k-Bound GSI: A Flexible Database Replication Protocol

J.E. Armendariz-liiigo
Instituto Tec. de Informatica
Campus de Vera s/n
46022 Valencia, Spain

armendariz@iti.upv.es

ABSTRACT

Several previous works have proven that there is no way of
guaranteeing a snapshot isolation level in symmetrical repli-
cated database systems without blocking transactions when
they are started. As a result of this, the generalized snapshot
isolation (GSI) level was defined, relaxing a bit the freshness
of the snapshot being taken when a transaction is initiated
in its local replica. This enhances performance, since trans-
actions do not need to get blocked, but in some cases will
increase the abortion rate. This paper proposes a flexible
protocol that is able to bound the degree of snapshot out-
dateness from a relaxed GSI to the strict one-copy equivalent
SI. Additionally, it proposes an optimistic solution where
transactions do not block, and only need to be re-initiated
when their optimistic start fails. Such re-initialization is
made very soon and only rolls back the first transaction ac-
cesses, without waiting for the transaction completion. Fi-
nally, if 1CSI is not enough, this protocol is also able to man-
age transactions with serializable isolation, if such a level is
requested.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed databases; H.2.4
[Systems]: Distributed databases; H.2.4 [Systems]: Trans-
action processing; H.3.5 [Online Information Services]:
Data sharing.

General Terms

Database Replication.

Keywords

Replicated databases, isolation levels, eager database repli-
cation, scalability, performance, transaction scheduling.

1. INTRODUCTION

The snapshot isolation level (or SI, for short) was de-
fined in [1] in order to identify a practical isolation level

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC'07 March 11-15, 2007, Seoul, Korea

Copyright 2007 ACM 1-59593-480-4 /07/000355.00.

J.R. Juarez, J.R. G. de Mendivil
Universidad PUblica de Navarra
Campus de Arrosadia s/n
31006 Pamplona, Spain

{jrjuarez, mendivily@unavarra.es

H. Decker, F.D. Mufioz-Escoi
Instituto Tecnolbgico de Informatica
Campus de Vera s/n
46022 Valencia, Spain

{hendrik, fmunyoz}@iti.upv.es

that has been supported for years in many DBMSs based on
multi-version concurrency control (MVCC). However, those
DBMSs provided it as an implementation of the serializable
isolation level, and [1] and other papers proved that there
were some isolation anomalies that could not be prevented
using such level. In spite of this, the SI level has several
advantages when it is compared to a strict serializable one
thanks to its MVCC origin: read accesses never block, being
able to complete read-only transactions very fast; and, in a
replicated setting no read-set management is needed for any
transaction. These features are very attractive for achieving
good performance in a replicated database system. Addi-
tionally, the consistency anomalies that may arise using this
level (when compared to a serializable one) are easily iden-
tifiable and avoidable.

Our aim in this paper is to design a flexible replication pro-
tocol able to manage both the serializable level and the SI
level. However, some recent works have proven that a strict
one-copy equivalent SI level [3] is quite hard to achieve in
a replicated setting [4, 6], since this requires that all trans-
actions are blocked on their start, waiting for the writeset
arrival for all prior transactions. So, instead of such strict SI
level we provide the mechanisms needed to select the “out-
dateness” of the snapshot being taken when a transaction is
started. Thus, our work has been designed taking as its basis
several recent database replication protocols [4, 11, 12] that
provide the generalized snapshot isolation (or GSI, for short)
level [4]. This generalized level relaxes the freshness of the
snapshot gotten when a transaction starts, as described in
[4].

Due to these limitations, the protocol to be presented here
makes possible that the user selects which kind of snapshot
isolation compliance is needed by each transaction, ranging
from a default GSI to a strict one-copy SI. The novelty of
our approach consists in being optimistic; i.e., even for the
SI case, transactions do not block, and they only need to
be re-initiated when conflicts that prevent such transaction
to be continued arise. However, such conflicts are detected
very soon and lead to a cancelation that only rolls back
a few operations, re-initiating later the whole transaction.
Moreover, such conflicts seldom arise.

Additionally, as proven by many current applications, in
order to be practical and easily applicable to different con-
texts, a replication support must be able to manage multiple
isolation levels, since different transactions in a single appli-
cation may have different isolation requirements. See the
TPC-C benchmark application as an example. Due to this,
and as it has been already proposed in other papers [2], this

protocol is able to support the two most demanded isolation
levels on top of MVCC DBMSs.

The rest of this paper is organized as follows. Section 2
describes the protocol supporting the GSI, SI, and serial-
izable isolation levels. Later, Section 3 justifies how these
levels are supported. Finally, Sections 4 and 5 outline some
related works and conclude this paper.

2. AFLEXIBLE PROTOCOL

To implement our flexible Read One Write All Available
protocol [7] we assume that all replicas have a DBMS that ex-
ecutes transactions providing SI and each one stores a copy
of the database. Besides, we need to distinguish two logical
timestamps associated to the start of a transaction T, as
proposed in [4]: the start timestamp (T.start) corresponds
to the “local” logical time of the first operation being exe-
cuted by transaction T, and its begin timestamp (T.begin)
corresponds to the “global” logical time that would be as-
signed in a hypothetical one-copy execution of such trans-
action. In order to translate T.begin from such hypothetical
time to a “concrete” one, T sends by atomic broadcast [§]
a message that contains its identifier to all replicas. We
refer to this message as T.ID. Such T.ID message will be de-
livered using the same destination group as those writeset
messages multicast at the end of each transaction, using the
constant interaction approach proposed in [14]. As a result,
if some writesets are delivered between the sending of T.ID
and its delivery, those writesets might invalidate the snap-
shot taken by transaction T at time T.start, at least if they
have updated some of the objects already (or intended to
be) read by T. Such kind of collisions is not a problem in
GSI, but however violates a strict definition of a one-copy
SI level. On the sequel, we refer to these writesets as prior
conflicting writesets (or PC-WS, for short).

As it has been previously introduced, our replication pro-
tocol main goal is to avoid blocking the starting point of
transactions with the SI level. The T.ID message approach
introduces a limitation to our protocol: the dynamic collec-
tion of readsets during the execution of transactions does not
prevent the “outdateness” of the snapshot taken at T.start.
In other words, it may be possible for an active read-only
transaction Ty to read a value z contained in PC-WS, after
its validation against PC-WS, as no restriction is imposed to
read operations. Hence, we may circumvent this problem by
the definition of a set of tables, items or restrictions which
its outdateness a transaction wants to be aware of. This
is not a weird assumption, in fact the TPC-W benchmark
defines the tables to be read on each web interaction.

Our aim is to define a function that measures the dis-
tance between T.start and T.begin (d(T.start, T.begin)) being
able to bound such distance for each transaction; i.e., each
transaction T should be able to specify a value k such that
d(T.start, T.begin) < k. Obviously, with an infinite value for
k we achieve the most relaxed GSI whilst with a zero value
we get SI. Note that a SI schedule is trivially a GSI sched-
ule [4]. We also overload the value of this bound in order
to select the isolation level. So, the meaning of its different
values is:

k > 0: Bound values for the GSI level, according to the
description given above.

k = 0: SI level.

k = —1: Serializable level.

k= 1: GSI level.

Table 1: The list of attributes for a transaction T;
aborted It is a boolean initially set to false. It gets a true
value when a remote writeset arrives and such
writeset forces the rollback of the local transac-
tion according to the distance and bounds set
for it. However, the local transaction is not im-
mediately reinitiated. It will be when its T.ID
message is delivered.

The number of conflicts found with incoming
writesets, according to the getConflicts() function
explained below.

end A logical time that corresponds to the commit
time for this transaction. It is needed for certi-
fication purposes.

It holds the decision on the transaction termi-
nation (either commit or abort). This attribute
can only be set in the replica that has started
the transaction and is only needed when the k
attribute has a -1 value (serializable level).

id A global identifier for transaction T;. It can be
built using the identifier of the local node and the
transaction identifier being used by the underly-
ing DBMS. It is needed for building the T.ID
message.

k This attribute establishes the bound on the
d(T;.s,T;.b) as defined above.

The set of tables or rows that T; is interested in
managing its outdateness freshness.

si A boolean that is set to true when a transaction
T; receives its own T.ID message and all writesets
previously received have been applied. Once this
happens, T; has obtained the proper snapshot
version for reading.

start This attribute gets its value from the local last-
committed_tid, holding then the start timestamp
for its associated transactions.

WS The writeset of transaction T;.

RS The readset of transaction T; (needed for local
transactions with serializable isolation level at
its delegate replica).

conflicts

decision

tables_read

In order to define such distance we have multiple possi-
bilities: time, overall PC-WS —even not colliding—, number
of colliding items in each writeset, number of times an item
has been modified and so on. However, we only consider
this one in the paper:

Colliding PC-WS. The number of writesets received in the in-
terval (T.start, T.begin) having a non-empty intersection with
the intended readset of transaction 7.

As it has been outlined before, this replication protocol is
able to provide serializable with SI replicas. It is possible to
obtain transaction executing with serializable isolation level
provided that it satisfies the dynamic serializability condi-
tion (DSC) stated in [4], in which a transaction T; sees its
read-write conflicts from the beginning of the transaction
(T;.begin) till its commit time (T;.commit). Hence, if an-
other conflicting transaction commits during that period of
time ([T}.begin, T;.commit]) then T; will be rolled back. It is
very easy to implement the DSC condition, it is only needed
to parse again the “SELECT” statement to convert it into a
“SELECT FOR UPDATE” one; hence, read and write conflicts are
governed by the first-committer-wins rule [1]. This would
simplify the development of a serializable behavior of the
replication protocol, provided that the write set is properly
collected, i.e. those objects that have been really updated.
Hence, the readset propagation is avoided since the com-
mitment of a transaction is left to the replica where the
transaction was firstly executed; it sends a message with the
outcome of the transaction (commit or abort) to all replicas.

Considering all these issues, we propose the replication

protocol shown in Fig. 1. The system consists of a fixed
number of replicas R = {Ry,..., Ry}. Each replica contains
a full copy of the database. The DBMS provides SI isola-
tion level for transactions executed at each replica. We also
consider a set of clients C = {C1,...,Cp}. Clients are the
source of transactions (see Table 1 for the associated fields
needed by the replication protocol); they specify the col-
liding PC-WS (T;.k) and another parameter (7T;.tables_read)
that establishes the set of tables, or objects they are inter-
ested in maintaining their outdateness for reading. This is
done to avoid the dynamic collection of the readset. In order
to process a transaction Tj, a client C; connects to a server
R; and submits transaction T; to R;. We call the server R;
the delegate for transaction T;. A copy of the replication
protocol runs on all servers. We assume the existence of
an atomic and a reliable broadcast facility [8] to deliver the
writesets for certification to all replicas and the weak voting
decision for serializable transactions [13] respectively. Each
replica contains two queues: ws_list, it contains the writesets
already validated; and tocommit_queue a queue for managing
the flow execution of transactions. Its algorithm is divided
into four main parts after a small initialization. Each part
can be executed by a different thread:

(I) Operations on the Delegate Replica. When the dele-
gate replica R, receives a transaction T; from a client Cj;,
it executes transaction T; but the first operation serves to
establish the outdateness of the snapshot gotten by T;. R,
sends a T.ID message by atomic broadcast to all replicas. It
is important to note that if one operation is a “SELECT” and
the requested isolation level for its transaction is serializ-
able, the middleware, or the DBMS-core modified solution,
must be able to convert such “SELECT” into a “SELECT FOR
UPDATE”. In fact, the MADIS middleware architecture, pre-
sented in [9], parses the SQL sentences if it is configured to
do so, but these issues have not been detailed in the algo-
rithm. When commit time is reached, the writeset of T; is
broadcast to all servers using the atomic broadcast.

(II) T.ID Message Delivery. This thread is devoted to
listening to T.ID at the delegate replica of the transaction,
otherwise it is silently discarded. This message will be ap-
pended to tocommit_queue.

(I1I) Writeset Message Delivery. When a replica receives
a writeset, it applies the certification test (I11.1 and 111.2)
checks T;.WS against the writesets of its overlapping trans-
actions T (T;.start < Ty.end A T;.WS N T;.WS=# () contained
in ws_list. If the certification is passed T; will be appended to
tocommit_queue and ws_list; finally, its T;.end field updated.

Some transaction conflict checks are done in this part by
means of the getConflicts() function; mainly those needed
for bounding the “outdateness” specified. This function re-
turns an integer: 0, empty intersection between the incom-
ing writeset and the specified tables_read (second argument)
of a local transaction; or, 1, non-empty intersection. It is
important to note that this function can be modified accord-
ing to the different distance definitions we have previously
outlined. All local transactions whose T.ID has not been
processed yet are checked for its outdateness.

(IV) Queue Processing. This last part governs the val-
idation of the snapshot gotten by a local transaction and
the commitment process of transactions. It is important to
note that serializable transactions end differently, i.e. an ad-
ditional message exchange is needed containing the decision
(abort or commit).

Initialization:
1. lastvalidated_tid := 0
2. lastcommitted_tid := 0
3. wslist : =0
4. tocommit_queue := ()
|. Upon operation request for T; from local client
1. if select, update, insert, delete
a. if first operation of T; // T; includes (k, tables_read) //
- T;.conflicts := 0
- T;.decision := commit

-T;.RS:=10
- T,;.aborted := FALSE
- T,.si :== FALSE

- T;.start := lastcommitted_tid
- multicast T;.id in total order
b. if T;.aborted = FALSE
- execute operation at R,
c. return to client
2. else /* commit */
a. if T;.aborted = FALSE
- T;.WS := getwriteset(T;) from local R,,
- if T,;,WS = 0, then commit and return
- multicast T; using total order
1. Upon receiving T;.id
1. if T; is local in R,,
a. append T;.id to tocommit_queue
2. else discard message
Il. Upon receiving T;
1. if 3 T; € ws_list : Ty.start < Tj.end A
a. if T; is local then abort T; at R,, else discard
2. else
a. T,.end := ++lastvalidated_tid
b. append T; to ws_list and tocommit_queue
3. VT, : Tjislocal in R, A Tj.si = FALSE
A Tj.aborted = FALSE
a. Tj.conflicts := T;.conflicts 4+ getConflicts(T;.WS, T;.tables_read)
b. if Tj.k # -1 then T;.aborted := (T;.conflicts > T; k)
IV. T; := head(tocommit_queue)
1. remove T, from tocommit_queue
2. if T; is a T.ID message
a. T;.si := TRUE
b. if T;.aborted = TRUE
- restart T; /* All its operations must be restarted */
/* and this also includes step l.1.a. */
c. return
3. if T; is remote at R,,
a. begin T; at R,
b. apply T;.WS to R,,
c. VT, : Tjislocalin R, A T;WS N T;.WS #0
A T; has not arrived to step Il
- abort T
d. VT;:TjislocalinR, A Tj k=-1AT; RSNT; WS #0
A T; has not arrived to step IV
- abort T
- T;.decision := abort /* The T;.decision messages */
/* are only sent if T; arrives to step IV. */

4. if T;.k = -1 A T; is local in R, then multicast T;.decision // Reliable //

5. if T;.k = -1 then wait until T;.decision delivered
a. if T;.decision = abort then
- abort T;
- return
6. commit T; at R,,

7. ++lastcommitted_tid

Figure 1: k-bound GSI algorithm at replica R,,

Let us start with the T.ID, this step serves to restart the
transaction execution of an outdated transaction. We wait
until the validated writesets are applied, hence it is not re-
peatedly rolled back. The second part deals with the write-
set application at a remote replica. The conflict checks (ac-
cording to the intended isolation level) are made in the sub-
steps “c” and “d”. These checks are implemented in an
automatized way in MADIS, as described in [9]. Substep
“c” aborts those local transactions that have not been al-
ready validated and conflict with the writeset to be applied.

Whilst substep “d” deals with local transactions executing
in serializable isolation level that have not already multicast
its decision message (on the contrary the writeset will get
blocked).

The decision message is broadcast to all replicas (using the
reliable service) by the delegate replica for serializable trans-
actions, in a similar fashion to weak voting protocols [10, 13].
All replicas will be waiting for the delivery of this message.
The rest of (GSI and one-copy SI) transactions are straightly
committed.

3. ISOLATION LEVELSCOMPLIANCE

In this Section an outline of the isolation level compliance
will be given in a failure free environment. As it has been
shown in [6], a replication protocol provides GSI if the fol-
lowing three conditions are met: all DBMS replicas provide
SI; all transactions are atomically committed at all available
nodes; and, all transactions are committed in the same order
at all available nodes.

To prove that this implementation is deterministic and
obeys GSI rules [4, 6], we need to show two properties. The
first property is that at the certification of T;, all replicas
have the same ws_list and last_validated_tid. Hence, every
replica reaches the same decision on the certification process
of T; Thread Ill in Fig. 1). Atomic broadcast is used to de-
liver the certification request, which contains T;.start and
T;.WS, to all replicas. Atomic broadcast guarantees two
properties [8]: agreement (if a replica delivers message m,
then every replica delivers m) and order (no two replicas
deliver any two messages in different orders). It is easy to
prove, by mathematical induction on the length of ws_list,
that: ws_list is the same at all replicas as well as the last_vali-
dated_tid, since it is incremented each time a transaction is
added. Next, we have to show that transactions are com-
mitted in the same order at all replicas. Writesets are also
appended to the tocommit_queue in the same order as they
are certified. By the flow execution of Thread IV in Fig. 1,
the writesets are committed in the order established by the
tocommit_queue queue.

A transaction T; executed in k-bound GSI (i.e. T;.k > 0)
must check the outdateness of its selected items (7;.tables_-
read) which is checked at its delegated replica each time a
writeset is certified. This process will continue until its re-
spective T.ID message is delivered (Thread Il) and processed
in the tocommit_queue on Thread IV at Step 2.a. This last
step defines its assigned global snapshot and if its distance
with overlapping transactions is less than T;.k, it is allowed
to proceed and we are in the same case as in GSI. Hence,
as it was previously shown writesets are atomically applied
and their commit ordering is totally ordered.

In case of a serializable transaction T;. It is executed
at the delegate replica satisfying the DSC condition stated
in [4] in which a transaction T; sees its read-write conflicts
from the beginning of the transaction till its commit time.
Hence, read and write conflicts are governed by the first-
committer-wins rule [1] and the ordering between conflicting
transactions is governed by the atomic broadcast facility.

4. RELATED WORK

In [4], the notion of GSI is introduced. They present two
replication protocols based on certification that satisfies GSI
(prefiz-consistent SI). The first proposal consists of a central-

ized certifier (master database) and a number of database
replicas. The centralized certifier contains the most up-to-
date version of data. Replicas communicate only with the
master. This is a constant interaction protocol [14] where
each transaction is firstly executed at a replica. At commit
time, if it is a read-only transaction it will directly commit;
on the contrary the replica will send a message containing
the transaction’s snapshot version and its associated write-
set. They use a data structure similar to ours, ws_list, so
that the master uses it in the certification process. The
master checks whether the delivered writeset intersects with
any of the already committed writesets since the snapshot
version of the delivered transaction. If so, the transaction is
aborted (the replica receives a message). Otherwise, the
writeset is included in the ws.list and the version is in-
creased. Since a centralized certifier is a single point of
failure, they propose a distributed certification algorithm.
They assume an atomic broadcast facility to exchange mes-
sages since all replicas execute certification. Hence, all repli-
cas need to maintain the same data structure as the master
database in the centralized certifier. The k-bound GSI pro-
tocol already provides the distributed certification protocol
proposed in [4] when no k is provided. Moreover, k-bound
GSI permits to refine the outdateness of the snapshot version
gotten by a transaction (ranging from GSI to SI). Finally, we
are able to provide serializable isolation level with the same
replication protocol.

In [15] the Database State Machine Approach (DBSM)
is revisited in order to avoid the readset propagation of up-
date transactions to all sites for certification (called DBSM™).
They propose three different replication protocols. The first
one is the readsets-free certification protocol where each
replica executes transactions according to strict 2PL [3]. As
its own name states, it only checks writesets intersection
and does not prevent the write-skew anomaly [1]. Their
second proposal is SI DBSM*, where all replicas have a SI
DBMS, where they claim that SI is obtained but it turns
out that only GSI is achieved, actually their proposal is very
similar to [4]. Their last proposal is One-copy Serializable
DBSM”, they took the ideas of [5] about interference free
transactions: two transactions executing at different sites
are serializable in DBSM™ if their writesets do not intersect
or one does not read what is written by the other. Thus,
they propose to split the database into a number disjoint
logical sets where each replica is the master of one or more
sets. Transactions are executed at each replica following
the strict 2PL rule. The database schema is increased with
a control table containing one dummy row for each logical
set. This control table is for conflict materialization of trans-
actions exclusively reading that logical set (they update the
corresponding row). Additional processing is required for
transactions updating two or more disjoint sets; they can
be serialized if they are certified at the same node but it
cannot be serialized with interfering transactions executing
at different replicas. Our approach does not use readset
propagation too but it does not use logical set (excepting
read operations to check their outdateness). kbound GSI
is able to provide GSI, SI and serializable without changing
the underlying DBMS or setting partitions in the database.

A definition of One-Copy SI is proposed in [11]. They
present a replication protocol for a database replication mid-
dleware architecture. Each replica contains a DBMS provid-
ing SI. Transactions are locally executed at each replica and

at commit time the writesets are atomically broadcast for
distributed certification. Once a writeset is certified, it must
be applied in the DBMS; however, it may be involved in a
deadlock with local transactions and become aborted by the
underlying DBMS. Thus, it must be reattempted until it gets
finally committed. They propose an optimization that per-
mits the concurrent execution of certified transactions whose
writeset intersection is empty. Nevertheless, this optimiza-
tion provokes holes in the ws_list that blocks local transac-
tions for performing read operations until there are no holes
(therefore, loosing the main advantage of SI). In k-bound
GSI, when the SI isolation level is chosen, read-operations
never get blocked (their up-to-date version is checked with
the delivery of the T.ID message) and we do not permit holes
in the execution of writesets.

5. CONCLUSIONS

This paper has presented a single middleware database
replication protocol able to support different degrees of com-
pliance of the SI level on top of DBMSs supporting SI. It
starts with a relaxed GSI (similar to the PCSI described
in [4]), passes through a 1CSI implementation ([4] also de-
scribes one implementation of this kind, but pessimistic since
it always blocks a transaction when it starts, while ours is
optimistic, re-initiating those transactions that have seen
an invalid snapshot), and is also able to ensure a serializ-
able level. This flexibility is specially interesting when com-
plex interactive applications should be written, since some
of their transactions may require different isolation levels
being SI and serializable two of the most requested ones.

6. ACKNOWLEDGMENTS

This work has been supported by the Spanish Government
under research grants TIC2003-09420-C02 and TIN2006-14738-
Co02.

7. REFERENCES

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton,

E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In ACM SIGMOD International
Conference on Management of Data, pages 1-10, San
José, CA, USA, May 1995.

[2] J. M. Bernabé, R. Salinas, L. Irtin, and F. D. Muiioz.
Managing multiple isolation levels in a database
replication protocol. Technical report, ITI-ITE-06/05,
Instituto Tecnolégico de Informética, Valencia, Spain,
July 2006.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison Wesley, Reading, MA, EE.UU.,
1987.

[4] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database
replication providing generalized snapshot isolation. In
24th IEEE Symposium on Reliable Distributed
Systems, pages 73-84, Orlando, FL, USA, Oct. 2005.

[5] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492-528, 2005.

[6] J. R. Gonzélez de Mendivil, J. E. Armendariz, J. R.
Garitagoitia, L. Iridn, and F. D. Mufioz. Non-blocking
ROWA protocols implement generalized snapshot

isolation using snapshot isolation replicas. Technical
report, ITI-ITE-06/04, Instituto Tecnoldgico de
Informatica, Valencia, Spain, July 2006.

[7] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In ACM
SIGMOD International Conference on Management of
Data, pages 173182, Canada, 1996.

[8] V. Hadzilacos and S. Toueg. A modular approach to
fault-tolerant broadcasts and related problems.
Technical Report TR94-1425, Cornell University,
Computer Science Department, May 1994.

[9] L. Irtin, H. Decker, R. de Juan, F. Castro, J. E.
Armendériz, and F. D. Mufioz. MADIS: a slim
middleware for database replication. In 11th Intnl.
Euro-Par Conf., pages 349-359, Monte de Caparica
(Lisbon), Portugal, Sept. 2005.

[10] B. Kemme and G. Alonso. A new approach to
developing and implementing eager database
replication protocols. ACM Transactions on Database
Systems, 25(3):333-379, Sept. 2000.

[11] Y. Lin, B. Kemme, M. Patifio, and R. Jiménez.
Middleware-based data replication providing snapshot
isolation. In ACM SIGMOD Int. Conf. on
Management of Data, pages 419-430, Baltimore,
Maryland, USA, June 2005.

[12] F. D. Muiioz, J. Pla, M. 1. Ruiz, L. Irtin, H. Decker,
J. E. Armendaériz, and J. R. Gonzélez de Mendivil.
Managing transaction conflicts in middleware-based
database replication protocols. In 25th IEEE
Symposium on Reliable Distributed Systems, Leeds,
UK, Oct. 2006.

[13] M. Wiesmann and A. Schiper. Comparison of database
replication techniques based on total order broadcast.
IEEE Trans. Knowl. Data Eng., 17(4):551-566, 2005.

[14] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
G. Alonso. Database replication techniques: A three
parameter classification. In 19th IEEE Symposium on
Reliable Distributed Systems, pages 206—217, Oct.
2000.

[15] V. Zuikeviciute and F. Pedone. Revisiting the
database state machine approach. In Workshop on
Design, Implementation, and Deployment of Database
Replication (in VLDB 2005), Aug 2005.

