An Exchanging Algorithm for Database Replication Protgcol
A middleware metaprotocol for multiple concurrent prottsco

F. Castro-Company and F. D. Mufioz-Escoi
Technical Report ITI-ITE-07/02

January 25, 2007



Abstract

Database replication task is accomplished with the aid n§istency protocols. This work starts addressing
the study of a metaprotocol that manages consistency miotechanges. This is accomplished by means
of a study of compatibility among several consistency prot® that may be working concurrently and with
a framework that allows multiple protocols execution, whammpletes the objective of our study.



Contents

Introduction

1.1 Motivation . . . . . . . e e e

1.2 Scenario . . . . . . . e

1.3 Framework . . . . . . . e
1.3.1 CommunicationS . . . . . . . ... e
1.3.2 Concurrent protocols . . . . . . . . .. e e
1.3.3 Transactions and SeSsSioNS . . . . . . . ..o e
1.3.4 Conflictsdetection . . . . . . . . . . . . ... e e
1.3.5 Metadata maintenance . . . . . . . . .. e e
1.3.6 Optimizations . . . . . . . . . e

Metaprotocol basic operations

2.1 Stopprotocol . . . . .. e
2.1.1 Fault tolerance and additional considerations e

2.2 Startprotocol . . . . . ..

2.3 Change protocol . . . . . . . . . . e e
2.3.1 Otherconsiderations . . . . . . . . . . . . . . . e

Protocols metadata description

3.1 Protocols classification and duration descriptors . ...... . . . . . .. ... .. ... ..

3.2 Protocolsmetadata . . . . . . . ... e
3.2.1 SiDiprotocols . . . . . .. e e e
3.2.2 DragonprotoCols . . . . . . . ..
3.2.3 Lin—Kemmeand Patifio—Jimenez . .. .. ... ... ... ... 0o ....
3.24 ElAbbadi—Toueg . . . . . . . . . . e
3.25 Agrawal —ElAbbadi—Steinke . . . . ... ... ...
3.2.6 Jimenez — Patifio— Kemme—Alonso . . . . . . . ... .. aae o
3.2.7 Pacitti—Minet—Simon . . . . .. ...
3.2.8  SUMMaAry . . . . e e e e e e e,
3.29 Basicmetadata . . ... . . .. ... e

4  Architecture

4.1 Metadata Structures . . . . . . . . L e
4.1.1 Completion and serialization . . . . . . . . . . ... e

4.2 Architecture . . . . . . e e e e
4.2.1 Protocol encapsulation . . . . . .. ... e
4.2.2 ConcurrenCy OptioNS . . . . . . .o e e e e
4.2.3 Implementation considerations . . . . . . . .. ... L e e



CONTENTS

4.3 Conflicts detection and resolution . . . . . . . . ... L
4.3.1 Inter-protocol conflict resolution protocol . . . . . .. .. ... L.
4.4 The metadata managers and the transaction metadata . . . . . ... ... .. ....
4.4.1 Object metadata collection . . . . . . . . . .. . ... .
4.4.2 Transaction metadata collection . . . . . . ... . ... ..o

5 Summary and further considerations

A Sequential protocol exchange
Al Startprotocol . . . . . .. e
A.1.1 Firstprotocol installerwins . . . . . . . . . ... .
A.1.2 \otinginstalling protocol . . . . . . . . ... ..
A.2 Change protocol . . . . . . . . . . e e



List of Figures

11
1.2
13
1.4
15
1.6
1.7

2.1

4.1
4.2
4.3
4.4
4.5

Al

Consistency COMpPOoNeNtS. . . . . . . . . . o e e 4
Message distributor. . . . . . . .. e 5
Metaprotocol. . . . . . . . . . e 6
Framework for ageneral changing. . . . . . . . . . . . ... 7
Conflict between protocols. . . . . . . . . . . e e 9
Metaprotocol. . . . . . . . . e 10
COomMMON ACCESSES SPACE. . .« v v v v e e e e e e e e e 11
Startanewprotocol. . . . . . ... e e 18
Architecture classes model. . . . . . . . . . 35
Protocol components. . . . . . . . . . e e 35
Architecture for sequential changes objectmodel. . ...... . .. . ... ... ... ... 37
Architecture for parallel changes objectmodel. . . . ...... . ... ... ... ... .. 37
Metadata Managers. . . . . . . . . . . . e e e 43
Start protocol without explicit message. . . . . . . . . . .« .. . . .. . 0. 51



List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

FOBmetadata . . . . . . . . . . . . e e 22
COLUmetadata . . . . . . . . . . . e e e e e e 23
SERmetadata . . . . . . . . . . . e 23
CSmetadata . . . . . . . . . . e e 24
Slmetadata . . . . . . . . . . e e 24
SI-Repmetadata . . . . . . . . ... e 25
El Abbadi—-Toueg metadata . . . . . . . . . . . . . . . . . . . . e 25
Naive Agrawal-El Abbadi—Steinke metadata . . . . . . . . ...... . ... ... ... .. 26
Pessimistic Agrawal-El Abbadi—Steinke metadata . . ...... . . . .. .. ... ... .. 27
Optimistic Agrawal—-El Abbadi—Steinke metadata . . ...... . . .. ... ... ... .. 27
Jimenez — Patifio — Kemme — Alonso metadata . . . . . .. .. ... ... ...... 28
Deferred Pacitti— Minet — Simon metadata . . . . ... .. ...... .. ... ... ... 28
Immediate Pacitti— Minet—Simonmetadata . . . . . . .. ....... .. ... ... ... 28
Acronyms for protocols . . . . . . ... L e 29
Metadata summary . . . . . . . . . e e 30



Chapter 1

Introduction

1.1 Motivation

During recent years a series of replication protocols hameared in order to fullfill the task of consis-
tency management in replicated systems. These protocolsecalassified according to several parameters
(architecture, interaction, termination [25]) and they ¢ee used with applications that deal with different
database transaction isolation levels (serializable] ceanmitted, snapshot).

We address here a wrapping task: We want to describe a matapk@apable to provide us with ad-
ministration operations over protocols. These admintisinaoperations are: stop protocol, start protocol
and change protocol.

From now on, we’ll use the following definition for a metapyool:

Definition: Metaprotocol

A metaprotocol is an algorithm that allows several consisteprotocols to be executed over
the same database.

A metaprotocol allows the system to execute two concurnamisactions that use two different repli-
cation protocols; it allows a transaction that was startsiddgia protocol to continue its execution using
another protocol; it allows the system to finish a given protavaiting for all started transactions to stop
and to start a new protocol letting all new transactions ®itisThe first example refers to concurrent pro-
tocols execution. The two next ones refer to a protocol cadng they are tightly related to the concurrent
protocols execution case because they allow protocol @sangt to be necessarily executed sequentially.

Our goal is to obtain a light and efficient metaprotocol thettiaves these tasks with minimum func-
tional impact for the users. As most consistency protocshathges and weaknesses depend on variable
parameters ([17], [13]), such a metaprotocol is an esdgmgae to turn a distributed database system into
an adaptable one.

This goal’s scope is general but we can easily justify ab$ftaken in this direction it if we aim towards
complex and large systems:

It is not unusual for a large organisation to use an infororasiystem that accesses common database
schemas.

For us it is indifferent whether the system is composed afds@lone applications that cover special business neeitiss@n
enterprise suite.



CHAPTER 1. INTRODUCTION

Good examples of common schemas are those regarding torngtafhation or corporate resources. Staff
information can be used for administrative tasks as wellaaddgin and profiling and access purposes.
A corporate resources catalog goal is to centralize inféionaabout headquarters, office branches, pro-
fessional categories and all sorts of business relatednafoon classified by the organisation. While the
administrative personnel will need the latest versionsxaiusive accesses, other employees and external
users will need a less accurate access to data.

The first elements a developer finds to overcome this sceaggitransaction isolation levels. All com-
petitive database management systems currently offetisnllevels. On the applications lay@éDBC, for
example, allows connections for Java applications to @ses#ctional database capabilities.

Transactions and isolation guarantees are applicable ifogybe slatabase server however, as organisations
grow, the information system infrastructure has to scatth@r. The first steps taken to improve scalability
usually consist of adding CPU and memory power to the semwvesdion we realize that this is not enough.
Growth implies an increase of the number of users thus araser of the number of offices accessing the
server in a way that finally leads to the use of replication.

Replication can be embedded either in the underlying datab@anagement system or in a middleware
layer between applications and the database. Whatevevagpis taken the replication system has to allow
transaction isolation guarantees and, frequently, variat(see [7]) of the ANSI ones (see [28]) are more
convenient.

Imagine the case of data marts or data warehouses; othemptesare monthly payroll calculations and
closing of financial years. While the data warehouses mosgd guarantees similar to those offered by
control version systems all the time, the last examples nagch more restrictive guarantees during a cer-
tain time intervals but not always.

As we will cite and display later there exist different atelstures and plenty of replication protocols
in the literature. As each architecture displays advargtagel disadvantages when trying to solve any of
the above concerns, recent studies such as [19] and [27]arenppotocols performance. [19] conclusions
expose ROWAA approach as the most suitable for the genesalarad [27] is based on total order broadcast
techniques.

While agreeing with these results, regardless of any ptallie improvement on network bandwith we find
that there will always be a lot of scenarios such as the twongkes depicted before that benefit from lazy
and epidemic approaches. Obviously ROWAA and total ordeadbcasts would update steadily in all nodes
a change performed over a table of streets and cities in awaiipe resource catalog but a deferred update
would imply no functional burden and this update would causeh less interferences in the performance
of other applications.

So, instead of proposing a consistency protocol with gémpengposes, we have designed a metaproto-
col that allows a representative set of consistency prdgatwowork concurrently. This metaprotocol is a
solution to the above concerns as applications will be abtake advantage of the protocol that better suits
their needs. Not only the best protocol for the general casebe selected for an application but also it can
be changed for another one if the application access pathennges drastically or if the system overall per-
formance changes due to specific load variations or netwonkfiastructure migrations. These selections
and changes can be forced by an administrator followingrét®al and empirical studies or they can be
automatically triggered according to background perfarogaanalysis

The paper is organized as follows. In section 1.2 the gerseethario is presented. In section 1.3 we
list a set of desired capabilities and we make some considesaabout issues related to behaviour for the

2Selection issues are out of the scope of this study.



CHAPTER 1. INTRODUCTION

essential pieces of the system.

At this point the work follows two parallel paths that leadthe metaprotocol architecture.

One of them, described in chapter 2, presents the metaptatocninistrative operations (stop, start and
change) that allow changes in the working state of the paisodn order to approach the problem grad-

ually, firstly the state changes are considered sequestal §ppendix A) and later they are allowed to be
concurrent.

The remaining path of the study is shown in chapter 3. Here evfopn a study about the metadata in-

volved in protocol changes. A set of different protocolshndifferent characteristics is collected and then
each protocol information about metadata is used to find hlaeacteristics they all have in common.

Once this is done, operations and data (metadata) are cethbbnachieve concurrency effectively. This

is described by means of an architecture (including metadetnagement and execution control) for the
metaprotocol existence shown in chapter 4.

Chapter 5 summarizes results and contributions and ingjfurgher into the motivations of this research.

1.2 Scenario

Our scenario is composed of a setrafdesn; (sometimes called servers) such that [1, N]. User ap-
plications do not necessarily exist in these nddas they access the databases and possibly certain server
services in those nodes. Users as well as applications fereee to simply asisers Each user accesses
one of the nodes (always the same and typically the close$tsanthat each node has a given subset of the
users accessing certain data.

Data is composed of a set objects(o;, j > 1). Itis stored in the nodes’ databases (also cagubs-
itories) and it is replicated through the set of nodes completelyantigly. In partial replication, the set of
objects is different depending on the node or group of nodeanges are sent to a subset of nodes. In total
replication changes are sent everywhere.

Objects are replicated in order to optimize accesses ardateisistency is achieved with two means:
database transactional capabilities and consistencygquist

Accesses are organized in transactidfig,(i € [1, N|,k > 1). Transactions group a set of operations
as an atomic step in a way that all operations are apptiechfnit) or they are all aborted¢llback). Each
transaction is started by an user in one of the system node# andescribed with its readsetsgt) and
writeset (vset).

Consistency protocolsH,,, m > 1) replicate by means of communication protocols and guagant

consistency by means of consistency logic plus recoverjopots. They expand transactions through the
system in order to coordinate actions in each node to prahieleequired transaction isolation levels. These
levels are based on [10] and [7].
So, while consistency protocols are used to make transedtwoperties prevail through the system, com-
munication protocols take care of message delivery amaragts and recovery protocols are in charge of
maintenance during node crashes. All of them rely on merhijesotocols in order to add awareness of
node crashes and node joinings.

It is worth saying that consistency and recovery logic agétty coupled. In fact, many times both
tasks are considered and mentioned simplg@ssistency taskisecause recovery logic is usually highly

3See, for example, downloadddva WebStartich clients.



CHAPTER 1. INTRODUCTION

Communications Consistency
<----->
L]
S " b
- 1
- 1 A}
*. ! ‘\
- 1 Y
$§ ‘. “
Recovery
Membership
N R LT Ty

Figure 1.1: Consistency Components.

embedded inside the consistency logic. If nothing elseit $a our study we will also exploit this idea
whenever we mention consistency protocols.
All these components (see figure 1.1) are present in eachnsysbde.

In order to have a general idea of what kind of information asistency protocol manages, let us say
that some make use of the concept of ownership: even thougbliject is accessible everywhere, each
object belongs to, or it is controlled by, a certain nbddotice that this is not necessary for all protocols:
Other protocols use communication primitives that prevesdes from being managers of a certain set of
objects. In any case, consistency protocols manage adlifioformation outside of the scope of the users

information. This information is callethetadata

Definition: Consistency protocol metadata

Metadata is additional information (persistent or transie associated with each object or
transaction.

This information can be versions, timestamps, transaatioontext and the like.

Protocols, objects and transactions model general infiomand processing. From a strictly practi-
cal point of view, nodes are usually servers located at @iffedata centers. The kind of users and the
information stored in the databases depend on the businesaformation system exploits. Applications
range from ATM machines to online interconnected shopditeare systems for patients clinical history
management, logistical administration of stock stores, et

1.3 Framework

Initially, we assume we have a system for data replicatiochi{sasGlobData[2] or Madis[4]) prepared to
hold a consistency protocol per data repository.

This system will provide an interface to the user in order wkereplication as transparent as possible.
These user calls will be captured by some means and therstemsy tasks will be performed.

In these systems, allowing different sets of data to be aeckwith different protocols is straightforward

because each repository is associated to a protocol. Fogke sepository, if we want to change a protocol
for another one, or better if we want to allow protocols canency we’ll need additional components and

“i.e. the one where a user requested its creation.



CHAPTER 1. INTRODUCTION

an additional architecture wrapping the original one towalsuch data exploitation.

Recovery logic is suited to each consistency protocol antl e@nsider it as a portion of the consis-
tency logic. Other parts, administration oriented, candesaered as common and will be the core of the
metaprotocol architecture.

1.3.1 Communications

As communications logic is usually common, communicatiootqrols such as [1], [3] or [5] offer a set
of general communication primitives (unicast, broadcasholticast) that provide certain message delivery
guarantees (reliability, atomicity, uniformity) [14].

We consider the communications suite as a black box as wetatdte currently available suites con-
tain operations to fullfill most consistency protocols riegments.
Between the chosen communications suite and the protdcislsiécessary to add a new component that
distributes network messages to their appropriate carsigtprotocol destination.

Protocol messages have to be wrapped inside general medbkagearry information about the consis-
tency protocol context.

| Protocol ID | Message Type Message]

Once the message is sent to @emmbDistributor it unpacks it and it is delivered to the corresponding
protocol (See figure 1.2).

m Consistency Protocol <— CommbDistributor m

Figure 1.2: Message distributor.

Furthermore, for the sake of efficiency a good choice for tisimon API will include a communi-
cations suite that is able to group the messages that neegl ¢odered from the ones that need not to.
For example: no ordering is required between messages fifbenetht protocols and ordering is required
between metaprotocol administrative messages and thefréstm.

1.3.2 Concurrent protocols

Protocol concurrency motivations were explained in theothiiction. Typically different applications ac-
cessing the same data repository are able to benefit fromiffeesdt protocols guarantees. One important
subtask of a multi-protocol environment is to allow an aggiion to change the consistency protocol it uses.
A protocol change may be necessary due to several reasonsnianing system detects that the response
times and the abort rates are not adequate; a given apgpiidatiows for sure which protocol is more suit-
able for its needs; a given transaction access pattern isérs&d with a certain protocol.

There are several ways to change a protocol Bgywith another one (say%): sequentially and in
parallel.



CHAPTER 1. INTRODUCTION

Sequential protocol exchange

This means thaP; is stopped in all the nodes and thBnis started.

Definition: Sequential protocol exchange

For P, transactions {y;) to start, all P; transactions {; ;) must have had finished so that 9
andt,; are concurrent.

During P;’s stopping, something has to be done with user calls to ematv transactions:
e Make them wait: Create transaction calls are blocked until the protocstapped.
e Make them abort: Create transaction calls throw an exception.

The second choice is suitable to completely stop the systemmwhen no other protocol is intended to
be loaded) and the users are reluctant to stop their accesses

The first choice needs to know when the protocol is stoppedratopol is stopped when no locabr
remoté transactions exist in execution. As soon as this happeeate transaction calls can be unblocked.

This can be achieved with a transaction counter. For theteoua work, protocols must inform the

MetaProtocol about the creation and finalization of tratisas. As soon as a node counter reaches zero the
rest of the nodes should be informed. See figure 1.3 for aalinitaft of the architecture design.

Communications —
Network Communications

I MetaProtocol }—{ CommbDistributor I

Nodel

=

Figure 1.3: Metaprotocol.

Parallel protocol exchange

An ideal parallel changing implies not blocking theeate transaction calls while the previous protocol
is still running and being able to turnta transaction into @, one. This change has to be transparent to
the user and then, the object they obtain to perform operatie to be a proxy of the real protocol that
distributes user calls to the appropriate protocol aftefguming control tasks.

When no change is being performed, the proxy simply reditedthen the changing is taking place it
distributes calls to their corresponding protocol:

5A local transaction is a transaction whose create trarmactll was invoked in the local node.
A remote transaction in node; was created in another node, j # ¢ and has sent a message that has already been delivered
in nodes.



CHAPTER 1. INTRODUCTION

e New transactions use protocss.
e Already created transactions can take one of the followivaydpproaches:

a) Use protocolP;: Sooner or later all remaining, transactions would finish and the change
would be completed.

b) Change fromP; to P, as soon as they can: This option helps the change to take gaaliey.

<<interface>>

DBA_Access

<<interface>> <<interface>>
MetaProtocol| |Consistency Protocol

A A

1

1 1

1 : a.2: decide who executes
1

1 1

control access
a.l: operation() |—I_ﬂ| a.3: operation()A
l MetaProtocoIr Protocol
User

b.1: choose protocol

Database

Protocols
maintenance

Figure 1.4: Framework for a general changing.

Figure 1.4 shows a more detailed architecture design to hibdse characteristics. For parallel pro-
tocol exchange, the same considerations about transawianters done for sequential exchanges apply.
Notice that once this objective is accomplished, the geénasit of concurrent protocol execution (without
exchange purposes) will already be achieved.

Special care must be taken with different protocols anceiffit database transactional isolation levels.
The changing protocols metaprotocol has to guaranteetibadfety properties of the individual protocols
hold:

Definition: Safety extension for the metaprotocol

Safety properties for all individual protocols that the ag@ibtocol covers hold.

General changing of protocols

Sequential change of protocols can be seen as a particidaragparallel change. Both sequential and
parallel changes need to define steps (there may be sevaraly dhe execution of transactions when the
metaprotocol is able to request a protocol change. We @dktistep€hange Points



CHAPTER 1. INTRODUCTION

Definition: Change Point

A change point is the step during the transaction executioenma consistency protocol change
can be carried out. This means either thdt changes taP, or that ¢t; and ¢, transactions
coexist.

For the sequential case tlihange Pointare the beginning and the end of the transaction. As soon as
we reach these points, the metaprotocol will decide whethehange (there are no othBr transactions)
or to keep the new transactions waiting.

For the parallel case ti&hange Pointsan be any of the user calls (nhot ollggin andcommit/abort) or
internal steps of the execution of those. It will depend anitivolved consistency protocols characteristics.

1.3.3 Transactions and Sessions

Some systems such as [2] make a difference between trammsaetind sessions. Sessions contain several
transactions. While in a system of such characteristics#etions can be committed or rollbacked, sessions
can be created or closed. In fact, a session is liIBBRC or ODBC connection.

In this situation we can count either sessions or transastiorhe most straightforward approach is
simply to count transactions. If we choose to count sesgtogrs new transactions will be created during a
protocol change. This fact can be softened making a secam @adth the transaction information. A new
transaction is created as soon as the previous one has finistieacommit or arollback statement.

Liveness

For the exchange operations the liveness of the metapialepends totally on the ability to bring the num-
ber of transactions/sessions of the running protocol to aed being able to perform operations with the
new protocol as soon as possible. For the protocols conmyrenvironment, the liveness of the metaproto-
col lies on the ability to keep the individual protocols ess by keeping protocols from voiding each other
liveness properties.

In some exchange scenarios it may be usual to have transactiened for a very long period of time
while the user is performing scarcely any operations. Tlaisdransactions will delay the actual exchange
of protocols. The only way to skip this situation locally gsdstablish timeouts and measure time intervals
between user accesses while protocol changes. If theyssugaertain threshold, transaction could be
stopped.

Using distributed information, as soon as the percentagmadés that are ready to perform the change has
surpassed a certain amount, the local timeouts set for tat idleness detection should be decremented or
set to zero to force the remaining transactions to finish.

If the main purpose is to perform the fastest protocol exgeathen aborting working transactions is
the most appropriate solution. However for most systenssdbiution is unacceptable. An empirical study
can be performed for any desired scenario in order to oplynaaljust the aborting thresholds but the best
tunning needs human interaction in order to point out theerirscenario, and furthermore we must expect
this is a constant one.

In any case, notice that if we admit concurrent protocolscetien none of these considerations are
necessary.



CHAPTER 1. INTRODUCTION

We will consider all these facts external to the liveriasisthe metaprotocol because they depend on the
user usage of the system. So, regardless of the use of argeapypio avoid long idle transactions or the use
of none, we assume that transaction counters alwegsh zero in all nodes.

Definition: Liveness extension for the metaprotocol
The following properties must hold:

1. Liveness properties for all individual protocols thaetimetaprotocol covers hold.
2. When requested, all these individual protocols evehtdi@ish executing transactions.
3. Any protocol change or stop eventually finishes.

1.3.4 Conflicts detection

To detect access conflicts locks or timestamps can be usgeith lauy case, these conflict solving operations
depend on constant comparison of accessed objects sets.

Say transactioff} readso;, oo and writeso;. At the same time, transactidh} readso;, o3 and writeso; .

If both try to commit, there’s a write—write conflict that miuse solved. If fact, the latest of both write
operations will be blocked waiting for the first one resasaticommit or rollback).

Care must be taken in order to avoid deadlodksreadso;, 02 andty; reads them too. Then; writes
o1, toj Writes oo, t1; Writes o, (and gets blocked) and; writeso; (and gets blocked too).

Fortunately relational databases solve these situatiptisdmselves but still, as we are adding network
concurrency, consistency protocols have to be prepareolye situations like these.

Furthermore, if we consider that different users might asdbe same data using different consistency
protocols, conflict detection between different protoduds to be performed too. Figure 1.5 shows an ex-
ample. In this figure?, suffers from a blocking ofs,. This conflict is detected with the regular consistency
protocol.

P1 P2
1 1
tll.write(a) !
' ! t21.write(b)
1 'Oﬂ| A
' . 1 1
i (blocked) ,** ' (blocked)
1 4 ] 1
. o ' t22.write(b)
] L4 ]
1 R 1 .
' . 1 t21.write(a)
1 W 1
1 4 1
1’ ]
t11.write(b) v '
1 1
v Time v Time

Figure 1.5: Conflict between protocols.

"For a formal study on how safety and liveness probe invadamd well-foundedness of algorithms, check [9].



CHAPTER 1. INTRODUCTION

t11 accessed through, is blocked due to conflicts with, accesses.

We will see in section 3.2 that protocols can be split intdedént general phases. Protocols offer an
API to the users and we must identify which operations implgess to objects. These operations usually
return or receive object result sets.

Definition: Result Set

A Result Set is the set of objects accessed during a traneactias decomposed into two
different parts: The WriteSet (wset) for the write accessebthe ReadSet (rset) for the read
accesses.

We assume the most general definition of Result Set (in ordami@mplate all possible con-
sistency protocols), whose compilation is considered tmbemental.

This indicates that thMetaProtocol should act as a common conflict detection component with meth
ods like these:

public void accessObj ects(Transacti onMetaData tnd, ResultSet rs)
throws Conflict Excepti on;

public void rel easeObj ects(Transacti onMetaData tnd, ResultSet rs);

Using tmd the transaction id, its protocol and the current protocagghcan be obtained. These values
identify which protocol and during which transaction exémo phase accessed the objects resultrsgt (
Conflict detection is based upon comparison of sets of ahjeét transaction accesses an object “for a
while” and then it stops accessing it. This does not necidggsaean that we have placed a lock over the set
of objects because some protocols declare the intentiooctesa before the access is performed.

The methods signatures plainly say that the rules to dedidatabbject access conflicts depend on the ac-
cess type a transaction is using, the protocol it is usingti@ghase the transaction is at when the access is
performed.

To show these rules, we need a previous study about protandisheir metadata (section 3.2) and that is
why they are introduced later in section 4.4.

As protocols are actually behind a proxy, before or after ¢abé to the real protocol, a call to the
MetaProtocol can be done to check the conflict situatiors figere 1.6).

User ConnectionProxy MetaProtocol Connection

performOperation() }

1
performManagement() .
1

1
1
' performOpération()
: performManagement()

1

- - - ---- : :

Figure 1.6: Metaprotocol.

This allows us to simulate the way some databases solve asnftjranting locks to accessed objects
(see figure 1.7). The general replication framework therukshprovide means to collect the readset and

10



CHAPTER 1. INTRODUCTION

writeset of the transaction at any time.

Metaprotocol

accessed objects

Protocol 1 x
User 2

User 1

Protocol 2

User 3

Figure 1.7: Common accesses space.

If the installed protocols and the underlying DBMS use thmeasolation level local conflicts will be
solved by the database itself. For multiple isolation Isevendling an approach can be found at [11].
In any case, local operations may block remotely committaastactions and a mechanism to abort transac-
tions even without the user interaction is needed.
Granularity

Granularity depends on the concept of object a protocol @selsimn, group of columns, row, table,
database). [7] uses rows as objects in its database modaldoutiiscusses about predicates and multiple
isolation levels handling. As different protocols may u#féecent object concepts an inclusion relationship
between object classes is needed:

Definition: Object classes general inclusion relationship
Object clasg’; contains object clasé’; if all objects inCy, are contained inC';.

General inclusion is an internal operation between clas€éssses range from specific to general de-
pending on how many classes they contain:

Ceolumn € Cgroup of columns= Ctable © Cdatabase
Crow C Ctaple € Cdatabase

However, we need an operation between objects and not slasdefine all possible conflict cases. An
internal operation is pretty straightforward:

Definition: Object conflict in the same class
0, and oy, are two sets of objects of clags. o, ando, conflict <= o, N o, # 0.

Inclusion cannot be defined properly for classes betweers i@ cqumns:Cgrou of columnsC
Crow cannot be established because columns select informatertically* (projection for all rows) and

11



CHAPTER 1. INTRODUCTION

rows select “horizontally” (select all for a single row). iEimeans that saying thad fow contains columris

or that “a column contains rowsmnakes no sense in this context.

If fact, for objects, a row always intersects with a group @iuenns and vice-versa. This intersection defines
the finest granularity in a relational databaseapa-columnwhen there is a single column, and then next
finest group when there are several columnsve-column group

Crow-column< Ccolumn
Crow-column group© Cgroup of columns
Crow-column< Crow

For all inclusion properties to hold the container table trhes the same. Moreover, for the first one the
column name must be the same, for the second one the colurap grost be the same, and for the third
one the row must be the same.

An external inclusion operation can be defined listing athparable cases but it is naturally derived if
we define a class by a set of objects of a more specific class:

e A group of columns is a set of single columns. Each columnainatthe values stored in that column
for all the table rows: A group of columns is the set of rowtauohs for all these rows.

e A row is the set of all row-columns for that row in its table.
e Atable is the set of all its rows or the set of all its columns.

e A database is the set of all its tables.
Definition: Object conflict in different classes

0, andoy are two objects of class,, andC;. If C, C C, then if objects inC', can be defined as
objects inC}, internal object conflict operation result can be applied tiis case. Otherwise,
objects do not conflict.

1.3.5 Metadata maintenance

We classify metadata in two groups:
e Basic These fields have to be collected for all protocols (evehef/tdon’'t use metadata).

e Additional: These fields have a default value and they don't need to betaiaéd when the corre-
sponding protocol is not being executed. As soon as it igjéfi@ult value is set and their management

is started.
For the protocols that manage metadata information we neeiétaProtocol to maintain it. This
maintenance is done similarly as the conflicts detection is.

Independently of the consistency protocol being used, athdata maintenance has to be done. While
collecting the writeset and readset, metadata for thesectsbhas to be calculated. If this information can
be obtained in an incremental way it will be easier to manageartformation. If not operations over sets of
objects would have to be performed extensively.

This is the main difference of metadata maintenance andictsnfletection and pure consistency logic.
The latter ones are executed when necessary (when the wtetgrs performing its tasks) while Metadata
maintenance has to be always active:

Just before a transaction commits, it gets all metadat@aell for all the consistency protocols and
applies it.

12



CHAPTER 1. INTRODUCTION

1.3.6 Optimizations
A study has to be done to identify the stages where protoass o call MetaProtocol. This information
can be used to avoid certain calls from the proxy to the manage

This approach is similar to AOP (Aspect Oriented Prograngnparadigm. Here, protocol conflicts,
metadata management and most consistency issues arestedsag an aspect and they are implemented as
a separate component, the MetaProtocol. An AOP framewarlddze used to implement these operations.

13



Chapter 2

Metaprotocol basic operations

We'll first show an algorithm based on [12] to stop protocald ¢he other operations (start and change) will
be derived from it.

Our algorithms are placed in thdetaProtocol component. Once a message from the algorithm arrives
to theDistributor, it redirects it to theMetaprotocol.

2.1 Stop protocol

The stop protocol uses a message cadegh This message is defined as follows:

stop = {list = vector 1 x N}

whereN is the number of configured nodes and each element represastignode stopping status.

Each node has a variab&opped that represents the different stopping stages a node gomsgth
Firstly, it is initialized to zeros for all alive nodes, thiseans that the protocol is not stopping.1Aalue
means that the node has been notified about a stopping prédeally, a2 value means that the protocol is
stopped in the given node. On the other handtapped equals td then the node is crashed

The stopping state values are ordered in ascending prichitytopping process will usually lead to a
0,1, 2 sequence fostopped values. Wherstopped equals ta®, no state changes have to be written for that
node. Only when that node joins the system again, its stgpgiate values will change.

These state transitions can be modelled with an enumeigde ty

enum St opSt at es {

NOT_STOPPING, // O
STOP_NOTI FIED, // 1
STOPPED, Il 2
CRASHED /1 3

If the stopping is initiated from nodcall D:

st opProtocol () {
if (stopped[locall D] == NOT_STOPPI NG {
st opped[ | ocal | D] = STOP_NOTI FI ED;
bcast (st opped) ;

The node is down or in a minority group.

14



CHAPTER 2. METAPROTOCOL BASIC OPERATIONS

for all i in bcast _received do
stopped[i] = STOP_NOTI FI ED,
done

}
}

If the node is crashed (obviously in the minority group caaffeady stopping or stopped, there is no point
initiating another stopping process.

If the message is received at anotharallD node:

recei veStop(stop st) {

for all i in 1..N do

stopped[i] = max(stopped[i], st.stopped[i]);
done
/1 0->1

if (stopped[local D == NOT_STOPPI NG
st opped[ | ocal | D] = STOP_NOTI FI ED;

initiatorValue = st.stopped[st.stoplnitiator];

/1 when the st source starts the process or has just crashed

[l afterwards

if (initiatorValue == STOP_NOTI FI ED or CRASHED)
order_to_stop();

/1 when local I D has just re-joined the system
if (initiatorValue == STOPPED or CRASHED) {
if for all i in 1..N stopped[i] == STOPPED or CRASHED
renove_i nstance();

receiveStop() orders the most common stopping state transition: fi@T_STOPPING to STOP_NOTIFIED
(0 — 1). In networkChanges() code, we can see that a node with a stopping state eq@&I@PPED
may receive morstop messages when a network reconfiguration is performed. $rcdse th&TOPPED
value will remain for that node.

As soon awrder_to_stop() is called, usecreate transaction operations are blocked or aborted:

order_to_stop() {
/1 Set as stopping and check whether the systemis already stopped
stoppi ng = true;
if (sessionCount == 0)
notifier.notify();

}

remove_instance() setsstopping to false and performs all necessary operations to remove any runtime
object from the working protocol from memory.

15



CHAPTER 2. METAPROTOCOL BASIC OPERATIONS

After a call toreceiveStop() operation continues in the usual way. For ealdse() operation invoked
over transaction®etaProtocol.closeSession() is called:

cl oseSession() {
/1 Decrenment the counter and check whether the systemis already stopped
stoppi ng = true;
sessi onCount - -;
if ((stopping == true) && (sessionCount == 0))
notifier.notify();
}

Thread Notifier {
public void run() {
while(true) {
/1 Wit until there is a stopping process and the nunber of
/1 current transactions reaches zero
wai t () ;
if ((stopping == true) && (stopped[i] !'= STOPPED)) {
st opped[i] = STOPPED
bcast (st opped) ;
}
}
}

This thread waits until all transactions in this node haverbelosed. It can be awakened when a termi-
nation condition becomes true. Botinder_to_stop() and closeSession() contain termination condition
verifications.

2.1.1 Fault tolerance and additional considerations

This protocol uses a communications primitive with venasxad delivery guaranteelcast() is assumed to
beunreliable An unreliable broadcast is equivalent to a sequence oaatsc The proper way to implement
this is as follows:

int[] bcast(Message m {
int[] nodes = get Ali veNodesl| nCurrent Vi ew)
Vector received = new Vector();

for(int i=0; i<nodes.length; i++) {

try {
/1 send mpoint-to-point fromlocallDto i
send(m i);

recei ved. add(i);
} catch(Networ kException e) {}

}

return received.toArray();

}

A multicast method can easily be derived from the broadcast Multicast signature has the following
aspect:

16



CHAPTER 2. METAPROTOCOL BASIC OPERATIONS

int[] bcast(int[] destinations, Message m;

Network changes might occur in the middle dbeast() operation. Then thilembership component
will send a notification to one of the MetaProtocol threads:

voi d networ kChanges(int[] newNodes, int[] crashedNodes) {

for i in crashedNodes do
st opped[i] = CRASHED
done

/1 when locallDis re-joining the system
if (locallDin newNodes) {

st oppi ng = fal se;

st opped[ | ocal D] = NOT_STOPPI NG,

/1 when |l ocall D was already alive and during a stopping process
} else if (stopping == true) {
if for all i in 1..N stopped[i] == STOPPED or CRASHED
remove_i nstance();

[l coordinator:
else if (locallIDis the | owest previously alive node)
bcast (st opped);

}

Setting thestopped flag of crashed nodes GRASHED for disconnections would not be necessary but
this way, the algorithm is able to deal with node crashes

After this, we need to check whether the algorithm has firdstrenot. If it hasn’t, the “coordinator”
sends a stopped order to the newly joined nodes.

Notice that most stopped element transitions triggereddtyorkChanges() broadcast will be from
NOT_STOPPING to CRASHED. This happens due to the fact that nodes requested to stdipkdomw
which nodes have received the stopping message and whiemloav

It is not important as the only case where this would mattertien the stopping initiator crashes. When
this happens, another “coordinator” broadcasts the stgppiessage. It has to broadcast and not multicast
because some of the remaining alive nodes could have notsee¢ia stopping message yet.

In any case, we can provide the “coordinator” with a littlé imiore information. This is the only node
that really knows which nodes have received the order ang, titican write it down simply setting to
STOP_NOTIFIED thestopped elements taken from tHecast() invocation:

else if (locallDis the |lowest previously alive node) {
bcast (st opped);

for all i bcast_received do
stopped[i] = STOP_NOTI FI ED;
done

}

2In a node crash, the crashed node will have lost all stoppitg sformation.

17



CHAPTER 2. METAPROTOCOL BASIC OPERATIONS

2.2 Start protocol

Starting a protocol is easier than stopping it. For the setijglecase, once the previous protocol has been
uninstantiated, a new protocol can be instantiated fromadutlye nodes. When the first message sent from
this node to the others arrives, the protocol is used in theratodes too as shown in figure 2.1.

m CommbDistributor Protocol 1

send(m) E

'
1
[P1 exists] execute(m)  }
1
1
1

send(n)

[P2 not loaded]

P Protocol2

execute()

Figure 2.1: Start a new protocol.

When new transactions are blocked until the current protiscstopped, they are blocked in their start-
ing nodes until the nodestopped vector contains onls TOPPED values.
Depending on the broadcast delivery order, some nodes magy gexceived this situation before the last
stop message has been delivered to the whole group. They witlgb@ration and they might sent mes-
sages to nodes where te®pped vector completed witlSTOPPED values has not been established’yet
Incoming messages from a different protocol are blocketi@se nodes too until the node is stopped in the
same way as local operations are.

Considerations about dealing with long transactions whem#ncol exchange is trying to be performed
can be read in section 1.3.3.

When the protocol election can only be set from one of the soties approach makes the use of an
install_new_protocol message unnecessary.

A component to prevent protocol installation conflicts cbioé useful for some systems however, if we
aim to a more general task, say allowing several protocate{exist, we will not try to prevent this situation
and the start can be performed freely at any time.

The sequentiality control is performed when the start ajpands invoked. Appendix A displays the algo-
rithm that would be required for a sequential protocol exdsa

2.3 Change protocol

Changing a protocol can be done with a protocol similar toStap protocal A change message has to be
sent. This message contains a list and a protocol identifier.

3Remember that the broadcast message does not providengyderrantees.

18



CHAPTER 2. METAPROTOCOL BASIC OPERATIONS

Once a node receives the message, it loads the new protatéoam that moment on, the user calls to
the proxy to create new transactions link the user to the n®topol: the proxy redirects the calls to the
proper protocol.

At this point, both protocols coexist. As the goal is to chautige protocol, the previous one must be
stopped. The system needs to know which one is being load#dvhith one is stopping. This can be
achieved adding a protocol identifier to thi®p message.

2.3.1 Other considerations

It is worth recalling that due to protocols basic metadatinteaance, the pieces of code in charge of meta-
data for all changeable protocols have to be running allithe.t That is why protocol exchange leads to a
concurrent multi-protocol environment.

To promote concurrency further when several protocols anging, communication and membership
delivery calls have to be non blocking.

The exchange protocol simply lets transactions from thetdulted protocol decrease because no char-
acteristics from the involved protocols have been used.at al

Locking protocols share behaviour in pre-commit operatiand we can take advantage of these simi-
larities to optimize the protocol change. As soon &hange Poinhas been reached, the proxy could be
able to redirect a user call from one protocol to the othergparently and avoiding possibly long waiting
intervals of time until the user decides to finish the tratieac

Previous to the metaprotocol design, an analysis of a sebtdgpls will be presented in the following
chapter.

19



Chapter 3

Protocols metadata description

3.1 Protocols classification and duration descriptors

For the protocols classification we will use the models preek in [25] and [26]. [25] will be used to
describe a protocol:

Architecture: Update everywhere / Primary copy.
Server interaction: Linear / Constant.
Transaction Termination: Voting / Non-voting.

In [26], authors offer a classification from the point of viefithe protocol phases. We will use these
phases to describe the different steps a transaction ygads through:

RequestRE): The client submits an operation.

Server coordinatorC): The replica servers (nodes) synchronize the operatinesution.
Execution EX): The operation is executed.

Agreement coordinato’AC): The nodes make an agreement about the execution result.
ResponseEND): The execution result is sent back to the user.

Another feature used to characterize a protocol is the aictienal isolation level it is able to guarantee.
As [11] has already referenced isolation level guaranteedased on phenomena definitions consisting of
several object dependencies.

Moreover, when given we will use a classification accordimghe protocols metadata:
e Object meaning or granularity: Is the object a table row or the table itself?
e Metadata context: Object, transaction or group of transactions.

e Metadata durability: Is the metadata needed only during the life of the transaaiias it needed
during the life of the object? Where, in the whole systemedaly needed to be made persistent?

As we want this information to lead us to a general metapatacchitecture we will pay attention to
these fields of metadata with special detail. The followimigimation for each metadata is important:

20



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

Name: Metadata identifier.
Description: Short metadata description when the nametismaugh.

Duration: The context of the metadata: object, transadiath view. Where an “object context” attribute
means that the metadata is valid during the life of an objedts®o on. Duration context identifiers
will be included as basic type®©(D, ViewID and TID) for our system and will be common for all

protocols:
Object (0i9:
OID = repository:: class:: ownercounter
Where:
int owner; A fixed number of digits is used in order to separate
owner from counter (values are left-padded with zeros).
long counter; A sequentially incremented number.
String repository; Database name with variable length.
String class; Table name with variable length.
View (view_id): Integer value incremented each time there is a networkféguration.
Transaction (tigt

TID = repository:: ownercounter

Where fields have the same meanings and types than the peédentifiers.

Collection: Collected progressively (and during which g&s) or in a single step.

3.2 Protocols metadata

3.2.1 SiDi protocols
FOB: Full Object Broadcast

FOB [23] was created and developed by the SiDi group at thefiffle Politechnical University of Valencia
(UPV) during the development of ti@lobDataproject [2].

FOB is aPrimary copy — Constant- Voting protocol.

RE and EX occur in the primary copies betweenlilbgin transaction and thecommit user calls. After
thecommit call, SC is acquainted through AC: Objects in theetare organized into groups according to
their node owner and a lock request is sent to each owner! d¢fraders answer affirmatively, ampdate
is broadcasted using a reliable service. This message ntlagwimary copy to effectively commit the
operations and return the control to the user (END). It mdkesother copies to execute the transaction
operations (EX) and to effectively commit too. Locks areeesled just after the effective commit.

FOB was implemented to guarantee several isolation leveldged by the middleware layer: PLAIN,
CHECKOUT and TRANSACTION. Those being similar tead committedrepeatable readcand serializ-
able

'Both FOB and COLU closest architecture definitiofPismary copybut they are not exactlprimary copy FOB and COLU
can start transactions in any node and updates are first ddhisistarting node.

21



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

An object in FOB can be either a row or a table but we'll focudtufirst case: a row. Metadata is col-
lected progressively before commit and it is associatetl aitow whose primary key is an Object Identifier
(oid).

Table 3.1 shows FOB metadata.

| Name | Duration | Collection | Description
owner Object Progressive before commijtOriginal owner
and implicit in the oid
version Object When needed Object version
accesgype Transaction| Progressive before commjtRead / Write
lock_node Transaction| During commit Actual lock node holder
apply.into Transaction| During commit Nodes where it will be applied
objectinfo + SQL | Transaction| When effective commit | Apply info

Table 3.1: FOB metadata

Where:
int owner; It can be derived fronoid.
int version; An integer value incremented each time a transaction update

and commits the object.
int lock_.node;  During node crashes it may be different frawner.
int[] apply_into; The list of nodes where the commit was broadcast.
It is the whole list of nodes until there exist node failures.

COLU: Cautious Object Lazy Update

COLU [16] and [15] was created and developed by the same té&@B. It is similar to FOB, it iFPrimary
copy— Constant- Votingtoo, but it has several big differences:

e It multicast changes only to a subset of the nodes.

e During RE, an adaptive function is used to predict whethgeab are outdated or not. When an
outdated object is accessed, it is requested to its owneitasdubsequently updated before it's
returned to the user.

e The same procedure is followed when, during AC, it decidesessien must abort. This, and the
previous one, are the main features that make the protocyadne: Objects are mainly updated
only when needed.

Table 3.2 shows COLU metadata.
Where:
double threshold; The result of the adaptive function.
TStamp timestamp; Instant when the last write commit took place.

3.2.2 Dragon protocols

The ETH group, within the context of tHaragon project, presented a suite of replication protocols based
on group communication primitives.

The main idea of these protocols [20], [21] is to perform s@tions locally and deferring writes to
remote nodes until commit time. At this time, updates areaicast using total order to guarantee the
reception order. This way, no 2 Phase-Commit is needed.

22



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

| Name | Duration | Collection | Description
owner Object Progressive before commitOriginal owner
and implicit in the oid
version Object When needed Object version
accesgype Transaction| Progressive before commitRead / Write
threshold Transaction| Before commit Prediction value per remote objeft
timestamp Object When write accessed Last write commit
lock_node Transaction| During commit Actual lock node holder
apply.into Transaction| During commit Nodes where it will be applied
objectinfo + SQL | Transaction| When effective commit | Apply info

Table 3.2: COLU metadata

SER: Replication with Serializability

SER is anUpdate everywhere Constant- Non-Votingprotocol. It providesl-copy-serializabilityconsis-
tency.

During RE, it acquires local read locks while write requests deferred until the beginning of the SC
phase. In SC, writes are sent using a total order multicas®&hbegins when locks are being granted. EX
happens just after locks are granted and END happens wheffgative commit or rollback is performed.

Authors mention that a transaction reads or writes logitgads. It can be derived from the described
isolation levels that they work with table rows and unitsrdbrmation. Object identifiers are progressively
collected before commit.

Table 3.3 shows SER metadata.

| Name | Duration | Collection | Description \
accesgype | Transaction| Progressive before commijtRead / Write
applyinto | Transaction| During commit Nodes where it will be applied
objectinfo | Transaction] When locks are granted | Apply info

Table 3.3: SER metadata

Where:
int[] apply_into; The list of nodes where the commit was broadcast.

CS: Cursor Stability

Cursor stability introduces the notion ehort read lockgo avoid transaction starvation. It is extended
straight from SER using a third kind of access lock.

CSis also aUpdate everywhere Constant— Non-Votingalgorithm. It does not provide serializability
as dirty reads, lost updates and write skews might occur.

Table 3.4 shows CS metadata.

23



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

| Name | Duration | Collection | Description \
accesgype | Transaction| Progressive before commjtRead / Short Read / Write
applyinto | Transaction| During commit Nodes where it will be applied
objectinfo | Transaction] When locks are granted | Apply info

Table 3.4: CS metadata

Sl: Snapshot Isolation

Sl was defined to avoid read locks. It is very similar to SER &mén be described using the same terms
used for SER and CS but it uses timestamps and object versicsifow database multiversioning. As
described by its name, it provides snapshot isolation guiees.

Table 3.5 shows S| metadata.

| Name | Duration | Collection | Description |
BOT Transaction| Immediately when stated Begin Of Transaction
accesdype | Transaction| Progressive before commit | Read / Write
version Object When granting lock Last transaction that wrote the object
apply.into | Transaction| During commit Nodes where it will be applied
objectinfo | Transaction| When locks are granted Apply info
EOT Object Immediately when committed End Of Transaction

Table 3.5: SI metadata

Where:
TStamp BOT;  Logical instant when the transaction started.
int version; An integer value incremented each time a transaction update

and commits the object.
int[] apply_into; The list of nodes where the commit was broadcast.
TStamp EOT;  Logical instant when the transaction finished.

3.2.3 Lin — Kemme and Patio — Jimenez
SI-Rep

SI-Rep [22] is a more detailed work about snapshot isolgtimtocols whose origin is [21]. It contemplates
several implementation issues such asaanlist for conflict resolution and docommit_queue to apply
transactions.

Table 3.6 shows SI-Rep metadata.
Where:
int version; An integer value incremented each time a transaction update
and commits the object.
int[] apply-into; The list of nodes where the commit was broadcast.

3.2.4 El Abbadi — Toueg

[6] presents a replica control protocol on top of any conenicly control protocol for conflict detection.
The protocol provide&-copy-serializabilityusing view ordering. Conditions for object access and ngkwo

24



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

| Name | Duration | Collection | Description |
BOT Transaction| Immediately when stated Begin Of Transaction
accesgype | Transaction| Progressive before commit | Read / Write
version Object When granting lock Last transaction that wrote the object
apply.into | Transaction| During commit Nodes where it will be applied
objectinfo | Transaction| When locks are granted Apply info
EOT Object Immediately when committed End Of Transaction

Table 3.6: SI-Rep metadata

partition situations are explained using accessibilitgsholds 4,.,,,) an quorumsg;.,,,) where:
/ /
Ay /' Minimum number of copies available in a view in order to &=can object.

/- Minimum number of copies to physically access in order tdenor read an object in a view.

Table 3.7 shows El Abbadi-Toueg metadata.

| Name | Duration | Collection | Description
accesgype | Transaction| Progressive forset | Read / Write
sites Object Predefined Nodes where the object exists
A, View When accessed Accessibility thresholds
@ /w View When accessed Quorum (physical accesses needed)
version Object When granting lock (view, sequence)

Table 3.7: El Abbadi-Toueg metadata

Where:
int[] sites; Itis a predefined attribute.
IntTuple Arw; (Ar, Aw): number of read/write existing copies for a given
object in the current view.
IntTuple Qrw; (Qr, Qw): physical accesses needed to access a given object

in the current view.
IntTuple version; Objectoid has been writtesequence times duringview.

For this protocol we define a basic type callatfuple containing two integer valuegint, int).

We also modify a little bit the definition that authors givevetsion. In [6], if sequence is k£ and view
is v_id then it means that if was the last transaction to write the object it is thk transaction to write it
duringv_id. As we allow our architecture to encapsulate several saéglidéransactions inside the scope of
the samelransaction object (representing in this case what we called a sessianjewrite the definition
as:

...itis thekth time a transaction has committed the object duringl.

3.2.5 Agrawal — El Abbadi — Steinke

A family of epidemic algorithms based on the causal delivadtpg records is given in [8]. These are naive,
pessimistic and optimistic.

25



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

Naive protocol

This family of protocols is epidemic due to the nature of thé#exchanges communication procedure. The
naive protocol guarantedscopy-serializabilityby avoiding concurrent transactions (delaying them when
possible or aborting them otherwise).

During RE, the transaction is executed (EX) on a single nodieazquires object locks. The timestamp
is picked up when SC starts in a way that causality of trammagis guaranteed. During SC operations are
sent in an epidemic process that might lead to the aborti@omitment of the transaction. This means
that the protocol i8/oting It is alsoUpdate everywherandLinear because the epidemic process can be
bounded.

Table 3.8 shows Naive Agrawal-El Abbadi—Steinke metadata.

| Name | Duration | Collection | Description
timestampl'S(¢) | Transaction| When started Ti, |
accesgype Transaction| Progressive before commit Read / Write
rset released when commit
wsetvalues Transaction| Progressive wsetapply info
site Transaction| When started Node where the transaction
started
abort / commit flag| Transaction] When result is decided Result

Table 3.8: Naive Agrawal-El Abbadi—Steinke metadata

Where:
TStamp tst; Beginning of transaction.
Object_Info wset_values; Equivalent to objecinfo.
int site; It can be derived frontid.
boolean abort; Established when the user commit request is resolved.

[8] declaresT; [k, j] = v as follows:
Node: knows that nodé: has received the records of all events at npde to timew.

Timestamp calculation for this protocol is a little bit maremplicated than in the rest of studied pro-
tocols. Authors explain in the paper how to propagate tHsrimation from node to node: it is sent when
nodei sends a message to nae

Pessimistic protocol

The pessimistic protocol derives information frdfin order to avoid the abort / commit flag.

Table 3.9 shows Pessimistic Agrawal—E| Abbadi—Steinkeantet.

Optimistic protocol

The optimistic version of the family of epidemic algorithiissnanaged via an optimistic releasing of locks.
It is designed so that it still guarantees serializability.

26



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

| Name | Duration | Collection | Description
timestampl’S(¢) | Transaction| When started Ti, |
accesgype Transaction| Progressive before commit Read / Write
rset released when commit
wsetvalues Transaction| Progressive wsetapply info
site Transaction| When started Node where the transaction started
Table 3.9: Pessimistic Agrawal-El Abbadi—Steinke metadat
| Name | Duration | Collection | Description |
timestampl’S(¢) | Transaction| When started Ti, *]
accesgype Transaction| Progressive before commit Read / Write
rset released when commit
wsetvalues Transaction| Progressive wsetapply info
site Transaction| When started Node where the transaction started
inconflict flag Transaction| When result is decided Conflict resolution request
readfrom Transaction| During read compilation | Transactions from which the
transaction reads from

Table 3.10: Optimistic Agrawal—El Abbadi—Steinke metadat

Table 3.10 shows Optimistic Agrawal—El Abbadi—Steinke adeata.

Where:
boolean inconflict; similar meaning thaabort from 3.2.5.
TID[] readfrom; Active transactions that have previously accessed

objects accessed by the current one.

3.2.6 Jimenez — Pafio — Kemme — Alonso

In [18] a protocol based on optimistic delivery broadcasijtives? that guarantees-copy-serializability
Queries (sef) are executed only at the local node using snapshot isolatio

The protocol is able to distinguish between what authorsctadses. A class can be either a tuple or a
selection over a table.

When the transaction starts, it is broadcast to all nodeslytthe starting node executes it. RE hap-
pens before this and later, SC starts and EX too (only in tisty node). After this execution, a commit
message including the update information is sent to all tteees so that EX happens everywhere. AC is
performed only at the starting node.

Table 3.11 shows Jimenez—Patino—Kemme—-Alonso metadata.

Where:
boolean executed:; Operations finished.
boolean commitable; to-deliver sent.
SQL[] update_info; Transaction update sentences.

2to-broadcast(m), opt-deliver(m) and to-deliver(m).

27



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

| Name | Duration | Collection | Description \
executed Transaction| When the execution finishgsFinished execution
commitable| Transaction| Transaction to-delivered Transaction to-delivered
accesgype | Transaction| When started Read / Write
updateinfo | Transaction wsetapply info

Table 3.11: Jimenez — Patifio — Kemme — Alonso metadata

3.2.7 Pacitti— Minet — Simon

The protocols described in this section (deferred and imatedwere presented in [24]. The main difference

between both is the updates propagation.
Both protocol versions are based on the existence of a glelsaD reliable multicast with a known
upper bound given by, a constant that limits the nodes’ clocks synchronization.

Deferred protocol

When deferred, updates are propagated after commitmelmiavgingle message. Then, this versio@ -
stant

Table 3.12 shows Deferred Pacitti—-Minet—Simon metadata.

| Name | Duration | Collection | Description
timestamp | Transaction| When committed Commitment time
updateinfo | Transaction Write operations

Table 3.12: Deferred Pacitti — Minet — Simon metadata

Where:
TStamp timestamp;
SQL[] update_info;

Commitment time.
Update SQL sentences.

Immediate protocol

When immediate, each operation is multicast before comanitmrhe protocol isinear.

Table 3.13 shows ImmediatePacitti-Minet—Simon metadata.

| Name | Duration | Collection | Description \
timestamp | Transaction| When committed Commitment time
updateinfo | Transaction| When executed | Write operations

Table 3.13: Immediate Pacitti — Minet — Simon metadata

3.2.8 Summary

Table 3.15 shows a map of the protocols and associated netmian first approach on finding common
metadata. Columns represent different protocols, whosengms can be found in table 3.14, metadata
names and metadata context or duration.

28



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

Acronym | Name

SiDi

FOB Full Object Broadcast

CoLu Cautious Lazy Update

Dragon

SER Serializability

CSs Cursor Stability

Sl Snapshot Isolation
| SI-R | Lin-Kemme—Patifio—Jimenez |
| Abb | El Abbadi-Toueg |

Naive Naive Agrawal — El Abbadi — Steinke

Pes Pessimistic Agrawal — El Abbadi — Steinke

Opt Optimistic Agrawal — El Abbadi — Steinke
| Jim | Jimenez — Patifio — Kemme — Alonso |

Def Deferred Pacitti — Minet — Simon

Imm Immediate Pacitti — Minet — Simon

Table 3.14: Acronyms for protocols

Table 3.15 has been compiled using information from tables3®2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10,
3.11, 3.12 and 3.13. When a metadata field is required by aqobtthis fact is identified by a “X” symbol.
When the “X” symbol is replaced by a different identifier, ey this means that the field represented by
this row andd are equivalent or that it can be derived fraan

3.2.9 Basic metadata

Basic metadata was introduced in 1.3.5 and it is composeldeofinimum set of metadata attributes that
could be considered common. This means that whatever mlo®cising the system, basic metadata is
updated for all the objects.

Logically, the more protocols we study the more difficult fimgl common properties will be. This fact
limits an ideal basic metadata $et

{oid, accesgsype tid, updateinfo}

Beingupdate_info an object from a class that encapsulatestiieSQL sentences as well as operations
that allow to update its result set objects independently.

Notice that for a protocol to start working, its metadata tmabe ready. If it is not, and no default
value can be set, then it must be calculated. Forgettingtadmiditional metadata of the protocols that
are not currently during execution and performing this gkdton at their start time would have two big
disadvantages:

e Latency:All the database objecéslditional metadatdnas to be updated previous to the new protocol
installation.

e Artificial and mistaken values: It may be impossible to elisibmetadata values if it is not during the
precise moment when they are required.

29



o€

| Metadata | FOB| COLU | SER|[CS|SI|SI-R|Abb| Naive | Pes | Opt | Jim | Def | Imm | Duration

tid X X X X | X X X X X X X X X Transaction
oid X X X X | X X X X X X X X X Object
owner oid oid Object
version X X X X X Object
accesgype X X X X | X X X X X X X Transaction
lock_node X X Transaction
apply.into X X X X | X X Transaction
threshold X Transaction
timestamp X Object
objectinfo X X X X | X X wsetval | wsetval | wsetval | upd.nfo | upd.nfo | upd.nfo | Transaction
BOT X | X TS(t) TS(t) TS(t) Transaction
sites X Object
A X View

Gr /w X View
abort/commit X inconflict Transaction
site tid tid tid Transaction
readfrom X Transaction
executed X Transaction
commitable X Transaction
EOT X X boc boc Transaction

Table 3.15: Metadata summary

NOILdI40S3d VIvVAV13aN ST00010dd '€ 43.1dVHD



CHAPTER 3. PROTOCOLS METADATA DESCRIPTION

The second disadvantage is better explained with an example

Consider that we are stopping the current protocol, Bgyand we want to us€OLU. If
timestamp is not set during the execution &%, at the changing time all the database metadata
has to be updated and themestamp can be set as an ancient date or as a recent one. In both
cases we will loséimestamp real meaning for a while untiCOLU is being executed for a long
time and it makes sense. Not until then, all predictionsutated byCOLU usingtimestamp
would be accurate again.

This explains why, when not default value exists, the mamtee of additional metadata is necessary
for the metaprotocol to be correct.

31



Chapter 4

Architecture

All protocols are meant to be implemented under a scenamdasito the one described in section 1.2. A
middleware layer or a component embedded inside the daabasager is used for this purpose. Regard-
less of global performance issues, protocol designeraipdtsther considerations such as transparency and
low overhead.

Low overhead is tightly related to metadata. Metadata isagbymeant to be easily obtained and to
minimize the required storage space. Transparency meahsiser API for data retrieval has to be kept
untouched or minimally changed.

Independently of the metaprotocol option chosen for prgconcurrency, in order to provide a fast
change, metadata has to be available whenever the protbaobe is requested. This suggests that all
metadata for all protocols has to be maintained even wheprtitecols are not loaded. Common attributes
are naturally maintained during transactions executiaharticular ones will be worked out as if it were a
background process.

We choose an approach like this one, where metadata is kdptedy because it allows fin€hange Points
granularity. If an object is accessed by two consecutivestations, each one using different protocols, the
second one will have accurate metadata values (for exanwgaigpn or timestamp). Thus it guarantees that
changing a transaction protocol into a different one candreed

4.1 Metadata structures

In a data access API such as JayiBC, a Transaction executes queries and updates and obtains several
ResultSet objects. ResultSets contain the accessed objectRasultSetMetaData can be used to obtain
table column names and types.

Based on table 3.15, a similar structure for the protocolsadsa will be used.

A transaction will be encapsulated insid@ransaction object. We will not take into account that sev-
eral queries and updates return different ResultSets, Weavisider a single ResultSet per transaction that
contains the union of all executed operations’ ResultSéties (actual data) for the accessed objects are
only necessary for the user, the protocols work strictlyhwitetadata. However metadata needs to keep
track of this information in order to broadcast it where resazgy.

In the end, we will have two structures in charge of all thimimation ObjectMetaData and Trans-
actionMetaData. Both implement a general MetaData interface which, attJedl®ws information to be

32



CHAPTER 4. ARCHITECTURE

serialized.

As most protocols allow the incremental construction of ResultSets, MetaData will be able to be
constructed incrementally, too.

cl ass Transacti onMet aData i npl ements Met aData {

String tid; /1l repository::owner.seq_id

bj ect Met aData[] rset; // Readset = access_type
Cbj ect Met aData]] wset; // Witeset = access_type
bj ect Met aData[] srset; // Short ReadSet for cs = access_type
TSt anp bot ; /1 si, agr protocols (TS)

TSt anp eot; /1 si, pac protocols (tinestanp)

TSt anp boc; /| def-pac, imm pac (EOT)

SQ.[] execution; /1l User’s SQL sentences = object _info
String[] readfrom /'l opt-agr

bool ean execut ed; [ jim

bool ean conmi t abl e; /1 jim

bool ean abort; /1 naive-agr and opt-agr (inconflict)

public String getRepository(); // derived fromtid
public int getNodeOwner(); /! derived fromtid
/1 site for agr protocols is obtained from owner

}

This structure for Transactions has an identifiigk, that acts as a primary key.

access_type can be obtained from the listeset, srset andwset.

ObjectMetaData lists andexecution build what in table 3.15 was callambject_info. They belong to
the basic metadata and are compulsory forTiteasactionMetaData construction. However, th@bject-
MetaData lists will be built gradually and s@bjectinfo for these lists will.

getNodeOwner() is the way to obtain theite value for Agrawal et al. It is an option that all protocols
have to obtain the node where the transaction was started.

Timestamps are typically used for ordering purposes and 8tamp data type has to provide means
to maintain this order in a protocol independent manff&tamp may hold a vector clock that is able to
store [8]'s attribute. For total replication protocols taexist cheaper solutions such as a counter of applied
transactions.

cl ass Obj ect MetabData i npl enents MetaData {

String oid; /1 repository::table::owner.seq_id

i nt version; /!l fob, colu, si, si-rep, abb

int 1ock_node; /1 fob, colu

int[] apply_into; /1l For recovery issues in nost protocols
/1 fob, colu, ser, cs, si, si-rep

Cbj ectInfo info; /1 Information to apply a single object
/'l wset_val for agr protocols

| ong tinestanp; /'l colu

int[] sites; /1 abb

doubl e threshol d; /'l colu

I nt Tuple Qw, /1 abb

33



CHAPTER 4. ARCHITECTURE

I nt Tupl e Arw; /1 abb

public int get NodeOaner(); /1 derived fromoid
public String getRepository(); // derived fromoid
public String getTable(); /1 derived fromoid

}

For ObjectMetaData only the identifieroid, is a common field for all the studied protocols.

getNodeOwner() is the way to obtain thewner value for SiDi protocols.info for wset objects con-
tains information for Agrawaivset_value, for Jimenez et al. and Pacitti et alipdate_info and for all
protocols requiring update information.

timestamp holdsCOLU''s timestamp attribute. This value is used independentaich node to obtain
access prediction values from a given formula based on ireal differences. That’s why it does not use
TStamp data type because it only allows logical order and has nosgminformation to deal with time
measures.

In both structures care must be taken for the data types daiidatt fields. Fomnfo an effort should
be done in the middleware architecture in charge of protatahagement to provide a same data type for
objects serialization regardless of the protocol.
Another case is El Abbadi—Touegigrsion field which holds a tupléview, sequence) while for the other
protocols needing version information this field holds ga&evalues. In these cases there are two options:
the best one is to find a bidirectional conversion betweeh Hdata types. If it was not possible then the
fields should not be grouped.
Yet another situation i$'S(¢) for Agrawal—El Abbadi—Steinke protocols. This field actsadsnestamp and
has different representation for BOT th&h In this case it is convenient to consider the rest of tintapsa
too (EOT, BOC) and try to find a common representation, suckeesor clocks or logic counters, in order
to make them comparable.

4.1.1 Completion and serialization

Serialization of the metadata structures depends on thextarf each metadata attribute. The only not null
value of each structure @d andtid. As soon an object is created, the associ@bfectMetaDatanust be
created.

For a sequential change of protocols completion is only edddr metadata available during object
context. The rest of information is useful for a protocol e in between an active transaction and, for the
sequential case, it can be set to default values.

4.2 Architecture

Figure 4.1 shows the classes model of the metaprotocoltacthie. Some components depicted in previous
sections have been deployed into several parts. For exafignlee 1.4'sMetaProtocolis now behind the
ProtocolProxyand accesses a setétaDataManagersone per protocol. In fact, thdetaProtocolconcept
exposed in the previous sections represents all these newarents together.

First of all, we explain each component separately:

Transaction: It is the object a user obtains to access data.

34



CHAPTER 4. ARCHITECTURE

Transaction

| TransactionMetaData

1 1
| MetaProtocol |

wset rset 1

* *

ObjectMetaData | 4' MetaDataManager I*—

Figure 4.1: Architecture classes model.
Manager: The node’s manager component is the core of theaegd system. It isolates the user from any
replication detalil.
TransactionMetadata: See section 4.1.
ObjectMetaData: See section 4.1.
ProtocolProxy: It acts asR@istributor (see figures 2.1 and 1.3).
Protocol: It contains the consistency protocol logic.
Metaprotocol: It contains protocol coordination logic.
MetaDataManager: It contains the metadata managementdbtjie consistency protocols.

TheManagercreates transactions and attaches each of them to thedéispomding metadata objects for
transactions and object¥ransactionMetadatand ObjectMetadata The main task of thd&lanageris to
coordinate the work requested by thieansactionsand to let theProtocolstake care of consistency. The
protocols are “hidden” behind their correspondiPgptocolProxyobjects (see section 4.2.1).

When invoked, theMetaProtocolwill take care of the protocols coordination. One of its ®sketadata
maintenance, is performed by tMetaDataManagebjects.

4.2.1 Protocol encapsulation

Figure 4.2 shows the part of figure 4.1 that explains how aopaitis split into.

ProtocolProxy Protocol 1<>— MetaDataManager

Figure 4.2: Protocol components.
TheProtocolProxydecides whichHProtocol executes the operation. Eaelotocolhas aMetaDataMan-

ager. Isolating metadata manager details in a separated compaliews to keep all protocols metadata
managers running.

35



CHAPTER 4. ARCHITECTURE

Observing the collection column of the protocols metadaldess in section 3.2 it can be seen when
the protocol metadata managers have to be invoked. Thigsatiem must be done through tivetaPro-
tocolcomponent because this piece of the architecture is in elwdrine administrative events coordination.

Both ProtocolProxyand Protocol can invokeMetaDataManageroperations. However code will be
clearer if one of the two components is selected for thistionc

Placing calls inProtocolProxyemulates the AOP paradigm o@before” and “@atfter” invocation
clauses. For example:

cl ass COLUProxy i nplements Protocol Proxy {
iD'r.otocoI p;
.p'r;)t ected voi d changeProt ocol (Protocol newp) { p = newp; }
public bool ean updat eObj ects(Object[] wites) {

/1 @efore operations
net apr ot o. set Ti nestanp(this, wites);

/1 actual operation
bool ean result = p.updateChjects(wites);

/1 @fter operations
net apr ot 0. get Versi ons(this, wites);

return result;

}
}

However, this might be not enough in all cases an@arfeanwhile” clause may be needed. We can
obtain this placing the metaprotocol calls inside Bretocol

The invocations contain tHerotocolProxyitself for the metaprotocol to know the source of the method
call and to optimizeMietaDataManageBccesses.

The metaprotocol is the core of the main study presented heangll hold the management algorithms
(see chapter 2) and coordination logic. This coordinatamid includes structures to perform conflict access
resolution operations.

4.2.2 Concurrency options

Figure 4.3 shows an object diagram for a case with a user anepasn transactions. Here, it can be seen
that theManagerand theMetaProtocolare common and unique.

It can also be seen that MetaDataManagersire always loaded and fill the contents of the transaction
and objects metadata.

Figure 4.3 shows that therotocol component is also common but this situation is induced byabe
that the figure depicts a sequential protocol changing sitena

36



CHAPTER 4. ARCHITECTURE

Transaction2

Manager ProxyB

Transactionl |— ProxyB

User

ProtocolB

. MetaProtocol
1 ObjMetaDatal = TrMetaDatal —l -

ProtoMetaData

-! ObjMetaData2 = TrMetaData2

Figure 4.3: Architecture for sequential changes objectehod

Allowing the architecture to be able to hold several proteancurrently is obtained by having the
proxies to be able to decide independently from each othmutahe encapsulatd@rotocolthey invoke (see
figure 4.4).

Transaction2

Manager ProxyA

Transactionl |— ProxyB

ProtocolB ProtocolA

. |— MetaProtocol J
1 ObjMetaDatal = _TrMetaDatal —l —

[| | ProtoMetaData
-! ObjMetaData2  |— _TrMetaData2

Figure 4.4: Architecture for parallel changes object model

User

4.2.3 Implementation considerations

While some authors explain about commit queues, otherstBlgpnformation due to its low level nature.
When the network message reception frequency surpassesdb& capacity to apply updates and perform

commit operations, commit queues hold the to-be-committedsages that are waiting in the destination
node.

To enforce concurrency most protocols consider that a ngesisaapplied as soon as it is received but
this is not always true specially when hardware charadiesigliffer, load is not balanced or due network

37



CHAPTER 4. ARCHITECTURE

topology.
We consider this fact out of the scope of the metaprotocol.

4.3 Conflicts detection and resolution

Recalling the concepts outlined in section 1.3.4 conflietection is based on the comparison of transaction
Result Sets. For conflicts resolution, the following methacke called extensively:

public void accessObj ects(Transacti onMetaData tnd, ResultSet rs)
throws Conflict Exception;

public void rel easeObj ects(Transacti onMetaData tnd, ResultSet rs);

These operations allow us to work over scenarios similah&dne depicted in figure 1.5 from page 9.
Initially, all we need to know is contained in the methodshsiyire: when the methods are invoked, for each
object inrs tmd.tid is stored. The result sets are passed and stored increigeiiaht is whyrs is passed
and it is not obtained frortmd itself, because it is a subset fifnd.rsettmd.wsettmd.srse}.

It is pertinent to pass th&ansactionMetaData tmd because we can reach the transaction ftord.
It could be possible that a transaction with a stronger igmianode requested already granted accesses and
the previous ones needed to be revoked. Usimg), the transaction can be aborted at any moment and not
only during the call taaccessObjects.
For this means what we need first is an internal operationbtapa abort a database transaction at any mo-
ment; such an operation exists in [4] middleware. Lastlythasprotocol is loaded, its abort process would
be used to notify all the required nodes.

For further explanations assume we have the following tem
Protocol IDid1, id2;

It is obvious that if i = idy then access conflicts are resolved by the protocol itself.atvi$not
obvious is the fact that for id# id, the same applies because several additional actions ndwdtéixen
into consideration. These actions form the core of the mmetapol. We will explain them with a simple
example and after that a general case will be shown usingdpserde notation.

Let's say we have transactions and to with ¢1.protocolI D() = idy, ta.protocollI D() = ids and
id; # ids. Imagine the following two user operations executed eachinside one of the transactions and
executed possibly by different users in different nodes:

Resul t Set r t1l. execute(SQ1);

ResultSet s = t2. execute(SQ.2);

Internally, before the user call returns a valti€s last operation obtains a result setnd then it executes
the following operation successfully:

accesshjects(tl. netadata, r);

Similarly, beforer el easeObj ect s(t 1. met adat a, r) isinvoked, &, operation obtains a result
sets wherer N s # () and executes:

38



CHAPTER 4. ARCHITECTURE

accessObj ects(t2. netadata, s);

In case any of the protocols broadcasts the object accesatiopeandaccessObjects() for ¢5 is exe-
cuted in a node wheraccessObjects() for t; was previously executed, thern,idecides what to do with
to (grant access, queue or deny and abort). After the invatatiohese methods each object holds a list of
transactions accessing it and the access mode (read, wdtshart read). These lists are call@oject ac-
cess queued-or a given transaction isolation level none of the prol®owerrides an already granted write
access but a write can be queued behind previous read ascesserite can be queued behind previous
writes when there is a database lock before the actual commit

At this point, if any of the transactions aborts, the conflegolution problem between different proto-
cols is done. If both transactions continue then any of théliriryvto commit effectively.

Imagine bothi; and¢, want to commit. As we include different delivery guarantees lazy protocols,
as soon as idand id, decide that they have all the guarantees needed to commyt,stnd gotal order
broadcastto all nodes containing the following informatiofitid, tofinish = true}.

This message is necessanyd its delivery guarantees are necessary too:

We cannot walit for theffective commitequest message to broadcast this information because
we need to order the transactions execution in all nodes

The message implies an intention to commit. Nodes keep eflistfinishtransactions and accesses to an
object granted for #ofinishtransaction will never be revoked.

For this example, let; be ordered beforg . Depending on the transaction isolation mode (this manage-
ment is done by the protocols themselves), as soon defihesshmessage is received in a node, transactions
in its object access queues containing antry are aborted (all of them excep). To improve the metapro-
tocol efficiency these abortions can be requested too asatiretofinishmessage is received (notice that
this work would have been done afterwards if launched whereffective commit message is received).

After thetofinishtotal order broadcast, the effective commit process caesrand the transactions have
to face one of two possible situations:

A) There is natofinishmessage from another transaction or it was ordered &fteone.
B) Another transactiondofinishmessage was ordered befogés one.

For transactiort, the case is situation A) and the effective commit requestaadicast in id protocol
way so that, finally commits. For transactiofy the case is situation B) and the transaction finally aborts.
Thet; commit request does not need to be sent. If it had already &eeiit would be discarded upon
reception in all the required nodes.

4.3.1 Inter-protocol conflict resolution protocol
In this section we will describe the example above for a garese using pseudo-code pieces:

public void accessObj ects(Transacti onMetabData tnd, ResultSet rs) {
/1 For all objects in the partial result set

for i inrs do
set _access(rs[i], tnd.tid, rs[i].access_type);

39



CHAPTER 4. ARCHITECTURE

Whereset_access fills the object access queues.
releaseObjects() performs the opposite operation:

/1 For all objects passed in the paraneter
for i inrs do
set _access(rs[i], tnd.tid, none);

After the operations are done the user requests a commit:

public bool ean commit _request() {
bool ean result = check_all _conflicts();

if ('result) abort(tid);

el se {
result = request_effective_commit(tid);
if (result)

result = transaction_result(tid);

}

return result;

}

check_all_conflicts() is protocol dependent and works with sets of objects as ¥f tiaal been granted by
the same protocol.

As it can be seen in the next bit of pseudo-coeléective_commit() tries to avoid the commit request
delivery when it is already known that the result is to rotlkdhe transaction:

publ i c bool ean request _effective conmmt() {
bool ean result = fal se;

send(total _order_bcast(tofinish(tid)));

if (!'tofinish_before(tid)) {
bcast (effective commt(tid));
result = true;

}

return result;

}

Another thing that theommit_request() code shows is that the transaction final result is colleatetthé
transaction_result() method. This method waits for tleffective_commit message to be received and pro-
cessed in the origin-of-commit node. This is necessaryusezather previoutfinish messages may have
not been delivered yet.

tofinish_before return value condition is explained as:

40



CHAPTER 4. ARCHITECTURE

Abort tid if there is another transaction whose result sétiferes with tid’s result set and this
access was granted before tid’s access was requested.
Otherwise allow tid to commit.

Obviously this condition will need to take into consideoatitransaction isolation properties and the exis-
tence ofshort readsets

tofinish_before() is always a local call:

public bool ean tofinish_before(String tid) {
String[] grants;

/1 For all objects intid s conplete result set
for i intid.rs do {
/1l CGet an ordered |ist of access grants
grants = get Transacti onAccessing(rs[i]);

tid_pos = index of tid in grants or -1 if it does not appear;
for j in grants where tofinish[j] == true do {
other_pos = j transaction position in grants;

if ((j <>tid) & (other_pos<tid pos))
return true;

}
}

return fal se;

}
When thetotal_order_bcast(tofinish(tid)) message is received, the following code is executed:

public void tofinish _before reception(String tid) {
tofinish[tid] = true;

if (tofinish_before(tid))
abort(tid);
el se
abort _conflicting transactions(tid);

}

Theabort(tid) call in this code does not need to send an abort communicatessage to any of the other
nodes. Theofinish total order broadcast has already provided enough infoomat/erywhere for the nodes
to work out the commit result independently.

The following code describes the steps taken wheeféattive_commit message is processed at any
node:

public bool ean effective_conmit_reception() {

bool ean disard = tofinish_before(tid);
if (!'discard) {

41



CHAPTER 4. ARCHITECTURE

}

abort _conflicting transactions(tid);
execute_conmit(tid);

}

return discard;

transaction_result() waits for this method to finish and then it returns the reatgeaction commit or roll-
back state.

Now that the protocol is described it is worth consideringisdnteresting facts:

4.4

Notice that this code pieces are embedded inside the censysprotocols logic. All protocols process
acommit_request user operation and use internal equivalents for #gféettive_commit” methods.
The metaprotocol methods simply wrap the original protsgokthods.

set_access() does not necessarily mean that we are using locks or thattwallyoexecute the opera-
tions before commit (remember that some protocols delayekécution until theommit_request()
call).

set_access() aim is to populate the information required for latter istestion of sets queries.

tofinish message uses total ordering, however it is a very small rgessantaining did value: as no
tofinish=false message is senttafinish reception impliegofinish=true.

Thetofinish table can be cleaned up each time a transaction ends.
bcast(effective_commit(tid)) is protocol dependent.

abort_conflicting_transactions(tid) aborts all transactions whose result sets conflict tidtls. It has
to use a mechanism similar to the one used in [4] in order tbaok conflicting database transactions
immediately when required.

abort_conflicting_transactions(tid) execution before theffective_.commit message broadcast is
very convenient because the time elapsed between the tolat broadcast oftofinish(tid)) and

the broadcast oéffective_commit(tid) is not to be underrated; as the last message construction can
be time costly and resources consuming.

An early execution ofabort_conflicting_transactions(tid) allows the rest of the nodes to advance
work in parallel; specially the abortion of transactionghwivrite operations executed before the com-
mitting one operations. These operations will be blockimg database and must be aborted as soon
as possible.

The metadata managers and the transaction metadata

Figure 4.5 shows the architecture elements (a more completare was shown in figure 4.1) directly
related to metadata maintenance. TWetaDataManager and theManager are the pieces that populate
TransactionMetaData andObjectMetaData structures:

TheMetaDataManager is the core of all metadata operations.

TheManager manages the basic metadata set and other straightforweliites implicit to calls to
Manager.

42



CHAPTER 4. ARCHITECTURE

Tr ansact i on |
Transaction

| TransactionMetaData |

? _| MetaDataManager |

wset rset
*

ObjectMetaData |

Figure 4.5: Metadata Managers.

When a transaction commits, it collects information, seléice parts needed for each protocol and then
these parts are sent to the corresponding transaction atatabjects for them to perform their persistence.

TransactionMetaData objects are then fairly easy software pieces: They fill théachata attributes for
eachoid.
To describe the way these attributes are collected, we asaanmstanc@A of protocol A. The remaining
components are:

Transaction t;
Manager ngr;
Pr ot ocol Proxy proxypA;
Met aPr ot ocol npA;
Transacti onMet abData tm
Cbj ect Met aDat a om
4.4.1 Object metadata collection
Basic type — oid

oid fields can be seen in section 3.2.

cl ass Manager ({
public String get NewObjectlD();

The object identifier is basically a string the system refuhat ensures that there will only be one object
with this identifier in the whole system. To achieve this, wepose theid to have the following fields:

e The repository where it is stored and other hierarchicalppiiag classes.

e The owner node identifier. For us, it is the node where thestation that created the object was
started.

e A sequential number.

43



CHAPTER 4. ARCHITECTURE

There are other alternatives such as assigning each nodge o possible objects for creation but we
find this option to be a better choice because of the ownersitipept some protocols use.

We ask theManager for new objects INSERT sentences) and once created they are obtained from the
TransactionMetaData. With this class we will be able to determine thecess_type too.

Basic type — info

Object Info is maintained by thielanager. The manager isolates the protocols from most database pecu
liarities and one of them is the information required (irtthg dependencies but not its metadata) to update
a given object value in the database.

The Manager is able to obtain thé@bjectinfo for a set of objects and it is able to receive a set of
Objectinfo objects and update the database.

Derived type — owner

It can be derived from theid usingObjectMetaData.getOwnerNode(). For protocols that deal with the
ownership concept, this value is accessed intensively lze it is advisable to keep the derived value in
memory for successive retrievals.

timestamp

timestamp holds the moment an object was accessed:

pr oxypA. obj ect sAccessed(String[] oids) {

npA. t m set Ti meSt anp(oi ds, SystemcurrentTimeMIIlis());

pA. obj ect sAccessed( oi ds);

This code can be described simply as:

@efore pA setTi neStanp(oids):
npA. tm set Ti meSt anp(oi ds, SystemcurrentTineMI1lis());

version

When an object is insertedersion is set to one and any time it is updated, it is incrementedhcifaments
were always one unit increments we could the Menager manage this attribute without help but this is
not always true. Think, for example, about lazy protocolserehsome nodes don't participate in certain
transactions execution: This means that some nodes miss odates.

Our approach fowversion management implies that versions have to be broadcast wiseessary.
For protocols using locks it is included when requestingltioé because the request is done for a certain
version. For other protocols using versions the messageialy) to commit includes theersion values.
The same applies for the remaining protocols, for them gessare piggybacked.

44



CHAPTER 4. ARCHITECTURE

lock_node

Granting locks are internal operations invoked duringhManager request for commit. This means that we
cannot use the proxies to obtain the metadata.

The protocols that need this attribute &8LU andFOB and they need a round of lock requests between
the system nodes.

Assume we have an operation for all the protocols that dethl vcks:
grant Locks(String[]oids, LockType I);
Where LockTypec {sread, read, write}.

Remember thabck_node exists only inside a transaction. Once it is finished, itsi@ds useless. As
only these two protocols use it and the process to obtaireiastly the samdock_node does not difficult
a change between these two protocols.
In a change fronCOLU or FOB to another protocol we will simply discard its value. On thleey hand, for
a change from a protocol 8OLU or FOB lock_node is useful when the transaction aborts (and it needs to
release locks). This is easily solved sending the releassage to all nodes whether the previous protocol
dealt with locks or not (in this latter case, the messagesisadded).

apply_into

This value is known wheltid.getNodeOwner() node knows for sure that the transaction commits and
commands the others to commit too.

@efore pA send(destinations, comrt):
npA. t m set Appl y_I nto(desti nations);
sites
Thesites where an object exists is initially a predefined metadat@ate and each time an object is created

in a node with anNSERT operation, the list is updated.

threshold

Once the timestamp value is obtain€DLU needs to calculate the probability of having these objects
up-to-date and compares them with a the global adaptivetibie.

@ef ore pA. objectsAccessed(oids):
npA. t m set Ti meSt anp(oi ds, SystemcurrentTimeMIIlis());
npA. t m set Thr eshol ds(oi ds) ;

If pA has an instance @OLU, pA. obj ect sAccessed() will use the threshold values.

Qrw

g andgq,, are obtained combining the information offereddites and the current view nodes.
TheMembership protocol eventhange-viewcalls the metadata instance in order to updatalues.

Arw

The same that applies for the maintenance wdlues applies fod,., values.

45



CHAPTER 4. ARCHITECTURE

4.4.2 Transaction metadata collection
Basic type —tid
Method signature dflanager:

cl ass Transacti onMet aDat a {
public String getTransactionl D();

The transaction identifier holds a format similar to the one. As well as a sequential number, it holds
the repository that the transaction is accessing and the wbére the transaction was created.

Basic type — rset, wset and srset (accedype)

The Manager has to be able to determine which kind of access an objecviadnérom each transaction.
According to this kind, it will include the object in the reaet, write set or short read set from the corre-
spondingTransactionMetaData.

Besides updating these lists, thianager will inform the underlying protocol about the accesses. The
protocol can obtain then the lists from thieinsactionMetaData structure.

Basic type — execution

The attributeexecution is maintained by thélanager. It holds the list of SQL sentences the user has
executed. The consistency protocols broadcast this irgtbom in order for the other nodes to apply the
same set of operations (with the same order) everywhereeisytstem when the transactioommits

BOT, EOT and BOC

Operations to create and close transactions are not lefietgttotocol developer but they are part of the
Metaprotocol facilities that developers are encouragadsto

Thus, these createTransaction() and closeTransactipe(ations reside in thielanager and contain times-
tamp retrieval and set the BOT and EOT fields. Actually:

e BOT — Manager.createTransaction() is called.
If the protocolChange Pointgare the beginning and the end of the transaction then, as B@tfioh is
atransaction, there is no problem having two BOT @ttt{¢) formats. Otherwise both values must be
maintained: BOT is immediately obtained.5(¢) requires piggy-backing messages among different
nodes.

/1 Constructor
public Transacti onMetabData tm() {
bot = SystemcurrentTineMI1is();

}

e EOT: Immediately after the actual database call to commit.

e BOC (Def or Imm): Begin of commit.

46



CHAPTER 4. ARCHITECTURE

readfrom

Transactiort obtained its accessed objects values freadfrom transactions. Th®anager component is
the single piece that is able to know this information so It egomplete this information.

executed

Its default value is false and only changes when the commjiigst is done and the transaction is not yet
to-delivered.

@fter pA comrit():
np. tm executed = true;
commitable

Set when the transactiontis-delivered in Jim, [18].

abort

abort is known when the protocol decides the result of the traimact

@fter pA conmit():
np.tm abort = pA conmmit();

a7



Chapter 5

Summary and further considerations

This work has been addressed in different incremental waiyst, we have started explaining in chapters
2 and, optionally, in appendix A how a protocol exchange aawcdrried out. Once this was settled we un-
dertook the task of the multi-protocol environment defontand design. For that means we needed a set of
protocols and their definition. We have them defined throhglr metadata in chapter 3. Then we needed a
common architecture, shown in chapter 4. Finally we preskimt section 4.3.1 the core of the metaprotocol.

Chapter 4 pursues an architecture for multi-protocol managnt in general regardless of the replication
model they follow. Section 4.1 thoughts about the metadat&tsires imply that selecting a unique repli-
cation model would simplify the basic metadata structusesl would unify the way updates are broadcast.
This would be a good incremental strategy in order to singglile implementation complexity in its first
phases.

Recall that our goal (section 1.1) is to obtain a light ancceffit metaprotocol. We find these properties
to be fundamental as we have focused our success on achiewmgum overhead for the independent
consistency protocols implementation and behaviour im@biconditions.

This same section 1.1 in the introductory chapter also fedws the technical motivation of our work.
Now let us consider some cultural motivations.

Companies reluctance to adopt replication is due to seveesonable concerns. One of them is re-
dundancy and another one is the impression of loss of coat@l the data scope. These concerns limit
most replication approaches to a rack of clusters insideséime data center. This approach is certainly
necessary and increases availability but, while replicatver a WAN would offer countless advantages,
cluster replication still limits scalability through gemghically scattered locations heavily under network
bandwidth and it imposes restrictions and operational gutaces (such as nightly batch processes or data
inconsistency allowance during certain intervals) to aghidata consolidation over several data centers that
usually interrupt or unbecome the regular service.

An organisation with such a problem is to be a large orgaiisand, certainly, no single consistency pro-

tocol is able to manage efficiently all its information systeisolation and service level agreement needs.

While the studied protocols solve the redundancy controble@m, our metaprotocol allows protocol elec-

tion and exchange and, due to that, it is a very serious reas@tonsider any previous reluctance towards
replication.

!Specially theT Stamp data type fromilransactionMetaData andObjectMetaData.

48



CHAPTER 5. SUMMARY AND FURTHER CONSIDERATIONS

Regarding the concern about data control loss, a WAN is noéssarily the Internet. Most compa-
nies have designed private WANSs and control privacy indiggr tglobal environment with all the available
physical and logical devices. Even though our design caityeaslude encryption for the data sent though
the network we have not considered privacy as an issue of #taprotocol itself because the network in-
frastructure (firewalls, secure communications, etcg,liardware infrastructure (data center security and
operating system security), the application design (nesibdlities oriented design, connections encryption,
appropriate database roles and permissions and appeppatication user profiles) and the company pri-
vacy procedures (privacy assurance contracts, restraotea accesses, etc.) are more appropriate places to
solve the problem.

Letting information flow through all the nodes obviously uégs a certain degree of organisation but not
allowing it imposes a serious burden to a company. Consldgrgeographical diversity is usually imposed
by different area business needs. These needs lead teediffgaita exploitation requirements. Being able to
share a part of the data while other parts are still privata¢ebecause there are mechanisms to guarantee it
or because this part was not replicated) makes unnecessatyconsolidation processes because replication
is transparent.

For all the reasons exposed a system capable to hold muttjpleurrent protocols is necessary and
our architecture solves this environment in a simple mankfedtiple protocols are useful for information
systems with many different applications and protocol exgje fits well for simpler environments.

Another potential use of the protocol exchange would be totaim two exchangeable versions of each
protocol: One fast for non-critical applications or for deaical purposes and the other secure for commer-
cial purposes including mechanisms such as protocol quserédization, more complete failure models
and cache techniques for memory and processor usage métiomz

49



Appendix A

Sequential protocol exchange

Even though sequential protocol exchange is not the godli®&tudy, it was the first step we took in order
to approach the rest of the work.

This section explains how start an change protocol opemsitiould turn the system to a mono-protocol
environment with exchange capabilities.

A.1 Start protocol

Starting a protocol is introduced in section 2.2.

In order to prevent from installing several protocols at faene time we will first justify the use of a
install_new_protocol message.
If it was not used then the first message for each protocolldhmovide any means for protocol election
decision. Whatever decision is taken one of the protocolsldvbe installed while the others would not.
Transactions using the not-installed protocol cannot lséareed because we cannot assume that the sent
message admits a negative acknowledgement, they have tinlied The negative acknowledgement has
to include indications about the protocol to be installed #ris may lead to constant disagreement (see
figure A.1).

This reiterative disagreement can be avoided by broadgpstitotal order the first message, however
it still leads to one round of one transaction abortion farteaf the nodes that choose the loosing protdcols

These are not an efficient or elegant solutions and we coedchat it is better to use a 2PC algorithm
for protocol installation in order to inform all nodes abalg chosen protocol so that they can answer with
a confirmation or a rejection. We will now describe two appiftes for thenstall_new protocol process:
first—-one—wins and voting. Both, especially the voting @llew nodes to be silent and to decide not to give
any preference and then to follow indications from the otides.

A.1.1 First protocol installer wins

void install Protocol (Protocol ID pid) {
if (for all i in nodes stopped[i] == STOPPED)
tot al OrderBcast (i nstall _new protocol (pid));

}

These nodes are the ones whose transaction first messageristbehind the first one ordered by the total order.

50



APPENDIX A. SEQUENTIAL PROTOCOL EXCHANGE

protol | prot o2 | prot o3 |

Node 1 Node 2 Node 3

[ ——

©

ey

H

=

[%2]

@

<

[%2]

«
[ —_—

p3.firstMsg

abort(p2 abort(p3
1

abort(p2)

1
] ]
] ]
1 ]
1
" "
proto2 | proto3 |;
1 1]

v v

\

O L

prot o2 I

Figure A.1: Start protocol without explicit message.

The previous method starts a protocol installation. Noailtetion is started if a protocol is already in-
stalled and the command is broadcast using a total ordeicegisee [14]). For node failure cases, adding
uniformity to the broadcast delivery guarantees will do.

voi d receivelnstall (install _new protocol inst) {
if (stopped[locall D == STOPPED)
start Protocol (inst.pid);

/1 else discard nessage

}

Once a node receives arstall_new_protocol it installs the protocol if the node is stopped or it discards
the message if a previousstall_new_protocol has already arrivedstartProtocol() installs the protocol
and changes thetopped flags.

This is an easy protocol but the total order service is cosilge way to overcome this situation is to
choose a coordinator node. This way thstallProtocol(ProtocollD pid) method substitutes the broadcast
with a unicastinvocation:

void install Protocol (Protocol ID pid) {
if (for all i in nodes stopped[i] == STOPPED)
send(install_new protocol (pid), coordinator);

Thereceivelnstall(install_new_protocol inst) method changes to:

void receivelnstall (install_new protocol inst) {
/1 if stopped install protocol (and change fl ag:
if (stopped[local D] == STOPPED)
startProtocol (inst.pid);
/1 if the node is not stopped discard nessage in any case:

51



APPENDIX A. SEQUENTIAL PROTOCOL EXCHANGE

el se return;

/1 broadcast an installation request:
if (locallDis coordinator)
bcast (i nst);

}

Once annstall_new_protocol arrives to an stopped node the protocol is installed. If théenhas already
installed a protocol then the message is simply discardélde hode is the coordinator, it sends the message
to the rest of nodés

One drawback for this protocol is that the whole procedure thebe restarted if the coordinator node
crashes. For this means, every node that sendssaall_new_protocol message to the coordinator writes
this fact down. If the coordinator crashes and #tepped flag is still set toSTOPPED then thein-
stall_new_protocol message is sent again to the newly elected coordinator.

Coordinator election must be performed independently ahewde in a deterministic way. One easy way
to achieve this is to elect the alive node with the lowest nddatifier.

A.1.2 Voting installing protocol

As in the previous installation approach, a voting protocah be designed usirficastbased procedure
or a coordinator based one. We discard the pure coordinasedsolution here because voting needs
an interval for votes collection and we allow nodes not tadsany vote at all. This means that we cannot
expect abstentiorir(stall_new_protocol(null)) messages either because sooner ofatgote could be sent.

For the same reason, a total order delivery broadcast badetios will lead to a first—-one—wins ap-
proach. Therefore we will usetacast()message and we will use the lapse of time that theldoast()needs
to send to all nodes to collect the votes. The resulting prdtoses a mixed approach because, even though
thatbcast()is used for the votes, coordinators are used:

1. The last nodéinishes the voting period.
2. Thefirst nodesends the install request.
At first, when a node wants to install a new protocol, a vote@atcast:

void install Protocol (Protocol ID pid) {
if (for all i in nodes stopped[i] == STOPPED)
bcast (vote(pid));

Votes are written down in a vector structure such as the oee teshold the stopping process information
(stopped):

voi d receiveVote(vote v, int origin) {
/1 1. Wite down vote:
vote[origin] = v.pid;

2Notice that it is not necessary to send it to the coordinagaira bcast would be better replaced byraulticast where all the
nodes but the coordinator are included as destinations.
3For example, when the installation requires human intevact

52



APPENDIX A. SEQUENTIAL PROTOCOL EXCHANGE

/1 2. If the current one is the |last systemnode and this is the
/1 end of the first bcast vote process, notify the coordi nator:
Nodel D | ast1 D = hi ghestI D(vi emV));
if (locallD == 1astlD &k nunVotes(vote) == 1) {
Nodel D firstI D = | owest | D(currentView);
send(voting_done, firstlD);
}
}

Furthermore, for the last system node, the second part ahtitbod sends an unicast message to the
first node if this is the first end of a broadcast that it receive

This approach is very sensitive to system view changes aahel meeds to cover more availability cases:

1. Newly incorporated nodes imew, ; view are allowed to participate in the voting process buythe
have to wait untilview,,’s firstiD sends the current voting information to them before brostittg
their votes.

2. Considerations for new nodes:

(a) lastID is obtained for the view when the vote was sarnitw,, because we need to know the
scope of the broadcast message. This is due to the fact tmatrd nodes ovdastID join the
system during the sending process they won't receive the vot

(b) Sending information toiew,1's new nodes is hecessary because if one of these nodesws belo
viewy,’s firstID it will rule the voting process. As we assume a majority piani model, if they

didn’t receive this information the nefirstlD node would take a decision without most of the
votes.

3. Considerations for node failures:

(a) Ifv,’'s lastiD node fails, the previous one iR, has to sendoting_done again.

(b) If v,’s firstID node fails andvoting_done has already been sent, it is sent again to the new
coordinator.

(c) It may be convenient to discuss whether votes from thehe@d nodes should be taken into
consideration or not.

Once the first voting broadcast is done, the protocol withenates is requested for installation in all
nodes in the current view:

voi d recei veVoti ngDone(voting _done vdone) {
/1 votesDone is a global variable
vot es_done++;

if (votes _done == 1) {
/1 getMax() collects the elenent that appears nore tines
/1l inside a given vector
Protocol I D wi nner = get Max(vote);

bcast (i nstall _new protocol (w nner);

}
}

53



APPENDIX A. SEQUENTIAL PROTOCOL EXCHANGE

An installation message can only arrive from one of the n@dgsvhen received, it is simply applied:

voi d receivelnstall (install _protocol inst) {
if (stopped[locall D == STOPPED)
start Protocol (inst.pid);

A.2 Change protocol

Changing a protocol was introduced in chapter 2. A sequestienge simply needs:
e Stop protocol.

e Sequential start protocol.

54



Bibliography

[1] APPIA: http://appia.di.fc.ul.pt.

[2] GlobData: http://www.iti.upv.es/groups/sidi/projs/GlobData/.
[3] The ISIS project: http://simon.cs.cornell.edu/IRodjects/ISIS.
[4] MADIS: http://www.iti.upv.es/groups/sidi/projedtaadis/.

[5] Spread: http://www.spread.org.

[6] A. El Abbadi and S. Toueg. Maintaining availability ingiéioned replicated databaseACM Trans.
Database Syst14(2):264—290, 1989.

[7] A. Adya, B. Liskov, and P. O’Neil. Generalized isolatitevel definitions. InProceedings of IEEE Int.
Conf. on Data Engineering, San Diego, CA, U$Ages 67-78, 2000.

[8] D. Agrawal, A. El Abbadi, and R.C. Steinke. Epidemic aifumns in replicated databases. RODS
'97: Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART sgimpoon Principles of database
systemspages 161-172, New York, NY, USA, 1997. ACM Press.

[9] Bowen Alpern and Fred B. Schneider. Recognizing safety kveness. Distributed Computing
2(3):117-126, 1987.

[10] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’'Nagild P. O’Neil. A critique of ansi sql isolation
levels. SIGMOD Rec. San Jose, CA US#(2):1-10, 1995.

[11] J. M. Bernabé-Gisbert, Raul Salinas-Monteagudas lin-Briz, and F. D. Muiioz-Escoi. Managing
multiple isolation levels in middleware database repiaaiprotocols. In_ecture Notes in Computer
Sciencevolume 4330, pages 511-523. 4th International Symposiutavallel and Distributed Pro-
cessing and Applications, Sorrento, Italy, Springer. IS382-9743, Dec 2006.

[12] K. Birman, A. Schiper, and P. Stephenson. Ligthweightisal and atomic group multicasACM
Trans. Comput. Syst9(3):272—-314, Aug 1991.

[13] J. Gray, P. Helland, P. O’'Neil, and D. Shasha. The dangtreplication and a solution. IBIGMOD
'96: Proceedings of the 1996 ACM SIGMOD international cosfiee on Management of datsages
173-182, New York, NY, USA, 1996. ACM Press.

[14] V. Hadzilacos and S. Toueg. Fault-tolerant broadcast related problemsS.J. Mullender editor
Distributed Systems (2nd Edpages 97-145, 1993.

[15] L. Irln-Briz, F. Castro-Company, H. Decker, and F. Dufibz-Escoi. An analytical design of a practi-
cal replication protocol for distributed systems. Liacture Notes in Computer Scieneelume 3236,
pages 248-261. FORTE 2004 Workshops The FormEMC, EPEW, 1alkd®, Spain, Oct 2004.

55



BIBLIOGRAPHY

[16] L. IrGn-Briz, F. D. Mufioz-Escoi, and J.M. BernabAuban. Animproved optimistic and fault-tolerant
replication protocol. IrLecture Notes in Computer Sciena®lume 2822, pages 188-200. Proc. of
3rd Workshop on Databases in Networked Information Systénzsi, Japan, Springer, Sept 2003.

[17] R. Jiménez, M. Patifio, G. Alonso, and B. Kemme. Arerguws an alternative for data replication?
ACM Trans. Database SysP8(3):257-294, Sept 2003.

[18] R. Jiménez, M. Patifio, B. Kemme, and G. Alonso. Imprgithe scalability of fault-tolerant database
clusters. INCDCS '02: Proceedings of the 22 nd International Conferena Distributed Computing
Systems (ICDCS’02jpage 477, Washington, DC, USA, 2002. IEEE Computer Saciety

[19] R.Jiménez-Peris, M. Patifio-Martinez, G. Alonsad 8. Kemme. How to select a replication protocol
according to scalability, availability and communicatioverhead. IrSRDS volume 00, page 0024,
Los Alamitos, CA, USA, 2001. IEEE Computer Society.

[20] B. Kemme and G. Alonso. A suite of database replicatimitqrols based on group communication
primitives. Ininternational Conference on Distributed Computing Sysierages 156-163, 1998.

[21] B. Kemme and G. Alonso. A new approach to developing amgémenting eager database replication
protocols.ACM Transactions on Database Systef3):333-379, Sept 2000.

[22] V. Lin, B. Kemme, M. Patiflo-Martinez, and R. Jimésfegris. Middleware base data replication
providing snapshot isolation. IACM SIGMOD pages 419-430, New York, NY, USA, Jun 2005.
ACM Press.

[23] F. Mufoz-Escoi, L. Irln-Briz, P. Galdamez, J. Batvéu-Aubanand J. Bataller, and M. Bafiuls. Glob-
data: Consistency protocols for replicated database=HiE-YUFORIC’2001 Valencia, Spaipages
97-104, Nov 2001.

[24] E. Pacitti, P. Minet, and E. Simon. Fast algorithms faintaining replica consistency in lazy master
replicated databases. VDB '99: Proceedings of the 25th International ConferenceVery Large
Data Basespages 126-137, San Francisco, CA, USA, 1999. Morgan KauirRablishers Inc.

[25] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. $donDatabase replication techniques:
a three parameter classification. Rmoceedings of 19th IEEE Symposium on Reliable Distributed
Systems (SRDS200@gges 206—-215, Nurenberg, Germany, Oct 2000. IEEE Canfariety.

[26] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. #don Understanding replication in
databases and distributed systems.Ptoceedings of 20th International Conference on Distriolit
Computing Systems (ICDCS 2000nges 264-274, Taipei, Taiwan, R.O.C., Apr 2000. IEEE Com-
puter Society Technical Commitee on Distributed Processin

[27] M. Wiesmann and A. Schiper. Replication techniquestam total order broadcastEEE Transac-
tions on Knowledge Data Engineerintj7(4):551-566, Apr 2005.

[28] ANSI X3.135-1992.American National Standard for Information Systems — dasadanguage SQL
Nov 1992.

56



