
A Lock Based Algorithm for Concurrency Control
and Recovery in a Middleware Replication Software

Architecture
J.E. Armendáriz and J.R. González de Mendı́vil

Dpto. de Matemática e Informática
Universidad Pública de Navarra

Campus Arrosadı́a s/n, 31006 Pamplona, Spain
Email: {enrique.armendariz, mendivil}@unavarra.es

F.D. Muñoz-Escoı́
Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain
Email: fmunyoz@iti.upv.es

Abstract— Data replication among different sites is viewed
as a way to increase application performance and its data
availability. In this paper, we propose an algorithm design for
concurrency control and recovery in a middleware architecture
called COPLA (Common Object Programmer Library Access).
This architecture provides persistent object state replication. The
algorithm is based on locks, it is an adaptation of the Optimistic
Two Phase Locking (O2PL) protocol to this architecture. The
recovery process of this algorithm allows applications to continue
(or start) executing transactions at all nodes, even in the node
being recovered.

I. INTRODUCTION

Replication is mainly used to store some (or all) data items
redundantly at multiple sites. Its goal is to increase system
reliability and application performance. Databases are widely
used by enterprises as the preferred storage media for their
data and their management. Thus, storing data at multiple sites
allows the system to continue working even though some sites
may have failed. Besides, it also increases its throughput by
means of performing local reads where in a non-replicated
architecture implied the start of a new remote transaction.
A replicated middleware architecture providing object state
persistence may be viewed as a replicated object database
providing persistence.

All these advantages are not for free, replication has some
problems, such as data consistency and fault-tolerance. The
system must introduce an additional overhead for maintaining
replicated data consistency. Applications must introduce addi-
tional software in order to access distributed resources, thus
increasing application development complexity.

Data consistency is granted by a particular consistency
protocol. These protocols have been widely discussed in the
literature [1]. They vary from optimistic, where no (or low)
data contention occurs, and pessimistic. And also they may
be eager, if update propagation takes place at commit time (to
all alive nodes or the primary copy), or lazy, if it happens on
demand of a node requesting data, using pull and push strate-
gies [2]. All these combinations provide a set of consistency
protocols that features a set of advantages and drawbacks that
greatly depends on the kind of application used. Besides data

access is performed concurrently among several users, usually
in a transactional manner, thus this consistency protocols must
guarantee the transaction isolation rules proposed by ANSI [3].

One of the key issues of replicated architectures, as it has
been previously highlighted, is data availability. The system
must continue accomplishing its tasks, even though a node
fails. Group membership monitors [4] are used to detect
node failures or network partitions. Steps to be done when
a node fails vary from system reconfiguration after the failure,
passing by partition merge to bring data “up-to-date” after it
recovers from a crash by a previously alive node. We do not
consider our data replication proposal complete unless we do
not provide a recovery protocol for this concurrency protocol.
Reconfiguration needed when the number of sites increases is
a far more complex task than that necessary when the number
of nodes decreases. In particular, before a node can execute
transactions, an “up-to-date” node has to provide the current
data state to the joining node [5].

Our collaboration experience in the development of the
COPLA (Common Object Programmer Library Access) archi-
tecture with enterprises [6] has shown that they are very inter-
ested in a serializable transactional behavior that guarantees an
eager replication to all nodes, as well as in the development
of recovery techniques so no back-up copies are necessary
and alive nodes may continue working independently of a
node failure. COPLA consists of a middleware architecture
providing transparency for persistent object state replication
while guarantees several consistency levels [7]: transactional
(serializable), checkout (similar to the concurrent version
system guarantees) and plain (read-only). Several optimistic
consistency protocols (eager and lazy), along with their re-
spective recovery protocols implemented in this architecture,
allow applications to switch to the one that best suits to them
and to maintain data coherence [7]–[9]. Object state is per-
sistently stored in a Relational Database Management System
(RDBMS), more precisely, PostgreSQL [10]. The necessity
of storing objects in an RDBMS permits the coexistence of
old information with new data. This was a requirement of our
industrial partners [6] in the development of COPLA. This



kind of storage leads to an additional problem. There is an
imbalance between the entity relational model and the object
oriented paradigm that must be solved. We have defined a
translation pattern for a schema (or application), defined in
COPLA, to its equivalent relational model, performed by its
respective compiler [11], [12].

The work presented in this paper makes several contri-
butions. First, it proposes an adaptation of the Optimistic
Two Phase Locking (O2PL) consistency protocol, proposed
by Carey et al. [13], to the COPLA architecture, granting a
transactional consistency level. The basic idea underlying
O2PL is, thus, to set locks locally, where doing so is cheap,
while taking a more optimistic, less message-intensive ap-
proach across node boundaries. Since O2PL is liable to suffer
global deadlocks, this first draft includes a deadlock preven-
tion technique. Second, we introduce a recovery protocol for
this concurrency control algorithm. This algorithm will allow
sessions at all nodes (even the recovering one) to continue
working as long as they do not interfere with objects currently
being recovered, thus benefitting system performance. Up to
our knowledge, this is something missed in related works that
introduced O2PL usage. This recovery algorithm follows a
lock policy very similar to O2PL since objects being recovered
have a special lock set on it. This special lock controls
accesses to these recovering objects. The key idea behind this
protocol is to transfer the latest object state of an object to the
recovering nodes [11].

The rest of the paper is organized as follows: Section II
gives a brief review of works dealing with O2PL and recovery;
Section III is devoted to give an outline of COPLA architec-
ture; the concurrency control and recovery algorithm descrip-
tion is depicted in Section IV; and, finally, we summarize the
main insights from the paper and the future research lines
derived from this work.

II. RELATED WORKS

We will base our algorithm design on the Optimistic Two
Phase Locking (O2PL) specified in [13]. It focuses on data
contention for distributed database systems. Several algorithms
are introduced and studied, based on timestamp ordering,
optimistic approaches and several for strict Two Phase Lock-
ing (2PL), as introduced by Bernstein et al. in [14]. These
algorithms are compared varying the number of replicas, data
contention level and communication costs. Results obtained
highlight the benefits of O2PL against all of them, under all
circumstances.

O2PL has been implemented in several architectures as
in MIRROR [15] where O2PL is enhanced with a novel-
state-based real-time conflict. The O2PL algorithm has been
extended to comprise object based-locking as in [16], because
object supports more abstract operations than the low-level
read and write operations. O2PL has been extended to the
mobile environment as it is depicted in [17]. The algorithm
introduced there is called O2PL-MT (O2PL for Mobile Trans-
actions) which allows a read unlock for an item to be executed
at any copy site of the item.

Similar approaches to ours have been proposed in the
literature. Kemme et al. [18] have developed eager replication
protocols oriented to the internal structure of the RDBMS.
There is an initial local reading phase where all operations are
performed locally. All write operations are performed once the
latter phase is done, they are bundled and sent using a total
order multicast. Thus, deadlocks are avoided and serialization
is granted thanks to the total order provided by the group com-
munication. The main differences with the approach followed
in our work are the following: we develop it for a middleware
architecture, we do not rely on total order multicast to avoid
deadlocks, we use a deadlock prevention technique based
on information associated to a session, such as restart ratio,
transaction execution time, the session identifier, the number
of updates done, etc. Usage of total order multicast primitives
is costly in communication terms, we do not need these
strong group communication primitives. Consistency protocols
developed in COPLA by [8], [9] share some characteristics
with those described in [18].

Another consistency protocol that has been implemented
in COPLA is the Full Object Broadcast (FOB) [7], which
uses the object ownership concept, i.e. the node where the
object was created. As a brief outline, the idea is to perform
object updates locally at the node where the transaction was
originated, at transaction commit time, the site owning the
object is asked whether it can grant the request to update the
object, if this grant is denied the transaction is automatically
aborted, otherwise is granted. Therefore, deadlock is avoided
because only one transaction is allowed to proceed. We do
not rely on object ownership in order to grant an access to
an object, we base our update policy in acquiring locks at all
available sites.

Our main differences with protocols currently developed
for COPLA are: first, it utilizes simple group communication
primitives such as reliable FIFO multicast and unicast; second,
it provides a deadlock prevention technique which is flexible
enough in order to be based on inherent transaction charac-
teristics [19]; and, third, we do not need to persistently store
any metadata associated to our concurrency protocol.

Jiménez-Peris et al. [20] propose a concurrency control
and a recovery algorithm based on logs and partitions which
avoids deadlocks in the same way as [18] does, based on
group communication guarantees, i.e. total order. The main
difference with our approach is that we do not propose neither
stored procedures nor partitions that may lead to a flexibility
application loss.

Up to our knowledge, we are not aware of recovery pro-
tocols developed for O2PL. Nevertheless, we have studied
solutions proposed by Kemme et al. in [5], Jiménez-Peris et al.
in [20], COPLA existing solutions [7]–[9] and Bernstein et al.
solutions to the recovery problem in distributed databases [21].

III. COPLA SOFTWARE ARCHITECTURE

COPLA architecture is split into three different layers as
it is shown in Figure 1. These layers are implemented in
Java and may reside in different machines since they use



RDBMS

User Application

COPLA Programmer
Library

Object Request Broker

Group
Communication

System

O.R.B.

COPLA 
Manager

Consistency 
& 

Recovery 
Manager

Consistency
&

Recovery 
Manager

COPLA
Manager

O.R.B.

Log

RDBMS

Persistent
Metadata API

Uniform Data
Store API

Log Uniform Data
Store API

Persistent
Metadata API

UDS Code

1

2

3

4

1

3

3

3

3

4

4

4

4

4

1. Object Request
2. Consistency check
3. Consistency verification
4. Object Delivery

UDS code

Fig. 1. COPLA Architecture.

an ORB to interact among them. Following a top to bottom
approach the first layer is the library. It provides an object
oriented view following the ODMG standard [12], [22] to the
application programmers. Classes are defined inside a schema,
which defines an object repository. Objects can be concur-
rently accessed in the context of a distributed transaction [7].
Application programmers use a subset of the Object Query
Language [12] to obtain references to distributed objects. Once
these references are obtained, the application may modify
data or obtain new objects through relationships. When the
application has finished, it requests for committing the current
session.

The COPLA manager layer is the key component of the
architecture, it manages an object cache and the consistency
among different replicas, located at different sites or nodes.
Therefore, it needs a specific protocol (or consistency manager,
as shown in Figure 1) that defines some specific rules so as to
update replicas following the same order. It has to determine
the existence of conflicts between different nodes trying to
concurrently access or modify the same object. Several con-
sistency protocols have been implemented in COPLA [7]–[9].
The best protocol’s choice depends on the network topology
and the application’s workload. All these consistency protocols
implement a common protocol interface. This allows COPLA
to be configured according to the environment characteristics
where it runs. This layer is also exclusively responsible for
information exchange among different replicas (or nodes)
which COPLA consists of.

The last layer, called Uniform Data Store (UDS) [11], is

responsible for storing the state of persistent objects in an
RDBMS. It has been defined an interface, which is exported
by the UDS and called UDS-API, through which objects can
be stored and retrieved, thus hiding all “relational issues” to
the rest of the system. Since objects are created, accessed and
modified inside a session context, this session is respectively
mapped to a transaction in the RDBMS with the proper
isolation level. This layer translates all queries performed by
an application into normalized SQL queries. Finally, the UDS
is used to store in a persistent way all the control information
needed by consistency protocols. This control information is
stored and accessed by means of the respective interface, the
Persistent Metadata API.

IV. ALGORITHM DESCRIPTION

A. Introduction

COPLA is a session generator, a session may be viewed
as a set of sequential transactions. In the following algorithm
description the terms session and transaction may be used in an
interchangeable manner. When a site updates an object replica,
it requests the respective local lock, but the request of the
remainder locks in the rest of copies is delayed until the initial
commit phase is reached. The session master site sends its
update information once the commit phase is reached (which
we will refer as the pre commit state). This request contains
the list of all objects to be updated. Each remote updater is
requested to acquire the copy-locks (similar to a write-lock
in terms of its compatibility) of all of them during this phase.
When all locks are acquired at all remote updaters, the session



is ended and changes are persistently stored (committed). As
in 2PL [14], possible global deadlocks may occur, which we
prevent by the proper deadlock prevention technique.

It is important to note that in the COPLA architecture, we do
not allow blind writes in regular sessions. Therefore, a given
session must acquire firstly a read-lock before requesting for
a write lock on that object. A special case occurs when an
update is performed by a remote session, i.e. when it requests
a copy-lock on that object. These kind of sessions do perform
blind writes.

read-lock write-lock copy-lock recover-lock

read-lock y n n y/n
write-lock n n n n
copy-lock n n n n

recover-lock y/n n n y

TABLE I

THE COMPATIBILITY MATRIX.

Current solutions of replicated systems are able to mask
site failures efficiently, but many of them have not described
their recovery of failed sites, merging of partitions, or join-
ing of new sites. Reconfiguration that is necessary when
the number of sites increases is a far more complex task
than that necessary when the number of sites decreases. In
particular, before a site can execute transactions, an “up-to-
date” site has to provide the current data state to the joining
site [5]. We use a membership protocol to provide support for
failure detection [23]. Moreover, its services are used by our
multicast services to ensure uniform delivery [4] and reliable
communication; i.e., all sent messages are finally delivered to
their destinations. Besides this, our consistency protocol uses
all the failure and joining notifications to fire the recovery
subprotocol start.

A recovering site joins the group of working sites, triggering
a “change-of-view” action by the proper group membership
monitor [23]. We consider a primary partition system model.
In this context, we propose a recovery protocol sketch closely
related to our concurrency algorithm. Therefore, once a node
has failed in our architecture, the concurrency algorithm stores
object identifiers (OIDs) modified by sessions on a given
object repository. When a node recovers from its failure, a
previously alive node with the lowest node identifier (NID)
multicasts a message saying that a new node is rejoining the
system. When the previous message is delivered, previously
alive nodes request a special lock called recover-lock, whose
compatibility is exactly the same as the read-lock, although it
aborts all sessions currently updating the given objects instead
of blocking itself, as it will be shortly explained. Current
sessions reading objects to be recovered will not be affected
by this new lock. After these special locks have been assigned,
fore-coming sessions trying to update an object will be blocked
following the ordinary policy established by the respective
compatibility matrix depicted in Table I.

Concurrently to ordinary sessions, nodes that behave as
recoverer, will determine the amount of OIDs to be trans-

ferred to the recovering node. Thus, the recovery task is
equally balanced among all available nodes. The recovering
node will hold recover-locks on all OIDs that will not allow
local sessions to read or write on it. Nevertheless, local
sessions in the recovering node may start as soon as the site
recovers, and they will behave as normal sessions, i.e. they will
not be aborted unless they access an object whose OID has a
recover-lock set on it. Therefore, this recovery algorithm does
not need to block any replica, or even the recovering replica.

Object state transfer among available nodes, may be accom-
plished using different approaches. One approach is to send
all objects grouped in a single message, which may be costly
in terms of message size, or, alternatively, send one object
state after the other, which may be costly in terms of number
of messages too. We have determined to follow the latter
approach. Once the recovering node finishes applying all the
updates, it sends an “I am alive message”, which commits
missed updates on the recovering site and releases all recover-
locks held in the system.

B. Datatypes

Datatype Content

NID 〈node〉
SID 〈node : id〉
OID 〈class : repository : node : id〉
OBJ STATE State of an object [11]
UPDATE {SQL update statements}
LOCKS {read, write, copy, recover}
SESSION STATES {run, blocked, pre commit, commit, abort}
NODE STATES {alive, recoverer, recovering, crashed}

TABLE II

DATATYPES USED BY THE ALGORITHM.

There are eight datatypes defined in our algorithm, they are
introduced in Table II. The NID is the node identifier; it
is composed by a number, that identifies in a solely manner
a site in the COPLA architecture. Applications access their
information by means of sessions, which is equivalent to a
set of transactions sequentially executed. The datatype used
to define a session is SID, which is composed of the site
where the session was started and a unique session identifier
inside that node. These two fields guarantee uniqueness inside
COPLA.

Objects need to be solely identified in COPLA too. Thus,
every object has a unique object identifier (OID) which
consists of: its class name, the name of the application where
it was defined, the node where it was created and a unique
identifier inside that node where it was created. Again, all
these fields uniquely identify an object in our architecture.

The next one, called OBJ STATE, includes what is
defined as object state in the COPLA architecture [11]. And,
finally, the UPDATE datatype, which is the log information
of a given session. It mainly consists of a set of SQL
sentences that have modified an object repository for a given
session [11], since we are persistently storing objects in an
RDBMS.



State variables kept by each site
and repository

Content Initial value

my node id NID NIDi

number of nodes Integer MAX NUMBER OF NODES
node state NODE STATES alive
oids to transfer {o : o ∈ OID} ∅
oids to rec {o : o ∈ OID} ∅
prev view {n : n ∈ NID} ∅
current view {n : n ∈ NID} {NID1 . . . NIDMAX NUMBER OF NODES}
lock table1..MAX OID

{
lock tableo.assigned = {〈SID, LOCKS〉}
lock tableo.waiting = {〈SID, LOCKS〉} ∀i ∈ {1..MAX OID} :

{
lock tablei.assigned← ∅
lock tablei.waiting ← ∅

session state1..MAX SID sesion states ∈ SESSION STATES ∀i ∈ {1..MAX SID} : session statei ← ∅
updates1..MAX SID updatess ∈ UPDATES ∀i ∈ {1..MAX SID} : updatesi ← ∅
wait response1..MAX SID wait responses ∈ {n : n ∈ NID} ∀i ∈ {1..MAX SID} : wait responsei ← ∅
Procedures and functions used in the algorithm Brief outline

compatible(o : OID, 〈s, mode〉 : 〈SID, LOCKS〉) It determines whether the lock request is compatible with the current lock
assignment on o in the lock table. See Table I for the compatibility
matrix.

deadlock prev(o : OID, 〈s, mode〉 : 〈SID, LOCKS〉) It checks, in the lock table, if the request must be blocked or if this
session or another session assigned (or even blocked) must be aborted
in order to avoid deadlock.

local commit(s : SID) It commits the updates on the local RDBMS.
local abort(s : SID) Rollbacks all updates performed on the RDBMS.
release locks(s : SID) This method releases locks assigned (or waiting) to the given session.
oids written(s : SID) It returns the set of OIDs written by s.
update(s : SID) This returns the log containing all the updates done by s in the given

object repository.
apply updates(s : SID) It applies the given updates to the RDBMS.
det oids(my node id : NID, oid : {oids : oids ∈ OID}) It returns a set of OIDs to be transferred to a recovering node.
get state(o : OID) It returns the object state (OBJ STATE) associated to the given

OID passed as a parameter.
apply(o : OID, state : OBJ STATE) It applies, in the recovering node, all the updates missed for the given

object in the RDBMS.
min(view : {nid : nid ∈ NID}, node id ∈ NID) A boolean function returning true if the second parameter is the lowest

among all those contained in view.
new session() It creates a new session, returning a SID, to perform the recovery

process each time a node fails.

Fig. 2. States kept by each site and procedures used by the algorithm.

Different modes of lock request by sessions are defined in
LOCKS. Similarly, as it will be explained on the sequel,
sessions and nodes may switch among several states, those
included in SESSION STATES and NODE STATES
of Table II.

C. State Variables

The first seven state variables deal with an object re-
pository recovery process, see Figure 2. We consider the
COPLA architecture to be composed by a fixed set of nodes
(MAX NUMBER OF NODES). Each node is uniquely
identified by an NID, this identifier allows nodes to iden-
tify which nodes are running and which nodes have failed.
The variables containing this information are prev view and
current view. The key concept dealing with this group of
variables is to properly manage the change of view action
fired by the respective membership monitor [23], each time
a node fails or rejoins the system. This action modifies the
current set of reachable nodes.

The node state for a given object repository is contained in
node state. Figure 3 shows all possible states and transitions
among these states for a node in the COPLA architecture,
under this recovery algorithm assumption. Nodes that are
working, i.e. accepting and executing sessions, are said to be
alive. Whenever a failure happens, the node has crashed.
Once the node is restarted, the node is said to be in the

recovering state. If a site enters in the recovering state, one
or several nodes may be chosen to act as a recoverer of that
site, thus they enter in the recoverer state.

Information about objects missed by nodes crashed is stored
in oids to rec, as well as the number of objects to be
transferred by a previously alive node or to be received by
a recovering node are stored in oids to transfer.

alive

crashed

recovererrecovering

Fig. 3. Node state transitions diagram.

The remainder state variables are needed to maintain con-
sistency on each object repository opened on each node. They
manage how sessions access objects and which is the current
state of a given session, as it can be seen in Figure 2 along
with its initial values.

The lock table state variable is a hashtable where each
key (lock tablei), i.e. the i-th object belonging to the given



object repository, two sets as its respective value: the first one
contains sessions that acquired a lock on that object; and, the
other one contains sessions requesting an incompatible lock
on the given object. Initially, this variable contains all OIDs
with their respective queues being empty.

run pre_commit

commit

abortblocked

Fig. 4. Session state transitions diagram.

The session state variable monitors the state of all sessions
(local or remote) accessing a given object repository. There are
defined several states that a session may pass during its life:
run, blocked, pre commit, commit, abort. This variable is
a hashtable too. For each key entry has, as its associate value,
one of all of the states shown in Figure 4.

A session starts in the run state, so it can start requesting
locks on objects. It continues on this state until it performs
an object lock request which is not compatible with the lock
currently assigned on that object. Once the session reaches
this situation, two possible state transitions may occur. Since
the deadlock prevention function is invoked for that request,
it will determine if the given session will be blocked (if it
is deadlock free), or switched to the abort state. Otherwise,
another session owning the lock, or waiting on that lock, may
become aborted too.

If the session successfully obtains all the locks it requested
(it may, or not, have switched several times from the run to
blocked state), it reaches the end of transaction. At this point it
has decided whether to commit or abort. If it commits it moves
to another state (pre commit). At that time it summarizes all
objects it has updated, and requests the locks for those objects
in all available sites at that moment (following a ROWAA
policy). If this session takes on all the locks at all available
systems then it will be ready to commit, so it switches to
the commit state. Otherwise, if it decides to abort then it
will change its state to abort, this session will be rollbacked
on the underlying RDBMS and all locks will be released; no
communication is necessary since the session is entirely local.

The following two state variables are closely related to
the pre commit state. The first one (updates) contains the
log for each session running in COPLA. The other one
(wait response), stores all available nodes for each session
that has entered the pre commit state, and whose answers
have not yet been received –about copy-lock acquisition for
that session on each of these nodes– by the master site of

such session.

D. Procedures Used in the Algorithm

The algorithm, apart from its specified actions, will need
helper functions and procedures in order to work properly.
These special procedures are introduced in Figure 2. The first
one (compatible) is a boolean function, it determines if a lock
assigned on an object conflicts with the current lock request.
Two locks conflict if they are on the same data item, they
are issued by different sessions [14], and one, or both of
them, are write-lock, copy-lock or recover-lock requests, as
it is determined by the respective compatibility matrix shown
in Table I.

If the lock requested is incompatible with the current lock
assigned on an object, a deadlock situation may occur [13],
[14]. In this first version of the algorithm we will employ
a deadlock prevention technique. The function responsible
for this task is deadlock prev. It returns a data structure
consisting of a boolean and a SID. The boolean field assesses
whether a deadlock situation may occur. If it is liable to suffer
deadlock the SID returned is the session that must be aborted
in order to prevent it, otherwise the lock request is queued.

Deadlock prevention techniques are based on setting up
an order in lock assignment so cycles are prevented. The
first deadlock prevention technique used is, as suggested
by [13] giving a copy-lock request precedence over a write-
lock request, provided that the session owning the latter has
not reached the pre commit state. In such a case, and invoked
each time a session becomes blocked, we have defined a
deadlock prevention technique for setting up an order in lock
assignment, following a wait-die scheme [24]. The ordering
factor is based on parameters of the given session, like: session
restarting ratio, session execution time, number of objects read,
number of objects written, log size, etc. In this first version
we propose to use the SID as the ordering factor; it uses the
id field as the first ordering factor, and, if they are equal, the
node field acts as the remaining ordering factor.

Two procedures are also closely tight, the first one called
update returns the log associated to the current session. A
log in COPLA consists of all the SQL statements that have
modified the given object repository for the given session. The
second one (apply updates), applies all the SQL statements
contained in a log into the DBMS, in our case an RDBMS.
Details of its implementation are given in [11], [12]. The rest
of the procedures are briefly sketched on Table 2.

The next two procedures are closely related (local commit,
local abort), they are RDBMS direct invocations. The first
one makes all changes done to the object repository per-
sistent and the other one rollbacks all changes done in the
RDBMS [11].

The oids written function returns a set of OIDs that the
current local session has modified along its execution life. This
function is called when the pre commit state is reached so as
to acquire copy-locks on these objects in the remaining alive
nodes.



The next two variables are also intimately tight. The first
one, called update, returns the log associated to the current
session. The second one applies the session log into the
RDBMS [11], [12].

The following group of procedures and functions are related
to the recovery process. Therefore, the det oids function
returns the amount of objects to be transferred to a recovering
node by the group of nodes inside the recoverer state,
once the former rejoins the system. Closely related to the
previous one is the get state function which returns, as it
was previously depicted, the state of an object in the COPLA
architecture [11]. The procedure utilized to apply object state
updates in the recovering node is apply; it performs the
update process of the object state in the RDBMS.

One of the key processes used to fire the recovery is sending
a message to the available nodes pointing out that a recovery
process is about to start. This event is fired by the membership
monitor [23], although the specific recovery task is initiated
by the node whose NID is the lowest among all available
nodes, which is fixed by the min function. Each time a
recovery process takes place inside COPLA, a new session
must be created so as to proceed, which is returned by the
new session function.

E. Communication Model

This protocol does not rely on strong group communication
primitives to maintain data consistency, such as [18], [20] do.
We assume that the communication channel is reliable without
losses. We consider a fixed set of nodes composing the system.
Nodes only fail by crashing, we do not consider byzantine
failures. We use a group communication system providing
group membership monitoring (nodes currently reachable) and
a unicast and a reliable FIFO multicast [4] as information
exchange channels between nodes. The notification of a node
failure is done by firing a change of view action. Therefore,
nodes rejoining the system may be easily determined if the
system stored the current view and the prev view of the
node, which are included in Figure 2 as node state variables
of our concurrency algorithm.

F. Actions Performed by the Algorithm

Actions described are needed for each object repository on
a given node. As it has been highlighted in the introduction of
the algorithm, sessions are started at a given node, and begin
to request all locks locally. It has also been pointed out that
COPLA does not allow blind-writes to be locally performed,
therefore a read-lock must be requested before acquiring a
write-lock on an object.

Once the session is done reading and writing objects, it
reaches the pre commit state. At this state, the concurrency
control at the master site of the given session multicasts
changes done as well as the OIDs where these changes were
performed to the current view. Reception of this message at
remote nodes starts a special session trying to acquire copy-
locks on those objects. If these locks are granted at all remote

nodes, then the session will switch to the commit state and
changes will be persistently stored at all sites.

Since this algorithm includes concurrency control and
recovery tasks in behalf of cleanliness, it may be better
explained, grouping both tasks in different parts: first, the
concurrency control accomplished by our algorithm proposal,
and, next, the recovery process.

1) Concurrency Control: Each time a session requests a
lock, no matter what kind of lock is requested, a lock request
action is executed. This action checks whether the lock as-
signment is compatible with the current sessions holding the
lock. In such a case the lock is granted and the session may
continue requesting new locks (running state), otherwise the
session must be blocked or aborted. This is determined by the
deadlock prevention function.

Whenever a session becomes blocked, it cannot request any
lock until the session is woken up again. This event may occur
whenever a release lock operation is performed in the object
where the session is waiting. At this point we will briefly
outline the release lock policy followed in our algorithm.

The only case where there are several sessions assigned
on an object is when they request a read-lock on it. Thus,
no waiting session will access that object until all read locks
are released. Special cases arise when the session assigned to
an object is a write-lock or copy-lock. Quite often there will
be sessions waiting to acquire a read-lock or a copy-lock on
that object. It will not happen that a write-lock is waiting to
be assigned, since we do not allow blind-writes. Due to our
deadlock prevention policy, the copy-lock, if it exists, will be
located at the last position of the queue.

A session may be aborted due to two reasons: the final
user decides to abort the current session; or, the deadlock
prevention function determines that the given session must be
aborted in order to prevent a deadlock. In the first situation, the
session is always local and the tasks to be done are: aborting
changes in the RDBMS, releasing all locks held by the session
and switching the session state to abort.

Aborts induced by the deadlock prevention technique are
treated quite different, since they usually involve message
exchange with other COPLA sites. This case corresponds to a
session in the pre commit state. As it is depicted in the abort
action of Figure 5, it sends a msg abort multicast message,
due to the fact that it is currently requesting copy-locks to all
available nodes. Receiving a msg abort means that a remote
session, currently executed in the node where the message is
received, has been aborted. This message is generated by the
master site where the session originally started and implies,
as it is depicted in Figure 5, the session abortion on the site
where it was delivered.

The other message is sent when the abort is generated by the
algorithm and the resulting session aborted is a remote session.
This message will be mainly sent due to conflicts with local
reads, which can be a potential global deadlock source since
they are not propagated.

The remainder situation occurs when the deadlock preven-
tion function aborts a local session that has not yet reached the



� lock request(o, 〈s, mode〉) : o ∈ OID,
〈s, mode〉 ∈ {s, m : s ∈ SID, m ∈ LOCKS}

if mode = recover then
∀〈sid, m〉 ∈ lock tableo.assigned :

if (m = write) ∨ (m = copy) then abort(sid)
else if m = read ∧ node state = recovering then

abort(sid)
else break;

if compatible(o, 〈s, mode〉) then
lock tableo.assigned← + + {〈s, mode〉};
session states ← run

else
〈sid, result〉 ← deadlock prev(o, 〈s, mode〉);
if result then abort(sid)
else

session states ← blocked;
lock tableo.waiting ← + + {〈s, mode〉};

� abort(s) : s ∈ SID
if s.node = my node id then

if session states = pre commit then
multicast(current view, msg abort(s))

else
session states ← abort;
local abort(s); release locks(s);

else send(s.node, msg remote abort(s));

� receive msg remote abort(s) : s ∈ SID
if session states 	= abort then

session states ← abort;
local abort(s); release locks(s);
multicast(current view, msg abort(s));

� receive msg abort(s) : s ∈ SID
if session states 	= abort then

session states ← abort;
local abort(s); release locks(s);

� pre commit(s) : s ∈ SID
session states ← pre commit;
multicast(current view,

msg update session(s, oids written(s), update(s)));

� receive msg update session(s, oids, update) :
s ∈ SID, oids ∈ P(OID), update ∈ UPDATE

if s.node = my node id then
wait responses ← current view;

else
updates ← update;
copy locks request(s, oids);

� copy locks request(s, oids) : s ∈ SID, oids ∈ P(OID)
∀o ∈ oids :

if session states 	= abort then lock request(o, 〈s, copy〉);
else break;

send(s.node, msg ready(my node id, s));

� receive msg ready(node, s) : node ∈ NID, s ∈ SID
wait responses ← −{node}
if wait responses = ∅ then

multicast(current view, msg commit(s));

� receive msg commit(s) : s ∈ SID
if s.node 	= my node id then

apply updates(updatess);
if #current view 	= number of nodes then

oids to rec← + + {oids written(s)};
session states ← commit;
local commit(s); release locks(s);

� change of view(nodes) : nodes ∈ P(NID)
prev view ← current view; current view ← nodes;
if #current view > #prev view then

if min(prev view, my node id) then
multicast(current view,

msg recov obj(new session(), oids to rec, prev view));
else break;

else
failed nodes← prev view \ current view;
∀s ∈ SID :

if s.node /∈ current view then abort(s)
else if session states = pre commit then

wait responses ← wait responses \ failed nodes

� receive msg recov obj(s, oids, view) :
s ∈ SID, oids ∈ P(OID), view ∈ P(NID)

session states ← run; recov lock request(s, oids);
if #current view = number of nodes then

oids to rec← NIL
if my node id ∈ current view \ prev view then

prev view ← view; node state← recovering;
if #current view 	= number of nodes then

oids to rec← oids;
oids to transfer ← oids;

else
node state← recoverer;
oids to transfer ← det oids(my node id, oids);

∀o ∈ oids to transfer :
send(current view \ prev view,

msg obj update(s, o, get state(o)));
oids to transfer ← NIL

� receive msg obj update(s, o, state) : s ∈ SID, o ∈ OID,
state ∈ OBJ STATE

oids to transfer ← −{o};
apply(o, state);
if oids to transfer = ∅ then

local commit(s);
multicast(current view, msg alive(s));

� receive msg alive(s) : s ∈ SID
node state← alive;
session states ← commit; release locks(s);

Fig. 5. Actions performed by the algorithm.

pre commit state; in such a case no messages are generated
since the session is entirely local. Thus all locks are released
and the session state is changed to abort.

O2PL philosophy consists of performing all operations
locally until the final user commits. This is performed by
the pre commit action. At that time (session moves to the
pre commit state), we have to update the rest of sites. During
this update propagation, the session may be aborted due to
existing conflicts with other transactions.

Once the user decides to commit the current session, the
algorithm asks for all objects written in the session. It also
requests for all SQL statements that have modified the given
object repository where the session has been executed. All this
information is used to build a msg update session message

that is multicast to all available nodes in the current view.

When the msg update session is received by the master
site of the session it builds the data structure that contains a
queue of all the available node identifiers. At the remote sites
execute the copy locks request action. It starts, for the given
session, requesting copy-locks as many as objects modified
by the given session. This is a special action, since it is not
atomic, and the session will become blocked or, even worse,
aborted. Each time a node is finished requesting all copy-locks,
it generates a msg ready message which is sent to the master
site.

Receiving a msg ready will remove the message source
node from the wait response, and once this queue is empty,
it sends a msg commit message to all nodes so changes are



persistently applied throughout all the COPLA architecture
and the session state is changed to commit.

2) Recovery Process: The recovery process is started by the
group membership protocol [23], invoking a change of view
action. This action has as a parameter the current set of avail-
able nodes. If its size is less than the number of nodes, then
the msg commit action will store the set of OIDs modified
by subsequent sessions. If this action is a result of a rejoining
node, then the node with the minimum NID will multicast
a message containing the OIDs updates missed while the
rejoining node has been crashed, as well as the previous view
of the system, so that the recovering node stores it. It also
creates a new SID to manage the recovery process throughout
all the COPLA architecture, thus the recovery process is
considered as a new session is in charge of transferring the
last state of missed object updates.

The reception of a msg recov obj implies, firstly, a com-
mon task which consists of requesting for recover-locks on
all OIDs missed by the recovering node. As it was previously
stated, this will lead to a set of session abortions trying to
update the objects missed by the recovering node. Continuing
with the recovering node, no new session is allowed to
proceed until all recover-locks are assigned. This action will
generate the appropriate data structure to process all updates
transferred by the recoverer nodes. Thus, the recoverer
nodes estimate the number of objects each one is responsible
for transferring to the recovering node. As it was previously
explained, we have selected the option of sending a separate
message for each object to be transferred. This action, i.e.
receiving a msg obj update, applies the update for the re-
ceived OID in the underlying RDBMS inside the context of
the recovering session. Once it is done receiving all updates,
it sends a msg alive multicast to all available nodes that will
commit the given session on the recovering node, release all
recover-locks and switch all available sites to the alive state.
Besides, if every node is not yet recovered, OIDs modified are
stored at all nodes, this OIDs log will be erased once the last
node of the system has finally been recovered.

During this recovery process, new sessions may be started
at all nodes, enhancing system availability. Nevertheless, there
is an extra cost of restarting transactions, provided that they
are trying to update OIDs involved in the recovery process
on nodes in the recoverer state. Moreover, a node in the
recovering state may start new sessions too, after it sets all
recover-locks, but at the expense of no accessing on OIDs with
a recover-lock set on it, all these sessions will be automatically
aborted.

V. CONCLUSIONS

This paper introduces the design of an Optimistic Two Phase
Locking (O2PL) consistency protocol to be implemented in a
middleware architecture called COPLA [7]–[9], [11], [12].
This architecture supports transactional access to persistent
transparently replicated objects. This protocol is mainly based
on the ideas proposed in [13], but adapted to the COPLA
architecture. Since our protocol is liable to suffer global

deadlocks, we have defined a global deadlock prevention
technique, which is based on flexible prevention techniques,
such as session information like the following: number of
objects read or written, number of session restarts, log size,
etc. Right now, we are only considering the session identifier
(SID) as the ordering factor on lock requesting.

Besides, this paper introduces a preliminary design of a
recovery protocol to be used by COPLA along with the
O2PL consistency protocol. We have introduced a new kind
of lock, called recover-lock, which is used to enhance system
availability whenever there is a node joining COPLA after its
failure. The main goal pursued with this recovery protocol is
to continue executing transactions at all nodes, even in the
node being recovered. This new lock is set on all objects
updates missed by a failed node so as to perform the object
state transfer of these missed objects [11]. This lock has a
different behavior depending on the node where it has been
assigned. If it is in a recoverer node then it will allow any
other transactions to acquire a read-lock on it, but no any other
lock. Otherwise, it is assigned on a recovering node and no
other transaction may access that object.

Presently, we are implementing this protocol in COPLA
so as to compare its behavior with currently implemented
protocols [7]–[9] and different application workloads. We
are also very interested in comparing this algorithm with
actual solutions proposed in the literature such as [18], where
deadlock is prevented based on the total order of the group
communication used to propagate the updates performed on
a repository, against our approach. Since it utilizes different
deadlock prevention techniques and with several deadlock
detection and resolution algorithms.

ACKNOWLEDGMENT

This project is supported by the Spanish Government as a
CICYT project under research grant TIC2003-09420-CO2.

REFERENCES

[1] A.A. Helal, A.A. Heddaya, and B.B. Bhargava. Replication techniques
in distributed systems. Kluwer Academic Publishers, USA, 1996.

[2] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso.
Understanding replication in databases and distributed systems. In Proc.
of the 20th International Conference on Distributed Computing Systems
(ICDCS), pages 464–474, Taipei, Taiwan, April 2000. IEEE-CS Press.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. In Proc. of the 1995 ACM
SIGMOD international conference on management of data, pages 1–10,
San Jose, USA, May 1995.

[4] V. Hadzilacos, and S. Toueg. Fault-Tolerant Broadcasts and Related
Problems. Distributed Systems, Second Edition. S. Mullender, ACM
Press/Addison-Wesley, USA, 1993.

[5] B. Kemme, A. Bartoli, and Ö. Babaoğlu. Online reconfiguration in
replicated databases based on group communication. In Proc. of the
International Conference on Dependable Systems and Networks (DSN
2001), Goteborg, Sweden, pages 117–127, June 2001.

[6] J.E. Armendáriz, J.R. González de Mendı́vil, and F.D. Muñoz-Escoı́.
Working on GlobData: An efficient software tool for global data access.
In Proc. of Workshop on Research and Education in Control and Signal
Processing (REDISCOVER 2004), Accepted, Cavtat, Croatia, June 2004.
IEEE Press.

[7] F.D. Muñoz-Escoı́, L. Irún-Briz, P. Galdámez, J.M. Bernabéu-Aubán,
J. Bataller, and M.C. Bañuls. GlobData: Consistency protocols for
replicated databases. In Proc. of the IEEE-YUFORIC’2001, Valencia,
Spain, pages 97–104, November 2001.



[8] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente.
Strong replication in the globdata middleware. In Proc. Workshop on
Dependable Middleware-Based Systems (Supplemental Volume of the
2002 Dependable Systems and Networks Conference), Washington D.C.,
USA, pages G96–G104, June 2002.

[9] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente.
The GlobData fault-tolerant replicated distributed object database. In
Proc. of the First Eurasian Conference on Advances in Information and
Communication Technology, Teheran, Iran, October 2002.

[10] PostgreSQL Home Page. http://www.postgresql.org June
2004.

[11] J.E. Armendáriz, J.J. Astrain, A. Córdoba, J. Villadangos, and
J.R. González de Mendı́vil. A persistent object storage service on
replicated architectures. In Proc. of VI Workshop Iberoamericano de
Ingenierı́a de Requisitos y Ambientes Software (IDEAS 03), Asunción,
Paraguay, pages 133–144, April 2003.

[12] J.E. Armendáriz, J.J. Astrain, A. Córdoba, and J. Villadangos. Imple-
mentation of an object query language for replicated architectures. In
Proc. of VIII Jornadas de Ingenierı́a del Software y Bases de Datos
(JISBD 03), Alicante, Spain, pages 441–450, November 2003.

[13] M.J. Carey, and M. Livny. Conflict detection tradeoffs for replicated
data. ACM Trans. on Database Sys., 16(4):703–746, December 1991.

[14] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, USA, 1987.

[15] M. Xiong, K. Ramamritham, J. Haritsa, and J.A. Stankovic. MIRROR:
A state-conscious concurrency control protocol for replicated real-time
databases. In Proc. of 5th IEEE Real-Time Technology and Applications
Symposium, pages 100–110, Vancouver, Canada, June 1999.

[16] K. Hasegawa, and M. Takizawa. Object-based locking protocol for
replicated objects. In Proc. of 13th International Conference on
Information Networking (ICOIN ’98), pages 398–402, Tokyo, Japan,
January 1998. IEEE-CS Press.

[17] J. Jing, O. Bukhres, and A. Elmagarmid. Distributed lock management
for mobile transactions. In Proc. of 15th International Conference on
Distributed Computing Systems (ICDCS’95), pages 118–126, Vancouver,
Canada, June 1995. IEEE-CS Press.

[18] B. Kemme, and G. Alonso. A new approach to developing and
implementing eager database replication protocols. ACM Trans. on
Database Sys., 25(3):333–379, September 2000.

[19] A. Silberschatz, H.F. Korth, and S. Sudarshan. Database Systems
Concepts, Fourth Edition. McGraw-Hill Science/Engineering/Math,
USA, October 2001.

[20] R. Jiménez-Peris, M. Patiño-Martı́nez, and G. Alonso. Non-intrusive,
parallel recovery of replicated data. In Proc. of 21st Symposium on
Reliable Distributed Systems, pages 150–159, Osaka Univ., Suita, Japan,
October 2002. IEEE-CS Press.

[21] P.A. Bernstein, and N. Goodman. An algorithm for concurrency
control and recovery in replicated distributed databases. ACM Trans.
on Database Sys., 9(4):596-615, December 1984.

[22] ODMG home page. http://www.odmg.org June 2004.
[23] F.D. Muñoz, O. Gomis, P. Galdámez, and J.M. Bernabéu. HMM: a

cluster membership service. In Proc. of the 7th International Euro-Par
Conference, Volume 2150 of LNCS, pages 773–782, Manchester, United
Kingdom, August 2001.

[24] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems, Third
Edition. Addison-Wesley, USA, 2000.


