
Extending Virtual Synchrony with Persistency∗

Rub́en de Juan-Marı́n
Francesc D. Mũnoz-Escóı†

Instituto Tecnoĺogico de Inforḿatica,
Universidad Polit́ecnica de Valencia,

46022 Valencia, Spain
{rjuan, fmunyoz}@iti.upv.es

J. Enrique Armend́ariz-́Iñigo
J. R. Gonźalez de Mend́ıvil

Depto. de Ing. Mateḿatica e Inforḿatica,
Universidad Ṕublica de Navarra,

31006 Pamplona, Spain
{enrique.armendariz, mendivil}@unavarra.es

Abstract

Persistent logical synchrony (PLS) extends the virtual
synchrony model persisting broadcast messages prior to
their delivery. Such extension is important when a recover-
able failure model is assumed, since it is able to simplify the
recovery tasks. Although similar approaches have been pro-
posed in previous works, they were tightly bound to totally
ordered broadcasts. PLS does not follow such constraint:
any kind of broadcast order might be used in this execution
model and only an agreement on the set of delivered mes-
sages in each view is needed, allowing the implementation
of data consistency models more relaxed than the sequential
one.

Some kinds of modern secondary storage (e.g., solid-
state disks) can complete the message saving actions in a
negligible time. So, PLS can be implemented in modern
group communication systems without adding a noticeable
overhead. This provides a useful basis for developing the
application recovery protocols.

KEYWORDS: virtual synchrony, progress condition, re-
covery, fault tolerance. († Contact author)

1 Introduction

Virtual synchrony[3] is a way for ensuring a logical syn-
chronization in distributed applications based on process
groups. To this end, broadcast messages are always deliv-
ered in the same view to all target processes.

This is enough in thecrash failure model, since it as-
sumes that once a process fails it will not recover. If such
process is restarted, it rejoins the process group with a new
identity and its recovery consists in a full state transfer.So,

∗This work has been partially supported by EU FEDER and Spanish
MICINN under grant TIN2009-14460-C03. Submitted to PDPTA.

lost messages in such failure interval are not of any interest
for its new incarnation.

Things are different when a recoverable model is consid-
ered. Such failure models are commonly needed in applica-
tions that manage a large state, like replicated file servers,
application servers or replicated databases. In those ap-
plications, a more elaborated recovery protocol is needed,
and one of its requirements is to minimize the state to be
transferred. In such scenarios, it seems appropriate to add
another synchronization point each time a process crashes.
Intuitively, such point is provided by thesame-view deliv-
ery [4] semantics that implements thevirtual synchronyex-
ecution model. However, both concepts were designed for
non-recoverable failure models and are not able to provide
such needed synchronization points in a recoverable system,
since some of the messages delivered to a faulty process are
not applied nor persisted before its crashing, and as a re-
sult they are “forgotten”. To solve this, messages should
be persisted at delivery time [16] ensuring consistency be-
tween the application receiving the messages and thegroup
communication system(GCS) [4].

We propose a new model namedpersistent logical syn-
chrony(PLS) that overcomes these problems and provides
such synchronization points. As a result, all living nodes
know which have been the updates missed by a faulty
replica in a failure interval. Thus, recovery can be imme-
diately started when such replica rejoins the system.

Most applications use aprimary component membership
[4] regarding partition failures, avoiding progress in minor
components. If disconnections were frequent, PLS would
allow a partial recovery of minor subgroups that could be
merged before their joining to the primary component. This
would shorten their recovery time.

At a glance, PLS introduces a non-negligible cost in the
message delivery steps. But such cost mainly depends on
the way such message saving is done —note that safe reli-
able broadcast protocols need multiple rounds of messages
in order to guarantee their properties and that message log-

1

ging can be completed in the meantime—, and on the net-
work bandwidth/latency and the secondary storage device’s
transfer time. For instance, collaborative applications for
laptops have access to slow wireless networks (e.g., up to
54 Mbps for 802.11g, and 248 Mbps with 802.11n wire-
less networks) and could use fast flash memories in order
to save such messages being delivered (e.g., CompactFlash
memory cards have write-throughput up to 360 Mbps). So,
in such cases the overhead will not be high, and it has been
proven elsewhere [5] that in multiple settings no overhead
arises, even when the messages to be saved are large (in the
order of hundreds of KB).

The contributions of this paper can be summarized as
follows. Firstly, we provide a complete PLS specification.
This allows to prove how PLS overcomes the problems that
arise when virtual synchrony is combined with a recover-
able failure model. Secondly, some of those problems have
been overcome in previous works, but such works either do
not eliminate all problems at once or are bound to total-
order message delivery, avoiding the use of faster broadcast
protocols that might be needed by modern highly-scalable
applications [9] or dynamic distributed systems [2].

2 System Model

We assume an asynchronous distributed system consist-
ing of a set of processesΠ. Each system process has a
unique identifierp ∈ Π. The state of a processp (state(p))
consists of a stable part (st(p)) and a volatile part (vol(p)).
A process may fail and may subsequently recover with its
stable storage intact.

Our aim is to provide support for dependable applica-
tions. To this end, a GCS is also assumed, providingvirtual
synchronyto the applications built on top of it. Modern
GCSs are view-oriented; i.e., besides message multicasting
they also manage a group membership service and ensure
that messages are delivered in all system processes in the
sameview(set of processes provided as output by the mem-
bership service).

A crash-recoverable failure model is assumed. Addition-
ally, we assume that processes do not behave outside their
specifications when they remain active.

Finally, aprimary component membership[4] model is
assumed; i.e., only the component with a majority of nodes
(if any) is allowed to progress in case of a network partition.

3 Virtual Synchrony

Chockler et al. [4] provide a complete and general spec-
ification of modern GCSs. We do not quote a complete
specification of all virtual synchrony conditions (they can
be found in [14, Sect. 4]), but only of those that need to be
extended.

To begin with, a GCS is characterized as an I/O automa-
ton [13] module based on the following items:

• Sets:Π (Set of processes),M (Set of messages),VID
(Set of view identifiers, totally ordered by the< oper-
ator), andV (Set of views. Each view is an element
of VID × 2Π. Thus, a viewV is the composition of
V.id ∈ VID andV.members ∈ 2Π).

• Input actions:

– send(p,m), p ∈ Π, m ∈ M: Processp broad-
casts messagem.

– crash(p), p ∈ Π: Processp fails by crashing.

– recover(p), p ∈ Π: Processp recovers.

• Output actions:

– recv(p,m), p ∈ Π, m ∈ M: GCS delivers mes-
sagem to processp.

– view chng(p,V), p ∈ Π, V ∈ V: A view change
event, installing viewV , is notified to processp.

– safeprefix(p,m), p ∈ Π, m ∈ M: GCS notifies
p that messagem is already safe.

Our extensions are focused on the persistency of safe
messages. Note that modern GCS decouple message de-
livery from safety notifications. Thus, in order to imple-
ment safe delivery(i.e., a message is not delivery until it
has been received by all its intended destination processes),
the messages are firstly delivered to their target application
without anysafetyguarantee. So, the application may start
such message processing as soon as the message is opti-
mistically delivered to it, but waiting for the safety notifi-
cation before completing such processing. This might en-
hance application performance. This rule is useful in fully
replicated database systems. In these systems, the main is-
sue is to propagate updates and apply them as soon as they
are received at the replicas. But although such updates are
applied immediately, they wait for their commitment until
their safe notification is also delivered. So, we need to recall
the specification of suchsafe messages. It is the following
(adapted from [4]):

• Processp receives messagem before messagem′ in
view V :

recv before in(p,m,m′, V)
def
= ∃i∃j (ti =

recv(p,m) ∧ tj = recv(p,m′) ∧ viewof(ti) =
viewof(tj) = V ∧ i < j)

• A messagem received in a viewV is indicated as safe
at processp:

indicated safe(p,m, V)
def
= ∃i(ti =

recv(p,m) ∧ viewof(ti) = V) ∧ ∃j(tj =

2

safeprefix(p,m) ∨ ∃m′(tj = safeprefix(p,m′)∧
recv before in(p,m,m′, V)))

• Messagem is stable in viewV :

stable(m,V)
def
= ∀p ∈ V.members(∃i, ti =

recv(p,m))

• Safe indication property. If a message is indicated as
safe, then it is stable in the view in which it is deliv-
ered. Formally:

indicated safe(p,m, V) ⇒ stable(m,V)

Moreover, theeventsin such automaton module are the
occurrences of those actions specified above. The set of
such events isEvents. A schedulein this module is a finite
or infinite sequence of events. All our axioms and properties
implicitly take a schedule as a parameter, that we omit for
clarity of presentation. We also omit universal quantifiers:
unbound variables should be understood to be universally
quantified for the scope of the entire formula.

Virtual synchronyis formally specified as follows:

• Processp receives messagem in view V :

receives in(p,m, V)
def
= ∃i(ti =recv(p,m) ∧

viewof(ti) = V)

• Processp installs viewV in view V ′:

installs in(p, V, V ′)
def
= ∃i(ti =view chng(p, V) ∧

viewof(ti) = V ′)

• Virtual synchrony property. If processesp andq install
the same new viewV in the same previous viewV ′,
then any message delivered atp in V ′ is also delivered
at q in V ′.

installs in(p, V, V ′) ∧ installs in(q, V, V ′) ∧
receives in(p,m, V ′) ⇒ receives in(q,m, V ′)

We also assume that our system is able to implement
same-view deliverysemantics [4]:

• Same View Delivery. If processesp andq both deliver
messagem, they deliverm in the same view. For-
mally:

receives in(p,m, V) ∧ receives in(q,m, V ′) ⇒
V = V ′

4 Dealing with Recovery

Processes that may fail and recover either manage some
persistent state or are able to checkpoint their volatile state
periodically [7]. So, it is important that recovering pro-
cesses save persistently all they have been able to execute
before their crash event. Virtual synchrony does not enforce

such saving. Indeed, its detailed specification [3] allows
that the lastrecv(p,m) events executed by a failed process
p in its last view were not actually executed but simply ficti-
tiously added to the resulting history in order to complete it,
complying thus with thesending-view delivery[4] seman-
tics. Moreover, even ifp would have received all messages
m seen by correct processes, there is no guarantee thatp

was able to complete their processing, and its effects are not
included inst(p). Thus,p’s application-level recovery pro-
tocol can not consider the transition fromVi to Vi+1 as the
starting point of such recovery; i.e., such transition doesnot
accurately give which have been the latest incoming mes-
sages successfully applied inp.

In order to specify this problem, we use a second kind
of I/O automaton moduleProc that models a process. Note
that this automaton module can be composed with the GCS
one [13]. Thus, the I/O automaton module for a process
p includes as its input actions all output actions of GCS
referring to it (i.e., such output actions are:recv(p,m),
view chng(p, V), safeprefix(p,m)) and thecrash(p) and
recover(p) actions generated by the environment; as its sin-
gle output action it has one that corresponds to the GCS
send input action. Moreover, it has the following internal
action:

• processmsg(p,m), p ∈ Π, m ∈ M. The process ter-
minates the processing of messagem and updates both
st(p) andvol(p), although for the sake of simplicity
we denote this fact aseffects(m) ∈ st(p).

In a system resulting from the composition of both mod-
ules,Proc ·GCS, the problem outlined above can be spec-
ified as follows:

P-1 In a schedule ofProc · GCS, if a process crashes,
there may be some delivered messages in its last view
whose effects are lost. Formally:

∃m : ti =recv(p,m) ∧ tj =crash(p) ∧ i < j∧ ef-
fects(m) 6∈ st(p)

Note that P-1 is only a problem whenp is later able to
recover from such crash. In such a case, problem P-1 gen-
erates several consequences:

C-1 The latest running view of a recovering process does
not provide a valid application-level recovery-start
synchronization point. This starting point determines
which was the last processed message in such previ-
ously crashed node.

This is directly derived from the fact thatst(p) does not
hold all the effects suggested by the same-view delivery se-
mantics, in case of relying on it to drive the application-level
recovery.

3

When a primary component membership is used and a
majority of group members crashes, it might be impossible
to recover the last state. For instance, let us assume a system
composed by three processes (p1, p2, andp3), supporting a
replicated database, and where no transaction is aborted by
the replication protocol being used. In such scenario, the
execution of a transaction T consists of the following kinds
of events:

1. send(pi,T): Transaction T has been locally executed in
processpi and its updates are broadcast by processpi

to all replicas.

2. recv(pi,T): Processpi receives transaction T’s updates.

3. processmsg(pi,T): Transaction T is committed in pro-
cesspi and, thus, its updates are persisted in the local
database replica.

p 1

p 2

p 3

crash(p)2

send(p ,T)a3

recv(p ,T)a1

process_msg(p ,T)a1

crash(p)1

crash(p)

2recover(p)

3
recover(p)3

Vn-1 Vn Vn + 1

send(p ,T)b1

recv(p ,T)a3

recv(p ,T)b1

recv(p ,T)b3

process_msg (p ,T)
b1

process_msg(p ,T)a3

Figure 1. Execution with lost transactions.

In our assumed system, the following scheduleS1 (see
Fig. 1) shows how three sequential failures may completely
stop the system in an inconsistent state, and the recovery of
two processes is not able to maintain the latest state com-
mitted before such multi-failure scenario.
S1 = crash(p2), send(p3, Ta), recv(p1, Ta), recv(p3, Ta),
process msg(p1, Ta), send(p1, Tb), recv(p3, Tb),
recv(p1, Tb), process msg(p3, Ta), process msg(p1, Tb),
crash(p3), crash(p1), recover(p2), recover(p3)

Note that in such schedule, transactionsTa andTb were
logically accepted, broadcast, and committed whilst the sys-
tem still had two active processes (in viewVn). The mes-
sages that broadcastTb updates were known by bothp1 and
p3 but onlyp1 was able to commit and persist such updates
in such viewVn; i.e., it was able to execute its internal ac-
tion processmsg(p1, Tb), updating thus itsst(p1). Later,
bothp3 andp1 crashed, but none of such failures generated
any view allowing progress. Recall that in aprimary com-
ponent membershipmodel, we need a majority of alive and
correct processes in order to accept new requests. Other-
wise, the system remains stopped. Eventually,p2 andp3

recover, generating the next majority viewVn+1. As a re-
sult, at the end of the schedule two processes are again alive,
but none of them has any record fromTb, so the latest state
is unrecoverable.

This can be summarized as an additional consequence
[6] of problem P-1:

C-2 Danger of inconsistent progress in a primary-
component membership system. Once a primary-
component system has blocked due to the lack of a
process majority, the processes joined in order to gen-
erate a new majority are not always able to recover the
last system state.

Again, this is a direct consequence of problem P-1. If
the updates associated to each received message were al-
ways persisted, the progress consistency would have been
guaranteed; i.e., no update could be lost.

5 Some Solutions

The Paxos protocol [12] can be used to implement an
atomic broadcast based on consensus. It gives as synchro-
nization point the last decision —delivered message— writ-
ten —i.e., applied— in alearner. This approach could pro-
vide a recovery synchronization point, but it does not over-
come C-1 since Paxos does not demand a view-oriented sys-
tem. Moreover, as it forces theacceptorsthat participate in
the quorum for a consensus instance to persist their vote
—message to order— as previous step to the conclusion
of such consensus instance —which will imply the deliv-
ery of the message— it can avoid C-2 in a straightforward
way. So, if a learner crashes losing some delivered mes-
sages, when it reconnects it asks the system to run again the
consensus instances subsequent to the last message it had
applied, relearning then the messages that the system has
delivered afterward. But this forces the acceptors to hold
the decisions adopted for long, till all learners acknowledge
the correct processing of the message.

Wiesmann and Schiper [16] analyzed which have been
the regular safety criteria for database replication [10] (1-
safe, 2-safeand very safe), and compared them with the
safety guarantees provided by current database replication
protocols based on atomic broadcast (namedgroup-safety
in their paper). They show that group-safety is not able
to comply with a 2-safe criterion, since update reception
does not imply that such updates have been applied to the
database replicas, and C-2 can arise in such systems. As
a result, they propose anend-to-end atomic broadcastthat
is able to guarantee the2-safecriterion (and that, indeed,
overcomes C-2). Such end-to-end atomic broadcast con-
sists in adding anack(m)operation to the interface provided
by the GCS that should be called by the application once

4

it has processed and persisted all state updates caused by
messagem. This implies that the sequence of steps in an
atomically-broadcast message processing should be:

1. A-send(m). The message is atomically broadcast by a
sender process.

2. A-receive(m). The message is received by each one of
the group-member application processes. In a tradi-
tional GCS, this sequence of steps terminates here.

3. ack(m). Such target application processes use this op-
eration in order to notify the GCS about the termi-
nation of the message processing. As a result, all
state updates have been persisted in the target database
replica and the message is consideredsuccessfully de-
livered[16]. The GCS is compelled to log the message
in the receiver side until this step is terminated. Thus,
it can receive again such message at recovery time if
the receiving process has crashed before acknowledg-
ing its successful processing.

We have taken a similar approach in order to define our
extensions. However, we do not require total-order broad-
cast as the unique message propagation mechanism, and our
solution also needs to overcome C-1.

Finally, both [11] and [8] present in their papers some
principles able to solve the problems mentioned in our pa-
per. They were also based on message logging. However,
they are presented in the context of total-order broadcast
protocols; i.e., their main aim is to ensure the correctness
of such broadcast protocols in partitionable environments.
To this end, as total order requires consensus and consensus
does need message logging in order to achieve an efficient
solution when a recoverable model is assumed [1], our pro-
posal highly resembles theirs. However, we only need con-
sensus in order to agree on which were the messages deliv-
ered in each view, since we take such point as the basis for
later recovery actions. This relaxes a bit the ordering guar-
antees of the broadcasts being used in our GCS, tolerating
more relaxed consistency models that might be interesting
in current dynamic and scalable applications, as suggested
in some recent proposals [9, 2].

6 Persistent Logical Synchrony

In order to overcome Problem P-1, we propose an execu-
tion model that modifies and extends virtual synchrony with
the end-to-end broadcastprinciple from [16]. We refer to
such execution model aspersistent logical synchronysince
it adds persistence guarantees in the reception step and still
provides a logical/virtual synchrony in the event execution
order in all processes that constitute a given group.

Our extensions are based on persisting all messages
when they are received by the GCS, prior to their delivery
to their destination processes. Once processed, they should
be removed from stable storage. In case of failure, per-
sisted messages will survive such failure (according to the
assumptions given in Section 2) and will be redelivered to
the target process prior to its joining to a new system view.

Thus, the following additional items are needed in the
specification of a GCS:
Sets:

• Lp: Set of persisted messages for processp. Each per-
sisted message〈m,V 〉 is an element ofM× V. This
set is totally ordered by<, the order of insertion of its
elements.

Input actions:

• recover(p): A boolean flagrecoveringp is needed
for recording whether processp is recovering or not.
Its initial value is false, but the effects of thisre-
cover(p) action, setrecoveringp to true. Finally,
in order to reset such variable, an additional internal
end recover(p) action is also needed (see below).

• ack(p,m): Processp has completely processed mes-
sagem and has already updated itsst(p) using to this
end the internal actionprocessmsg(p,m) in its au-
tomaton module, and notifies GCS about this comple-
tion.

In the execution of this action,〈m,V 〉 is removed from
Lp, beingV the view in which such messagem was
persisted inLp.

Internal actions:

• end recover(p). This action unsets therecoveringp

flag once all persisted messages have been completely
processed and their effects applied tost(p). To this
end, its precondition checks thatLp has become empty
as a result of the execution ofack(p,m) events for each
message previously contained inLp.

Output actions:

• recv(p,m): This action needs to be extended. Now,
there are two different variants. The first one (lines
7-10) maintains its effects, as described in the specifi-
cation given in Section 3, but it should also persist the
message being delivered to the target process (line 9).
The second one (lines 11-16) manages the delivery of
persisted and non-acknowledged messages in the re-
covery phase. To this end, it should be checked that
the recovering process has installed a valid view.

5

• view chng(p,V): Another variant of this output action
is also needed (lines 17-20), in order to set the logi-
cal view in which the recovery is being executed. For
completion, the regularview chng(p,V) action is also
shown in lines 21-23. Note that now it is only enabled
whenrecoveringp is false.

Finally, we assume that when a message is delivered to
a process, it is already safe. The I/O automaton module
resulting from all these extensions will be namedeGCS

(extended GCS). It is shown in Figure 2. As a result of these
extensions,Proc needs also to be extended (generating a
new moduleeProc) with a newack(p,m) output action, in
order to be compatible witheGCS for composing both I/O
automaton modules.

1 : recover(p):
2 : eff ≡ recoveringp ← true

3 : Lcopyp ← Lp

4 : end recover(p):
5 : pre≡ recoveringp = true ∧ Lcopyp = ∅ ∧ Lp = ∅
6 : eff ≡ recoveringp ← false

7 : recv(p, m):
8 : pre≡ recoveringp = false
9 : eff ≡ Lp ← Lp ∪ {〈m,current viewp〉}

10 : Deliver messagem to p

11 : recv(p, m):
12 : pre≡ recoveringp = true ∧ 〈m, ∗〉 ∈ Lcopyp∧
13 : current viewp 6=⊥
14 : eff ≡ 〈m, V 〉 ← min(Lcopyp)
15 : Deliver messagem to p

16 : Lcopyp ← Lcopyp − {〈m, V 〉}
17 : view chng(p, V):
18 : pre≡ recoveringp = true∧ current viewp =⊥ ∧Lp 6= ∅
19 : eff ≡ 〈m, V ′〉 ← min(Lcopyp)
20 : current viewp ← V ′

21 : view chng(p, V):
22 : pre≡ recoveringp = false

23 : eff ≡ current viewp ← V

24 : ack(p, m):
25 : eff ≡ Lp ← Lp − {〈m, ∗〉}

Figure 2. eGCS actions needed in the recov-
ery tasks.

The following lemma is respected by all valideGCS ·
eProc schedules:

Lemma 1. Once therecover(p) action is executed, all per-
sisted messages –if any– are delivered to and processed byp

before actionend recover(p) is executed. Later,p receives
the first new regularview chng(p,V) action after its recov-
ery.

This implies that a valid scheduleSrecov(p) dealing with
a GCS-relatedp’s recovery (leading to the installation of
such first new regular viewV) consists of the following se-
quence of actions:

Srecov(p) ≡ ta = recover(p), tb = view chng(p, V ′), {tc =
recv(p,m)}∗, td = end recover(p), te = view chng(p, V)

Proof. Note that the recovery of a processp should start
with action ta. Such action setsrecoveringp to true and
copiesLp ontoLcopyp (lines 2 and 3).

If processp did not hold any message inLp, theeGCS

internal actionend recover(p) is the single one enabled
(see line 5 and note that the execution of line 3 also implies
thatLcopyp = ∅), and this implies that no event of classtb
nor tc will be executed. Execution ofend recover(p) leads
immediately to the execution ofte, terminating such recov-
ery.

Otherwise, as a result of the first recovery action, and
due to how views are managed in aneGCS, the view of
p at that moment is undefined (i.e.,⊥). In ⊥, a process
may only acceptview chng(p,V) or crash(p) events, but no
send(p,m) norrecv(p,m) ones. So, we are forced to install a
fictitious viewV ′ (indeed, the last working view ofp) using
the actionview chng(p,V) shown in lines 17-20. This is
the single action enabled in theeGCS automaton module
at that time.

As a result,recv(p,m) (lines 11-16) gets enabled, and
this explains the existence of multipletc actions in sched-
ule Srecov(p). Such actions correspond to the delivery of
all messages contained inLp. Each timep receives one of
such messages,eGCS removes the message fromLcopyp,
andProc of p will internally execute itsprocessmsg(p,m)
action, updating thus itsst(p), and leading later to the exe-
cution ofack(p,m) that removes such messagem from Lp.
So, eventually, bothLp andLcopyp become empty.

At that time, end recover(p) is enabled (see line 5),
and this explains the location of eventtd in Srecov(p).
As a result, recoveringp is set to false and a regular
view chng(p,V) is executed, installing the first regular new
view once the recovery is terminated. This completes the
proof.

This ensures that all messages logically delivered top

before it crashed will be actually delivered in the GCS-
managed recovery steps. This does not completep’s recov-
ery but provides a useful frame for designing its application-
level recovery actions. Such latter recovery consists only
in transferring top a compacted version of all updates that
were missed in the interval it remained crashed.

In order to formally prove that PLS avoids problem P-
1 (and its two consequences) we only need to show that
once a message is received by a processp, its effects will be
eventually applied inst(p) following the message delivery
order. Formally:

Theorem 1. In an eGCS · eProc system:
tj = crash(p) ∧ ti = recv(p,m) ∧
tk =end recover(p) ∧ i < j < k ⇒ effects(m) ∈ st(p).

6

Proof. Let us prove this by contradiction. To this end, let us
assume that when: (a)ti = recv(p,m), (b) tj = crash(p),
(c) tk = end recover(p), and (d)i < j < k are all held,
theneffects(m) 6∈ st(p); i.e., Problem P-1 arises.

This consequence may only happen whenpro-
cessmsg(p,m) action is not executed. Two cases explain
such situation:

1. No recv(p,m) action was executed. This is already a
contradiction with clause (a) listed above.

2. Action recv(p,m) was executed by the GCS, but
processmsg(p,m) was not completed in itsProc’s
recv(p,m) counterpart. In such case,GCS’s action
recv(p,m) ensures that〈m,V ′〉 ∈ Lp. Moreover, due
to Lemma 1 if anend recover(p) action was executed,
all 〈m′, V ′〉 ∈ Lp would have forced that processp
had executed its internalprocessmsg(p,m′) for each
messagem′. This implies that noend recover(p) ac-
tion was possible in this case, and also leads to a con-
tradiction with clause (c).

As a result, this theorem is proved and Problem P-1 is
avoided by PLS.

Note that this theorem precludes a trivial recovery proto-
col implementation that never completes anend recover(p)
action for processp, since such implementation is equiva-
lent to maintainingp crashed forever, and in that caseef-
fects(m) will not matter.

7 Conclusions

Virtual Synchrony, despite being appropriate for a crash
failure model, does not fit well when a recoverable model is
assumed, since one problem arises: the effects of the mes-
sages delivered to a process that crashes might be lost, since
they might not be completely processed before such crash
event. So, we proposePersistent Logical Synchrony(PLS)
as its substitute on those systems for overcoming such prob-
lem. Our approach forces all processes to persist messages
in the delivery step, but such an overhead is negligible when
fast secondary storage devices are used. Moreover, it guar-
antees that no message already applied could be forgotten
by recovering processes, simplifying such recovery proto-
cols. This also allows partial recoveries when no majority
group can be found in a partitioned system, reducing the
overall recovery time when a majority component is merged
again.

Finally, although there had been previous proposals that
recommended message logging as an appropriate mecha-
nism for extending virtual synchrony and guaranteeing mes-
sage delivery in recoverable systems, they were designed
for total-order delivery. PLS is more general in this sense,

and it does not compel any concrete delivery order. This
converts PLS into a valid framework when virtual syn-
chrony should be combined with relaxed replica consisten-
cies in modern highly-scalable and dynamic distributed ap-
plications.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Failure detec-
tion and consensus in the crash-recovery model.Distributed
Computing, 13(2):99–125, 2000.

[2] R. Baldoni, M. Malek, A. Milani, and S. Tucci Piergiovanni.
Weakly-persistent causal objects in dynamic distributed sys-
tems. In25th IEEE Symp. on Rel. Dist. Sys. (SRDS), pages
165–174, Leeds, UK, 2006.

[3] K. P. Birman. Virtual synchrony model. In K. P. Birman
and R. van Renesse, editors,Reliable Distributed Comput-
ing with the Isis Toolkit, chapter 6, pages 101–106. 1994.

[4] G. V. Chockler, I. Keidar, and R. Vitenberg. Group com-
munication specifications: A comprehensive study.ACM
Comput. Surv., 33(4):1–43, 2001.

[5] R. de Juan-Maŕın, J. Armend́ariz-́Iñigo, L. Irún-Briz,
J. Gonźalez de Mend́ıvil, and F. D. Mũnoz-Escóı. On the
costs of persisting messages at delivery time. Technical Re-
port ITI-SIDI-2009/009, Instituto Universitario Mixto Tec-
nológico de Inforḿatica, Valencia, Spain, 2009.

[6] R. de Juan-Maŕın, L. Irún-Briz, and F. D. Mũnoz-Escóı. En-
suring progress in amnesiac replicated systems. In3rd Intnl.
Conf. on Availability, Reliability and Security (ARES), pages
390–396, Barcelona, Spain, Mar. 2008. IEEE-CS Press.

[7] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems.ACM Comput. Surv., 34(3):375–408, 2002.

[8] A. Fekete, N. A. Lynch, and A. A. Shvartsman. Specifying
and using a partitionable group communication service. In
16th Annual ACM Symp. on Princ. of Dist. Comp. (DISC),
pages 53–62, Santa Barbara, CA, USA, 1997.

[9] S. Finkelstein, R. Brendle, and D. Jacobs. Principles for in-
consistency. In4th Biennial Conf. on Innovative Data Sys-
tems Research (CIDR), Asilomar, CA, USA, 2009.

[10] J. Gray and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[11] I. Keidar and D. Dolev. Efficient message ordering in dy-
namic networks. In15th Symp. on Princ. of Dist. Comp.
(PODC), pages 68–76, 1996.

[12] L. Lamport. The part-time parliament.ACM Trans. Comput.
Syst., 16(2):133–169, 1998.

[13] N. Lynch and M. Tuttle. An introduction to I/O automata.
CWI Quarterly, 2(3):219–246, Sept. 1989.

[14] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agar-
wal. Extended virtual synchrony. InIntnl. Conf. on Distr.
Comp. Sys. (ICDCS), pages 56–65, 1994.

[15] R. D. Schlichting and F. B. Schneider. Fail-stop proces-
sors: An approach to designing fault-tolerant systems.ACM
Trans. Comput. Syst., 1(3), Aug. 1983.

[16] M. Wiesmann and A. Schiper. Beyond 1-safety and 2-safety
for replicated databases: Group-safety.Lecture Notes in
Computer Science, 2992:165–182, Mar. 2004.

7

