
Design of a MidO2PL Database Replication Protocol in a Middleware
Architecture

J.E. Armendáriz1, F.D. Muñoz-Escoı́2, J.R. Garitagoitia1, J.R. González de Mendı́vil1

Technical Report ITI-ITE-05/09

1 Dpto. Matemática e Informática 2 Instituto Tecnológico de Informática
Universidad Pública de Navarra Universidad Politécnica de Valencia

Campus de Arrosadı́a 31006 Pamplona, Spain Camino de Vera s/n 46022 Valencia, Spain
Ph./Fax: (+34) 948 16 80 56/95 21 Ph./Fax: (+34) 96 387 72 45/72 39

Email: {enrique.armendariz, joserra, mendivil}@unavarra.es, fmunyoz@iti.upv.es

Abstract
Middleware database replication techniques is a way to increase performance and fault tolerance without

modifying the Database Management System (DBMS) internals. However, it introduces an additional overhead
that may lead to poor response times. In this paper we present a modification of the Optimistic Two Phase
Locking (O2PL) protocol [CL91] that orders transactions by way of a deadlock prevention schema, instead
of using the total order transaction delivery obtained by Group Communication Systems (GCSs) [CKV01]
techniques, and do not need the 2 Phase Commit (2PC) rule [BHG87]. We formalize its definition as a state
transition system [Sha93] and show that it is 1-Copy-Serializable (1CS) [BHG87]. An outline of its adaptation
to Snapshot Isolation (SI) [BBG+95] DBMSs is also provided.

1 Introduction
Database replication is a very attractive way for enterprises in order to increase their performance and afford site
failures. These advantages imply the price of maintaining data consistency. Traditionally, database replication
has been achieved by the modification of the DBMS internals, such as [CL91, BHG87, KPA+03]. This approach
presents good performance but lacks of compatibility between several DBMS vendors. The alternative approach
is to deploy a middleware architecture that creates an intermediate layer that features data consistency, the original
database schema has to be modified with standard database standard features such as functions, triggers, stored
procedures, etc. [JPPMKA02] in order to facilitate additional metadata that eases replication. This alternative
introduces additional overhead that penalizes performance but it permits to get rid of DBMSs’ dependencies.

The strongest correctness criterion for database replication is the 1CS [BHG87] that implies a serial execution
over the logical data unit although there are many physical copies. In [JPPMKA02] a middleware architecture
is introduced providing 1CS by way of a GCS [DSU04, CKV01]. GCS is used so as to determine the order in
which transactions are executed on the system. The total order delivery guarantee establishes that all messages
are delivered in the same order to all available sites [CKV01]. This is an interesting approach since transactions
does not have to wait for applying the updates at the rest of sites in order to commit a transaction, as the 2PC
rule states [BHG87], which increases its performance. However, we thought that relying on this strong GCS
primitives, whose latencies and extra message rounds in environments where conflicts are rare it is a high price

to pay [DSU04, KPA+03]. Besides, the order of committed transactions is imposed by a “black-box” with a
consensus algorithm that does not have any information about transactions, such as the number of objects read,
written or the number of restarts. This may lead to the penalization of certain transaction patterns.

In this paper we propose an evolution of the O2PL [CL91] adapted to our middleware architecture, that only
needs a reliable multicast to the rest of sites [HT94]. We have changed O2PL philosophy, since we do not need
to wait for applying the updates at the rest of nodes in order to commit a transaction. Besides, we have added
a deadlock prevention schema so as to avoid distributed deadlock, which is a dynamic function based on the
transaction priority and its state; moreover, it imposes the order on which transactions are applied. We give the
correctness proof of this replication protocol (MidO2PL) proposal, this correctness proof implies the interaction
of the DBMS module, the GCS, the user transaction and the interaction of the replication protocol itself in another
site. This can be done if we provide a formalization of the MidO2PL. We have used a state transition system
similar to the one proposed in [Sha93]. This approach may be viewed as the I/O automata [Lyn96] composition of
all its components. Finally, as most commercial DBMSs provide Snapshot Isolation [BBG+95], several isolation
levels have been proposed for replicated databases such as Generalized Snapshot Isolation (GSI) [EPZ05]. We
propose a MidO2PL modification in order to guarantee GSI. The rest of this paper is organized as follows: The
system model is introduced in Section 2. The formalization of our MidO2PL protocol is presented in Section 3.
Section 4 shows its correctness proof. Modifications of the MidO2PL to feature GSI are outlined in Section 5.
Finally, conclusions end the paper.

2 System Model and Definitions
The system, shown in Figure 1, considered in this paper is a generalization of the system. It is composed by
N sites (or nodes) which communicate among them using reliable multicast featured by a group communication
system [CKV01]. We assume a fully replicated system. Each site contains a copy of the entire database and
executes transactions on its data copies. A transaction is submitted for its execution over its local DBMS via the
middleware module. The replication protocol coordinates the execution of transactions among different sites to
ensure 1CS [BHG87]. We do not consider failures. Actions in Figure 1 are shown with arrows, they describe
how the interaction between components is performed. They are an abstraction of our system. Thus, actions may
easily be ported to the particular GCS primitives, JDBC methods, etc. For example, a transaction will see a JDBC
interface to interact with the middleware, respectively the middleware will interact with the underlying DBMS
using a JDBC interface and so on.

Figure 1: Main components of the system.

2

Communication system. Communication among sites is mainly based on reliable multicast [HT94]. Roughly
speaking, reliable multicast guarantees three properties: (i) all correct processes agree on the set of messages they
deliver; (ii) all messages multicast by correct processes are delivered; and, (iii) no spurious messages are ever
delivered. These properties are enough for our replication protocol. Reliable broadcast imposes no description of
the order in which messages are delivered. Besides, its cost is low in terms of physical messages per multicast.

Database. Each site includes a DBMS storing a physical copy of the replicated database. We assume that
the DBMS ensures ACID properties of transactions and satisfies the ANSI SQL serializable transaction isola-
tion level [BBG+95]. The DBMS, as it is depicted in Figure 1 gives to the middleware some common actions.
DB.begin(t) begins a transaction t. DB.submit(t, op), where op represents a set of SQL statements, submits an
operation in the context of the given transaction. DB.notify(t, op) informs about the success of an operation. It
returns two possible values: run when the submitted operation has been successfully completed (the transaction
submitting the operation will no longer perform an operation until it receives the run notification); or abort due
to DBMS internals, e.g. deadlock resolution, enforcing serialization, etc. As a remark, we also assume that after
the successful completion of a submitted operation by a transaction, it can be committed at any time. In other
words, a transaction may be unilaterally aborted by the DBMS only while it is performing a submitted operation.
Finally, a transaction ends either by committing, DB.commit(t), or rolling back, DB.abort(t). We have added
two functions which are not provided by DBMSs, but may easily be built by database triggers, procedures and
functions [LKPMJP05]: DB.WS(t) retrieves the set of objects written by t and the respective SQL update state-
ments. In the same way, the set of conflictive transactions between a write set and current active transactions (an
active transaction in this context is a transaction that has neither committed nor aborted) at a given site is provided
by getConflicts(WS(t)) = {t′ ∈ T : (WS(t′) ∪ RS(t′)) ∩ WS(t) 6= ∅}, where T is the set of transactions
being executed in our system.

Transactions. Users access the system through their closest site to perform transactions by way of actions
introduced in Figure 1. As it was pointed out, this is an abstraction. As a matter of fact, applications employ
the same JDBC interface as the underlying DBMS, except actions to be performed when they wish to commit.
Each transaction identifier includes the information about the site where it was first created (t.site), called its
transaction master site. It allows the protocol to know if it is a local or a remote transaction. Each transaction has
a unique priority value (t.priority) based on transaction information. A transaction t created at site i (t.site = i) is
locally executed and follows a sequence initiated by create(t) and continued by multiple begin operation(t, op),
end operation(t, op) pairs actions in a normal behavior. The begin commit(t) action makes the replication
protocol start to manage the commit of t at the rest of replicas. The end commit(t) notifies about the successful
completion of the transaction on the replicated databases. However, an abort(t) action may be generated by the
local DBMS or by a replication protocol decision. For simplicity, we do not consider an application abort.

3 Replication Protocol Description
The MidO2PL is a Read One Write All Available (ROWAA) [BHG87] one. Informally, each time a client appli-
cation issues a transaction (local transaction), all its operations are locally performed over its master site. Conflict
detection is managed by the DBMS that guarantees a serializable isolation level [BBG+95], hence there is no need
to implement any database specific data structure. The remaining sites enter in the context of this transaction when
the application wants to commit, the write set is grouped and sent to the rest of available sites. These updates are
executed in the context of another local transaction, called remote transaction, at the rest of nodes. If the given
transaction is a read only one, then it will directly commit. We do not model it for simplicity. The MidO2PL
is different from the eager update everywhere protocol model assumed by [GHOS96], as it does not send any
message until the user wishes to commit. Hence, only three messages are needed per transaction: one containing
the remote updates, another one for the ready message sent by each remote site, and, finally, a commit message.
As the remote message is delivered, the delivered transaction will pass through a function that checks its priority

3

against the rest of conflicting local transactions. It will determine if it is allowed to proceed or not and will prevent
the appearance of distributed deadlocks. If it proceeds, it will send back a ready message to the transaction master
site. When the reception of ready messages is finished, that is, all nodes have answered to the master site, it will
send a commit message saying that the transaction is committed. We assume that unilateral aborts for remote
transactions never occur. If the transaction has lower priority, it will be enqueued and its possible execution will
be checked several times, until it becomes the highest priority transaction or its master site decides to roll it back,
in order to prevent distributed deadlocks.

In the following, we present this replication protocol as a formal state transition system as in [Sha93]. In
Figure 2, a description of the states and steps of the replication protocol for a site i is introduced. An action can be
executed only if its precondition is enabled. The effects modify the state of the system as stated by the sequence
of instructions included in the action effects. Actions are atomically executed. It is assumed weak fairness for the
execution of each action.

We will start with the states defined for this replication protocol. Each state and action is subscripted by the
site at which it is executed. Each site has its own state variables (i.e., they are not shared among other nodes).
The statusi(t) variable indicates the execution state of a given transaction. The participantsi(t) variable keeps
track of the sites that have not yet sent the ready message to the master site of t. Vi is the system current view,
with a failure-free assumption, is 〈0, N〉. As we use priorities we have defined a prioritized queue i variable that
stores remote transactions that may not be scheduled due to the fact that its associated priority is lower than some
conflicting transaction executing on i. The removei manages the DBi submission of enqueued transactions.
The set of actions includes: createi(t), begin operationi(t, op), end operationi(t, op), begin commiti(t) and
end commiti(t). These are actions executed in the context of a local transaction. The end operationi(t, op) is
also executed by remote transactions. The begin commiti(t) starts the interaction of the rest of nodes. This set
of actions is entirely self-explanatory from inspection of Figure 2.

The key action of our replication protocol is the execute remotei one, this action is invoked, at least, each time
a transaction is delivered. In fact, this action will be invoked several times, as it is invoked after a commit, abort
or a remote delivery, until a transaction, t, is submitted to the DBi. The remote updates, for that WS(t), will
only be applied if there is no conflicting transaction at node i having a higher priority than the received one. The
higher priority(t, t′) function defines a dynamic priority deadlock prevention function, it depends on the state of
the transaction (statusi(t)) and its priority. A new incoming conflictive remote transaction whose priority is lower
than any other executing transaction, will be inserted again in queuei. Therefore, the correctness of our solution
is not compromised by the queue usage, since the transaction master site decides whether a transaction aborts
or not. Finally, if the remote transaction is the one with the highest priority among all at i then it will send the
ready message to the master site. It will abort every local conflictive transaction and submits t to DB i. Aborted
local transactions in pre commit state with lower priority will multicast an abort message to the rest of sites. The
finalization of the remote transaction (end operationi(t, op)) changes its statusj(t) = pre commit, j 6= node(t).
It has to wait for the reception of the commit message from the master site (as it has received all ready messages),
or straightly commit if the message has arrived. The reception of this message commits the transaction at the
remainder sites (receive commiti(t)). Recall that each time a transaction commits or rolls back the queuei is
inspected in order to wake up waiting remote transactions. Finally, transactions in the pre commit state are
committable at any point from the DBMS point of view.

4 Correctness Proof
This section contains the proofs (atomicity and 1CS) of the MidO2PL automaton, introduced in Figure 2, in a
failure free environment. Let us start showing that MidO2PL is deadlock free, assuming that deadlocks involving
exclusively local transactions at a given site are directly resolved by the underlying local DBMS executing the
local aborti(t) action. In case of remote transactions, we assume that as the execute remotei action abort all

4

Signature:
{∀ i ∈ N, t ∈ T, m ∈ M,op ∈ OP : createi(t),begin operation

i
(t, op),end operation

i
(t, op),begin commit

i
(t), end commiti(t),

local aborti(t), receive remotei(t, m), receive ready
i
(t, m), receive commiti(t, m), receive aborti(t, m), execute remotei,

discardi(t, m)}.
States:
∀ i ∈ N,∀ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, aborted, committed},

initially (node(t) = i⇒ statusi(t) = start) ∧ (node(t) 6= i⇒ statusi(t) = idle).
∀ i ∈ N,∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : queuei ⊆ {〈t, WS〉 : t ∈ T,WS ∈ OP}, initially queuei = ∅.
∀ i ∈ N : removei : boolean, initially removei = false.
∀ i ∈ N : channeli ⊆ {m : m ∈M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initially Vi = 〈0, N〉.

Transitions:

createi(t) // node(t) = i //
pre≡statusi(t) = start.
eff ≡DBi.begin(t); statusi(t)← active.

begin operation
i
(t, op) // node(t) = i //

pre≡statusi(t) = active.
eff ≡DBi.submit(t, op); statusi(t)← blocked.

end operation
i
(t, op)

pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff ≡ if node(t) = i then statusi(t)← active

else statusi(t)← pre commit.

begin commit
i
(t) // node(t) = i //

pre≡statusi(t) = active.
eff ≡ statusi(t)← pre commit;

participantsi(t)← Vi.availableNodes \ {i};
sendRMulticast(〈remote, t, DBi.WS(t)〉, participantsi(t)).

end commiti(t) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = ∅.
eff ≡ sendRMulticast(〈commit, t〉,Vi.availableNodes \ {i});

DBi.commit(t); statusi(t)← committed;
if ¬empty(queuei) then removei ← true.

receive ready
i
(t, m) // t ∈ T ∧ node(t) = i //

pre≡statusi(t) = pre commit ∧ participantsi(t) 6= ∅∧
m = 〈ready, t, source〉 ∈ channeli.

eff ≡ receivei(m); participantsi(t)← participantsi(t) \ {source}.

local aborti(t)
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff ≡ statusi(t)← aborted; DBi.abort(t); removei ← true.

discardi(t, m) // t ∈ T //
pre≡statusi(t) = aborted ∧m ∈ channeli.
eff ≡ receivei(m).

receive commiti(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡statusi(t) = pre commit ∧m = 〈commit, t〉 ∈ channeli.
eff ≡ receivei(m); DBi.commit(t); statusi(t)← committed;

if ¬empty(queuei) then removei ← true.

receive remotei(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡statusi(t) = idle ∧ m = 〈remote, t, WS〉 ∈ channeli.
eff ≡ receivei(m);

insert with priority(queuei, 〈t, WS〉); removei ← true.

execute remotei

pre ≡¬empty(queuei) ∧ removei.
eff ≡ aux queue← ∅;

while ¬empty(queuei) do
〈t, WS〉 ← first(queuei); queuei ← remainder(queuei);
conflictSet← DBi.getConflicts(WS);
if ∃ t′ ∈ conflictSet : ¬higher priority(t, t′) then

insert with priority(aux queue, 〈t, WS〉);
else
∀ t′ ∈ conflictSet :

if statusi(t
′) = pre commit ∧ node(t′) = i then

sendRMulticast(〈abort, t′〉,Vi.availableNodes \ {i});
DBi.abort(t′); statusi(t′)← aborted;

sendRUnicast(〈ready, t, i〉) to node(t);
DBi.begin(t); DBi.submit(t, WS); statusi(t)← blocked;

queuei ← aux queue; removei ← false.

receive aborti(t, m) // t ∈ T ∧ node(t) 6= i //
pre ≡statusi(t) /∈ {aborted, committed} ∧ m = 〈abort, t〉 ∈ channeli.
eff ≡ receivei(m); statusi(t)← aborted;

if 〈t,⊥〉 ∈ queuei then queuei ← queuei \ {〈t,⊥〉}
else DBi.abort(t); if ¬empty(queuei) then removei ← true.

� functionhigher priority(t, t′) ≡ node(t) = j 6= i ∧ (a ∨ b)
(a) node(t′) = i ∧ statusi(t

′) ∈ {active, blocked}
(b) node(t′) = i ∧ statusi(t

′) = pre commit ∧ t.priority > t′.priority

Figure 2: State transition system for the MidO2PL automaton that optimizes the 2PC and allows remote transac-
tions to wait. pre indicates precondition and eff effects respectively.

local conflictive transactions, whose priority is lower than t, then the remote transaction will never be aborted by
the DBMS during its execution. Besides, we have modified the higher priority(t, t ′) function so that any remote
transaction executing at a given site will never be rolled back. If a delivered remote transaction has lower priority
than any other transaction executing at its delivered site, then it will be inserted in queuei (sorted by t.priority).
Hence, this is potential deadlock source, as the protocol permits remote transactions to wait. However, as channels
are reliable, all remote messages of enqueued transactions will reach the transaction master sites of all of them.

5

Figure 3: Valid transitions for a given statusi(t) of a transaction t ∈ T .

The abortion decision is performed only at the enqueued transaction master site. Then if a transaction is aborted
then all sites will receive the abort message, as channels are reliable, and execute the receive abort i(t, 〈abort, t〉).

The MidO2PL must guarantee the atomicity of a transaction, that is, the transaction is either committed at
all available sites or is aborted at all sites. If a transaction, t, is in pre commit state then it is committable
from the local DBMS point of view. Therefore, if a local transaction commits at its master site (node(t) = i)
(i.e. it executes the end commiti(t) action); it multicasts a commit message to each site where its respective
remote transaction has been executed. Priority rules (see higher priority(t, t ′) function in Figure 2) ensure that
remote transactions are never aborted by a local transaction nor a remote one, provided that there are no unilateral
aborts, and eventually reaches the pre commit state. Thus, by the reliable communication channels the commit
message will be eventually delivered; every remote transaction of t will be committed via the execution of the
receive commitj(t, 〈commit, t〉) action with j 6= i. On the contrary, if a transaction t aborts, every remote
transaction previously created for t will be aborted. Unilateral aborts are not considered.

In this Section we use the following notation and definitions [Sha93]. For each action in the MidO2PL automa-
ton it is defined an enabled condition (precondition, pre in Figure 2), a predicate over the state variables. An action
is enabled if its predicate is evaluated to true on the current state. For each action, π, the enabling condition defines
a set of state transitions, that is: {(p, π, q), p, q are states; π is an action; p satisfies pre(π); and q is the result of
executing eff (π) in p}. An execution, α, is a sequence of the form s0π1s1 . . . πzsz . . . where sz is a state, πz is an
action and every (sz−1, πz, sz) is a transition of πz. A finite execution always finishes in a state, or infinite. Every
finite prefix of an infinite execution is a finite execution. A state is reachable if it is the end of a finite execution.
All possible executions are sufficient for defining safety properties. Liveness properties require the notion of fair
execution. We assume that each MidO2PL action requires weak fairness. Informally, a fair execution will satisfy
weak fairness for π, if π is continuously enabled then it will be eventually executed.

The following property formalizes the status transition for a given transaction t ∈ T . It indicates that some
status transitions are unreachable, i.e., if sk.statusj(t) = pre commit and sk′ .statusj(t) = committed with
k′ > k. There is no action in α such that sk′′ .statusj(t) = aborted with k′ > k′′ > k.

Property 1. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the MidO2PL automaton and t ∈ T . Let
β = s0.statusj(t) s1.statusj(t) . . . sz′ .statusj(t) be the sequence of status values of t at site j ∈ N , obtained
from α by removing the consecutive repetitions of the same statusj(t) value and maintaining the same order
apparition in α. The following property holds:

6

1. If node(t) = j then β is a prefix of the regular expression: start ·active ·(blocked ·active)∗ ·pre commit ·
(committed|aborted)|start · (active · blocked)+ · aborted

2. If node(t) 6= j then β is a prefix of the regular expression idle · blocked · pre commit · (committed|abor-
ted)|idle · (blocked|ε) · aborted; where ε denotes the empty string.

The property is simply proved by induction over the length of α following the preconditions and effects of
the MidO2PL actions in Figure 2. A status transition for a t transaction in Property 1 is associated with an
operation on the DB module where the transaction was created, i.e. pre commit to committed involves the
DB.commit(t) operation. These aspects are straightforward from the MidO2PL automaton inspection in Fig-
ure 2.

The following technical property is needed to prove Lemma 1.

Property 2. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the MidO2PL automaton and t ∈ T , with
node(t) = i.

1. If ∃ j ∈ N \ {i} : sz.statusj(t) = committed then sz.statusi(t) = committed.

2. If ∃ z′ < z : sz′.statusj(t) = sz.statusj(t) = blocked for any j ∈ N then ∀ z ′′ : z′ < z′′ ≤ z : πz′′ /∈ {re-
ceive abortj(t, 〈abort, t〉), end operationj(t,WS(t))}.

3. If ∃ z′ < z : sz′.statusj(t) = sz.statusj(t) = pre commit for any j ∈ N then ∀ z ′′ : z′ < z′′ ≤ z : πz′′ /∈
{receive commitj(t, 〈commit, t〉), receive abortj(t, 〈abort, t〉)}.

4. If sz.statusi(t) = committed then ∀ j ∈ N : sz.statusj(t) ∈ {blocked, pre commit, committed}.

Proof. 1. By induction over the length of α. The property holds for the initial state s0 : s0.statusj(t) = idle
for all j ∈ N . By hypothesis, assume the property holds at sz−1, the induction is proved for each (sz−1πzsz)
transition of the MidO2PL automaton. By Property 1.2, if szstatusj(t) = committed, the status does not
change. A commit message must be received so that j reaches sz.statusj(t) = committed. At some prior
state to sz the receive commitj(t, 〈commit, t〉) action has been executed. The only action that sent such
a message is end commiti(t). By its effects statusi(t) = committed and by Property 1.1, the statusi(t)
never changes. Hence, the property holds.

2. We proof this property by contradiction. Let us assume that the πz′′ = receive abortj(t, 〈abort, t〉) action.
By its effects sz′′ .statusj(t) = aborted and by Property 1.2 its status never changes in contradiction with
our initial assumption. If we suppose that πz′′ = end operationj(t,WS(t)) action is executed then, by its
effects, sz′′ .statusj(t) = pre commit. By Property 1.2 it never goes to blocked again in contradiction with
our assumption.

3. We proof this by contradiction. If we assume that πz′′ = receive commitj(t, 〈commit, t〉) by this action
effects sz′′ .statusj(t) = committed and by Property 1.2 its status never changes it contradiction with our
initial assumption. Besides, if we assume that the executed action is πz′′ = receive abortj(t, 〈abort, t〉)
then sz′′ .statusj(t) = aborted and again, by Property 1.2, its status never changes in contradiction with
our assumption.

4. If sz.statusi(t) = committed, by Property 1.1 we have that ∀ z ′ > z : sz′.statusi(t) 6= aborted and
〈abort, t〉 /∈ sz′ .channelj for all j ∈ N . Thus, the receive abortj(t, m) action is disabled at any state
of α. As sz.statusi(t) = committed then all j ∈ N \ {i} has sent the ready message to i which im-
plies, by the execute remotej action effects, that statusj(t) = blocked and it has been submitted to the

7

DBjmodule or statusj(t) = pre commit if the end operationj(t,WS(t)) has been already executed.
Thus by Property 1.2 statusj(t) ∈ {blocked, pre commit, committed, aborted}. We must show that
statusj(t) = aborted will never be achieved. This is easy to proof since it will need an abort message com-
ing from the transaction master site, and this is not possible since statusi(t) = committed. On the other
hand, as we assume that the DBj module does not abort a submitted remote transaction then it will never
execute the local abortj(t,WS(t)) and statusj(t) = aborted will never be possible. Hence, the property
holds.

The following lemma, liveness property, states the atomicity of committed transactions.

Lemma 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MidO2PL automaton and t ∈ T with node(t) =
i. If ∃ j ∈ N : sz.statusj(t) = committed then ∃ z ′ > z : sz′ .statusj(t) = committed for all j ∈ N .

Proof. If j 6= i by Property 2.1 (or j = i) sz.statusi(t) = committed. By Property 2.4, ∀ j ∈ N \ {i} : sz.sta-
tusj(t) ∈ {blocked, pre commit, committed}. Without loss of generality, assume that sz is the first state where
sz.statusi(t) = committed and sz.statusj(t) = pre commit (if sz.statusj(t) = blocked it is because of its sub-
mission to the DBj module, by weak fairness of action execution, the end operationj(t,WS) will be eventually
invoked and statusj(t) = pre commit). By the effects of πz = end commiti(t), we have that 〈commit, t〉 ∈
sz.channelj . By Property 2.4 invariance either sz.statusj(t) = committed or sz.statusj(t) = pre commit and
〈commit, t〉 ∈ sz.channelj . In the latter case the receive commit(t, 〈commit, t〉) action is enabled. By weak
fairness assumption, it will be eventually delivered, thus ∃ z ′ > z : πz′ = receive commitj(t, 〈commit, t〉). By
its effects, sz′.statusj(t) = committed.

We may formally verify that if a transaction is aborted then it will be aborted at all nodes in a similar way. This
is stated in the next lemma.

Lemma 2. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MidO2PL automaton and t ∈ T with node(t) =
i. If sz.statusi(t) = aborted then ∃ z′ ≥ z : sz′ .statusj(t) = idle for all j ∈ N \{i} or sz′.statusj(t) = aborted
for all j ∈ N .

Proof. By inspection of the possible actions that may lead to statusi(t) = aborted, we have the following two
cases:

(I) Let us assume, without loss of generality, that sz is the first state such that sz.statusk(t) = aborted. As-
sume that it has been reached by the execution of the πz = local abortk(t) action. This action was en-
abled because sz−1.statusi(t) = blocked. By Property 1.1 statusi(t) = pre commit. Therefore, the
begin commiti(t) action has never been executed so ∀j ∈ N \ {i} : sz.statusj(t) = idle. It is easy to
show that this situation will remain the same due to the fact that statusi(t) = aborted is a final state and it
will never send anything to any node so as to change statusj(t) = idle.

(II) Let us assume, without loss of generality, that sz is the first state such that sz.statusi(t) = aborted. We
also assume that this state has been reached by the invocation of the piz = execute remotei action being
t one of the aborted transactions by this action execution, due to the higher priority of another conflicting
transaction, t′. Thus, an 〈abort, t〉 message will be sent to the rest of nodes, excluding i.
Every j 6= i nodes such as statusj(t) /∈ {aborted, committed} will have the receive abortj(t, 〈abort, t〉)
action enabled and finally it will be executed, obtaining statusj(t) = aborted. Let us assume that there
exists j 6= i nodes such as statusj(t) ∈ {aborted, committed}. If statusj(t) = aborted then by Property 1.2
this is a final state and the Lemma holds. If we assume that statusj(t) = committed then by Property 2.1 we
will have that statusi(t) = committed. The Lemma states that statusi(t) = aborted, and by Property 1.1
this is a stable situation and the Lemma holds.

8

Figure 4: Happens before relationship for a given transaction t between its execution at the master site and the rest
of nodes.

Before continuing with the correctness proof we have to add a definition dealing with causality between actions.
Some set of actions may only be viewed as causally related to another action in any execution α. We denote
this fact by π ≺α π′ (happens-before relations [Lam78]). For example, see Figure 4, with node(t) = i 6= j,
begin commiti(t) ≺α receive remotej(t, 〈remote, t,DBi.WS(t)〉). This is clearly seen by the effects of the
begin commiti(t) action, it sends a 〈remote, t,DBi.WS(t)〉 to all j ∈ N \ {i}. This message will be eventually
received by j that enables the receive remotej(t, 〈remote, t,DBi.WS(t)〉) action, since statusj(t) = idle, and,
by weak fairness of actions, it will be eventually executed. The following Lemma indicates that a transaction is
committed if it has received every ready message from its remote transaction ones. These remote transactions
have been created as a consequence of the execute remotej action execution. We are going to add t as a parameter
to the execute remotej action provided that t is one of the submitted transactions to the DBj module by its
execution (execute remotej(t)).

Lemma 3. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MidO2PL automaton and t ∈ T be a committed
transaction, node(t) = i, then the following happens-before relations hold: ∀j ∈ N \{i} : begin commit i(t) ≺α

receive remotej(t, 〈remote, t,WS(t)〉) ≺α execute remotej(t) ≺α receive readyi(t, 〈ready, j〉) ≺α end -
commiti(t) ≺α receive commitj(t, 〈commit, t〉).

Proof. Let t ∈ T , node(t) = i, be a committed transaction. By Property 1.1, it has previously been with sta-
tusi(t) = active. As statusi(t) = pre commit has been also achieved, the begin commiti(t) action has been
executed. It multicasts to the rest of nodes the 〈remote, t,DBi.WS(t)〉 message. ∀j ∈ N, j 6= i the mes-
sage is in channelj and the receive remotej(t, 〈remote, t,WS(t)) action will be invoked that inserts the de-
livered transaction in queuej . When t becomes the transaction with the highest priority among all in queuej

the execute remotej action (this action will be enabled each time a transaction is committed, rolled back or
a remote transaction is delivered) will be invoked for t (execute remotej(t)), then by its effects it will send
the ready message to i and the operation is submitted to the DBj module. It is important to note that this
transaction will not be rolled back by DBj , recall we are assuming there are not unilateral aborts for remote
transactions. By channel reliability it will eventually invoke the receive readyi(t, 〈ready, j〉) action at the
transaction master site. Respectively, the only action enabled at site i (when participantsi(t) = ∅) will be
the end commiti(t) action. This action will commit the transaction at i and multicast the 〈commit, t〉 mes-
sage to the rest of nodes that leads to transaction commitment at the rest of sites. The only actions enabled

9

for t at j (being j ∈ N, j 6= i) are the end operationj(t,WS(t)) or receive commitj(t, 〈commit, t〉) ac-
tions depending whether statusj(t) = pre commit or statusj(t) = blocked respectively. If the transaction is
still blocked, assuming weak fairness for action execution and due to the fact that there are no unilateral aborts,
the end operationj(t,WS(t)) will be eventually enabled. By its effects, statusj(t) = pre commit. As the
〈commit, t〉 ∈ channelj then the receive commitj(t, 〈commit, t〉) Hence, ∀ j ∈ N \ {i}, the Lemma holds
following the causal chain.

The following lemma emphasizes the happens-before relationship for remote transactions. It is based on Prop-
erty 1.2 which establishes the relationship between status transitions for remote transaction to their respective
algorithm actions. This will serve in order to set up the relationship for a transaction t, node(t) = i 6= j between
the execute remotej that submits t to the DBj module and the pair end operationj(t, 〈remote, t,WS(t)〉) and
receive commitj(t, 〈commit, t〉) actions. This is needed due to the fact that with the previous lemma there is no
point where this causal relationship may be put in.

Lemma 4. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MidO2PL automaton and t ∈ T be a com-
mitted transaction, node(t) = i, then the following happens-before relations hold: ∀j ∈ N \ {i} : receive re-
motej(t, 〈remote, t,WS(t)〉) ≺α execute remotej(t) ≺α end operationj(t,WS(t)) ≺α receive commitj(t,
〈commit, t〉).

Proof. As t is a committed transaction. By Property 1.1, it has previously been with statusi(t) = active. As
statusi(t) = pre commit has been also achieved, the begin commiti(t) action has been executed. It multi-
casts to the rest of nodes the 〈remote, t,DBi.WS(t)〉 message. The reception of this message will invoke the
receive remotej(t, 〈remote, t,WS(t)〉) that inserts the t in queuej . When t reaches the highest priority among
all delivered transactions at j, it will be submitted to DBj and the ready message will be sent to i. The col-
lection of all ready messages at i will invoke the end commiti(t) action that multicasts the 〈commit, t〉 mes-
sage to all nodes excluding i. The remote transaction will eventually finish (DBj .notify(t,WS(t)) = run),
either before or after the end commiti(t) action, that executes the end operationj(t,WS(t)) action. By its
effects statusj(t) = pre commit and by weak fairness action execution the receive commitj(t, 〈commit, t〉),
as 〈commit, t〉 ∈ channelj , will be executed. Then this lemma holds for all remote transactions that finally
commit.

In order to define the correctness of our replication protocol we have to study the global history (H) of com-
mitted transactions(C(H)) [BHG87]. We may easily adapt this concept to our BRP automaton. Therefore, a new
auxiliary state variable, Hi, is defined in order to keep track of all the DBi operations performed on the local
DBMS at the i site. For a given α execution of the BRP automaton, Hi(α) plays a similar role as the local history
at site i, Hi, as introduced in [BHG87] for the DBMS. In the following, only committed transactions are part of
the history, deleting all operations that do not belong to transactions committed in Hi(α). The serialization graph
for Hi(α), SG(Hi(α)), is defined as in [BHG87]. An arc and a path in SG(Hi(α)) are denoted as t → t′ and
t
∗
−→ t′ respectively. Our local DBMS produces serializable histories as stated in [BBG+95]. Thus, SG(Hi(α)) is

acyclic and the history is strict. Thus, for any execution resulting in local histories H1(α),H2(α), . . . ,HN (α) at
all sites its serialization graph, ∪k SG(Hk(α)), must be acyclic so that conflicting transactions are equally ordered
in all local histories. The correctness criterion for replicated data is 1CS, which stands for a serial execution over
the logical data unit (although there are several copies of this data among all sites) [BHG87]. Before showing the
correctness proof, we need an additional property relating transaction isolation level of the underlying DB mod-
ules to the automaton execution event ordering. Let us see first this with an example, assume we have a strict-2PL
scheduler as the underlying DBi, hence a transaction must acquire all its locks before committing. In our case,
if we have two conflictive transactions, t, t′ ∈ T , such that t → t′ then the statusi(t

′) = pre commit will be
subsequent to statusi(t) = committed in the execution. The following property and corollary establish a property
about local executions of committed transactions.

10

Property 3. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the MidO2PL automaton and i ∈ N . If
there exist two transactions t, t′ ∈ T such that t

∗
−→ t′ in SG(Hi(α)) then ∃ z1 < z2 < z3 < z4 : sz1

.statusi(t) =
pre commit ∧ sz2

.statusi(t) = committed ∧ sz3
.statusi(t

′) = pre commit ∧ sz4
.statusi(t

′) = committed.

Proof. We firstly consider t → t′. Thus, exists an operation, op issued by t and another operation, op′, issued
by t′ such that op conflicts with op′ and op executes before op′. Hence, by Hi(α) construction we have that
DBi.notify(t, op) = run is prior to DBi.notify(t′, op′) = run. However, we have assumed that the DBi is
serializable as shown in [BBG+95]. In such a case, Hi(α) is strict serializable for write and read operations.
Therefore, it is required that DBi.notify(t, op) = run must occur before DBi.commit(t) and the latter must be
prior to DBi.notify(t′, op′) = run. The DBi.commit(t) operation is associated with statusi(t) = committed.
Considering t′, DBi.notify(t′, op′) = run is associated with statusi(t) ∈ {active, pre commit}. Therefore,
∃ z2 < z′3 in α such that sz2

.statusi(t) = committed and sz′

3
.statusi(t

′) ∈ {active, pre commit}. By Property 1
and by the fact that both transactions commit, ∃ z1 < z2 < z′3 ≤ z3 < z4 in α such that sz1

.statusi(t) =
pre commit ∧ sz2

.statusi(t) = committed ∧ sz3
.statusi(t

′) = pre commit ∧ sz4
.statusi(t

′) = committed.
Thus, the property holds for t → t′. The case t

∗
−→ t′ is proved by transitivity.

The latter property reflects the happens-before relationship between the different status of conflictive transac-
tions. The same order must hold for the actions generating the mentioned status. The next corollary expresses this
property.

Corollary 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MidO2PL automaton and i ∈ N . If there
exist two transactions t, t′ ∈ T such that t

∗
−→ t′ in SG(Hi(α)) then the following happens-before relations, with

the appropriate parameters, hold:

1. node(t) = node(t′) = i : begin commiti(t) ≺α end commiti(t) ≺α begin commiti(t
′) ≺α end com-

miti(t
′, 〈commit, t′〉).

2. node(t) = i ∧ node(t′) 6= i : begin commiti(t) ≺α end commiti(t) ≺α end operationi(t
′,WS(t′))

≺α receive commiti(t
′, 〈commit, t′〉).

3. node(t) 6= i ∧ node(t′) = i : end operationi(t,WS(t)) ≺α receive commiti(t, 〈commit, t〉) ≺α be-
gin commiti(t

′) ≺α end commiti(t
′).

4. node(t) 6= i ∧ node(t′) 6= i : end operationi(t,WS(t)) ≺α receive commiti(t, 〈commit, t′〉) ≺α

end operationi(t
′,WS(t′)) ≺α receive commiti(t

′, 〈commit, t′〉).

Proof. By Property 3, ∃ z1 < z2 < z3 < z4 : sz1
.statusi(t) = pre commit ∧ sz2

.statusi(t) = committed ∧
sz3

.statusi(t
′) = pre commit ∧ sz4

.status = committed. Depending on node(t) and node(t′) values the
unique actions that modify their associated status to the given values, by Property 3, are the ones indicated in the
Corollary.

If we have two conflictive transactions, t, t′ ∈ T with node(t) 6= i and node(t′) 6= i, such that t → t′ then the
execute remotei(t

′) action that submits t′ to the database must be executed after the commitment of t, via the
receive commiti(t, 〈commit, t〉) action. The next Lemma states how the happens-before relationship affects to
two committed transactions executing at a remote node.

Lemma 5. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MidO2PL automaton and i ∈ N . If there exist
two committed transactions t, t′ ∈ T with node(t) = j 6= i and node(t′) = k 6= i such that t

∗
−→ t′ in SG(Hi(α))

then the following happens-before relations hold: ∀ i ∈ N \ {k, j} : execute remotei(t) ≺α receive com-
miti(t, 〈commit, t〉) ≺α execute remotei(t

′) ≺α receive commiti(t
′, 〈commit, t′〉).

11

Proof. Let t ∈ T be a committed transaction, with node(t) 6= i. By Property 1.2, it has previously been
statusi(t) = blocked which has been caused by the execute remotei action, although this action may have
been called several times we consider the one that was successfully completed for t (execute remote i(t)). This
action submits the transaction to the DBi module and sends the ready message to the transaction master site.
Provided that t is a remote transaction, all local conflicting transactions have been rolled back earlier. More-
over, this remote transaction will never be aborted by the underlying database (recall that we do not consider
unilateral aborts for remote transaction), only the protocol itself may consider whether to abort or not a remote
transaction. As t has been committed, the end operation(t,WS(t)) had been invoked and finally, with the
commit message coming from the master site, the receive commit(t, 〈commit, t〉) action would have been
invoked. Let us assume another committed transaction t′ ∈ T , with node(t′) 6= i, such that t

∗
−→ t′. This

implies that t′ committed after t. By Corollary 1.4 end operationi(t,WS(t)) ≺α receive commiti(t, 〈com-
mit, t〉) ≺α end operationi(t

′,WS(t′)) ≺α receive commiti(t
′, 〈commit, t′〉). Now we have to set up the

happens-before relationship between the execute remotei(t
′) and the receive commiti(t, 〈commit, t〉). If t′

is delivered to i after t has committed, via the receive remotei(t
′, 〈remote, t′〉) action, then the lemma will

trivially hold for this case. Otherwise, the message is delivered after the receive remotei(t, 〈remote, t〉) and
before the receive commiti(t, 〈commit, t〉) actions execution, then more cases will be taken into account. As
receive remotei(t

′, 〈remote, t′〉) will insert into queuei the delivered transaction. By the effects of this ac-
tion then the execute remotei action will be invoked. This action will check all the set of conflicting trans-
actions currently executing at DBi. There will be at least one, t, that conflicts with t′. By the invocation of
the higher priority function for t and t′, it results that t has higher priority than t′. This fact will not change,
even though several invocations of the execute remotei action will take place, as long as t does not perform the
commit, or, in other words, the execution of the receive commiti(t, 〈commit, t〉) action. This can be derived
by inspection of the higher priority function that returns false if the compared transaction is a non-committed
remote transaction currently being executed at the DBi module. Hence, the lemma holds.

The same may be applied to two conflictive transactions, t, t′ ∈ T with node(t) 6= i and node(t′) 6= i, such that
t → t′ then the execute remote action that submits t′ to the database must be executed after the commitment of
t, via the end commit action. The next lemma states how the happens-before relationship affects to a committed
transaction executing at a remote node.

Lemma 6. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MidO2PL automaton and i ∈ N . If there
exist two transactions t, t′ ∈ T with node(t) = i and node(t′) 6= i such that t

∗
−→ t′ in SG(Hi(α)) then the

following happens-before relations hold: ∀ i : i ∈ N : begin commiti(t) ≺α end commiti(t) ≺α execute re-
motei(t

′) ≺α end operationi(t
′,WS(t′)) ≺α receive commiti(t

′, 〈commit, t′〉).

Proof. Let us assume two committed transactions t, t′ ∈ T with node(t) = i 6= node(t′) such that t
∗
−→

t′. By Corollary 1.2 we have: begin commiti(t) ≺α end commiti(t) ≺α end operationi(t
′,WS(t′)) ≺α

receive commiti(t
′, 〈commit, t′〉). As t′ is committed remote transaction at i, via Lemma 4, it has executed

the following actions: receive remotei(t
′, 〈remote, t′,WS(t′)〉) ≺α execute remotei(t

′) ≺α end opera-
tioni(t

′,WS(t′)) ≺α receive commiti(t
′, 〈commit, t′〉). Hence, we have to establish the happens-before re-

lation between the execute remotei(t
′) and the end commiti(t) actions. Again, we have two options: if the

receive remotei(t
′, 〈remote, t′,WS(t′)〉) action is executed after the end commiti(t) action then the lemma

holds. The remainder case is when the receive remotei(t
′, 〈remote, t′,WS(t′)〉) and the successful completion

of the execute remotei action for t′ happens between the begin commiti(t) and the end commiti(t) actions.
The successful completion of execute remotei for t′ will never happen under this interval. This is easily shown
by inspection of the execute remotei action. As t

∗
−→ t′, we have that the getConflicts function will return at

least t as a conflictive transaction. However, t has statusi(t) = pre commit and by hypothesis it has been executed
before t′, this means that t.priority > t′.priority for read-write conflicts and it must wait enqueued.

12

Figure 5: CASE (I): node(t) = node(t′) = x.

Figure 6: CASE (II): node(t) = x and node(t′) = y.

Figure 7: CASE (IV): node(t) = i and node(t′) = j.

In the following, we prove that the MidO2PL protocol provides 1CS [BHG87].

Theorem 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MidO2PL automaton. The graph ∪k∈NSG(Hk(α))
is acyclic.

Proof. By contradiction. Assume there exists a cycle in ∪k∈NSG(Hk(α)). There are at least two different trans-
actions t, t′ ∈ T and two different sites x, y ∈ N , x 6= y, such that those transactions are executed in different
order at x and y. Thus, we consider (a) t

∗
−→ t′ in SG(Hx(α)) and (b) t′

∗
−→ t in SG(Hy(α)); being node(t) = i

13

and node(t′) = j. There are four cases under study:

(I) i = j = x.

(II) i = x ∧ j = y.

(III) i = j ∧ i 6= x ∧ i 6= y.

(IV) i 6= j ∧ i 6= x ∧ i 6= y ∧ j 6= x ∧ j 6= y.

In the following, we simplify the notation. The action names are shortened, i.e. begin commitx(t) by bcx(t);
end commitx(t) by ecx(t); as each invocation of the execute remotex action may execute a set of transactions,
K ⊆ T , we denote it by erx(k), with k ∈ K; receive readyx(t, 〈ready, t, l〉), with l ∈ N , by rrx(t, l); end ope-
rationx(t, op) by eox(t); and, receive commitx(t, 〈commit, t〉) by rcx(t).

CASE (I) By Corollary 1.1 for (a): bcx(t) ≺α ecx(t) ≺α bcx(t′) ≺α ecx(t′). (i)
By Corollary 1.4 for (b): eoy(t

′) ≺α rcy(t
′) ≺α eoy(t) ≺α rcy(t). Applying Lemmas 4 and 5 for t and t′:

ery(t
′) ≺α eoy(t

′) ≺α rcy(t
′) ≺α ery(t) ≺α eoy(t) ≺α rcy(t). (ii)

For (i), via Lemma 3 for t, we have the following: bcx(t) ≺α ery(t) ≺α rrx(t, y) ≺α ecx(t) ≺α bcx(t′) ≺α

ecx(t′). Taking into account Lemma 3 for t′ and Lemma 5 for t and t′: bcx(t) ≺α ery(t) ≺α rrx(t, y) ≺α

ecx(t) ≺α bcx(t′) ≺α ery(t
′) ≺α rrx(t′, y) ≺α ecx(t′) ≺α rcy(t

′). Therefore, we have that ery(t) ≺α

rcy(t
′) in contradiction with (ii) as it can be seen in Figure 5.

CASE (II) By Corollary 1.2 for (a): bcx(t) ≺α ecx(t) ≺α eox(t′) ≺α rcx(t
′). By Lemma 6 for t and t′:

bcx(t) ≺α ecx(t) ≺α erx(t′) ≺α rcx(t′). (i)
By Corollary 1.2 for (b): bcy(t

′) ≺α ecy(t
′) ≺α eoy(t) ≺α rcy(t). Applying Lemma 6 for t′ and t:

bcy(t
′) ≺α ecy(t

′) ≺α ery(t) ≺α eoy(t) ≺α rcy(t). (ii)
By Lemma 3 for t: bcx(t) ≺α ery(t) ≺α rrx(t, y) ≺α ecx(t), via (i), ≺α erx(t′) ≺α rry(t

′, x) ≺α

ecy(t
′) ≺α rcx(t′). Thus ery(t) ≺α ecy(t

′) in contradiction with (ii), see Figure 6.

CASE (III) As x and y are different sites from the transaction master site, only one of them will be executed
in the same order as in the master site. If we take into account the different one with the master site then we
will be under assumptions considered in CASE (I).

CASE (IV) By Corollary 1.4 for (a): eox(t) ≺α rcx(t) ≺α eox(t′) ≺α rcx(t′). Applying Lemmas 4 and 5
for t and t′ at x: erx(t) ≺α eox(t) ≺α rcx(t) ≺α erx(t′) ≺α eox(t′) ≺α rcx(t′). (i)
By Corollary 1.4 for (b): eoy(t

′) ≺α rcy(t
′) ≺α eoy(t) ≺α rcy(t). If we apply Lemmas 4 and 5 for t′ and t

at y: ery(t
′) ≺α eoy(t

′) ≺α rcy(t
′) ≺α ery(t) ≺α eoy(t) ≺α rcy(t). (ii)

By Lemma 3 for t at x and y: bci(t) ≺α ery(t) ≺α rri(t, y) ≺α eci(t) ≺α rcx(t). Via Corollary 1.4 for
(a): bci(t) ≺α ery(t) ≺α rri(t, y) ≺α eci(t) ≺α rcx(t) ≺α erx(t′) ≺α rrj(t

′, x) ≺α ecj(t
′) ≺α rcy(t

′).
Therefore, we have that ery(t) ≺α rcy(t

′) in contradiction with (ii), as it is depicted in Figure 7.

14

5 Snapshot Isolation
Right now, we have only considered that the underlying DBMS provides serializable transaction isolation as
pointed out in [BBG+95]. However, SI [BBG+95] is used by most of popular DBMS vendors, like PostgreSQL
or Oracle. There have been some recent research dealing with correctness criteria for database replication with
SI DBMSs, such as in [LKPMJP05] (1CSI) and GSI [EPZ05]. We will focus on the latter, that states, in few
words, that transactions executing at a given site gets the latest snapshot of that site that may not coincide with
the latest system snapshot. As SI does not block read operations, we only have to worry about write operations
instead. Hence, we may use a DB module providing SI. We may achieve this functionality in the replication
protocol presented in the paper, all we have to do is to perform the getConflicts(WS) function over write sets
exclusively. Lemma 3 states that the protocol behavior is not influenced by the underlying database. On the other
hand, Property 3 asserts what the execution depends on the transaction isolation level that imposes a determined
order. Let t, t′ ∈ T be two conflictive committed transactions as WS(t) ∩ WS(t′) 6= ∅ the Property 3 holds. It
can be shown that with Lemma 3 and Property 3 all writesets are applied at all sites following the same order. This
fact does not assure, due to network latency, that a read or write transaction may obtain a different snapshot from
the current snapshot, this leads to a similar behavior to GSI [EPZ05].

6 Conclusions
In this paper, we present a middlware replication protocol, MidO2PL, providing database replication. The MidO2PL
is 1CS, given that the underlying DBMSs feature serializable transaction isolationas in [BBG+95]. We have for-
mally described and verified its correctness using a formal transition system. This replication protocol has the
advantage that no specific DBMS tasks have to be re-implemented (e.g. lock tables, “a priori” transaction knowl-
edge). The underlying DBMS performs its own concurrency control and the replication protocol compliments this
task with replica control.

The MidO2PL is an eager update everywhere replication protocol, based on the ideas introduced in [CL91]. All
transaction operations are firstly performed on its master site, more precisely on its underlying DBMS, and then
all updates are grouped and sent to the rest of sites using a reliable multicast. However, our algorithm is liable to
suffer distributed deadlock. We have defined a deadlock prevention schema that orders transactions; it is based on
the transaction state and a given priority. Besides, as it totally orders transactions, the MidO2PL will know if a
transaction may proceed or not. This allows us to get rid of the waiting for applying updates at the rest of nodes.
Finally, we propose several modifications to adapt MidO2PL to DBMS providing SI.

References
[BBG+95] H. Berenson, P.A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P.E. O’Neil. A critique of

ANSI SQL isolation levels. In Michael J. Carey and Donovan A. Schneider, editors, SIGMOD
Conference, pages 1–10. ACM Press, 1995.

[BHG87] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison Wesley, 1987.

[CKV01] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a comprehensive
study. ACM Comput. Surv., 33(4):427–469, 2001.

[CL91] M.J. Carey and M. Livny. Conflict detection tradeoffs for replicated data. ACM Trans. Database
Syst., 16(4):703–746, 1991.

15

[DSU04] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms: Taxonomy
and survey. ACM Comput. Surv., 36(4):372–421, 2004.

[EPZ05] S. Elnikety, F. Pedone, and W. Zwaenopoel. Database replication using generalized snapshot iso-
lation. In SRDS. IEEE Computer Society, 2005.

[GHOS96] J. Gray, P. Helland, P.E. O’Neil, and D. Shasha. The dangers of replication and a solution. In H. V.
Jagadish and Inderpal Singh Mumick, editors, SIGMOD Conference, pages 173–182. ACM Press,
1996.

[HT94] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related problems.
Technical Report TR94-1425, 1994.

[JPPMKA02] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso. Improving the scalability of
fault-tolerant database clusters. In ICDCS, pages 477–484, 2002.

[KPA+03] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann. Using optimistic atomic broadcast
in transaction processing systems. IEEE Trans. Knowl. Data Eng., 15(4):1018–1032, 2003.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[LKPMJP05] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In SIGMOD Conference, 2005.

[Lyn96] N.A. Lynch. Distributed Systems. Morgan Kaufmann Publishers, 1996.

[Sha93] A. Udaya Shankar. An introduction to assertional reasoning for concurrent systems. ACM Comput.
Surv., 25(3):225–262, 1993.

16

