switchover and c) incoming switchover. This is a
general scheme and the basic idea is that any protocol change can be decomposed
in these steps, regardless the kind and nature of the service implementations that
are to be replaced.

The preparation step includes all the actions needed to start and prepare the
switching from one implementation of the service to the new one. It finishes with
a synchronization barrier. Once all the participating nodes reach this barrier,
they can proceed with the next step. The outgoing switchover is the step by
which the flow of outgoing messages that arrive to a service implementation are
redirected to a different implementation of the service. The incoming switchover
is a similar message redirection, applied to incoming messages.

The generic protocol change scheme is implemented in the adaptor module of the
adaptive component. This module depends on the semantics and nature of the
service implementations to replace. In [32], the replacement of the total order
broadcast service is given as an example of an implementation of the general
scheme. Basically, the replacement procedure is the one specified by the general
scheme. A significant detail is that once reached the synchronization barrier,
at the end of the first step and before performing the outgoing switchover, the
outgoing messages that could not be sent with the previous total order protocol
are broadcast, by means of the new total order protocol.

One of the main drawbacks of the solution presented in [32] is that it forces the

104 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

service implementations to fulfill a given interface. Actually, this requirement is
not too strong, since this adaptive architecture was designed for Cactus systems,
that are already forced to follow this requirement. Anyway, such a drawback
may be solved by means of additional indirection layers that could be placed on
top of each particular service implementation, thus acting as adaptors.

In essence, our proposal shares the general idea behind this proposal and its
structure organized in three different parts. The broadcast of the PREPARE

message in the algorithm proposed in Section 6.2 can be compared to the syn-
chronization barrier used in [32]. Moreover, both solutions need to queue the
outgoing messages that could not be sent with the previous protocol and send
them later, with the new protocol, once it has been activated.

Dynamic Protocol Update (Rütti et al., 2006)

In [88] the problem of Dynamic Protocol Update is considered, as a particular
case of the more general Dynamic Software Update problem.

The solution proposed is based on two switching algorithms that allow the dy-
namic replacement of one of the protocols of the protocol stack used by a user
application. There is a switching protocol to replace the consensus protocol of
the stack and another switching protocol to replace the atomic broadcast pro-
tocol. This solution is aimed at the SAMOA framework [105] but the basic idea
may be applied to other protocol stack-oriented frameworks. The goal of the
architecture presented is to allow the dynamic replacement of software compo-
nents, thus easing the software maintenance and upgrade tasks. Nevertheless,
this architecture can also help to improve the performance of the applications,
as proposed in the introduction of this chapter.

According to the architecture proposed, one of the switching protocols is placed
in the protocol stack, just above the protocol to change. When no protocol
change is to be done, the switching protocol simply forwards up and down the
messages sent by and delivered to the application. During a protocol change,
the switching protocol intercepts the application messages. The general idea of
interception includes delaying and resending messages. Although some minor
differences exist, the operation of the protocols is basically very similar. For
instance, both algorithms guarantee that the service requests performed with
the current protocol (consensus or atomic broadcast) are finished before starting
the operation with the new protocol. A service request is either a consensus
instance or the broadcast of a message, depending on the protocol to replace.

The operation of the atomic broadcast switching protocol actually relies on
the atomic broadcast protocol to be replaced. When a node decides to start
a protocol change, it broadcasts a special message with the current atomic
broadcast protocol. When a node receives this special message, it performs the
protocol replacement, by installing and activating the new protocol. If there
are some pending messages sent with the old protocol they will be discarded by

6.6. RELATED WORK 105

all nodes at delivery time and resent by their corresponding senders, using the
new protocol. This way, the switching protocol avoids the need of an additional
acknowledgment message round (as in other proposals like the presented in this
section or the one presented in Section 6.2). As in other proposals, nothing
is said about how is decided to start a protocol change or which criteria are
considered.

In [88], a discussion of the properties guaranteed by the switching protocols is
also provided. These properties are expressed in terms of modules, services and
module bindings. A protocol stack is modelled as a stack of modules. Each
module is configured as a provider of a service by means of a module binding.
A binding can be done statically, in configuration time, or dynamically, during
a protocol change.

First, two properties of the switching protocols are proposed. Both properties
have a strong and a weak variant. The stack well-formedness property expresses
the need to have all the services bound to any module. The strong variant of
this property requires that if a service is invoked it must have been bound to any
module. The weak variant of the property requires that if a service is invoked,
it is eventually bound to any module.

The protocol operationability property requires the need to have the required
module installed in a stack when a protocol change is issued. Informally, the
strong variant of this property requires that if a module (protocol) is bound in
the stack of a node, then the stacks of all nodes contain that module. The weak
variant of the property requires that this binding is just eventually done.

In [88] (and also [106]), it is shown that the atomic broadcast switching protocol
ensures the strong stack well-formedness and the weak protocol operationability
properties. Moreover, it is also shown that the regular properties of the atomic
broadcast protocols (Validity, Uniform Agreement, Uniform Integrity and Uni-
form Total Order) are preserved by the atomic broadcast switching protocol.

Finally, some performance evaluation of both protocols is also presented. This
evaluation includes the analysis of the latency of a series of messages broadcast
by a set of nodes, during which an atomic broadcast protocol replacement is
requested. As shown in the graphical results, the need to resend some messages
during the execution of the protocol change algorithm has a negative impact on
the latency of a number of messages.

Mocito’s Run-time Switching (Mocito et al., 2006)

In [79] another switching protocol for total order protocols is proposed. In
essence it is very similar to the one presented in [69].

In particular, they share some relevant features. First, it avoids blocking mes-
sage sending with the new protocol so the flow of application messages is never
blocked. It also sets a point in time from which no more messages are sent with

106 CHAPTER 6. DYNAMIC PROTOCOL REPLACEMENT

the current total order protocol. Moreover, incoming messages broadcast with
the new protocol are queued until all the pending messages are delivered with
the current total order protocol and the protocol switching is completed.

They differ in the way the participant nodes learn about when they must de-
activate the current total order protocol. In [69], the nodes count the number
of messages broadcast with the current protocol and when a protocol change is
started, this information is spread so all nodes know how many messages have to
be delivered with the current protocol before deactivating it. In [79], each node
broadcast an acknowledgement message as the last message broadcast using the
current total order protocol. Upon reception of all such acknowledgement mes-
sages, a given node knows that no more messages will be sent with the current
total protocol so the node can deactivate it.

Broadcast Protocol Switching (Karmakar et al., 2007)

In [56], the authors deal with the use of a switching protocol to dynamically
change the broadcast protocol used by a network of nodes. A broadcast protocol
based on a Breadth-First Search tree yields lower message latencies when the
network load is low. On the other hand, a broadcast protocol based on a Depth-
First Search reduces the load on individual nodes when the global network load
is higher.

The mechanism discussed in [56] can switch between two broadcast protocols,
one based on a BFS tree and another based on a DFS tree. The core of the
mechanism is the construction of the spanning tree used by the broadcast pro-
tocol. In the paper, a protocol is shown to build a new DFS spanning tree.
Nevertheless, no protocol is shown to build a BFS spanning tree.

6.7 Conclusion

In this chapter we review the problem of dynamically replacing the total order
broadcast protocol used by a distributed application. As a result, we provide a
new, non-blocking, highly concurrent switching protocol, fully integrable with
existing independent membership services. Moreover, this protocol admits con-
current starts of the switching procedure.

The chapter includes an extensive description of the switching protocol, a pseu-
docode algorithm and a discussion of the properties offered by the switching
protocol that allow it to behave like a regular total order protocol. We also
include an experimental evaluation of its operation.

Although this switching protocol was designed to allow the dynamic replace-
ment of regular total order broadcast protocols, it can also be used to replace
prioritized total order broadcast protocols, without any further modifications.

6.7. CONCLUSION 107

To argue about this, we must consider that the prioritized protocols we presented
in Chapter 3, behave like regular total order protocols and that Prioritization
is a property that can be observed on the sequence of messages they totally
order. These protocols can be wrapped in an architecture like the one presented
in Figure 6.1. As long as the order of the sequence of messages provided by
a given GCP is preserved by this architecture, the Prioritization property will
be preserved. Moreover, as the switching protocol only relies in the regular
properties offered by common total order protocols (Validity, Uniform Agree-
ment, Uniform Integrity and Total Order) and does not specifically rely on any
other properties like Prioritization, it can be isolated from specific total order
broadcast implementations and additional semantics offered by them.

Part III

Conclusion

109

Chapter 7

Conclusions and Future

Work

7.1 Conclusions

This thesis provides a number of contributions on the prioritized total order
topic.

As a first contribution, we present a number of generic techniques to add prior-
itization support to existing total order protocols. These techniques are generic
in the sense that they are not concrete implementations in any programming
language, based in some particular framework. Instead, they are described as
modifications to the classic total order protocols. Thus, these techniques can
be applied to other total order algorithms and protocols and even to particular
implementations.

As a second contribution, we show the result of an experimental study we per-
formed to assess the effectiveness of the proposed prioritization techniques,
based on a prototype implementation of a number of classic total order pro-
tocols that we developed. This study allows us to assert that in some settings,
the prioritization mechanisms we implemented can indeed offer a benefit. As
we showed, this benefit is typically application-dependent. In our case study,
the benefit is a reduction of the transaction abort rate in an application that
simulates the usage of a replicated database where integrity constraints have
been defined.

As a third contribution, we show a second experimental study, that allows us
to assess the overhead imposed by the prioritization mechanisms, in terms of
message delivery delays, CPU overhead and memory consumption. This study
allows us to assert that the prioritization mechanisms do not impose a significant
overhead to the original total order protocols to which they are applied.

111

112 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The fourth contribution is the Switching protocol , a protocol to dynamically
switch total order protocols. This protocol allows an application to dynamically
(i.e. in run-time) change the total protocol that it is being currently used by the
application. The Switching protocol has a number of advantages over other
total order switching protocols. First, it works with regular and prioritized
total order protocols. Moreover, it is non-blocking, which means that, during
its operation, it does not block neither the sending of application messages nor
the delivery of messages to the application. Thus, during a protocol switch, the
application can go on sending and receiving application messages in total order
and even with prioritization guarantees, if prioritized total order protocols are
used. In a third experimental study we show that the overhead imposed by the
Switching protocol is minimal, even when a protocol switch is being carried
on.

7.2 Open Issues and Future Work

This thesis provides a number of contributions on the prioritized total order
topic. Nevertheless, there are some tasks that still remain open.

A first task may be to implement more conventional total order protocols and
their corresponding prioritized versions. The experimental evaluation work may
be extended by including the new protocols. It may be also extended by consid-
ering additional criteria. For instance, it may be interesting to check how the
application sending patterns can influence the results.

Another task would be to apply the proposed techniques to existing implementa-
tions of total order protocols. The JGroups and Appia open source frameworks
allow any user to modify the existing protocols and even develop new ones
which may be included in the original framework. The prioritization techniques
proposed in this thesis may be applied to the total order protocols included in
these frameworks and the prioritized versions may be included in the original
frameworks. The test applications may be rewritten in order to adapt them to
the frameworks and then, the experimental evaluation may be repeated. This
task would help us to validate and improve the testing methodology.

Moreover, regarding the Switching protocol , it would also be interesting to
migrate it to JGroups or Appia. First, it may be tested with just the original
protocols in the selected framework. Then, it may be tested with the original
protocols and their prioritized versions. These tests may contribute to the
validation of the Switching protocol .

In another dimension, the results got in this research encourage us to try to
apply the ideas behind the Switching protocol to some other contexts. For
instance, they could be applied to the design of a generic platform to allow
the dynamic switch of conventional binary code bundles. A typical use of such
a platform would be to reload a web application in an application server, for

7.2. OPEN ISSUES AND FUTURE WORK 113

instance during development stages. This kind of software hot-swapping could
even be integrated in a more general architecture-level platform, to allow the
dynamic switching of any part of a regular software application.

Bibliography

[1] The Spread Toolkit: http://www.spread.org.

[2] JGroups website: http://www.jgroups.org.

[3] Appia: http://appia.di.fc.ul.pt.

[4] JBoss Netty, http://www.jboss.org/netty.

[5] JSR 51: New I/O APIs for the Java Platform,
http://www.jcp.org/en/jsr/detail?id=51.

[6] Robert K. Abbott and Hector Garćıa-Molina. Scheduling real-time trans-
actions: a performance evaluation. ACM Transactions on Database Sys-
tems, 17(3):513–560, 1992.

[7] M. K. Aguilera and R. E. Strom. Efficient atomic broadcast using deter-
ministic merge. In 19th Annual ACM International Symposium on Princi-
ples of Distributed Computing (PODC-19), pages 209–218, Portland, OR,
USA, 2000.

[8] Stuart F. Allen, Rich Eaton, Christoph Kreitz, and Lori Lorigo. The nuprl
open logical environment. In 17th International Conference on Automated
Deduction, volume 1831 of Lecture Notes of Artificial Intelligence, pages
170–176. Springer Verlag, 2000.

[9] Ángel Álvarez, Sergio Arévalo, Vicent Cholvi, Antonio Fernández, and
Ernesto Jiménez. On the interconnection of message passing systems.
Information Processing Letters, 105(6):249–254, February 2008.

[10] Yair Amir, Claudiu Danilov, and Jonathan Robert Stanton. A low latency,
loss tolerant architecture and protocol for wide area group communication.
In Dependable Systems and Networks, pages 327–336, Washington, DC,
USA, 2000. IEEE-CS.

[11] Yair Amir, Louise E. Moser, P. Michael Melliar-Smith, Deborah A. Agar-
wal, and P.Ciarfella. The totem single-ring ordering and membership
protocol. ACM Transactions on Computer Systems, 13(4):311–342, Nov
1995.

115

116 BIBLIOGRAPHY

[12] Yair Amir and Ciprian Tutu. From total order to database replication.
In Proceedings of the 22nd IEEE International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, July 2002.

[13] Ozalp Babaoglu, Renzo Davoli, and Alberto Montresor. Group mem-
bership and view synchrony in partitionable asynchronous distributed
systems: specifications. Technical Report UBLCS-95-18, Department of
Computer Science, University of Bologna, 40127 Bologna, Italy, 1996.

[14] Ozalp Babaoglu, Renzo Davoli, and Alberto Montresor. Group commu-
nication in partitionable systems: specification and algorithms. Technical
Report UBLCS-98-01, Department of Computer Science, University of
Bologna, Bologna, Italy, April 1998.

[15] Ozalp Babaoglu, Renzo Davoli, and Alberto Montresor. Group commu-
nication in partitionable systems: specification and algorithms. IEEE
Transactions on Software Engineering, 27(4):308–336, April 2001.

[16] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

[17] Roberto Baldoni, Roberto Beraldi, Roy Friedman, and Robbert van Re-
nesse. The hierarchical daisy architecture for causal delivery. Distributed
Systems Engineering, 6(2):71–81, 1999.

[18] Roberto Baldoni, Stefano Cimmino, Carlo Marchetti, and Alessandro Ter-
mini. Performance analysis of Java group toolkits: a case study. In FIDJI
’01: Revised Papers from the International Workshop on Scientific En-
gineering for Distributed Java Applications, pages 49–60, London, UK,
2003. Springer-Verlag.

[19] Ziv Bar-Joseph, Idit Keidar, Tal Anker, and Nancy Lynch. Qos preserving
totally ordered multicast. In 5th International Conference on Principles
of Distributed Systems (OPODIS 2000), pages 143–162, 2000.

[20] Ziv Bar-Joseph, Idit Keidar, and Nancy A. Lynch. Early-delivery dy-
namic atomic broadcast. In 16th International Conference on Distributed
Computing (DISC’02), pages 1–16, London, UK, 2002. Springer-Verlag.

[21] Piotr Berman and Anupam A. Bharali. Quick atomic broadcast. In 7th In-
ternational Workshop on Distributed Algorithms (WDAG’93), pages 189–
203, London, UK, 1993. Springer-Verlag.

[22] Nina T. Bhatti. A system for constructing configurable high-level protocols.
PhD thesis, Department of Computer Science, The University of Arizona,
Dec. 1996.

[23] Nina T. Bhatti and Richard D. Schlichting. A system for constructing
configurable high-level protocols. In SIGCOMM, pages 138–150, 1995.

BIBLIOGRAPHY 117

[24] Marck Bickford, Christoph Kreitz, Robbert van Renesse, and Xiaoming
Liu. Proving hybrid protocols correct. Lecture Notes in Computer Science,
2152/2001:105–120, 2001.

[25] Ken Birman and Robert van Renesse, editors. Reliable distributed com-
puting with the Isis toolkit. IEEE Computer Society Press, Los Alamitos,
CA, USA, 1993.

[26] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual syn-
chrony in distributed systems. In SOSP ’87: Proceedings of the eleventh
ACM Symposium on Operating systems principles, pages 123–138, Austin,
Texas, United States, 1987. ACM Press.

[27] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the
presence of failures. ACM Transactions on Computer Systems, 5(1):47–76,
1987.

[28] Patrick G. Bridges, Wen-Ke Chen, Matti A. Hiltunen, and Richard D.
Schlichting. Supporting coordinated adaptation in networked systems. In
Eigth Workshop on Hot Topics in Operating Systems, 2001.

[29] Nuno Carvalho, José Pereira, and Lúıs Rodrigues. Towards a generic group
communication service. In Distributed Objects and Applications Interna-
tional Conference (DOA’06), volume 4276 of Lecture Notes in Computer
Science, pages 1485–1502, 2006.

[30] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distibuted systems. Journal of the ACM, 43(2):225–267, March
1996.

[31] M. Chen and K. Lin. Dynamic priority ceiling: A concurrency control
protocol for real-time systems. Journal of Real-Time Systems, 2(1):325–
346, 1990.

[32] Wen-Ke Chen, Matti A. Hiltunen, and Richard D. Schlichting. Construct-
ing adaptive software in distributed systems. In Proceedings of the 21st
International Conference on Distributed Computing Systems (ICDCS-21),
pages 635–643, Mesa, Arizona, USA, 2001.

[33] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communi-
cation specifications: a comprehensive study. ACM Computing Surveys,
33(4):427–469, 2001.

[34] Gregory V. Chockler, Nabil Huleihel, and Danny Dolev. An adap-
tive totally ordered multicast protocol that tolerates partitions. In 17th
ACM Symposium on Principles of Distributed Computing, pages 237–246,
Puerto Vallarta, Mexico, 1998. ACM Press.

[35] The GORDA Consortium. Group communication service in source-
forge.net. http://jgcs.sourceforge.net.

118 BIBLIOGRAPHY

[36] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From
simple message diffusion to byzantine agreement. Information and Com-
putation, 118:158–179, 1995.

[37] Flaviu Cristian. Synchronous atomic broadcast for redundant broadcast
channels. Real-Time Systems, 2(3):195–212, 1990.

[38] Xavier Défago, André Schiper, and Péter Urbán. Comparative perfor-
mance analysis of ordering strategies in atomic broadcast algorithms. IE-
ICE Trans. on Information and Systems, E86-D(12):2698–2709, 2003.

[39] Xavier Défago, André Schiper, and Péter Urbán. Totally ordered broad-
cast and multicast algorithms: taxonomy and survey. Technical Report
IS-RR-2003-009, École Polytechnique Fédérale de Lausanne, Sept. 2003.

[40] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM Computing Sur-
veys, 36(4):372–421, 2004.

[41] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the mini-
mal synchronism needed for distributed consensus. Journal of the ACM,
34(1):77–97, January 1987.

[42] Danny Dolev and Dalia Malki. The Transis approach to high availability
cluster communication. Communications of the ACM, 39(4):64–70, April
1996.

[43] Alan Fekete, Nancy Lynch, and Alex Shvarstman. Specifying and us-
ing a partitionable group communication service. ACM Transactions on
Computer Systems, 19(2):171–216, 2001.

[44] Michael Fischer, Nancy Lynch, and Michael Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

[45] Hector Garcia-Molina. Elections in a distributed computing system. IEEE
Transactions on Computers, 31(1):48–59, January 1982.

[46] Jim Gray. Notes on database operating systems. In Operating Systems,
An Advanced Course, pages 393–481. Springer-Verlag, 1978.

[47] Rachid Guerraoui and Andre Schiper. Software-based replication for fault
tolerance. Computer, 30(4):68–74, 1997.

[48] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related
problems. In Distributed systems, chapter 5, pages 97–145. ACM Press,
Addison-Wesley, 2nd edition, 1993.

BIBLIOGRAPHY 119

[49] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical Report TR94-1425, Depart-
ment of Computer Science, University of Toronto; Department of Com-
puter Science, Cornell University, 1994.

[50] Mark Hayden. The Ensemble System. PhD thesis, Cornell University,
1998.

[51] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: an architec-
ture for implementing network protocols. IEEE Transactions on Software
Engineering, 17(1):64–76, 1991.

[52] N. F. Jo-Mei Chang and Maxemchuk. Reliable broadcast protocols. ACM
Transactions on Computer Systems, 2(3):251–273, August 1984.

[53] Douglas Stott Parker Jr., Gerald J. Popek, Gerard Rudisin, Allen
Stoughton, Bruce J. Walker, Evelyn Walton, Johanna M. Chow, David A.
Edwards, Stephen Kiser, and Charles S. Kline. Detection of mutual in-
consitency in distributed systems. In Berkeley Workshop, pages 172–184,
1981.

[54] M. Frans Kaashoek and Andrew S. Tanenbaum. Group communication
in the amoeba distributed operating system. In 11th International Con-
ference on Distributed Computing Systems (ICDCS’91), pages 222–230,
April 1991.

[55] M. Frans Kaashoek and Andrew S. Tanenbaum. An evaluation of the
Amoeba group communication system. In 16th IEEE International Con-
ference on Distributed Computing Systems (ICDCS ’96), pages 436–448,
Washington, DC, USA, 1996. IEEE Computer Society.

[56] Sushanta Karmakar and Arobinda Gupta. Adaptive broadcast by dis-
tributed protocol switching. In ACM symposium on Applied computing
(SAC’07), pages 588–589, New York, NY, USA, 2007. ACM.

[57] Idit Keidar and Danny Dolev. Dependable Network computing, chapter
Totally ordered broadcast in the face of network partitions, pages 51–75.
Kluwer Academic, 1999.

[58] Bettina Kemme and Gustavo Alonso. A suite of database replication
protocols based on group communication primitives. In 18th International
Conference on Distributed Computing Systems (ICDCS’98), pages 156–
163, May 1998.

[59] Bettina Kemme, Fernando Pedone, Gustavo Alonso, André Schiper, and
Matthias Wiesmann. Using optimistic atomic broadcast in transaction
processing systems. IEEE Transactions on Knowledge and Data Engi-
neering, 15(4):1018–1032, July/Aug. 2003.

120 BIBLIOGRAPHY

[60] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes,
J. M. Loingtier, , and J. Irwin. Aspect-oriented programming. In European
Conference on Object-Oriented Programming (ECOOP), number 1241 in
LNCS. Springer-Verlag, 1997.

[61] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[62] Butler W. Lampson and Howard E. Sturgis. Crash recovery in a dis-
tributed data storage system. Technical report, Xerox Palo Alto Research
Center, June 1979.

[63] Xiaoming Liu and Robbert van Renesse. Fast protocol transition in a dis-
tributed environment (brief announcement). In 19th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC’00), page 341, New
York, NY, USA, 2000. ACM.

[64] Xiaoming Liu, Robbert van Renesse, Mark Bickford, Christoph Kreitz,
and Robert Constable. Protocol switching: Exploiting meta-properties.
In Lúıs Rodrigues and Michel Raynal, editors, International Workshop on
Applied Reliable Group Communication (WARGC 2001). IEEE CS Press,
2001.

[65] Shyw-Wei Luan and Virgil D. Gligor. A fault-tolerant protocol for
atomic broadcast. IEEE Transactions on Parallel and Distributed Sys-
tems, 1(3):271–285, 1990.

[66] Pattie Maes. Concepts and experiments in computational reflection. ACM
SIGPLAN Notices, 22(12):147–155, 1987.

[67] Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty
H. C. Cheng. Composing adaptive software. IEEE Computer, 37(7):56–64,
July 2004.

[68] Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty
H. C. Cheng. A taxonomy of compositional adaptation. Technical Report
MSU-CSE-04-17, Software Engineering and Network Systems Laboratory,
Department of Computer Science and Engineering, Michigan State Uni-
versity, East Lansing, Michigan 48824, July 2004.

[69] Emili Miedes, Mari-Carmen Bañuls, and Pablo Galdámez. Group Commu-
nication Protocol Replacement for High Availability and Adaptiveness. In
Advanced Distributed Systems: 6th International School and Symposium
(ISSADS), Guadalajara, México, January 2006.

[70] Emili Miedes and Francesc D. Muñoz-Escóı. Adding priorities to total
order broadcast protocols. Technical Report TR-ITI-ITE-07/23, Instituto
Tecnológico de Informática, Universidad Politécnica de Valencia, October
2007.

BIBLIOGRAPHY 121

[71] Emili Miedes and Francesc D. Muñoz-Escóı. Reducing transaction abort
rates with prioritized atomic multicast protocols. Technical Report
TR-ITI-ITE-07/22, Instituto Tecnológico de Informática, Universidad
Politécnica de Valencia, October 2007.

[72] Emili Miedes and Francesc D. Muñoz-Escóı. Managing Priorities in
Atomic Multicast Protocols. In International Conference on Availabil-
ity, Reliability and Security (ARES), pages 514–519, Barcelona, Spain,
March 2008. ISBN 0-7695-3102-4.

[73] Emili Miedes and Francesc D. Muñoz-Escóı. On the cost of prioritized
atomic multicast protocols. Technical Report ITI-SIDI-2009/002, Insti-
tuto Tecnológico de Informática, Universidad Politécnica de Valencia, Feb.
2009.

[74] Emili Miedes and Francesc D. Muñoz-Escóı. On the cost of prioritized
atomic multicast protocols. In 11th International Symposium on Dis-
tributed Objects, Middleware and Applications (DOA 2009), pages 585–
599, Vilamoura, Portugal, November 2009. Lecture Notes in Computer
Science (LNCS), vol. 5870, pages 585–599, Springer-Verlag, Heilderberg
(Germany). ISBN 978-3-642-05147-0.

[75] Emili Miedes and Francesc D. Muñoz-Escóı. Dynamic total-order broad-
cast protocol replacement. Technical Report ITI-SIDI-2010/001, Instituto
Universitario Mixto Tecnológico de Informática, Universidad Politécnica
de Valencia, March 2010.

[76] Emili Miedes, Francesc D. Muñoz-Escóı, and Hendrik Decker. Reducing
Transaction Abort Rates with Prioritized Atomic Multicast Protocols. In
14th International European Conference on Parallel and Distributed Com-
puting (Euro-Par), pages 394–403, Las Palmas de Gran Canaria, Spain,
August 2008. Lecture Notes in Computer Science (LNCS), vol. 5168,
pages 394–403, Springer-Verlag, Heilderberg (Germany). ISBN 978-3-540-
85450-0.

[77] Emili Miedes and Francesc D. Muñoz-Escóı. Dynamic switching of total-
order broadcast protocols. In International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), pages 457–
463, Las Vegas, Nevada, USA, July 2010. CSREA Press. ISBN 1-60132-
158-9.

[78] Hugo Miranda, Alexandre Pinto, and Lúıs Rodrigues. Appia: a flexible
protocol kernel supporting multiple coordinated channels. In 21st Inter-
national Conference on Distributed Computing Systems, pages 707–710,
2001.

[79] José Mocito and Lúıs Rodrigues. Run-time switching between total order
algorithms. In EuroPar 2006, 2006.

122 BIBLIOGRAPHY

[80] Tim Moors. A critical review of ’end-to-end arguments in system design’.
In IEEE International Conference on Communications, pages 1214–1219,
2002.

[81] Louise E. Moser, Yair Amir, P. Michael Melliar-Smith, and Deborah A.
Agarwal. Extended virtual synchrony. In The 14th IEEE International
Conference on Distributed Computing Systems (ICDCS), pages 56–65,
1994.

[82] Louise E. Moser, P. Michael Melliar-Smith, Deborah A. Agarwal, R.K.
Budhia, and C.A. Lingley-Papadopoulos. Totem: a fault-tolerant mul-
ticast group communication system. Communications of the ACM,
39(4):54–63, April 1996.

[83] Akihito Nakamura and Makoto Takizawa. Priority-based total and semi-
total ordering broadcast protocols. In 12th International Conference on
Distributed Computing Systems (ICDCS 92), pages 178–185, June 1992.

[84] Akihito Nakamura and Makoto Takizawa. Starvation-prevented priority
based total ordering broadcast protocol on high-speed single channel net-
work. In 2nd International Symposium on High Performance Distributed
Computing, pages 281–288, July 1993.

[85] Fernando Pedone. The database state machine and group communication
issues. PhD thesis, École Polytechnique Fédérale de Lausanne, 1999.

[86] Krithi Ramamritham and John A. Stankovic. Scheduling algorithms and
operating systems support for real-time systems. Proceedings of the IEEE,
82(1):55–67, Jan. 1994.

[87] Lúıs Rodrigues, Paulo Veŕıssimo, and Antonio Casimiro. Priority-based
totally ordered multicast. In 3rd IFAC/IFIP workshop on Algorithms and
Architectures for Real-Time Control (AARTC’95), Ostend, Belgium, May
1995. IFAC.

[88] Olivier Rütti, Pawel Wojciechowski, and André Schiper. Structural and
algorithmic issues of dynamic protocol update. In 20th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), April 2006.

[89] Seyed Masoud Sadjadi. A survey of adaptive middleware. Technical Re-
port MSU-CSE-03-35, Software Engineering and Network Systems Labo-
ratory, Department of Computer Science and Engineering, Michigan State
University, East Lansing, Michigan 48824, 2003.

[90] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end ar-
guments in system design. ACM Transactions on Computer Systems,
2(4):277–288, Nov. 1984.

BIBLIOGRAPHY 123

[91] André Schiper, Kenneth Birman, and Pat Stephenson. Lightweight causal
and atomic group multicast. ACM Transactions on Computer Systems,
9(3):272–314, 1991.

[92] Douglas C. Schmidt. Middleware for real-time and embedded systems.
Communications of the ACM, 45(6):43–48, June 2002.

[93] Douglas C. Schmidt, Donald F. Box, and Tatsuya Suda. ADAPTIVE: A
dynamically assembled protocol transformation, integration and evalua-
tion environment. Concurrency: Practice and Experience, 5(4):269–286,
1993.

[94] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Transactions on Computers,
39(9):1175–1185, Sept. 1990.

[95] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[96] John Turek and Dennis Shasha. The many faces of consensus in dis-
tributed systems. Computer, 25(6):8–17, 1992.

[97] Robbert van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd, and
David Karr. Building adaptive systems using ensemble. Software Practice
and Experience, 28(9):963–979, 1998.

[98] Robbert van Renesse, Kenneth P. Birman, Roy Friedman, Mark Hayden,
and David A. Karr. A framework for protocol composition in Horus. In
Symposium on Principles of Distributed Computing, pages 80–89, 1995.

[99] Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus:
a flexible group communication system. Communications of the ACM,
39(4):76–83, 1996.

[100] Yun Wang, Emmanuelle Anceaume, Francisco Brasileiro, Fab́ıola Greve,
and Michel Hurfin. Solving the group priority inversion problem in a timed
asynchronous system. IEEE Transactions on Computers, 51(8):900–915,
August 2002.

[101] Yun Wang, Francisco Brasileiro, Emmanuelle Anceaume, Fab́ıola Greve,
and Michel Hurfin. Avoiding priority inversion on the processing of re-
quests by active replicated servers. In Dependable Systems and Networks,
pages 97–106. IEEE Computer Society, 2001.

[102] Matthias Wiesmann. Group Communications and Database Replication:
Techniques, Issues and Performance. PhD thesis, Faculté I&C, Section
D’Informatique, École Polytechnique Fédérale De Lausanne, 2002.

[103] Matthias Wiesmann, Xavier Défago, and André Schiper. Group commu-
nication based on standard interfaces. In IEEE, editor, 2nd IEEE Inter-
national Symposium on Network Computing and Applications (NCA-03),
2003.

124 BIBLIOGRAPHY

[104] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme,
and Gustavo Alonso. Database replication techniques: a three parameter
classification. In 19th IEEE Symposium on Reliable Distributed Systems
(SRDS’2000), pages 206–215, 2000.

[105] Pawel T. Wojciechowski, Olivier Rütti, and André Schiper. SAMOA: a
framework for a synchronisation-augmented microprotocol approach. 18th
IEEE Parallel and Distributed Processing Symposium (IPDPS2004), April
2004.

[106] Pawel T. Wojciechowski and Olivier Rütti. On correctness of dynamic pro-
tocol update. In Springer LNCS 3535, editor, 7th IFIP Conference on For-
mal Methods for Open Object-Based Distributed Systems (FMOODS05),
June 2005.

