
Replication Tools in the MADIS Middleware ∗

L. Irún-Briz1, J. E. Armendáriz2, H. Decker1, J. R. González de Mendı́vil2, F. D. Muñoz-Escoı́1

1Instituto Tecnológico de Informática 2Depto. de Matemática e Informática
Universidad Politécnica de Valencia Universidad Pública de Navarra

46022 Valencia, SPAIN 31006 Pamplona, SPAIN
{lirun, hendrik, fmunyoz}@iti.upv.es {enrique.armendariz, mendivil}@unavarra.es

Abstract
To deal with consistency in replicated database
systems, particularities of the chosen target envi-
ronment and applications must be considered. To
this end, several replication protocols have been
discussed in the literature, each one requiring a
different set of data to be maintained for each
replicated object or for each transaction being ex-
ecuted. For instance, many protocols need to col-
lect the writeset of each transaction.
In this paper, we describe the MADIS middleware
architecture and its support for transaction man-
agement provided to its replication protocols.

1 Introduction
There are two approaches for building a replication support
for databases in a share-nothing case. The first one consists
in adding or modifying some components of the DBMS
core at each replica. Its main advantages are a good perfor-
mance, since the DBMS may provide direct access to the
information needed by replication protocols, and that the
solutions to be provided require the addition of a minimal
amount of code. On the other hand, this approach also im-
plies that the internal architecture of the target DBMS has
to be carefully studied and the resulting solution would be
DBMS-dependant, i.e., it is difficult to port such a solution
to other DBMSes.

The second approach tries to implement the replication
support in a middleware. In this case, some performance
will be lost, since the information needed by the repli-
cation protocol regarding transactions and accessed data
items has to be obtained using the standard API provided
by the DBMS; i.e., using SQL. Thus, many optimisations
that are available in the previous approach cannot be used
in a middleware. However, this second case also provides
some advantages, being portability the most important one.

There are many examples of systems that have provided
replication support using one of these approaches. For in-
stance, the Dragon [4] and Escada [20] projects required

∗This work has been partially supported by the Spanish grant
TIC2003-09420-C02 and EU grant FP6-2003-IST-2-004152.

both some changes to the DBMS core in order to provide
its replication support. The middleware alternative has also
been used by many research groups, like the Distributed
Systems Laboratory of the Technical University of Madrid
[12], and projects, like C-JDBC [13], or GlobData [8]. Ad-
ditionally, projects like GORDA [21] are developing repli-
cation support for these two environments. This is very
interesting since it will allow a direct comparison between
both approaches.

This paper describes some components of the repli-
cation support provided in the MADIS middleware [9],
a replication solution based on the second approach de-
scribed above. This middleware is being implemented in
Java and provides a JDBC interface to its client applica-
tions. Its current release works on top of PostgreSQL, but
uses only a JDBC interface and some stored procedures and
triggers to access the database. So, it will be easily portable
to other DBMSes. Some parts of our architecture are de-
scribed in the following sections, particularly the support
needed for collecting transaction writesets and for notify-
ing the middleware when a transaction gets blocked and for
allowing the termination of ongoing transactions.

The rest of the paper is structured as follows. Section
2 describes the structure and functionality of MADIS. Sec-
tion 3 describes the schema modification that MADIS pro-
poses to aid a local consistency manager (CM). Section 4
outlines a Java implementation of the CM, in the form of
a standard JDBC driver. In section 5 a performance anal-
ysis is included, presenting a comparative study of a Post-
greSQL database with the MADIS schema modification.
Section 6 compares our approach with other systems and
section 7 summarises the paper.

2 The MADIS Architecture
The MADIS architecture is composed by two main lay-
ers. The bottom one (or MADIS DBlayer) generates some
extensions to the relational database schema, adding some
fields in some relations and also some tables to maintain the
collected writesets and (optionally) readsets of each trans-
action. These columns and tables are automatically filled
by some triggers and stored procedures that must be in-
stalled, but they only use standard SQL-99 features and

can be easily ported to different DBMSes. Thus, the ap-
plication layer will see no difference between the MADIS
JDBC driver and the native JDBC driver.

The top layer is the MADIS Consistency Manager (CM)
and is composed by a set of Java classes that provide a
JDBC-compliant interface. These classes implement the
following JDBC interfaces: Driver, Connection, State-
ment, CallableStatement, ResultSet, and ResultSetMeta-
Data. They are used to intercept all invocations that could
be relevant for a database replication protocol. The invo-
cations made on other interfaces or operations are directly
forwarded to the native JDBC driver (the PostgreSQL one,
in our case). Besides these classes there exists a Core class
(or RepositoryMgr) that is also able to provide a skeleton
for this layer that maintains the rest of classes and gives
also support for parsing the SQL sentences in order to mod-
ify them in some cases.

The database replication protocol (or consistency proto-
col, on the sequel) has to be plugged into this CM, and it
has to provide a ConsistencyProtocol interface to the CM,
and it may implement some Listener interfaces in order to
be notified about several events related to the execution of
a given transaction. This functionality will be described in
section 4.

Figure 1 shows the overall layout of the MADIS archi-
tecture.

Extended
Schema

Original
Schema

Consistency
Manager
(JDBC Driver)

User Application

Standard JDBC Driver

Jdbc interfaces Consistency
Protocol

Figure 1: MADIS architecture.

Take into account that the consistency protocol can also
gain access to the incremented schema of the underlying
database to obtain information about transactions, thus per-
forming the actions needed to provide the required consis-
tency guarantees. The consistency protocol can also manip-
ulate the incremented schema, making use of the provided
database procedures when needed.

Finally, this protocol is also responsible of managing the
communication among the database replicas. To this end, it
has to use some group communication toolkit that provides
several kinds of multicast operations. Our current proto-

cols need at least a FIFO reliable multicast, plus a FIFO
atomic, and also uniform variants of them, according to the
multicast descriptions given in [6].

3 The MADIS DBlayer
The MADIS DBlayer is an extension of the original schema
of a given database that provides the following items:

• Metadata information is collected in a second table for
each one of the original database tables. This addi-
tional table maintains a global identifier for its asso-
ciated original record, a version number, the identifier
of the transaction that has generated the latest version
of such an item, and the timestamp for this latest up-
date. This additional table is called MADIS Meta Tj

if the original table was Tj .

• A global TrReport table (or per-transaction, depend-
ing on the overall load) is also needed to collect the
writeset of each transaction. The contents of this table
are automatically filled by a set of database triggers
that are executed when an update, delete, or insert op-
eration is made by the target transaction. These trig-
gers are disabled when the transaction being managed
corresponds to the application of a remote update on
the local database replica. To this end, the consistency
protocol has to set a flag when a transaction is initiated
in order to avoid the use of such triggers.

A detailed description of these two kinds of tables is
provided in [10], we only give now a minimal description
needed to explain the overall helping mechanisms provided
by our middleware for developing replication protocols.
These mechanisms are the writeset collection, the detec-
tion of conflicts between transactions, and the mechanisms
needed for cancelling ongoing transactions; i.e., rolling
them back.

3.1 Writeset Collection
As stated above, MADIS introduces a set of new triggers
in the database schema definition. Some of these triggers
are devoted to the generation of metadata information as,
for instance: (i) version numbers that are increased each
time an update has been made, (ii) setting timestamps, or
(iii) writing the identifier of the latest updating transaction.
However, these metadata updating triggers are quite trivial,
and the interested reader could refer again to [10] to get a
thorough description of them.

The writeset collection is performed defining three trig-
gers for each table Ti in the original schema. They insert
in the TrReport table the information related to any write-
access to the table performed by the executing transactions.

The writeset collector (WSC) triggers are named
WSC I Ti, WSC D Ti, and WSC U Ti, and its definition
allows to intercept any write access (insert, delete or up-
date respectively) to the Ti table, recording the event in the
transaction report table (TrReport).

The following example shows the definition of a basic
WSC I trigger, related to the insertion of a new object.
Note that the trigger executes the procedure getTrid() to
obtain the current transaction identifier. The example in-
serts a single row in the TrReport table for each insertion
in the table mytable. The execution of the invoked proce-
dure causes the DBMS to insert in the TrReport table the
adequate rows, in order to keep track of the transaction ac-
tivities.

CREATE TRIGGER WSC I mytable
BEFORE INSERT ON mytable
FOR EACH ROW EXECUTE
PROCEDURE tr insert(mytable,
getTrid(), NEW.l mytable oid);

Deletions and updates must also be intercepted by
means of similar triggers. Note also that the actual inser-
tion of the data into the TrReport table is made by a stored
procedure called tr insert().

Finally, when an object is deleted, the corresponding
metadata row must be also deleted. To this end, an addi-
tional trigger is also included for each table in the original
schema.

3.2 Detecting Transaction Conflicts
In many database replication protocols we may need to ap-
ply the updates propagated by a remote transaction. If sev-
eral local transactions are accessing the same data items
that this remote update, such remote update will remain
blocked until those local transactions terminate. Moreover,
if the underlying DBMS uses a multiversion concurrency
control combined with a snapshot isolation level [2], such
a remote update is commonly aborted, and it has to be reat-
tempted until no conflicts arise with any local transaction.
Additionally, in most cases, the replication protocol will
end aborting also such conflicting local transactions once
they try to commit. As a result of this, it seems appropriate
to design a mechanism that notifies to the replication pro-
tocol about conflicts among transactions, at least when the
replication protocol requires so. Once notified, the replica-
tion protocol will be able to decide which of the conflicting
transactions must be aborted and, once again, a mechanism
has to be provided to make possible such abortion.

To this end, we have included in the MADIS DBlayer
some support for detecting transaction conflicts that have
produced a transaction blocking. It consists of the follow-
ing elements:

• A stored procedure named getBlocked() that looks
for blocked transactions in the pg locks view placed
in the PostgreSQL system catalog. It returns a set of
pairs composed by the identifier of a blocked trans-
action and the identifier of the transaction that has
caused such a block.

• An execution thread per transaction that is used each
time its associated transaction begins any operation

that might be blocked due to the concurrency con-
trol policy of the underlying DBMS. Take into account
that in multiversion DBMSes the read-only operations
cannot be blocked.

Thus, once a database connection is created, a thread
is also created and associated to it. Each time the current
transaction in a given connection initiates an updating oper-
ation, its associated thread is temporarily suspended, with
a given timeout. If such an updating operation terminates
before that timeout has expired, the thread is awakened and
nothing else needs to be done. On the other hand, if the
timeout is exhausted and the operation has not been con-
cluded, the thread is reactivated and then makes a call to
the getBlocked procedure. As a result, the replication pro-
tocol is able to know if the transaction associated to this
thread is actually blocked and which other transaction has
caused its stop.

This mechanism can be combined with a transaction pri-
ority scheme in the replication protocol. The O2PL [3]
BULLY variation described in [1] uses this priority scheme
as follows. Three priority classes are defined, with values
0, 1, and 2. Class 0 is assigned to local transactions that
have not started their commit phase. Class 1 is for trans-
actions that have started their commit, but whose updates
have not yet been delivered in the local node. Finally, class
2 is assigned for those transactions associated to delivered
writesets that have to be locally applied. Once a conflict is
detected, if the transactions have different priorities, then
that with the lowest priority is aborted. Otherwise, i.e.,
when both transactions have the same priority, both of them
are allowed to proceed. This replication protocol [1] is an
update everywhere, constant interaction, and voting pro-
tocol, following the classification given by [22]. Similar
approaches may be followed in other replication protocols
that belong to the UE-CI (update everywhere with constant
interaction) class.

3.3 Transaction Termination
A replication protocol may abort an ongoing transaction
cancelling all its statements. This implicitly rollbacks such
a transaction, and may be requested using standard JDBC
operations. If the transaction is currently executing a state-
ment, it may be aborted using another thread to request
such a cancellation.

4 Consistency Manager
The current Java implementation of the MADIS consis-
tency manager allows a pluggable consistency protocol to
intercept any access to the underlying database, in order to
coordinate both local accesses, and update propagation of
committed local transactions (and, consequently, the local
application of remotely initiated transactions).

In our basic implementation of MADIS, we implement
the consistency manager as a JDBC driver that encapsu-
lates an existing PostgreSQL driver, intercepting the re-
quests performed by the user applications. The requests

are transformed, and a new request is elaborated in order to
obtain additional information (as metadata). The user per-
ception of the result produced by the requests is also ma-
nipulated, in order to hide to the user applications the addi-
tionally recovered information. This mechanism allows the
plugged replication protocol to be notified about any ac-
cess performed by the application to the database, includ-
ing query execution, row recovery, transaction termination
requests (i.e. commit/rollback), etc. The protocol then has
a chance to take specific actions during the transaction ex-
ecution, in order to accomplish its tasks. To this end, our
consistency manager has a set of classes that implement the
following JDBC standard interfaces: Driver, Connection,
Statement, CallableStatement, PreparedStatement, Result-
Set and ResultSetMetaData. All these classes provide the
support needed by the replication protocol. Some of the
transformations that may request the protocol may imply
a modification of the sentence to be sent to the database.
This is accomplished using a parsing tree that can be easily
modified using a special interface.

4.1 Protocol Interface
The interaction between our consistency manager and the
plugged replication protocol is ruled by an interface with
operations to complete the following tasks:

• Protocol registration. The protocol has to be plugged
into the consistency manager using a registration
method. In this registration procedure it has to specify
with a parameter the set of events it is interested in.
Some of these events depend on the information that
has been put into the TrReport that was described in
section 3. The available events are:

1. RECOVERED: Some objects have been recov-
ered in a ResultSet. The protocol will receive an
extended ResultSet that also contains the OIDs
of the objects being recovered, and may use this
information for building the transaction readset,
if needed.

2. UPDATED: This event is similar to the previous
one, but reports the objects that have been up-
dated, instead of those that were read.

3. UPDATE PRE: The protocol will be notified
when the current transaction is going to initiate
an updating operation on the database. Thus, the
protocol may modify the update sentence at will,
if needed.

4. UPDATE POST: The protocol will be notified
after an update sentence has been executed.
Thus, it may read the current transaction report
for obtaining the set of updated objects. This is
an alternative way of doing the same as in the
event number 2 described above.

5. QUERY PRE: The protocol will be notified be-
fore a select operation is initiated in the database.
It may modify the query, if needed.

6. QUERY POST: The protocol will be notified
once a query has been completed. It may access
then the transaction report, if needed.

7. ACCESSED: The protocol will get all the ob-
jects accessed by the latest SQL sentence, in-
stead of the objects being recovered in its Re-
sultSet.

8. TREE: The protocol requests that the consis-
tency manager builds a parsing tree for each sen-
tence being executed. Later, the protocol may
ask for such a tree, modifying it when needed.

• Event requesting. There are also a set of explicit op-
erations that the protocol may use for requesting those
events that were not set at protocol registration time.

• Event cancellation. A set of operations for eliminat-
ing the notification of a given event to the currently
plugged-in protocol.

• Access to transaction writeset and metadata. A set
of operations that allow the full or partial recovery of
the current writeset or metadata for a given transac-
tion. Most of the protocols will need the transaction
writeset only at commit time in its master node, for
its propagation to the rest of replicas, but others may
need such data before and these operations allow this
earlier recovery, too.

This interface is general enough to implement most of
the replication protocols currently developed for databases.

4.2 Connection Establishment
In the figure 2, a UML sequence diagram is shown describ-
ing how a new MADIS connection is obtained.

Figure 2: Connection Establishment
DriverManager madis.Driver postgressql.Drivermadis.Connection postgresql.Connection

createConnection(url)

createConnection(url)
«create»

«create»
createConnection(url’)

«destroy»

«destroy»

pC

mC

mC
pC

madis.Core

newConnection(mC)

removeConnection(mC)

The sequence starts with a request to the DriverMan-
ager, and the selection of the MADIS JDBC Driver. Then,
the MADIS Driver invokes the MADIS Connection to be
built, indicating the underlying PostgreSQL connection
URL to be used. The constructor of the MADIS Connec-
tion builds a PostgreSQL Connection, and includes it as
an attribute. Finally, the MADIS Driver returns the new
MADIS Connection.

4.3 Common Query Execution
Application query executions are also intercepted by
MADIS, by means of the encapsulation of the Statement
class. As response of user invocations to “createStatement”
or “prepareStatement” the MADIS Connection generates
Statements that manage user query execution. When the
user application requests a query execution, the request is
sent to the consistency manager, which may call the pro-
cessStatement() operation of the plugged consistency pro-
tocol if it previously requested any of the * PRE or TREE
events.

Now, the consistency protocol may modify the state-
ment, adding to it the patches needed to retrieve some
metadata, or collect additional information into the trans-
action report. However, this statement modification is only
needed by a few consistency protocols, which also have the
opportunity to retrieve these metadata using additional op-
erations once the original query has been completed. Op-
timistic consistency protocols do not need such metadata
(like current object versions, or the latest update times-
tamps for each accessed object) until the transaction has
requested its commit operation. So, they do not need these
statement modifications on each query. The process for
queries is depicted in figure 3.

Figure 3: Query Execution

We recommend to access the metadata using a sepa-
rate query. Otherwise, the following additional steps are
needed:

1. The resulting SQL statement is executed, performing
a common invocation to the encapsulated JDBC State-
ment instance, and a ResultSet is obtained as a re-
sponse. The obtained ResultSet is also encapsulated
by MADIS, returning to the user application an in-
stance of a MADIS ResultSet. This MADIS ResultSet
contains the ResultSet returned by the JDBC State-

ment.

2. When the application tries to obtain a new record from
the ResultSet, MADIS intercepts the request, and no-
tifies about the new obtained object to the Core class.
This allows MADIS to notify the plugged protocol
about the row recovery. Consequently, in order to
keep the required guarantees, the protocol may mod-
ify the database, the state of the MADIS ResultSet,
or even abort the current transaction. In addition, the
MADIS ResultSet tasks also include the ”hidding” of
the metadata (included in the query) when the appli-
cation requests the different fields of the current row.

4.4 Commit/Rollback Requests
The termination of a transaction is also requested by the
user application. Either when the application requests a
commit or when a rollback is invoked, MADIS must inter-
cept the invocation, and take additional actions.

When the user application requests a commit operation
(see Figure 4), the MADIS Connection redirects the request
to the MADIS Core instance. Then, the plugged protocol
is notified, having then the chance to perform any action
involving other nodes, access to the local database, etc.

If the protocol concludes this activity with a positive re-
sult, then the transaction is suitable to commit in the local
database, and the MADIS Core responds affirmatively to
the Connection request. Finally, the MADIS Connection
completes locally the commit, and returns the completion
to the user application after the notification to the MADIS
Core using the doneCommit() operation. On the other hand,
a negative result obtained from the protocol activity will be
notified directly to the application, after the abortion of the
local transaction.

Take into account that the doneCommit() method is also
able to notify a unilateral abort, generated by the under-
lying database, and that this may allow that the plugged
protocols were able to manage such unilateral aborts, too.
This is the case of the BULLY protocol described in [1].

Finally, rollback() requests received from the user appli-
cation must be also intercepted, redirected to the MADIS
Core, and notified to the plugged protocol.

5 Experimental Results
As presented above, the proposed architecture is based on
the modification of the database schema of an existing in-
formation system. With this technique, the database man-
ager is the main responsible for generating and maintaining
the information needed by any pluggable replication pro-
tocol to accomplish the tasks of consistency maintenance,
concurrency control, and update propagation.

However, an important question to be discussed is the
cost to be paid by the system from obtaining such bene-
fits. This question, for our architecture, corresponds to the
degree of performance degradation when we consider dif-
ferent types of accesses.

Figure 4: Commit suceeded vs aborted

madis.
Connection

mC

madis.Protocolmadis.Corepostgresql.
Connection

pC
commit()

commit()

toCommit(mC)

okok

ok/aborted

toCommit(trid)

ok/aborted

commit()

rollback()

toCommit(mC)

abort
abort

toCommit(trid)

aborted

doneCommit(trid, result) doneCommit(trid, result)

5.1 Overhead Description
In spatial terms, the overhead introduced by the schema
modification may be easily determined. Considering the
trigger and procedure definitions as negligible, the main
overload in space is produced by the MADIS Meta Tj ta-
bles. These tables contain at least two identifiers (local
and global object identifier) and the rest of fields are used
by each one of the pluggable protocols. We consider that
many protocols can be implemented with the support of a
transaction identifier, a timestamp, and a sequential version
number. Finally, the transaction report maintains the infor-
mation regarding the executed transactions just during the
lifetime of such transactions. Thus, in global terms, this
does not constitute a spatial overhead by itself.

Regarding computational overhead, our architecture in-
troduces a number of additional SQL sentences and com-
putations for each access to the database.

This overhead can be classified into four main cate-
gories:

• Insertion. The overhead is mainly caused by the in-
sertion of a row into the TrReport table for registering
such insertion. An additional row is also inserted in
the MADIS Meta Tj . Thus, for each row inserted in
the original schema, two additional rows are inserted
by the schema extension.

• Update. When updating a row of the original schema,
there will be inserted an additional row in the TrReport
table. However, in this case there will not be needed
to insert into the MADIS Meta Tj table any row, but
just an update.

• Deletion. In this case, an additional row must be
inserted in the TrReport table to register the dele-
tion, and the deletion of the corresponding row in
MADIS Meta Tj should be also deleted (although in
a deferred mode).

• Selection. When selecting a row from the original
schema, there is no need to alter the MADIS Meta Tj

table at all. In addition, depending on the particular
replication protocol plugged in the system1, it can also
be avoided any insertion in the TrReport table.

Summarizing, Insertion, Update and Deletion need ad-
ditional insertions on the TrReport table, and other op-
erations with the corresponding MADIS Meta Tj table.
In contrast Selection overhead varies depending on the
plugged protocol. Since many database replication proto-
cols do not need the transaction readsets, readset collection
will not be analysed here.

5.2 Performance Results
The experiments consisted in the execution of a Java pro-
gramme, performing database accesses via JDBC. The
schema used by the programme contains four tables (CUS-
TOMER, SUPPLIER, ARTICLE, and ORDER). Each ar-
ticle references a row in the SUPPLIER table, and each
ORDER references a CUSTOMER row, as well as an AR-
TICLE row. Each table contains additional fields as item
description (a varchar[30]).

A programme execution starts with the database con-
nection, and schema creation. Then, a number of ”train-
ing” transactions are executed, ensuring that all Java classes
are loaded, and then three measurements are done. Each
measurement calculates the time taken by numtr sequential
transactions (performing a number of INSERTIONS, UP-
DATES or DELETIONS depending on the required mea-
surement).

For each measurement, the experiment provides three
values: the total cost of the numtr transactions of type I, U
and D respectively, each one acting with numrows rows per
table. These performance tests have been taken in a system
with an Intel Pentium 4 processor at 2.8 GHz, with 1 GB
of RAM, and a hard disk of 7200 rpm with an average seek
time of 8.5 ms, running a Fedora Core 2 operating system.
The DBMS is PostgreSQL 7.4.1.

We observed that deletions are the most overheaded op-
erations in our core implementation. To determine with a
more descriptive sense such overhead, we calculated the
times per transaction (figures 5(a) and 5(b)).

The results stabilised with a few of transactions, which
indicates that the system does not suffer appreciable per-
formance degradation along time. In addition, it is shown
in figure 5(a) that the overhead per transaction is always
lower than 80 ms in our experiments. In addition, figure

1Replication protocols just based on the writeset will not need records
about the objects read by a transaction.

Figure 5: Mean Overhead

overhead (in ms)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

-20

 0

 20

 40

 60

 80

 100

 120

 140

ms

(a) Absolute (ms) Overhead

overhead (in %)

MADIS I
MADIS U
MADIS D

 0 10 20 30 40 50 60 70 80 90

numtr 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

numrows

 0

 100

 200

 300

 400

 500

 600

 700

%

(b) Relative (%) Cost

5(b) shows that the sensibility for numrows is unapprecia-
ble (the system scales well in respect to managed rows) for
any of the transaction types (I,U, and D).

We conclude that our implementation of the MADIS
database core introduces bounded overheads for Insertion
and Update operations. On the other hand, Delete opera-
tions imply a cost that is 6 times higher than in a native
JDBC driver.

6 Related Work
As already outlined in section 1 there are multiple ap-
proaches to implement a support for database replication.
The best option for getting a good performance is to mod-
ify the DBMS core, like in the Postgres-R [11], Dragon [4]
and Escada [20] projects. However, such solutions cannot
be seamlessly ported to other DBMSes.

Several examples of middleware approaches can be
found in the literature:

• GlobData [17, 8] is a middleware providing a subset
of the standard ODMG API for Java applications. The
system also included a heavy Relational-Objectual
transformation. This allows the applications to make
use of an object-oriented database schema, and the
system translates this schema to a relational database.
The system, although allows multiple consistency

protocols to be plugged into, provides a propietary
API for the applications to gain access to distributed
databases, reducing the generality of the solution.

• Other specific solutions for Java, implemented as a
JDBC driver: like C-JDBC [13] and RJDBC [5]. The
former emphasizes load balancing issues, whilst the
latter puts special attention to reliability. The imple-
mentation of these approaches are centred in Java, and
porting the solution to other platforms has a high com-
plexity, due to the characteristics of the specific tech-
niques.

• PeerDirect [14] uses a technique based on database
triggers and procedures to replicate a database. How-
ever, the system only includes one consistency proto-
col, providing particular guarantees, well fitted for a
limited kind of applications.

• Other papers [12] have focused on replication proto-
cols that could be easily implemented in a middle-
ware.

Besides this, another good characteristic of these mid-
dleware solutions is that they provide some interface for
replication protocols, and multiple protocols can be de-
signed and tested on them. A future work in the MADIS
project will be the design and implementation of replication
protocols for mobile databases, or the implementation and
testing of some well-established solutions in this research
area [15, 16, 7]. These protocols are specially appropriate
for partitionable environments, and they could be compared
with the hybrid replication and reconciliation protocols be-
ing designed in the DeDiSys project [19, 18].

DeDiSys is a research project focused on the trade-off
between availability and consistency in partitionable dis-
tributed systems[18]. It uses a synchronous replication
model in a healthy system and an asynchronous one when
failures arise, so its replication protocols could be consid-
ered as hybrid. Additionally, when partitions are merged
a reconciliation protocol is needed to bring the system to
a consistent state. MADIS could be used as a persistent
storage layer for a DeDiSys system if special replication
protocols were implemented on it. At least, we will be
able to compare the DeDiSys-specific replication protocols
(specially tailored for a consistency model based on con-
straints, and dealing with object replication instead of data
replication), with those designed for mobile databases in
MADIS.

7 Conclusions
MADIS is a middleware designed to give support to a wide
range of replication protocols, using a minimal database
schema extension and some triggers, stored procedures and
rules in order to collect the metadata needed by such pro-
tocols.

The MADIS consistency manager makes use of the au-
tomatically collected information in the database, notifying

such accesses to a plugged replication protocol. It is possi-
ble to include a wide range of protocols in the system, each
one providing different guarantees and behaviours to the
user transactions. The implementation of this upper layer
is simple enough to be ported from one platform to another
with a minimal cost.

In this paper, we have described the MADIS architec-
ture and its current implementation. This implementation
allows user applications to access in a standard way a repli-
cated database without needing to include changes in their
code.

In the future we plan to use the MADIS middleware for
testing several replication protocols, particularly some sim-
plifications of the object replication and reconciliation pro-
tocols designed in the DeDiSys project, and other protocols
for mobile databases.

References
[1] J. E. Armendáriz, J. R. Juárez, I. Unzueta, J. R. Garitagoitia,

F. D. Muñoz-Escoı́, and L. Irún-Briz. Implementing repli-
cation protocols in the MADIS architecture. In Proc. of
the XIII Jornadas de Concurrencia y Sistemas Distribuidos,
Granada, Spain, September 2005. Accepted for publication.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data,
pages 1–10, San Jose, CA, USA, May 1995.

[3] M. J. Carey and M. Livny. Conflict detection tradeoffs for
replicated data. ACM Trans. Database Syst., 16(4):703–746,
1991.

[4] École Polytechnique Fédérale de Lausanne. Dragon
project web page, 2003. Accessible in URL:
http://lsrwww.epfl.ch/˜ dragon.

[5] J. Esparza-Peidro, F. D. Muñoz-Escoı́, L. Irún-Briz, and
J. M. Bernabéu-Aubán. RJDBC: A simple database repli-
cation engine. In 6th Int. Conf. Enterprise Information Sys-
tems (ICEIS’04), April 2004.

[6] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. Mullender, editor, Distributed Sys-
tems, chapter 5, pages 97–145. ACM Press, 2nd edition,
1993. ISBN 0-201-62427-3.

[7] J. Holliday, D. Agrawal, and A. El Abbadi. Disconnection
modes for mobile databases. Wireless Networks, 8(4):391–
402, July 2002.

[8] Instituto Tecnológico de Informática. GlobData web site.
Accessible in URL: http://globdata.iti.es, 2002.

[9] Instituto Tecnológico de Informática. MADIS web site. Ac-
cessible in URL: http://www.iti.es/madis, 2005.

[10] L. Irún-Briz, H. Decker, R. de Juan-Marı́n, F. Castro-
Company, J. E. Armendáriz, and F. D. Muñoz-Escoı́.
MADIS: a slim middleware for database replication. In
Proc. of the 11th Intnl. Euro-Par Conf., Monte de Caparica
(Lisbon), Portugal, September 2005. Springer.

[11] B. Kemme. Database Replication for Clusters of Worksta-
tions. PhD thesis, Swiss Federal Institute of Technology,
Zurich, Switzerland, 2000.

[12] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-
Peris. Middleware-based data replication providing snap-
shot isolation. In Proc. of ACM SIGMOD Int. Conf. on Man-
agement of Data, Baltimore, Maryland, USA, June 2005.

[13] ObjectWeb. C-JDBC web site. Accessible in URL: http://c-
jdbc.objectweb.org, 2004.

[14] PeerDirect. Overview & comparison of data replication ar-
chitectures (white paper), November 2002.

[15] S H. Phatak and B. R. Badrinath. Multiversion reconcilia-
tion for mobile databases. In Proc. of the 15th International
Conference on Data Engineering, pages 582–589, March
1999.

[16] N. Preguiça, C. Baquero, J. L. Martins, F. Moura, H. Domin-
gos, R. Oliveira, J. O. Pereira, and S. Duarte. Mobile trans-
action management in Mobisnap. Lecture Notes in Com-
puter Science, 1884:379–386, 2000.

[17] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vi-
cente. The GlobData fault-tolerant replicated distributed ob-
ject database. In Proceedings of the First Eurasian Confer-
ence on Advances in Information and Communication Tech-
nology, Teheran, Iran, October 2002.

[18] R. Smeikal and K. M. Göschka. Trading constraint consis-
tency for availability of replicated objects. In Proc. of 16th
Intl. Conf. on Parallel and Distributed Computing and Sys-
tems, pages 232–237, 2004.

[19] Technical University of Vienna. DeDiSys project web page,
2005. Accessible in URL: http://www.dedisys.org/.

[20] Universidade do Minho. Escada project web page, 2003.
Accessible in URL: http://escada.lsd.di.uminho.pt/.

[21] Universidade do Minho. GORDA project web page, 2005.
Accessible in URL: http://gorda.di.uminho.pt/.

[22] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
G. Alonso. Database replication techniques: A three pa-
rameter classification. In Proc. of the 19th IEEE Symposium
on Reliable Distributed Systems (SRDS’00), pages 206–217,
October 2000.

