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Abstract. Most database management systems support several isolation levels,

including Serializable, Snapshot Isolation, and Read Committed. Serializable is

used when transactions have strong isolation needs. Read Committed provides

a very relaxed isolation and, thus, it is used only when applications are able to

deal with the isolation anomalies that such level allows. Snapshot Isolation (SI)

is widely used since it provides an almost serializable isolation with improved

performance, particularly in read-intensive workloads since it never blocks read

accesses nor aborts read-only transactions. Unfortunately, few theoretical models

indicate when the execution of a set of transactions follows each isolation level

conditions when different isolation levels are requested by different transactions.

They are either ambiguous or oriented to concrete concurrency control mecha-

nisms like locks. An important exception is the model proposed by Atul Adya.

Such specification proposes Mixed Serialization Graphs (MSG) as a tool for rep-

resenting executions that involve multiple isolation levels. Adya’s MSGs are both

well-defined and mechanism-independent, although they do not consider SI since

its specification is based on some transaction dependences that do not arise in any

other isolation level. This paper provides an alternative SI specification that can

be embedded in MSGs.
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1 Introduction

Database management systems (DBMS) can concurrently execute transactions request-

ing different isolation levels. Serializable, Snapshot Isolation, Repeatable Read, Read

Committed and Read Uncommitted are some of the isolation levels [1] being regularly

supported. The advantage of managing several isolation levels is performance [2]. With

Serializable, the strictest isolation level, the execution of a set of transactions is equiv-

alent to a serial execution of the same set even if they are executed concurrently [3].
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However, Serializable isolation increases the number of blocked transactions, transac-

tion aborts and response time, reducing the degree of concurrency and the overall per-

formance. Relaxed isolation levels increase concurrency at the cost of allowing some

types of isolation anomalies. For example, with Read Committed, the default isolation

level in some DBMSs (e.g., Microsoft SQL Server 2008 R2 [4], Oracle Database 11g

[5], PostgreSQL 9.1.3 [6]), a transaction may get different values in two consecutive

reads on the same data since it allows other concurrent transactions to update data be-

tween both reads.

Weak isolation levels should be used only when their unmanaged anomalies cannot

appear during the execution of a given transaction or are tolerated by applications and

users. Furthermore, databases may be accessed by several applications and, thus, it is

usual for a DBMS to manage the execution of concurrent transactions with different

isolation needs. The coexistence of those transactions improves the overall system per-

formance and compromises isolation guarantees only when they are tolerated by the

application tier.

There are several mechanisms to manage concurrency in the presence of several iso-

lation levels. They are based on locking, multi-versioning or both. Only a few models

can formally describe how those systems should behave to manage isolation correctly

and most of them assume locking as their concurrency control mechanism [7]. The

model developed by Adya [8] is an exception. Adya’s specification has been widely fol-

lowed in recent years, because of its generalized isolation characterization [9,10,11,12]

and its clear and mechanism-independent specification for the snapshot isolation level

[2,13]. His specification uses variations of serialization graphs to define the isolation

levels with independence on concrete concurrency control mechanisms. Serialization

graphs were originally introduced in [3] to define the Serializable isolation but Adya

extended them to define other isolation levels as well. Given an execution, in a Direct

Serialization Graph (DSG) the nodes represent transactions and the directed edges rep-

resent dependences between them. The execution of a set of transactions guarantees a

given isolation level if the associated DSG keeps some properties, usually related to

the absence of cycles. When transactions with different isolation levels are executed,

Adya introduced a variation of DSGs, named Mixed Serialization Graphs (MSG). An

MSG is like the DSG but including only obligatory edges. An edge is obligatory if it is

representative for the isolation levels of at least one of the transactions directly involved

in the dependency.

Unfortunately, MSGs do not consider transactions with the Snapshot Isolation (SI)

level. The reason is that Adya introduced another variant of DSG, named Start-ordered

Serialization Graph or SSG, to define that level. Since MSGs are based on DSGs, they

only consider isolation levels defined with DSGs and that excludes SI. In this paper

we present an alternative SI definition, very similar to Adya’s definition but based on

DSGs. Our specification can be supported by MSGs. The resulting MSGs are able to

model executions that encompass transactions using the isolation levels generally avail-

able in current DBMSs and they also provide a basis to reason about the correctness of

database replication protocols supporting multiple isolation levels [14]. Regarding the

latter, the designers of those replication protocols should take care that the validation

rules being used for deciding whether a transaction will be committed or not, consid-



ering any concurrent transactions, ensure that the resulting transaction dependences are

only those admitted in a valid MSG.

The rest of this paper is structured as follows. Related work is outlined in Section

2. Section 3 describes the system model. Section 4 summarizes the isolation level spec-

ification given in [8,15]. Section 5 provides an alternate specification for the snapshot

isolation level, integratable in MSGs. Finally, Section 6 concludes the paper.

2 Related Work

Correctness in executions where multiple concurrent transactions are involved has reg-

ularly assumed serializable isolation [3]. Other isolation levels introduce the risk of

anomalies [7], generating several kinds of inconsistent results. Despite this, relational

DBMSs support several standard isolation levels, and most of them use the Read Com-

mitted level by default. A relaxed isolation is able to enhance the application perfor-

mance [16,2]. As a result, the programmer should carefully select which is the most

appropriate isolation level for each one of the application transactions, according to

the application requirements and semantics. Indeed, Fekete [17] showed that, follow-

ing certain rules, a careful mixing of serializable and SI transactions is able to generate

conflict serializable executions; i.e., those executions are able to avoid all anomalies.

Moreover, that work [17] also proposed as a further line of investigation to find possi-

ble rules for mixing transactions using read-committed, SI and serializable isolations in

order to still obtain conflict serializable executions. This shows that the usage of multi-

ple isolation levels in real applications is convenient from a practical point of view and

that still demands some support from a theoretical perspective.

The proposal of the semantic correctness concept in [16] has a similar aim: to set

the rules that ensure a correct execution of multiple transactions that use any of the

standard isolation levels in relational databases. However, in this case the semantic cor-

rectness being proposed is slightly weaker than serializability. Despite this, the rules

for managing SI are only given for conventional databases (i.e., for those that do not

use predicates [16]), but not for relational ones. As a result, SI is not fully supported

in [16], despite admitting that executions with multiple isolation levels are convenient

when throughput and response time should be optimized.

The focus of the current paper is not placed on obtaining conflict serializable execu-

tions when multiple isolation levels are mixed, but only in adequately representing the

resulting dependences in a mixing graph. The usefulness of that representation resides

in guiding the designers and developers of database replication protocols on the set of

rules that should be considered in order to check which conflicts should be allowed and

avoided (against other committed transactions, depending on their isolation level) when

transactions reach their commitment point. As a result, we are mainly focused on repli-

cation transparency, one of the aims of any distributed system [18]: i.e., in providing the

same support in a replicated environment than in a single-machine one. This demands

database replication protocols managing multiple isolation levels, since regular DBMSs

always provide such management.

To this end, as it has been already said in the introduction, Adya [8] provided a solid

model for supporting such mixed executions in his MSGs. Unfortunately, MSGs did not



consider SI since the latter demands another kind of graph: the SSG. In our previous

work [19] we tried to complement MSGs demanding two additional rules for the SI

transactions involved in a mixed execution. This allowed to include SI transactions in

those “extended MSGs”, but not in a regular way. In fact, the result was not a regular

MSG nor any other kind of plain graph since it should be complemented by two building

rules maintaining an information similar to that of the start dependences that originated

the SSGs. The model being proposed in the current paper solves this issue.

3 System Model

This section presents some definitions needed in the rest of the paper.

3.1 Databases and transactions

A database is a set of items that can be read and written. Updates, inserts and deletes are

all treated as writes. Clients (usually applications) read and write database items through

transactions. A transaction is a sequence of read and write operations plus an initial start

operation and a final commit or abort operation. If the transaction is committed all its

writes are persisted in the database. If it is aborted all writes are rolled back.

Operation wi(xi) represents transaction Ti’s write on item x, being xi the value writ-

ten. Operation ri(x j) represents Ti’s read of the value x j written by transaction Tj. Ti’s

start, commit and abort operations are represented as si, ci and ai. Note that ci and ai are

mutually exclusive, i.e., transactions either commit or abort. If a transaction performs

several writes on item x, wi(xi.n) represents the n-th write on item x performed by Ti.

If no suffix is present, xi represents the last value established by Ti. Operation ri(x j.n)

indicates a Tj’s read of the n-th Ti’s write on x and ri(x j) Ti’s read of Tj’s last write on

x. Finally, x0 is the initial value of an item x and oi represents any operation performed

by Ti.

A transaction Ti is defined in the following way:

Definition 1 (Transaction) A transaction Ti is a totally ordered set of operations with

a binary relation < where:

– Ti ⊆ {ri(x j),wi(xi)|x is a data item}∪{si,ai,ci}.

– si ∈ Ti.

– ci ∈ Ti iff ai 6∈ Ti.

– For any Ti’s operation oi, if oi 6= si then si < oi.

– If ci ∈ Ti then, for any operation oi 6= ci, oi < ci.

– If ai ∈ Ti then, for any operation oi 6= ai, oi < ai.

– For any two Ti’s operations o1 and o2, o1 < o2 or o2 < o1.

3.2 Histories

When a set of transactions is executed in the system, the operation execution order is

determined by a system scheduler. A history represents how transactions have been



ordered during the execution. Given two operations o1 and o2, o1 <H o2 in a history H

if they have been executed in that order and either belong to the same transaction or are

conflictive. Operations o1 and o2 conflict if they operate over the same item and at least

one of them is a write. Thus, two read operations of distinct transactions never conflict

and are not directly ordered in H. Formally:

Definition 2 (History) Given a set of transactions T = {T1, ...,Tn}, a history H is a

partially ordered set of the operations in T ’s transactions with a binary relation <H

where:

– For any transaction Ti ∈ T and any operation oi ∈ Ti, oi ∈ H.

– For any transaction Ti ∈ T and any two operations o1,o2 ∈ Ti, if o1 < o2 ∈ Ti then

o1 <H o2 ∈ H.

– If ri(x j) ∈ H then w j(x j) ∈ H and w j(x j)<H ri(x j) ∈ H.

– For any two conflicting operations o1,o2 ∈ H, o1 <H o2 ∈ H or o2 <H o1 ∈ H.

3.3 Time-precedes order

The scheduler assigns transaction start and end points. They represent when transactions

start and finish and determine which committed database state is observed by every

transaction when it is started. That order is called a time-precedes order [8]. Formally:

Definition 3 (Time-precedes order) Given a history H and E the set of start and com-

mit operations of transactions committed in H, a time-precedes order <t is a partial

order on E such that:

– For any transaction Ti committed in H, si <t ci.

– Given Ti, Tj transactions committed in H, ci <t s j or s j <t ci.

Two transactions Ti and Tj are concurrent if si <t c j and s j <t ci.

4 Isolation levels

Ensuring a strict isolation is costly and, depending on the concrete mechanism being

used, this implicates many blocked transactions and/or many aborts. To improve per-

formance, commercial DBMSs allow transactions to be executed with weaker isolation

levels at the cost of allowing certain types of interferences or phenomena, which must

be either managed by the application tier or accepted by the user. An example is the

phenomenon known as Write Skew [7]. Assume a database with two items x and y and

an integrity constraint requiring that x+y> 0. If two transactions Ti and Tj concurrently

read x = 50 and y = 50 and later are allowed to write x =−10 (Ti) and y = 0 (Tj), both

will think that the integrity constraint is preserved but it is actually violated in the final

state. If a transaction is executed with an isolation level which does not prevent this

phenomenon we must be sure that such scenario is managed by the application logic

avoiding that kind of concurrent transactions.

Snapshot Isolation is an isolation level widely used in DBMSs. It provides almost

the same isolation guarantees than Serializable but it never blocks read operations. As

a result, read-only transactions can be executed without being blocked or aborted.



4.1 Adya’s isolation level definitions

Several isolation level specifications have been given in the literature [1,7,8,15]. They

identify possible phenomena that may appear when transactions are executed concur-

rently and categorize isolation levels depending on which of those phenomena are for-

bidden. The ANSI/INCITS specification [1] is widely accepted but, as Berenson et al.

[7] showed up, it is ambiguous. Berenson et al. [7] refined ANSI definitions and ex-

tended the classification with new phenomena and isolation level definitions. Actually,

they suggested one of the first definitions of Snapshot Isolation, supported at that mo-

ment by some commercial DBMS as Serializable due to a loose interpretation of ANSI

phenomena. They proved that SI allows some non-serializable executions. Indeed, other

papers [20] showed up that there were other anomalies in SI histories. However, Beren-

son’s specification focuses on lock-based concurrency control, ignoring other mecha-

nisms like multi-versioning, widely used to provide Snapshot Isolation.

Due to that fact, Adya [8] presented an alternative specification that is indepen-

dent of concrete concurrency control mechanisms. Adya used a variation of Bernstein’s

serialization graphs to represent histories as graphs showing dependencies among trans-

actions. Phenomena are defined as properties in those graphs.

Definition 4 (Direct Serialization Graph) Given a history H, DSG(H) is a directed

graph containing a vertex per committed transaction in H and a directed edge from Ti

to Tj if one of the following dependencies appears:

– Tj directly read-depends on Ti, denoted as Ti
wr−→ Tj, if r j(xi) ∈ H.

– Tj directly write-depends on Ti, denoted as Ti
ww−→ Tj, if wi(xi)<H w j(x j)∈H and it

does not exist any other operation wk(xk) such that wi(xi)<H wk(xk)<H w j(x j) ∈
H.

– Tj directly anti-depends on Ti, denoted as Ti
rw−→ Tj, if ri(xm)<H w j(x j) ∈ H and it

does not exist any other operation wk(xk) such that ri(xm)<H wk(xk)<H w j(x j) ∈
H.

We say that Tj directly depends or depends on Ti if Tj directly read- or write-depends

on Ti. We also say that Tj anti-depends on Ti if it directly anti-depends on Ti.

As an example of DSG, given a history H =w0(x0)w0(y0)w0(z0)c0ri(x0)wi(xi)ri(y0)ciw j(y j)w j(x j)c j

(this is the flatten representation of H but remember that a history is a partial order and

not a total order), the associated DSG(H) is:

T0 Ti Tjwr/ww rw/ww

ww

Fig. 1. DSG of H1



Adya used DSG to define a set of possible isolation phenomena. The main ones are

the following:

– G0: Write Cycles: a history H exhibits phenomenon G0 if DSG(H) contains a

directed cycle composed only by write-dependency edges.

– G1a: Aborted Reads: a history H exhibits phenomenon G1a if it contains an

aborted transaction Ti and a committed transaction Tj such that wi(xi.m)<H r j(xi.m)∈
H.

– G1b: Intermediate Reads: a history H exhibits phenomenon G1b if a transaction

Ti reads in H a value written by Tj which is not the last write of Tj over the item.

Formally, wi(xi.m)<H r j(xi.m)<H wi(xi.n) ∈ H and c j ∈ H.

– G1c: Circular Information Flow: a history H exhibits phenomenon G1c if DSG(H)
contains a directed cycle composed only by dependency edges.

– G2: Anti-dependency Cycles: a history H exhibits phenomenon G2 if DSG(H)
contains a directed cycle containing at least one anti-dependency edge.

Based on the previous phenomena, the following isolation levels are defined:

– PL-1: it forbids phenomenon G0 and provides a generalized specification for Read

Uncommitted.

– PL-2: it forbids phenomena G0, G1a, G1b and G1c and provides a generalized

specification for Read Committed.

– PL-3: it forbids phenomena G0, G1a, G1b, G1c and G2 and provides a generalized

specification for Serializable.

Instead of focusing on what should be observed in every transaction execution to de-

termine if its isolation requirements have been ensured, Adya’s definitions indicate what

should happen in an entire history to guarantee a given isolation level to all comitted

transactions. Thus, if PL-1, PL-2 and PL-3 transactions are executed, we do not know if

isolation requirements have been ensured to every transaction but which isolation level

is ensured to the whole transaction set execution represented by H. To fill that void,

Adya suggested a variation of serialization graphs named Mixed Serialization Graphs

(MSG). Given a history H and its DSG(H), MSG(H) has all DSG(H) nodes but only

those edges representing obligatory dependencies for one of the involved transactions

isolation levels. The overall execution is correct if MSG(H) does not have cycles and

does not show G1a and G1b phenomena for PL-2 and PL-3 transactions. The obligatory

dependencies are the following:

– All direct write-dependencies.

– Direct read-dependencies ending in PL-2 and PL-3 transactions.

– Direct anti-dependencies starting from a PL-3 transaction.

Unfortunately, MSGs do not consider transactions requesting the SI level. The rea-

son is that the SI specification proposed by Adya, named PL-SI, is not based on DSGs

but on another variation named Start-dependency Serialization Graphs (SSGs). Given a

history H and a time-precedes order <t , SSG(H,<t) has all DSG(H) nodes and edges

plus start-dependency edges:

– Tj start-depends on Ti, denoted as Ti
s−→ Tj, if ci <t s j.



SSGs consider new phenomena:

– G-SIa: Interference: a history H and a time-precedes order <t exhibit the phe-

nomenon G-SIa if Ti
ww−→ Tj ∈ SSG(H,<t) or Ti

wr−→ Tj ∈ SSG(H,<t) but Ti
s−→

Tj 6∈ SSG(H,<t).
– G-SIb: Missed Effects: a history H and a time-precedes order <t exhibit the phe-

nomenon G-SIb if SSG(H,<t) contains a directed cycle with exactly one direct

anti-dependency edge.

PL-SI isolation level forbids phenomena G0, G1a, G1b, G1c, G-SIa and G-SIb.

4.2 An alternative definition for G-SIb

PL-SI actually forbids more cycles than those explicitly forbidden by G0, G1c and

G-SIb. Thus, we provide an alternative definition which explicitly excludes all graphs

representing non PL-SI executions:

Definition 5 (New G-SIb: Missed Effects) A history H and a time-precedes order <t

exhibit the phenomenon New G-SIb if SSG(H,<t) contains a directed cycle with at least

one direct anti-dependency edge but without two consecutive direct anti-dependency

edges.

Lemma 1 proves that both G-SIb definitions can be indistinctly used in PL-SI defi-

nition.

Lemma 1 (G-SIb and New G-SIb are equivalent) Given a history H and a times pre-

cedes order <t , SSG(H,<t) forbids G0, G1a, G1b, G1c, G-SIa and GSI-b phenomena

iff SSG(H,<t) forbids G0, G1a, G1b, G1c, G-SIa and New G-SIb phenomena.

Proof. New G-SIb is less restrictive than the original G-SIb and, thus, when New G-SIb

is proscribed, it is admitting less histories than the original definition. Conversely, we

prove that any history H and time-precedes order <t proscribing G0, G1a, G1b, G1c,

G-SIa and G-SIb proscribes also New G-SIb. This implies that both conditions sets are

equivalent. By absurd reduction, we assume SSG(H,<t) is PL-SI and it has a cycle

with anti-dependency edges but without two consecutive anti-dependency edges. Since

SSG(H,<t) is PL-SI, it has not any cycle with a single anti-dependency edge and, thus,

the cycle has at least two of those edges. Assume that one of them goes from Ti to Tj,

Ti
rw−→ Tj. Thus, si <t c j because, otherwise, c j <t si and there is a start-dependency

edge from Tj to Ti which closes a cycle with a single anti-dependency edge which

contradicts the initial assumption. Since there are not two consecutive anti-dependency

edges, there must be an edge from another node Tk to Ti and another one from Tj to

Tl , both dependency or start-dependency edges. Thus, by G-SIa and start-dependency

definitions, ck <t si and c j <t sl . Since si <t c j, then ck <t sl and this implies that

Tk
s−→ Tl ∈ SSG(H,<t). Consequently, there is a shorter cycle without Ti

rw−→ Tj anti-

dependency edge. We can iteratively apply the same criterion until getting a cycle with

a single anti-dependency edge which contradicts the initial assumption saying that H

and <t avoid the original G-SIb phenomenon.



5 Alternative definition of Snapshot Isolation

A history H is PL-SI if it exists a scheduler S(E,<t) such that E is the set of start and

commit events of committed transactions in H, <t is a time-precedes order on E and

SSG(H,<t) does not show G0, G1a, G1b, G1c, G-SIa and G-SIb phenomena. This sec-

tion introduces PL-SI’, an alternative definition exclusively based on DSG dependency

edges. We also prove that for any PL-SI’ history H there exists at least one scheduler

S(E,<t) such that SSG(H,<t) is PL-SI.

5.1 PL-SI’: an alternative definition of PL-SI

With Snapshot Isolation (SI) a transaction is executed over a committed state of the

database or snapshot. If a transaction Ti reads or overwrites a value x j then transaction

Tj is in Ti’s snapshot. If Ti reads a value overwritten by another transaction Tk then Tk

is not in Ti’s snapshot. If Tj is in Ti’s snapshot and Tl is in Tj’s snapshot then Tl is also

in Ti’s snapshot. Thus, a transaction is in a snapshot s if its updates can be read from s

or if they were accessible at a previous committed state and have been later overwritten

by transactions also in s.

In a SI history H, Ti cannot be involved in a cycle composed only by dependency

edges (G1c phenomenon). Ti cannot be part of the snapshot it observes while it is being

executed. Cycles with only one anti-dependency edge are neither possible. If we assume

that such cycle exists and the anti-dependency goes from Ti to Tj then there is a path

from Tj to Ti in DSG(H) composed only by dependency edges. Thus, Tj is and is not in

Ti’s snapshot at the same time, which is a contradiction. As in Section 4.2, that can be

extended to any cycle with anti-dependency edges as soon as two or more of them do

not appear consecutively1.

Consequently, G-SIb can be redefined in the following way:

Definition 6 (G-SIb’: Missed Effects) A history H exhibits the phenomenon G-SIb’ if

DSG(H) contains a directed cycle with at least one direct anti-dependency edge but

without two consecutive direct anti-dependency edges.

Thus, PL-SI’ can be defined in the following way:

Definition 7 (PL-SI’) A history H is PL-SI’ if it forbids G0, G1a, G1b, G1c and G-

SIb’.

1 Imagine a cycle with two or more non-consecutive anti-dependency edges. This cycle should

have at least four nodes. If T1, T2, T3 and T4 are four consecutive nodes in the cycle and there

is an anti-dependency edge from T2 to T3 then the edges from T1 to T2 and from T3 to T4 are

dependency edges. Thus, T1 is in T2’s snapshot and T3 is in T4’s snapshot but is not in T2’s

snapshot. Consequently, T2 observes a committed state previous to T4 snapshot. Since T1 is

in T2’s snapshot then T1 is also in T4’s snapshot. If that is iteratively applied to the rest of

anti-dependency edges we will finally reach to a contradiction like T1 is in T1’s snapshot (note

that this means that the items written by T1 had been committed before T1 started, and this is

impossible).



5.2 PL-SI’ and PL-SI equivalence

PL-SI’ and PL-SI do not represent actually the same, basically because PL-SI’ is based

on the dependencies in H but PL-SI contemplates also the dependencies among the

start and commit operations in E. However, it can be said that PL-SI’ histories are also

PL-SI if they represent a correct PL-SI execution. In other words, PL-SI’ is equivalent

to PL-SI if for any PL-SI’ history H exists at least one scheduler S(E,<t) such that

SSG(H,<t) is PL-SI. In this section we prove that at least one scheduler like this exists

and is based on what we call an Extended SI-derived order <e, a specific type of time-

precedes order.

The inverse assertion is trivially true. If H and <e are PL-SI then H is PL-SI’

since proscribing G-SIb’ is less restrictive than proscribing G-SIb and G-SIa. If there

is not a cycle with anti-dependencies but without two consecutive anti-dependencies in

SSG(H,<e) then this cycle obviously does not exist in DSG(H) because both graphs

have the same vertices but DSG(H) has only a subset of SSG(H,<e)’s edges.

Both PL-SI and PL-SI’ forbid G0, G1a, G1b and G1c phenomena. Then, a PL-

SI’ history H is PL-SI if SSG(H,<e) does not show G-SIa and G-SIb and <e is a

times-precedes order. <e is an extension of a SI-derived order <s. <s orders starts and

commits of committed transactions in H by applying SI rules to the dependencies in

DSG(H). In the following we define both, SI-derived order and Extended SI-deriver

order.

Definition 8 (SI-derived order) Given a history H and E the set of start and commit

operations of committed transactions in H, a SI-derived order <s is a partial order on

E where:

a) c j <s si if Tj
ww−→ Ti ∈ DSG(H) or Tj

wr−→ Ti ∈ DSG(H).
b) s j <s ci if Tj

rw−→ Ti ∈ DSG(H).
c) si <s ci if Ti is in H and Ti commits.

Condition a) avoids G-SIa phenomena and condition b) allows a transaction Ti to

miss the effects of transactions only if they do not belong to Ti’s snapshot. Condition c)

indicates how a transaction start and commit operations are ordered.

Unfortunately, <s may not order any possible combination of si and c j and, thus, it is

not a time-precedes order. For example, it will never order start and commit operations

of transactions not connected in DSG(H). The Extended SI derived order <e we further

present is a SI-derived order, a time-precedes order and, most important, applied to a

PL-SI’ H results in a PL-SI SSG(H,<e).

Definition 9 (Extended SI-derived order) Given a history H and E the set of start

and commit operations of committed transactions in H, an Extended SI-derived order

<e is a partial order on E where:

a) <e is a SI-derived order on E.

b) si <e c j (alternatively, c j <e si) iff they are ordered that way by the follow-

ing set-order algorithm. Given O the set of pairs {si,c j} unordered by SI-

derived order conditions a), b) and c) and given <o a total order on O such

that {si,c j}<o {sk,cl} iff i < k∨ (i = k∧ j < l), the set-order algorithm orders

the elements in O as follows:



– While O is not empty:

• Take off the minor pair {si,c j} from O ( 6 ∃{sk,cl} ∈ O

such that {sk,cl}<o {si,c j}).

• Order its operations as si <e c j.

• Take off from O any other pair if its operations order-

ing can be now deduced.

The idea behind <e is not to accurately represent how transactions in H have been

originally scheduled (actually, this may be not feasible). <e deduces start-dependencies

from dependencies and anti-dependencies in H and suggest an ordering of the rest of

transactions starts and commits avoiding any possible violation of PL-SI restrictions.

As we prove later in this section, <e shows that at least the <e ordering produces PL-SI

executions when applied to a PL-SI’ history H, which proves that H represents a PL-SI

scheduler.

As an example, assume the history H1 = w1(x1) w2(y2) c1 c2 w3(x3) c3 w4(y4) c4

and the associated DSG(H1). The associated DSG(H1) is shown in Figure 2.

T1

T2

T3

T4

ww

wr

Fig. 2. DSG(H1)

<e orders all commit and start operations of committed transactions in H1: {s1,c1},

{s1,c2}, {s1,c3}, {s1,c4}, {s2,c1}, {s2,c2}, {s2,c3}, {s2,c4}, {s3,c1}, {s3,c2}, {s3,c3},

{s3,c4}, {s4,c1}, {s4,c2}, {s4,c3}, {s4,c4}. SI-derived order condition a) orders c1 <e

s3 and c2 <e s4. Condition b) cannot be applied in this case and c) orders s1 <e c1,s2 <e

c2,s3 <e c3 and s4 <e c4. Due to the transitivity property of partial order <e, if s1 <e c1,

c1 <e s3 and s3 <e c3, then s1 <e c3 can be deduced. Similarly, s2 <e c4 can also be

deduced from conditions a) and c) orderings. The unordered pairs are O=({s1,c2},

{s1,c4}, {s2,c1}, {s2,c3}, {s3,c2}, {s3,c4}, {s4,c1}, {s4,c3}). The set-order algorithm

pops the first pair in O and orders it as s1 <e c2. Since c2 <e s4 and s4 <e c4, s1 <e c4

can be deduced and it is also popped from O . Then the algorithm orders s2 <e c1, de-

duces s2 <e c3 (since c1 <e s3 and s3 <e c3) and both pairs are also popped. In the

following step s3 <e c2 is popped and ordered. Since c2 <e s4 and s4 <e c4, s3 <e c4 is

also popped. c1 <e s4 can be also popped since c1 <e s3, s3 <e c2 and c2 <e s4. Finally,

s4 <e c3 is popped and ordered. Figure 3 shows the resulting graph:

As another example, assume a history H2 = w0 (x0) w0(y0) c0 w1(x1) c1 r2(y0)
c2 w3(x3) w3(y3) c3 w4(y4) c4 which generates the following DSG(H) (T0 establishes

the initial state of the database and, for the sake of simplicity, it is not represented in

DSG(H2)). Figure 4 shows the associated DSG(H2):
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Fig. 3. SSG(H1)
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Fig. 4. DSG(H)

Ordering <e must order the following start and commit pairs of committed transac-

tions: {s1,c1}, {s1,c2}, {s1,c3}, {s1,c4}, {s2,c1}, {s2,c2}, {s2,c3}, {s2,c4}, {s3,c1},

{s3,c2}, {s3,c3}, {s3,c4}, {s4,c1}, {s4,c2}, {s4,c3}, {s4,c4}. Condition a) orders c1 <e

s3 and c3 <e s4. Condition b) orders s2 <e c3. Condition c) orders s1 <e c1,s2 <e

c2,s3 <e c3 and s4 <e c4. From those orderings s1 <e c3, s1 <e c4, s2 <e c4, s3 < c4

and c1 <e s4 can be deduced. Thus, O = ({s1,c2}, {s2,c1}, {s3,c2}, {s4,c2}). The set-

order algorithm will order them as s1 <e c2, s2 <e c1, s3 <e c2 and s4 <e c2. Thus, H

and <e represent an execution where T1, T3 and T4 have been scheduled serially and T2

has been executed concurrently to all of them, which do not violate any PL-SI requisite.

The resulting SSG(H2,<T ) is depicted in Figure 5:
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Fig. 5. SSG(H,<e)

Once defined the Extended SI-derived order <e, we now prove that, applied to any

PL-SI’ history H, the resulting SSG(H,<e) is PL-SI. Since PL-SI’ avoids G0, G1a,

G1b, G1c and G-SIb’ phenomena, we should prove that that SSG(H,<e) proscribes G-

SIa and G-SIb and that <e is a time-precedes order. The demostration starts by proving

that SI-derived order conditions and the set-order algorithm do not violate G-SIa or G-

SIb (Lemmas 2 and 3). Next, Theorem 1 proves that <e is also a time-precedes order.

Finally, all is gathered together in Theorem 2 to prove that SSG(H,<e) is PL-SI.



Lemma 2 (Correctness of SI-derived order conditions a), b) and c)) Given a PL-SI’

history H and a SI-derived order <s, G-SIa and New G-SIb phenomena do not show up

in SSG(H,<s).

Proof. The condition a) of SI-derived order <s adds a start-dependency edge Ti
s−→ Tj

to SSG(H,<s) for every dependency edge Ti
ww/wr
−→ Tj in DSG(H). That trivially forbids

G-SIa.

Since H is PL-SI’, G-SIb’ and G1c forbid any cycle in DSG(H) composed by de-

pendency and anti-dependency edges. The only exception are cycles with two or more

consecutive anti-dependency edges. By absurd reduction, assume that H is PL-SI’ but

SSG(H,<s) shows New G-SIb. Thus, SSG(H,<s) has a cycle with anti-dependency

edges but without two consecutive anti-dependency edges. Since SSG(H,<s) only dif-

fers from DSG(H) in the start-dependency edges and H forbids G-SIb’, that cycle con-

tains at least one start-dependency edge. From Lemma 5 (see Appendix), if Ti
s−→ Tj

in SSG(H,<s) (i.e., ci <s s j) then exists a directed path p in DSG(H) from Ti to Tj

such that p starts and ends with dependency edges and does not show two consecu-

tive anti-dependency edges. If we change every start-dependency edge in the cycle by

its alternative path we will get a new cycle composed only by dependency and anti-

dependency edges and without two consecutive anti-dependency edges. Thus, DSG(H)
shows G-SIb’ phenomena which contradicts the initial assumption. Thus, SSG(H) for-

bids New G-SIb.

The set-order algorithm orders the remaining starts and commits once conditions

a), b) and c) are applied. The algorithm itself avoids contradictions since it only orders

unordered pairs. Thus, if ci <e s j can be deduced from a), b) and c) or from any other

previous ordering applied by the set-order algorithm then this pair will never be in O

and will never be ordered again.

Lemma 3 (Set-order algorithm correctness) Given a PL-SI’ history H and an Ex-

tended SI-derived order <e, the start-dependency edges added by the set-order algo-

rithm never produce a New G-SIb cycle in SSG(H,<e).

Proof. The set-order algorithm explicitly orders starts before commits only. By absurd

reduction, assume that the set-order algorithm adds an ordering si <e c j and that closes a

cycle with anti-dependency edges but without two consecutive anti-dependency edges.

Assume the new anti-dependency edge produced by the set-order algorithm goes from

vertex T0 to Tn such that c0 <e si and c j <e sn. Then, there is a path from Tn to T0

with anti-dependency edges but without two consecutive anti-dependency edges. From

Lemma 4 (see Appendix), we can deduce that sn <e c0 and, hence, that c j <e si. Since

the set-order algorithm only orders start and commit operations if their ordering cannot

be deduced from previous orderings, then it will never order si <e c j which contradicts

the initial assumption. Hence, si <e c j will never close a cycle with anti-dependency

edges but without two consecutive anti-dependency edges.

Finally, we prove that <e is a time-precedes order and produces a PL-SI SSG(H,<e)
if H is PL-SI’.



Theorem 1 An Extended SI-derived order <e is also a time-precedes order.

Proof. We split the proof in two parts:

– <e orders any pair {si,c j} in H: some pairs are ordered by SI-derived order con-

ditions a), b) and c). The remaining pairs are ordered by the set-order algorithm in

condition d).

– <e does not generate contradictions. In other words, it will never order si <e c j

and c j <e si at the same time. From Lemma 6 (see Appendix) we know that SI-

derived order conditions a), b) and c) will never produce a contradiction and the set-

order algorithm only orders unordered pairs and does not introduce contradictions

either.

Theorem 2 If H is PL-SI’ then SSG(H,<e) is PL-SI.

Proof. G0, G1a, G1b, G1c are avoided by definition since H is supposed to be PL-SI’.

Thus, we only have to prove that G-SIa and G-SIb are avoided too:

– G-SIa: It is trivially avoided by Condition a) of Def. 9.

– G-SIb: Lemmas 1, 2 and 3 ensure that Conditions a), b), c) and d) will never pro-

duce in SSG(H,<e) a cycle with exactly one anti-dependency edge.

Thus, when time-precedes order <e is applied to the start and commit operations of

committed transactions in a PL-SI’ history H, the resulting SSG(H,<e) is PL-SI. Then,

a PL-SI’ history H is also PL-SI.

6 Conclusions

Existing commercial DBMSs support several isolation levels to adjust the concurrency

control mechanisms to transaction isolation needs. This improves the overall system

performance by compromising only the isolation guarantees that can be managed by

applications or assumed by the final users. However, today it does not exist a complete

and mechanism-independent formal model to determine if a given execution is correctly

managing isolation when multiple transactions request different isolation levels.

The closest model is the one introduced by Adya. However, it only supports PL-

1, PL-2 and PL-3 isolation levels, equivalent to Read Uncommitted, Read Committed

and Serializable but leaves aside the widely used Snapshot Isolation level. SI offers

almost the same isolation guarantees than Serializable but shows a better performance

in read intensive environments, specially if there are a lot of read-only transactions.

SI is not included in Adya’s model because it proscribes phenomena based on a time-

precedes order and SSG graphs while his model supporting several isolation levels is

based on DSGs, which only contemplates dependencies related on conflicts among read

and write operations. In this paper we present PL-SI’, an alternative definition of SI

based on DSGs. We also prove that any PL-SI history H is also PL-SI’ and vice versa

by showing that it is possible to define a time-precedes order <e over any PL-SI’ history

H such that SSG(H,<e) is PL-SI. Our definition can be included in Adya’s MSG theory

to prove the correctness of a history when transactions request different isolation levels,

including SI.



APPENDIX

Lemma 4 (Start and commit orderings by <s in PL-SI’ histories) Given a PL-SI his-

tory H and a SI-depends order <s, si <s c j iff

a) A path p in DSG(H) connects nodes Ti and Tj and

b) p is a directed path from Ti to Tj and

c) p does not contain two consecutive anti-dependency edges.

Proof. a) If si <s c j then a), b) and c):

– a) proof. <s conditions only order starts and commits of transactions con-

nected by an edge in DSG(H). Thus, si <s c j if Ti and Tj are connected in

DSG(H) by a path of edges.

– b) and c) proof. Assume si <s c j is deduced from path p. We prove by

induction over p’s length n that p fulfils b) and c) conditions:

• Base case (n = 1): p is composed by a single edge e. Since si <s c j,

then e can only be Ti
rw−→ Tj (by <s condition b)) or Ti

ww/wr
−→ Tj (by the

combination of <s conditions a) and c)). Any other alternative (i.e., an

edge from Tj to Ti) will contradict si <s c j initial assumption. Thus, e

fulfils b) and c).

• Induction hypothesis (n < l): if si <s c j and p length n < l then b) and

c) are fulfilled.

• Induction step (n = l): assume si <s c j and p length is l. Does p fulfil

b) and c)? Suppose Tk is the immediate node before Tj in p. Thus, there

is a path p′ connecting Ti and Tk and a final edge e joining Tk and Tj

in DSG(H). p′ is l − 1 length. b) and c) are fulfilled in p only if they

are also fulfiled in p′ and they are neither violated by e. There are four

alternatives:

∗ e = Tk
ww/wr
−→ Tj: by <s’s condition a), ck <s s j and, by <s’s condi-

tion c), ck <s c j. Since si <s c j is deduced from p, si <s ck in p′.

By the induction hypothesis, p′ fulfils b) and c). Since Tk
ww/wr
−→ Tj

goes in the same p′ direction and is a dependency edge, p also

fulfills b) and c) conditions.

∗ e = Tk
rw−→ Tj: by <s’s condition b), sk <s c j. Since si <s c j is de-

duced from p, si <s sk and, by c), si <s ck. By induction hypotesis,

p′ fulfils b) and c). Imagine e′ = Tk−1 −→ Tk is the last edge in p′.

Since si <s sk, exists a Tk−1’s operation ok−1 such that ok−1 <s sk

and si <s ok−1. ok−1 is either sk−1 or ck−1 since <s only orders

starts and commits. If we observe <s, a start is always ordered

with a commit in an edge and, thus, ck−1 <s sk and e′ is a depen-

dency edge. Thus, there are not two consecutive anti-dependency

edges and p fulfills b) and c).

∗ e = Tj
ww/wr
−→ Tk: in this case p trivially does not fulfil condition

b) and, thus, we should prove that si 6<s c j. By <s’s condition a)

c j <s sk. Even if si <s sk, si <s c j can not be deduced.



∗ e = Tj
rw−→ Tk: again, p trivially does not fulfil condition b) and,

thus, we should prove that si 6<s c j. By <s’s condition b) s j <s ck.

Even if si <s ck, si <s c j can not be deduced.

b) If a), b) and c) then si <s c j: thus, there is a directed path p from Ti to

Tj without two consecutive anti-dependency edges. If p is composed only by

dependency edges then trivially si <s c j. Given p = Ti
ww/wr
−→ T0

...−→ Tm
ww/wr
−→ Tj,

by <s condition a) ci <s s0, ..., cm <s s j. Since, by <s condition c), sk <s ck

for any node Tk, si <s ci <s s0 <s ... <s cm <s s j <s c j and, thus, si <s c j. If

there are anti-dependency edges in p, we prove si <s c j by induction over the

number n of anti-dependency edges in p.

– Base case (n = 1): there is only one anti-dependency edge e. We differen-

tiate the following cases:

– e is the only edge in p: by <s condition b), si <e c j.

– p is composed by two or more edges and:

– e = Ti
rw−→ Tk is the first edge in p. By <s condition b),

si <e ck. Any other edge Tn −→ Tn+1 in p is a dependency

edge and, by <s condition a), cn <e sn+1. By <s condition

c), sk <s ck for any node Tk in p. Thus, si <e ci <e sk <e c j.

– e = Tk
rw−→ Tj is the last edge in p. By <s condition b),

sk <e c j. Any other edge Tn −→ Tn+1 in p is a dependency

edge and, by <s condition a), cn <e sn+1. By <s condition

c), sk <s ck for any node Tk in p. Thus, si <e ci <e sk <e c j.

– e = Tk
rw−→ Tk+1 is not the first, neither the last edge in

p. Then, Tk 6= Ti and Tk+1 6= Tj. Any other edge Tn −→
Tn+1 in p is a dependency edge and, by <s condition a),

cn <e sn+1. By <s condition c), sk <s ck for any node Tk

in p. Thus, ci <e sk and ck+1 <e s j. Then si <e ci <e sk <e

ck+1 <e s j <e c j.

– Induction hypothesis (n< l): the lemma holds if p has n< l anti-dependency

edges.

– Induction step (n = l): assume now a path p starts from Ti, ends in Tj, has

l anti-dependency edges and fulfils b) and c). Then si <s c j? Again, there

are several possibilities:

– p starts with an anti-dependency edge e = Ti
rw−→ Tk. By <s condi-

tion b), si <e ck. Since there aren’t two consecutive anti-dependency

edges, the edge Tk −→ Tk+1 next to e is a dependency and, by

<s condition a), ck <e sk+1. The subpath p′ = Tk+1 −→ ... −→ Ti

has l−1 anti-dependency edges and, by the induction hypothesis,

sk+1 <e c j. Thus, si <e ck <e sk+1 <e c j.

– p ends with an anti-dependency edge e = Tk
rw−→ Tj. By <s condi-

tion b), sk <e c j. Since there aren’t two consecutive anti-dependency

edges, the edge Tk−1 −→ Tk previous to e is a dependency and, by

<s condition a), ck <e sk+1. The subpath p′ = Ti −→ ... −→ Tk−1

has l−1 anti-dependency edges and, by the induction hypothesis,

si <e ck−1. Thus, si <e ck−1 <e sk <e c j.



– p does not start, neither ends with an anti-dependency edge. Imag-

ine e = Tk
rw−→ Tk+1 is one of the anti-dependency edges in p.

Thus, by <s condition b), sk <e ck+1. The previous and the next

edges Tk−1 −→ Tk and Tk+1 −→ Tk+2 are dependency edges be-

cause there aren’t two consecutive anti-dependency edges. Thus,

by <s condition a), ck−1 <e sk and ck+1 <e sk+2. The paths from

Ti to Tk−1 and the path from Tk+2 to Tj will have l−1 or less anti-

dependency edges and, by the induction hypothesis, si <e ck−1 and

sk+2 <e c j. Thus, si <e ck−1 <e sk <e ck+1 <e sk+2 <e c j.

Lemma 5 (Start-dependency edges generated by SI-derived order <s) Given a PL-

SI’ history H and a SI-derived order <s, ci <s s j iff

a) A path p in DSG(H) connects Ti and Tj and

b) p is a directed path from Ti to Tj and

c) p does not contain two consecutive anti-dependency edges and

d) p starts and ends with dependency edges.

Proof. a) If ci <s s j then a), b), c) and d): if ci <s s j then, by <s condition c),

si <s c j and Lemma 4 proves a), b), and c). Thus, there is a directed path p

from Ti to Tj without two consecutive anti-dependency edges. We prove d) by

induction over the length n of p:

– Base case (n = 1): p is composed by a single directed edge e from Ti to Tj.

Since ci <s s j, by <s condition a) this edge must be a dependency edge.

– Induction hypothesis (n < l): if p length n < l and ci <s s j, d) is also

fulfilled.

– Induction step (n= l): assume Tk and Tl are, either, the immediate nodes af-

ter Ti and before Tj in p. Thus, there is a directed path p′ = Tk −→ ...−→ Tl

with length n′ < l. If p′ starts and ends with dependency edges, ck <s sl by

the induction hypothesis. Otherwise, sk <s cl by Lemma 4. Since ci <s s j,

at least ci <s sk and cl <s s j. Thus, by <s condition a), Ti −→ Tk and

Tl −→ Tj must be dependency-edges and, thus, p starts and ends with de-

pendency edges.

b) If a), b), c) and d) then ci <s s j: thus a directed path p from Ti to Tj ex-

ists with an initial and final dependency edges and without two consecutive

anti-dependency edges. By Lemma 4, si <s c j. We prove that also ci <s s j by

induction over the length n of p:

– Base case (n= 1): in that case, by d) p is composed by a single dependency

edge. Thus, ci <s s j by <s condition b).

– Induction hypothesis (n < l): if p length n < l and a), b), c) and d) condi-

tions are ensured, ci <s s j.

– Induction step (n = l): a), b), c) and d) and p length is n = l. ci <s s j? p is

a directed path Ti −→ ...−→ Tj without two consecutive anti-dependency

edges. p also starts and ends with Ti
ww/wr
−→ Tk and Tl

ww/wr
−→ Tj dependency

edges. Thus, Tk −→ ...−→ Tl is a path p′ of length n′ < l which ensures

a), b) and c) and, by Lemma 4 sk <s cl . From <s condition b) we also get

that ci <s sk and cl <s s j. Thus, ci <s sk <s cl <s s j.



Lemma 6 (<s conditions a), b) and c) are not contradictory) Conditions a), b) and

c) applied to a PL-SI’ history H will never produce a contradiction like si <e c j and

c j <e si.

Proof. By absurd reduction, given two transactions Ti,Tj ∈ H, if si <e c j and c j <e

si then, by Lemmas 4 and 5, there is a path p1 = Ti −→ ...−→ Tj in DSG(H) and

another path p2 = T j −→ ...−→ Ti such that p1 and p2 do not have two consecutive

anti-dependency edges and p2 start and end with dependency edges. Thus, p1 and p2

form a cycle in DSG(H) without two consecutive anti-dependency edges. However, that

contradicts the initial assumption because that sort of cycles are explicitly forbidden by

PL-SI’.
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