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Abstract

Database replication task is accomplished with the aid of consistency protocols. This work starts addressing
the study of a metaprotocol that manages consistency protocol exchanges. This is accomplished by means
of a study of compatibility among several consistency protocols that may be working concurrently and with
a framework that allows multiple protocols execution, which completes the objective of our study.
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Chapter 1

Introduction

1.1 Motivation

During recent years a series of replication protocols have appeared in order to fullfill the task of consis-
tency management in replicated systems. These protocols can be classified according to several parameters
(architecture, interaction, termination [25]) and they can be used with applications that deal with different
database transaction isolation levels (serializable, read committed, snapshot).

We address here a wrapping task: We want to describe a metaprotocol capable to provide us with ad-
ministration operations over protocols. These administration operations are: stop protocol, start protocol
and change protocol.

From now on, we’ll use the following definition for a metaprotocol:

Definition: Metaprotocol

A metaprotocol is an algorithm that allows several consistency protocols to be executed over
the same database.

A metaprotocol allows the system to execute two concurrent transactions that use two different repli-
cation protocols; it allows a transaction that was started using a protocol to continue its execution using
another protocol; it allows the system to finish a given protocol waiting for all started transactions to stop
and to start a new protocol letting all new transactions to use it. The first example refers to concurrent pro-
tocols execution. The two next ones refer to a protocol change but they are tightly related to the concurrent
protocols execution case because they allow protocol changes not to be necessarily executed sequentially.

Our goal is to obtain a light and efficient metaprotocol that achieves these tasks with minimum func-
tional impact for the users. As most consistency protocol advantages and weaknesses depend on variable
parameters ([17], [13]), such a metaprotocol is an essential piece to turn a distributed database system into
an adaptable one.

This goal’s scope is general but we can easily justify all efforts taken in this direction it if we aim towards
complex and large systems:

It is not unusual for a large organisation to use an information system1 that accesses common database
schemas.

1For us it is indifferent whether the system is composed of stand-alone applications that cover special business needs orit is an
enterprise suite.
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CHAPTER 1. INTRODUCTION

Good examples of common schemas are those regarding to staffinformation or corporate resources. Staff
information can be used for administrative tasks as well as for login and profiling and access purposes.
A corporate resources catalog goal is to centralize information about headquarters, office branches, pro-
fessional categories and all sorts of business related information classified by the organisation. While the
administrative personnel will need the latest versions or exclusive accesses, other employees and external
users will need a less accurate access to data.

The first elements a developer finds to overcome this scenarioare transaction isolation levels. All com-
petitive database management systems currently offer isolation levels. On the applications layerJDBC, for
example, allows connections for Java applications to use transactional database capabilities.
Transactions and isolation guarantees are applicable to a single database server however, as organisations
grow, the information system infrastructure has to scale further. The first steps taken to improve scalability
usually consist of adding CPU and memory power to the server but soon we realize that this is not enough.
Growth implies an increase of the number of users thus an increase of the number of offices accessing the
server in a way that finally leads to the use of replication.
Replication can be embedded either in the underlying database management system or in a middleware
layer between applications and the database. Whatever approach is taken the replication system has to allow
transaction isolation guarantees and, frequently, variations (see [7]) of the ANSI ones (see [28]) are more
convenient.
Imagine the case of data marts or data warehouses; other examples are monthly payroll calculations and
closing of financial years. While the data warehouses mostlyneed guarantees similar to those offered by
control version systems all the time, the last examples needmuch more restrictive guarantees during a cer-
tain time intervals but not always.

As we will cite and display later there exist different architectures and plenty of replication protocols
in the literature. As each architecture displays advantages and disadvantages when trying to solve any of
the above concerns, recent studies such as [19] and [27] compare protocols performance. [19] conclusions
expose ROWAA approach as the most suitable for the general case and [27] is based on total order broadcast
techniques.
While agreeing with these results, regardless of any predictable improvement on network bandwith we find
that there will always be a lot of scenarios such as the two examples depicted before that benefit from lazy
and epidemic approaches. Obviously ROWAA and total order broadcasts would update steadily in all nodes
a change performed over a table of streets and cities in a corporative resource catalog but a deferred update
would imply no functional burden and this update would causemuch less interferences in the performance
of other applications.

So, instead of proposing a consistency protocol with general purposes, we have designed a metaproto-
col that allows a representative set of consistency protocols to work concurrently. This metaprotocol is a
solution to the above concerns as applications will be able to take advantage of the protocol that better suits
their needs. Not only the best protocol for the general case can be selected for an application but also it can
be changed for another one if the application access patternchanges drastically or if the system overall per-
formance changes due to specific load variations or network or infrastructure migrations. These selections
and changes can be forced by an administrator following theoretical and empirical studies or they can be
automatically triggered according to background performance analysis2.

The paper is organized as follows. In section 1.2 the generalscenario is presented. In section 1.3 we
list a set of desired capabilities and we make some considerations about issues related to behaviour for the

2Selection issues are out of the scope of this study.
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CHAPTER 1. INTRODUCTION

essential pieces of the system.
At this point the work follows two parallel paths that lead tothe metaprotocol architecture.
One of them, described in chapter 2, presents the metaprotocol administrative operations (stop, start and
change) that allow changes in the working state of the protocols. In order to approach the problem grad-
ually, firstly the state changes are considered sequential (see appendix A) and later they are allowed to be
concurrent.
The remaining path of the study is shown in chapter 3. Here we perform a study about the metadata in-
volved in protocol changes. A set of different protocols with different characteristics is collected and then
each protocol information about metadata is used to find the characteristics they all have in common.
Once this is done, operations and data (metadata) are combined to achieve concurrency effectively. This
is described by means of an architecture (including metadata management and execution control) for the
metaprotocol existence shown in chapter 4.
Chapter 5 summarizes results and contributions and inquires further into the motivations of this research.

1.2 Scenario

Our scenario is composed of a set ofnodesni (sometimes called servers) such thati ∈ [1,N ]. User ap-
plications do not necessarily exist in these nodes3 but they access the databases and possibly certain server
services in those nodes. Users as well as applications are referred to simply asusers. Each user accesses
one of the nodes (always the same and typically the closest one) so that each node has a given subset of the
users accessing certain data.

Data is composed of a set ofobjects(oj , j ≥ 1). It is stored in the nodes’ databases (also calledrepos-
itories) and it is replicated through the set of nodes completely or partially. In partial replication, the set of
objects is different depending on the node or group of nodes:changes are sent to a subset of nodes. In total
replication changes are sent everywhere.

Objects are replicated in order to optimize accesses and data consistency is achieved with two means:
database transactional capabilities and consistency protocols.

Accesses are organized in transactions (Tik, i ∈ [1,N ], k ≥ 1). Transactions group a set of operations
as an atomic step in a way that all operations are applied (commit) or they are all aborted (rollback). Each
transaction is started by an user in one of the system nodes and it is described with its readset (rset) and
writeset (wset).

Consistency protocols (Pm, m ≥ 1) replicate by means of communication protocols and guarantee
consistency by means of consistency logic plus recovery protocols. They expand transactions through the
system in order to coordinate actions in each node to providethe required transaction isolation levels. These
levels are based on [10] and [7].
So, while consistency protocols are used to make transactional properties prevail through the system, com-
munication protocols take care of message delivery amongstnodes and recovery protocols are in charge of
maintenance during node crashes. All of them rely on membership protocols in order to add awareness of
node crashes and node joinings.

It is worth saying that consistency and recovery logic are tightly coupled. In fact, many times both
tasks are considered and mentioned simply asconsistency tasksbecause recovery logic is usually highly

3See, for example, downloadedJava WebStartrich clients.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Consistency Components.

embedded inside the consistency logic. If nothing else is said, in our study we will also exploit this idea
whenever we mention consistency protocols.

All these components (see figure 1.1) are present in each system node.

In order to have a general idea of what kind of information a consistency protocol manages, let us say
that some make use of the concept of ownership: even though the object is accessible everywhere, each
object belongs to, or it is controlled by, a certain node4. Notice that this is not necessary for all protocols:
Other protocols use communication primitives that preventnodes from being managers of a certain set of
objects. In any case, consistency protocols manage additional information outside of the scope of the users
information. This information is calledmetadata:

Definition: Consistency protocol metadata

Metadata is additional information (persistent or transient) associated with each object or
transaction.

This information can be versions, timestamps, transactional context and the like.

Protocols, objects and transactions model general information and processing. From a strictly practi-
cal point of view, nodes are usually servers located at different data centers. The kind of users and the
information stored in the databases depend on the business the information system exploits. Applications
range from ATM machines to online interconnected shops, health-care systems for patients clinical history
management, logistical administration of stock stores, etc.

1.3 Framework

Initially, we assume we have a system for data replication (such asGlobData[2] or Madis [4]) prepared to
hold a consistency protocol per data repository.

This system will provide an interface to the user in order to make replication as transparent as possible.
These user calls will be captured by some means and then consistency tasks will be performed.

In these systems, allowing different sets of data to be accessed with different protocols is straightforward
because each repository is associated to a protocol. For a single repository, if we want to change a protocol
for another one, or better if we want to allow protocols concurrency we’ll need additional components and

4i.e. the one where a user requested its creation.
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CHAPTER 1. INTRODUCTION

an additional architecture wrapping the original one to allow such data exploitation.

Recovery logic is suited to each consistency protocol and we’ll consider it as a portion of the consis-
tency logic. Other parts, administration oriented, can be considered as common and will be the core of the
metaprotocol architecture.

1.3.1 Communications

As communications logic is usually common, communication protocols such as [1], [3] or [5] offer a set
of general communication primitives (unicast, broadcast or multicast) that provide certain message delivery
guarantees (reliability, atomicity, uniformity) [14].

We consider the communications suite as a black box as we find that the currently available suites con-
tain operations to fullfill most consistency protocols requirements.
Between the chosen communications suite and the protocols it is necessary to add a new component that
distributes network messages to their appropriate consistency protocol destination.

Protocol messages have to be wrapped inside general messages that carry information about the consis-
tency protocol context.

Protocol ID Message Type Message

Once the message is sent to theCommDistributor, it unpacks it and it is delivered to the corresponding
protocol (See figure 1.2).

Network
Consistency ProtocolConsistency ProtocolConsistency ProtocolConsistency Protocol CommDistributor

Figure 1.2: Message distributor.

Furthermore, for the sake of efficiency a good choice for thiscommon API will include a communi-
cations suite that is able to group the messages that need to be ordered from the ones that need not to.
For example: no ordering is required between messages from different protocols and ordering is required
between metaprotocol administrative messages and the restof them.

1.3.2 Concurrent protocols

Protocol concurrency motivations were explained in the introduction. Typically different applications ac-
cessing the same data repository are able to benefit from the different protocols guarantees. One important
subtask of a multi-protocol environment is to allow an application to change the consistency protocol it uses.
A protocol change may be necessary due to several reasons: A monitoring system detects that the response
times and the abort rates are not adequate; a given application knows for sure which protocol is more suit-
able for its needs; a given transaction access pattern is best served with a certain protocol.

There are several ways to change a protocol (sayP1) with another one (sayP2): sequentially and in
parallel.

5



CHAPTER 1. INTRODUCTION

Sequential protocol exchange

This means thatP1 is stopped in all the nodes and thenP2 is started.

Definition: Sequential protocol exchange

For P2 transactions (t2i) to start, allP1 transactions (t1j) must have had finished so that not2i

andt1j are concurrent.

During P1’s stopping, something has to be done with user calls to create new transactions:

• Make them wait: Create transaction calls are blocked until the protocol isstopped.

• Make them abort: Create transaction calls throw an exception.

The second choice is suitable to completely stop the system (i.e. when no other protocol is intended to
be loaded) and the users are reluctant to stop their accesses.

The first choice needs to know when the protocol is stopped. A protocol is stopped when no local5 or
remote6 transactions exist in execution. As soon as this happens,create transaction calls can be unblocked.

This can be achieved with a transaction counter. For the counter to work, protocols must inform the
MetaProtocol about the creation and finalization of transactions. As soon as a node counter reaches zero the
rest of the nodes should be informed. See figure 1.3 for an initial draft of the architecture design.

Node1

MetaProtocol

ProtocolProtocolProtocolProtocolProtocol

CommDistributor

Communications
Network Communications

Figure 1.3: Metaprotocol.

Parallel protocol exchange

An ideal parallel changing implies not blocking thecreate transaction calls while the previous protocol
is still running and being able to turn at1 transaction into at2 one. This change has to be transparent to
the user and then, the object they obtain to perform operations is to be a proxy of the real protocol that
distributes user calls to the appropriate protocol after performing control tasks.

When no change is being performed, the proxy simply redirects. When the changing is taking place it
distributes calls to their corresponding protocol:

5A local transaction is a transaction whose create transaction call was invoked in the local node.
6A remote transaction in nodeni was created in another nodenj , j 6= i and has sent a message that has already been delivered

in nodei.
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• New transactions use protocolP2.

• Already created transactions can take one of the following two approaches:

a) Use protocolP1: Sooner or later all remainingP1 transactions would finish and the change
would be completed.

b) Change fromP1 to P2 as soon as they can: This option helps the change to take placeearlier.

Figure 1.4: Framework for a general changing.

Figure 1.4 shows a more detailed architecture design to model these characteristics. For parallel pro-
tocol exchange, the same considerations about transactioncounters done for sequential exchanges apply.
Notice that once this objective is accomplished, the general task of concurrent protocol execution (without
exchange purposes) will already be achieved.

Special care must be taken with different protocols and different database transactional isolation levels.
The changing protocols metaprotocol has to guarantee that the safety properties of the individual protocols
hold:

Definition: Safety extension for the metaprotocol

Safety properties for all individual protocols that the metaprotocol covers hold.

General changing of protocols

Sequential change of protocols can be seen as a particular case of parallel change. Both sequential and
parallel changes need to define steps (there may be several) during the execution of transactions when the
metaprotocol is able to request a protocol change. We call these stepsChange Points:

7



CHAPTER 1. INTRODUCTION

Definition: Change Point

A change point is the step during the transaction execution when a consistency protocol change
can be carried out. This means either thatP1 changes toP2 or that t1 and t2 transactions
coexist.

For the sequential case theChange Pointsare the beginning and the end of the transaction. As soon as
we reach these points, the metaprotocol will decide whetherto change (there are no otherP1 transactions)
or to keep the new transactions waiting.

For the parallel case theChange Pointscan be any of the user calls (not onlybegin andcommit/abort) or
internal steps of the execution of those. It will depend on the involved consistency protocols characteristics.

1.3.3 Transactions and Sessions

Some systems such as [2] make a difference between transactions and sessions. Sessions contain several
transactions. While in a system of such characteristics transactions can be committed or rollbacked, sessions
can be created or closed. In fact, a session is like aJDBCor ODBCconnection.

In this situation we can count either sessions or transactions. The most straightforward approach is
simply to count transactions. If we choose to count sessionsthen new transactions will be created during a
protocol change. This fact can be softened making a second count with the transaction information. A new
transaction is created as soon as the previous one has finished with acommit or arollback statement.

Liveness

For the exchange operations the liveness of the metaprotocol depends totally on the ability to bring the num-
ber of transactions/sessions of the running protocol to zero and being able to perform operations with the
new protocol as soon as possible. For the protocols concurrency environment, the liveness of the metaproto-
col lies on the ability to keep the individual protocols liveness by keeping protocols from voiding each other
liveness properties.

In some exchange scenarios it may be usual to have transactions opened for a very long period of time
while the user is performing scarcely any operations. Theseidle transactions will delay the actual exchange
of protocols. The only way to skip this situation locally is to establish timeouts and measure time intervals
between user accesses while protocol changes. If they surpass a certain threshold, transaction could be
stopped.
Using distributed information, as soon as the percentage ofnodes that are ready to perform the change has
surpassed a certain amount, the local timeouts set for the local idleness detection should be decremented or
set to zero to force the remaining transactions to finish.

If the main purpose is to perform the fastest protocol exchange then aborting working transactions is
the most appropriate solution. However for most systems this solution is unacceptable. An empirical study
can be performed for any desired scenario in order to optimally adjust the aborting thresholds but the best
tunning needs human interaction in order to point out the current scenario, and furthermore we must expect
this is a constant one.

In any case, notice that if we admit concurrent protocols execution none of these considerations are
necessary.

8
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We will consider all these facts external to the liveness7 of the metaprotocol because they depend on the
user usage of the system. So, regardless of the use of any approach to avoid long idle transactions or the use
of none, we assume that transaction counters alwaysreach zero in all nodes.

Definition: Liveness extension for the metaprotocol

The following properties must hold:

1. Liveness properties for all individual protocols that the metaprotocol covers hold.

2. When requested, all these individual protocols eventually finish executing transactions.

3. Any protocol change or stop eventually finishes.

1.3.4 Conflicts detection

To detect access conflicts locks or timestamps can be used but, in any case, these conflict solving operations
depend on constant comparison of accessed objects sets.
Say transactionT1 readso1, o2 and writeso1. At the same time, transactionT2 readso1, o3 and writeso1.
If both try to commit, there’s a write–write conflict that must be solved. If fact, the latest of both write
operations will be blocked waiting for the first one resolution (commit or rollback).

Care must be taken in order to avoid deadlocks:t1i readso1, o2 andt2j reads them too. Thent1i writes
o1, t2j writeso2, t1i writeso2 (and gets blocked) andt2j writeso1 (and gets blocked too).

Fortunately relational databases solve these situations by themselves but still, as we are adding network
concurrency, consistency protocols have to be prepared to solve situations like these.

Furthermore, if we consider that different users might access the same data using different consistency
protocols, conflict detection between different protocolshas to be performed too. Figure 1.5 shows an ex-
ample. In this figureP2 suffers from a blocking oft22. This conflict is detected with the regular consistency
protocol.

P1 P2

t11.write(a)

t11.write(b)

t21.write(b)

t22.write(b)

t21.write(a)

(blocked)(blocked)

Time Time

Figure 1.5: Conflict between protocols.

7For a formal study on how safety and liveness probe invariance and well-foundedness of algorithms, check [9].
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t11 accessed throughP1 is blocked due to conflicts withP2 accesses.

We will see in section 3.2 that protocols can be split into different general phases. Protocols offer an
API to the users and we must identify which operations imply access to objects. These operations usually
return or receive object result sets.

Definition: Result Set

A Result Set is the set of objects accessed during a transaction. It is decomposed into two
different parts: The WriteSet (wset) for the write accessesand the ReadSet (rset) for the read
accesses.
We assume the most general definition of Result Set (in order tocontemplate all possible con-
sistency protocols), whose compilation is considered to beincremental.

This indicates that theMetaProtocol should act as a common conflict detection component with meth-
ods like these:

public void accessObjects(TransactionMetaData tmd, ResultSet rs)
throws ConflictException;

public void releaseObjects(TransactionMetaData tmd, ResultSet rs);

Using tmd the transaction id, its protocol and the current protocol phase can be obtained. These values
identify which protocol and during which transaction execution phase accessed the objects result set (rs).
Conflict detection is based upon comparison of sets of objects. A transaction accesses an object “for a
while” and then it stops accessing it. This does not necessarily mean that we have placed a lock over the set
of objects because some protocols declare the intention to access before the access is performed.
The methods signatures plainly say that the rules to decide about object access conflicts depend on the ac-
cess type a transaction is using, the protocol it is using andthe phase the transaction is at when the access is
performed.
To show these rules, we need a previous study about protocolsand their metadata (section 3.2) and that is
why they are introduced later in section 4.4.

As protocols are actually behind a proxy, before or after thecall to the real protocol, a call to the
MetaProtocol can be done to check the conflict situations (see figure 1.6).

User ConnectionProxy MetaProtocol Connection

performOperation()

performManagement()

performOperation()

performManagement()

Figure 1.6: Metaprotocol.

This allows us to simulate the way some databases solve conflicts: granting locks to accessed objects
(see figure 1.7). The general replication framework then should provide means to collect the readset and
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writeset of the transaction at any time.

User 1

User 2

User 3

Protocol 1
Protocol 2

Metaprotocol                   

accessed objects

Figure 1.7: Common accesses space.

If the installed protocols and the underlying DBMS use the same isolation level local conflicts will be
solved by the database itself. For multiple isolation levels handling an approach can be found at [11].
In any case, local operations may block remotely committed transactions and a mechanism to abort transac-
tions even without the user interaction is needed.

Granularity

Granularity depends on the concept of object a protocol uses(column, group of columns, row, table,
database). [7] uses rows as objects in its database model butalso discusses about predicates and multiple
isolation levels handling. As different protocols may use different object concepts an inclusion relationship
between object classes is needed:

Definition: Object classes general inclusion relationship

Object classC1 contains object classC2 if all objects inC2 are contained inC1.

General inclusion is an internal operation between classes. Classes range from specific to general de-
pending on how many classes they contain:

Ccolumn⊂ Cgroup of columns⊂ Ctable⊂ Cdatabase
Crow ⊂ Ctable⊂ Cdatabase

However, we need an operation between objects and not classes to define all possible conflict cases. An
internal operation is pretty straightforward:

Definition: Object conflict in the same class

oa andob are two sets of objects of classCi. oa andob conflict ⇐⇒ oa ∩ ob 6= ∅.

Inclusion cannot be defined properly for classes between rows and columns:Cgroup of columns⊂
Crow cannot be established because columns select information “vertically“ (projection for all rows) and
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rows select “horizontally“ (select all for a single row). This means that saying that “a row contains columns“
or that “a column contains rows“ makes no sense in this context.
If fact, for objects, a row always intersects with a group of columns and vice-versa. This intersection defines
the finest granularity in a relational database: arow-columnwhen there is a single column, and then next
finest group when there are several columns: arow-column group:

Crow-column⊂ Ccolumn
Crow-column group⊂ Cgroup of columns
Crow-column⊂ Crow

For all inclusion properties to hold the container table must be the same. Moreover, for the first one the
column name must be the same, for the second one the column group must be the same, and for the third
one the row must be the same.

An external inclusion operation can be defined listing all comparable cases but it is naturally derived if
we define a class by a set of objects of a more specific class:

• A group of columns is a set of single columns. Each column contains the values stored in that column
for all the table rows: A group of columns is the set of row-columns for all these rows.

• A row is the set of all row-columns for that row in its table.

• A table is the set of all its rows or the set of all its columns.

• A database is the set of all its tables.

Definition: Object conflict in different classes

oa andob are two objects of classCa andCb. If Cb ⊂ Ca then if objects inCa can be defined as
objects inCb, internal object conflict operation result can be applied for this case. Otherwise,
objects do not conflict.

1.3.5 Metadata maintenance

We classify metadata in two groups:

• Basic: These fields have to be collected for all protocols (even if they don’t use metadata).

• Additional : These fields have a default value and they don’t need to be maintained when the corre-
sponding protocol is not being executed. As soon as it is, thedefault value is set and their management
is started.

For the protocols that manage metadata information we need the MetaProtocol to maintain it. This
maintenance is done similarly as the conflicts detection is.

Independently of the consistency protocol being used, all metadata maintenance has to be done. While
collecting the writeset and readset, metadata for these objects has to be calculated. If this information can
be obtained in an incremental way it will be easier to manage the information. If not operations over sets of
objects would have to be performed extensively.

This is the main difference of metadata maintenance and conflicts detection and pure consistency logic.
The latter ones are executed when necessary (when the metaprotocol is performing its tasks) while Metadata
maintenance has to be always active:

Just before a transaction commits, it gets all metadata collected for all the consistency protocols and
applies it.

12
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1.3.6 Optimizations

A study has to be done to identify the stages where protocols need to call MetaProtocol. This information
can be used to avoid certain calls from the proxy to the manager.

This approach is similar to AOP (Aspect Oriented Programming) paradigm. Here, protocol conflicts,
metadata management and most consistency issues are considered as an aspect and they are implemented as
a separate component, the MetaProtocol. An AOP framework could be used to implement these operations.
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Metaprotocol basic operations

We’ll first show an algorithm based on [12] to stop protocols and the other operations (start and change) will
be derived from it.

Our algorithms are placed in theMetaProtocol component. Once a message from the algorithm arrives
to theDistributor, it redirects it to theMetaprotocol.

2.1 Stop protocol

The stop protocol uses a message calledstop. This message is defined as follows:

stop = {list = vector 1 × N}

whereN is the number of configured nodes and each element representseach node stopping status.

Each node has a variablestopped that represents the different stopping stages a node goes through.
Firstly, it is initialized to zeros for all alive nodes, thismeans that the protocol is not stopping. A1 value
means that the node has been notified about a stopping process. Finally, a2 value means that the protocol is
stopped in the given node. On the other hand, ifstopped equals to3 then the node is crashed1.

The stopping state values are ordered in ascending priority. A stopping process will usually lead to a
0, 1, 2 sequence forstopped values. Whenstopped equals to3, no state changes have to be written for that
node. Only when that node joins the system again, its stopping state values will change.
These state transitions can be modelled with an enumerate type:

enum StopStates {
NOT_STOPPING, // 0
STOP_NOTIFIED, // 1
STOPPED, // 2
CRASHED // 3

}

If the stopping is initiated from nodelocalID:

stopProtocol() {
if (stopped[localID] == NOT_STOPPING) {
stopped[localID] = STOP_NOTIFIED;
bcast(stopped);

1The node is down or in a minority group.
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for all i in bcast_received do
stopped[i] = STOP_NOTIFIED;

done
}

}

If the node is crashed (obviously in the minority group case), already stopping or stopped, there is no point
initiating another stopping process.

If the message is received at anotherlocalID node:

receiveStop(stop st) {
for all i in 1..N do
stopped[i] = max(stopped[i], st.stopped[i]);

done

// 0 -> 1
if (stopped[localID] == NOT_STOPPING)
stopped[localID] = STOP_NOTIFIED;

initiatorValue = st.stopped[st.stopInitiator];

// when the st source starts the process or has just crashed
// afterwards
if (initiatorValue == STOP_NOTIFIED or CRASHED)
order_to_stop();

// when localID has just re-joined the system
if (initiatorValue == STOPPED or CRASHED) {
if for all i in 1..N stopped[i] == STOPPED or CRASHED
remove_instance();

}
}

receiveStop() orders the most common stopping state transition: fromNOT STOPPING toSTOP NOTIFIED
(0 → 1). In networkChanges() code, we can see that a node with a stopping state equal toSTOPPED
may receive morestop messages when a network reconfiguration is performed. In this case theSTOPPED
value will remain for that node.

As soon asorder to stop() is called, usercreate transaction operations are blocked or aborted:

order_to_stop() {
// Set as stopping and check whether the system is already stopped
stopping = true;
if (sessionCount == 0)
notifier.notify();

}

remove instance() setsstopping to falseand performs all necessary operations to remove any runtime
object from the working protocol from memory.
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After a call toreceiveStop() operation continues in the usual way. For eachclose() operation invoked
over transactionsMetaProtocol.closeSession() is called:

closeSession() {
// Decrement the counter and check whether the system is already stopped
stopping = true;
sessionCount --;
if ((stopping == true) && (sessionCount == 0))
notifier.notify();

}

Thread Notifier {
public void run() {
while(true) {
// Wait until there is a stopping process and the number of
// current transactions reaches zero
wait();
if ((stopping == true) && (stopped[i] != STOPPED)) {
stopped[i] = STOPPED;
bcast(stopped);

}
}

}

This thread waits until all transactions in this node have been closed. It can be awakened when a termi-
nation condition becomes true. Bothorder to stop() andcloseSession() contain termination condition
verifications.

2.1.1 Fault tolerance and additional considerations

This protocol uses a communications primitive with very relaxed delivery guarantees.bcast() is assumed to
beunreliable. An unreliable broadcast is equivalent to a sequence of unicasts. The proper way to implement
this is as follows:

int[] bcast(Message m) {
int[] nodes = getAliveNodesInCurrentView()
Vector received = new Vector();

for(int i=0; i<nodes.length; i++) {
try {
// send m point-to-point from localID to i
send(m, i);
received.add(i);

} catch(NetworkException e) {}
}

return received.toArray();
}

A multicast method can easily be derived from the broadcast one. Multicast signature has the following
aspect:
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int[] bcast(int[] destinations, Message m);

Network changes might occur in the middle of abcast() operation. Then theMembership component
will send a notification to one of the MetaProtocol threads:

void networkChanges(int[] newNodes, int[] crashedNodes) {
for i in crashedNodes do
stopped[i] = CRASHED

done

// when localID is re-joining the system
if (localID in newNodes) {
stopping = false;
stopped[locaID] = NOT_STOPPING;

// when localID was already alive and during a stopping process
} else if (stopping == true) {
if for all i in 1..N stopped[i] == STOPPED or CRASHED
remove_instance();

// coordinator:
else if (localID is the lowest previously alive node)
bcast(stopped);

}

Setting thestopped flag of crashed nodes toCRASHED for disconnections would not be necessary but
this way, the algorithm is able to deal with node crashes2.

After this, we need to check whether the algorithm has finished or not. If it hasn’t, the “coordinator”
sends a stopped order to the newly joined nodes.

Notice that most stopped element transitions triggered bynetworkChanges() broadcast will be from
NOT STOPPING to CRASHED. This happens due to the fact that nodes requested to stop don’t know
which nodes have received the stopping message and which have not.

It is not important as the only case where this would matter iswhen the stopping initiator crashes. When
this happens, another “coordinator” broadcasts the stopping message. It has to broadcast and not multicast
because some of the remaining alive nodes could have not beensent a stopping message yet.

In any case, we can provide the “coordinator” with a little bit more information. This is the only node
that really knows which nodes have received the order and thus, it can write it down simply setting to
STOP NOTIFIED thestopped elements taken from thebcast() invocation:

...
else if (localID is the lowest previously alive node) {
bcast(stopped);

for all i bcast_received do
stopped[i] = STOP_NOTIFIED;

done
}

2In a node crash, the crashed node will have lost all stopping state information.
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2.2 Start protocol

Starting a protocol is easier than stopping it. For the sequential case, once the previous protocol has been
uninstantiated, a new protocol can be instantiated from anyof the nodes. When the first message sent from
this node to the others arrives, the protocol is used in the other nodes too as shown in figure 2.1.

Network CommDistributor Protocol 1

Protocol2

send(m)
[P1 exists] execute(m)

send(n)

[P2 not loaded]

execute(n)

Figure 2.1: Start a new protocol.

When new transactions are blocked until the current protocol is stopped, they are blocked in their start-
ing nodes until the nodes’stopped vector contains onlySTOPPED values.
Depending on the broadcast delivery order, some nodes may have perceived this situation before the last
stop message has been delivered to the whole group. They will start operation and they might sent mes-
sages to nodes where thestopped vector completed withSTOPPED values has not been established yet3.
Incoming messages from a different protocol are blocked in those nodes too until the node is stopped in the
same way as local operations are.

Considerations about dealing with long transactions when aprotocol exchange is trying to be performed
can be read in section 1.3.3.

When the protocol election can only be set from one of the nodes, this approach makes the use of an
install new protocol message unnecessary.

A component to prevent protocol installation conflicts could be useful for some systems however, if we
aim to a more general task, say allowing several protocols toco-exist, we will not try to prevent this situation
and the start can be performed freely at any time.
The sequentiality control is performed when the start operation is invoked. Appendix A displays the algo-
rithm that would be required for a sequential protocol exchange.

2.3 Change protocol

Changing a protocol can be done with a protocol similar to theStop protocol: A change message has to be
sent. This message contains a list and a protocol identifier.

3Remember that the broadcast message does not provide ordering guarantees.

18



CHAPTER 2. METAPROTOCOL BASIC OPERATIONS

Once a node receives the message, it loads the new protocol and from that moment on, the user calls to
the proxy to create new transactions link the user to the new protocol: the proxy redirects the calls to the
proper protocol.

At this point, both protocols coexist. As the goal is to change the protocol, the previous one must be
stopped. The system needs to know which one is being loaded and which one is stopping. This can be
achieved adding a protocol identifier to thestop message.

2.3.1 Other considerations

It is worth recalling that due to protocols basic metadata maintenance, the pieces of code in charge of meta-
data for all changeable protocols have to be running all the time. That is why protocol exchange leads to a
concurrent multi-protocol environment.

To promote concurrency further when several protocols are running, communication and membership
delivery calls have to be non blocking.

The exchange protocol simply lets transactions from the substituted protocol decrease because no char-
acteristics from the involved protocols have been used at all.

Locking protocols share behaviour in pre-commit operations and we can take advantage of these simi-
larities to optimize the protocol change. As soon as aChange Pointhas been reached, the proxy could be
able to redirect a user call from one protocol to the other transparently and avoiding possibly long waiting
intervals of time until the user decides to finish the transaction.

Previous to the metaprotocol design, an analysis of a set of protocols will be presented in the following
chapter.
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Protocols metadata description

3.1 Protocols classification and duration descriptors

For the protocols classification we will use the models presented in [25] and [26]. [25] will be used to
describe a protocol:

Architecture: Update everywhere / Primary copy.

Server interaction: Linear / Constant.

Transaction Termination: Voting / Non-voting.

In [26], authors offer a classification from the point of viewof the protocol phases. We will use these
phases to describe the different steps a transaction usually goes through:

Request (RE): The client submits an operation.

Server coordinator (SC): The replica servers (nodes) synchronize the operations execution.

Execution (EX): The operation is executed.

Agreement coordinator (AC): The nodes make an agreement about the execution result.

Response (END): The execution result is sent back to the user.

Another feature used to characterize a protocol is the transactional isolation level it is able to guarantee.
As [11] has already referenced isolation level guarantees are based on phenomena definitions consisting of
several object dependencies.

Moreover, when given we will use a classification according to the protocols metadata:

• Object meaning or granularity: Is the object a table row or the table itself?

• Metadata context: Object, transaction or group of transactions.

• Metadata durability: Is the metadata needed only during the life of the transaction or is it needed
during the life of the object? Where, in the whole system, is really needed to be made persistent?

As we want this information to lead us to a general metaprotocol architecture we will pay attention to
these fields of metadata with special detail. The following information for each metadata is important:
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Name: Metadata identifier.

Description: Short metadata description when the name is not enough.

Duration: The context of the metadata: object, transactionand view. Where an “object context” attribute
means that the metadata is valid during the life of an object and so on. Duration context identifiers
will be included as basic types (OID, ViewID andTID) for our system and will be common for all
protocols:

Object (oid):
OID = repository:: class:: owner.counter

Where:
int owner; A fixed number of digits is used in order to separate

owner from counter (values are left-padded with zeros).
long counter; A sequentially incremented number.
String repository; Database name with variable length.
String class; Table name with variable length.

View (view id): Integer value incremented each time there is a network reconfiguration.

Transaction (tid):
TID = repository:: owner.counter

Where fields have the same meanings and types than the previous identifiers.

Collection: Collected progressively (and during which phases) or in a single step.

3.2 Protocols metadata

3.2.1 SiDi protocols

FOB: Full Object Broadcast

FOB [23] was created and developed by the SiDi group at the ITIof the Politechnical University of Valencia
(UPV) during the development of theGlobDataproject [2].

FOB is aPrimary copy1 – Constant– Votingprotocol.

RE and EX occur in the primary copies between thebegin transaction and thecommit user calls. After
thecommit call, SC is acquainted through AC: Objects in thewsetare organized into groups according to
their node owner and a lock request is sent to each owner. If all owners answer affirmatively, anupdate
is broadcasted using a reliable service. This message makesthe primary copy to effectively commit the
operations and return the control to the user (END). It makesthe other copies to execute the transaction
operations (EX) and to effectively commit too. Locks are released just after the effective commit.

FOB was implemented to guarantee several isolation levels provided by the middleware layer: PLAIN,
CHECKOUT and TRANSACTION. Those being similar toread committed, repeatable readandserializ-
able.

1Both FOB and COLU closest architecture definition isPrimary copybut they are not exactlyPrimary copy: FOB and COLU
can start transactions in any node and updates are first done in this starting node.
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An object in FOB can be either a row or a table but we’ll focus onthe first case: a row. Metadata is col-
lected progressively before commit and it is associated with a row whose primary key is an Object Identifier
(oid).

Table 3.1 shows FOB metadata.

Name Duration Collection Description

owner Object Progressive before commitOriginal owner
and implicit in the oid

version Object When needed Object version
accesstype Transaction Progressive before commitRead / Write
lock node Transaction During commit Actual lock node holder
apply into Transaction During commit Nodes where it will be applied
object info + SQL Transaction When effective commit Apply info

Table 3.1: FOB metadata

Where:
int owner; It can be derived fromoid.
int version; An integer value incremented each time a transaction updates

and commits the object.
int lock node; During node crashes it may be different fromowner.
int[] apply into; The list of nodes where the commit was broadcast.

It is the whole list of nodes until there exist node failures.

COLU: Cautious Object Lazy Update

COLU [16] and [15] was created and developed by the same team of FOB. It is similar to FOB, it isPrimary
copy– Constant– Voting too, but it has several big differences:

• It multicast changes only to a subset of the nodes.

• During RE, an adaptive function is used to predict whether objects are outdated or not. When an
outdated object is accessed, it is requested to its owner andit is subsequently updated before it’s
returned to the user.

• The same procedure is followed when, during AC, it decides a session must abort. This, and the
previous one, are the main features that make the protocol a lazy one: Objects are mainly updated
only when needed.

Table 3.2 shows COLU metadata.
Where:

double threshold; The result of the adaptive function.
TStamp timestamp; Instant when the last write commit took place.

3.2.2 Dragon protocols

The ETH group, within the context of theDragonproject, presented a suite of replication protocols based
on group communication primitives.

The main idea of these protocols [20], [21] is to perform transactions locally and deferring writes to
remote nodes until commit time. At this time, updates are broadcast using total order to guarantee the
reception order. This way, no 2 Phase-Commit is needed.
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Name Duration Collection Description

owner Object Progressive before commitOriginal owner
and implicit in the oid

version Object When needed Object version
accesstype Transaction Progressive before commitRead / Write
threshold Transaction Before commit Prediction value per remote object
timestamp Object When write accessed Last write commit
lock node Transaction During commit Actual lock node holder
apply into Transaction During commit Nodes where it will be applied
object info + SQL Transaction When effective commit Apply info

Table 3.2: COLU metadata

SER: Replication with Serializability

SER is anUpdate everywhere– Constant– Non-Votingprotocol. It provides1-copy-serializabilityconsis-
tency.

During RE, it acquires local read locks while write requestsare deferred until the beginning of the SC
phase. In SC, writes are sent using a total order multicast and AC begins when locks are being granted. EX
happens just after locks are granted and END happens when theeffective commit or rollback is performed.

Authors mention that a transaction reads or writes logical objects. It can be derived from the described
isolation levels that they work with table rows and units of information. Object identifiers are progressively
collected before commit.

Table 3.3 shows SER metadata.

Name Duration Collection Description

accesstype Transaction Progressive before commitRead / Write
apply into Transaction During commit Nodes where it will be applied
object info Transaction When locks are granted Apply info

Table 3.3: SER metadata

Where:

int[] apply into; The list of nodes where the commit was broadcast.

CS: Cursor Stability

Cursor stability introduces the notion ofshort read locksto avoid transaction starvation. It is extended
straight from SER using a third kind of access lock.

CSis also aUpdate everywhere– Constant– Non-Votingalgorithm. It does not provide serializability
as dirty reads, lost updates and write skews might occur.

Table 3.4 shows CS metadata.
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Name Duration Collection Description

accesstype Transaction Progressive before commitRead / Short Read / Write
apply into Transaction During commit Nodes where it will be applied
object info Transaction When locks are granted Apply info

Table 3.4: CS metadata

SI: Snapshot Isolation

SI was defined to avoid read locks. It is very similar to SER andit can be described using the same terms
used for SER and CS but it uses timestamps and object versionsto allow database multiversioning. As
described by its name, it provides snapshot isolation guarantees.

Table 3.5 shows SI metadata.

Name Duration Collection Description

BOT Transaction Immediately when stated Begin Of Transaction
accesstype Transaction Progressive before commit Read / Write
version Object When granting lock Last transaction that wrote the object
apply into Transaction During commit Nodes where it will be applied
object info Transaction When locks are granted Apply info
EOT Object Immediately when committed End Of Transaction

Table 3.5: SI metadata

Where:
TStamp BOT; Logical instant when the transaction started.
int version; An integer value incremented each time a transaction updates

and commits the object.
int[] apply into; The list of nodes where the commit was broadcast.
TStamp EOT; Logical instant when the transaction finished.

3.2.3 Lin – Kemme and Patĩno – Jimenez

SI-Rep

SI-Rep [22] is a more detailed work about snapshot isolationprotocols whose origin is [21]. It contemplates
several implementation issues such as anws list for conflict resolution and atocommit queue to apply
transactions.

Table 3.6 shows SI-Rep metadata.
Where:

int version; An integer value incremented each time a transaction updates
and commits the object.

int[] apply into; The list of nodes where the commit was broadcast.

3.2.4 El Abbadi – Toueg

[6] presents a replica control protocol on top of any concurrency control protocol for conflict detection.
The protocol provides1-copy-serializabilityusing view ordering. Conditions for object access and network
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Name Duration Collection Description

BOT Transaction Immediately when stated Begin Of Transaction
accesstype Transaction Progressive before commit Read / Write
version Object When granting lock Last transaction that wrote the object
apply into Transaction During commit Nodes where it will be applied
object info Transaction When locks are granted Apply info
EOT Object Immediately when committed End Of Transaction

Table 3.6: SI-Rep metadata

partition situations are explained using accessibility thresholds (Ar/w) an quorums (qr/w) where:

Ar/w: Minimum number of copies available in a view in order to access an object.

qr/w: Minimum number of copies to physically access in order to write or read an object in a view.

Table 3.7 shows El Abbadi–Toueg metadata.

Name Duration Collection Description

accesstype Transaction Progressive forrset Read / Write
sites Object Predefined Nodes where the object exists
Ar/w View When accessed Accessibility thresholds
qr/w View When accessed Quorum (physical accesses needed)
version Object When granting lock (view, sequence)

Table 3.7: El Abbadi–Toueg metadata

Where:
int[] sites; It is a predefined attribute.
IntTuple Arw; (Ar, Aw): number of read/write existing copies for a given

object in the current view.
IntTuple Qrw; (Qr, Qw): physical accesses needed to access a given object

in the current view.
IntTuple version; Objectoid has been writtensequence times duringview.

For this protocol we define a basic type calledIntTuple containing two integer values:(int, int).

We also modify a little bit the definition that authors give ofversion. In [6], if sequence is k and view
is v id then it means that ift was the last transaction to write the object it is thekth transaction to write it
duringv id. As we allow our architecture to encapsulate several sequential transactions inside the scope of
the sameTransaction object (representing in this case what we called a session),we rewrite the definition
as:

. . . it is thekth time a transaction has committed the object duringv id.

3.2.5 Agrawal – El Abbadi – Steinke

A family of epidemic algorithms based on the causal deliveryof log records is given in [8]. These are naive,
pessimistic and optimistic.
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Naive protocol

This family of protocols is epidemic due to the nature of the write changes communication procedure. The
naive protocol guarantees1-copy-serializabilityby avoiding concurrent transactions (delaying them when
possible or aborting them otherwise).

During RE, the transaction is executed (EX) on a single node and acquires object locks. The timestamp
is picked up when SC starts in a way that causality of transactions is guaranteed. During SC operations are
sent in an epidemic process that might lead to the abortion orcommitment of the transaction. This means
that the protocol isVoting. It is alsoUpdate everywhereandLinear because the epidemic process can be
bounded.

Table 3.8 shows Naive Agrawal–El Abbadi–Steinke metadata.

Name Duration Collection Description

timestampTS(t) Transaction When started T [i, ∗]

accesstype Transaction Progressive before commit Read / Write
rset released when commit

wset values Transaction Progressive wsetapply info
site Transaction When started Node where the transaction

started
abort / commit flag Transaction When result is decided Result

Table 3.8: Naive Agrawal–El Abbadi–Steinke metadata

Where:
TStamp tst; Beginning of transaction.
Object Info wset values; Equivalent to objectinfo.
int site; It can be derived fromtid.
boolean abort; Established when the user commit request is resolved.

[8] declaresTi[k, j] = v as follows:

Nodei knows that nodek has received the records of all events at nodej up to timev.

Timestamp calculation for this protocol is a little bit morecomplicated than in the rest of studied pro-
tocols. Authors explain in the paper how to propagate this information from node to node: it is sent when
nodei sends a message to nodek.

Pessimistic protocol

The pessimistic protocol derives information fromTi in order to avoid the abort / commit flag.

Table 3.9 shows Pessimistic Agrawal–El Abbadi–Steinke metadata.

Optimistic protocol

The optimistic version of the family of epidemic algorithmsis managed via an optimistic releasing of locks.
It is designed so that it still guarantees serializability.
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Name Duration Collection Description

timestampTS(t) Transaction When started T [i, ∗]

accesstype Transaction Progressive before commit Read / Write
rset released when commit

wset values Transaction Progressive wsetapply info
site Transaction When started Node where the transaction started

Table 3.9: Pessimistic Agrawal–El Abbadi–Steinke metadata

Name Duration Collection Description

timestampTS(t) Transaction When started T [i, ∗]
accesstype Transaction Progressive before commit Read / Write

rset released when commit
wset values Transaction Progressive wsetapply info
site Transaction When started Node where the transaction started
inconflict flag Transaction When result is decided Conflict resolution request
readfrom Transaction During read compilation Transactions from which the

transaction reads from

Table 3.10: Optimistic Agrawal–El Abbadi–Steinke metadata

Table 3.10 shows Optimistic Agrawal–El Abbadi–Steinke metadata.
Where:

boolean inconflict; similar meaning thatabort from 3.2.5.
TID[] readfrom; Active transactions that have previously accessed

objects accessed by the current one.

3.2.6 Jimenez – Patĩno – Kemme – Alonso

In [18] a protocol based on optimistic delivery broadcast primitives2 that guarantees1-copy-serializability.
Queries (rset) are executed only at the local node using snapshot isolation.

The protocol is able to distinguish between what authors call classes. A class can be either a tuple or a
selection over a table.

When the transaction starts, it is broadcast to all nodes butonly the starting node executes it. RE hap-
pens before this and later, SC starts and EX too (only in the starting node). After this execution, a commit
message including the update information is sent to all the nodes so that EX happens everywhere. AC is
performed only at the starting node.

Table 3.11 shows Jimenez–Patiño–Kemme–Alonso metadata.
Where:

boolean executed; Operations finished.
boolean commitable; to-deliver sent.
SQL[] update info; Transaction update sentences.

2to-broadcast(m), opt-deliver(m) and to-deliver(m).
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Name Duration Collection Description

executed Transaction When the execution finishesFinished execution
commitable Transaction Transaction to-delivered Transaction to-delivered
accesstype Transaction When started Read / Write
updateinfo Transaction wsetapply info

Table 3.11: Jimenez – Patiño – Kemme – Alonso metadata

3.2.7 Pacitti – Minet – Simon

The protocols described in this section (deferred and immediate) were presented in [24]. The main difference
between both is the updates propagation.

Both protocol versions are based on the existence of a globalFIFO reliable multicast with a known
upper bound given byǫ, a constant that limits the nodes’ clocks synchronization.

Deferred protocol

When deferred, updates are propagated after commitment with a single message. Then, this version isCon-
stant.

Table 3.12 shows Deferred Pacitti–Minet–Simon metadata.

Name Duration Collection Description

timestamp Transaction When committed Commitment time
updateinfo Transaction Write operations

Table 3.12: Deferred Pacitti – Minet – Simon metadata

Where:
TStamp timestamp; Commitment time.
SQL[] update info; Update SQL sentences.

Immediate protocol

When immediate, each operation is multicast before commitment. The protocol isLinear.

Table 3.13 shows ImmediatePacitti–Minet–Simon metadata.

Name Duration Collection Description

timestamp Transaction When committed Commitment time
updateinfo Transaction When executed Write operations

Table 3.13: Immediate Pacitti – Minet – Simon metadata

3.2.8 Summary

Table 3.15 shows a map of the protocols and associated metadata for a first approach on finding common
metadata. Columns represent different protocols, whose acronyms can be found in table 3.14, metadata
names and metadata context or duration.
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Acronym Name

SiDi
FOB Full Object Broadcast
COLU Cautious Lazy Update

Dragon
SER Serializability
CS Cursor Stability
SI Snapshot Isolation

SI-R Lin–Kemme–Patiño–Jimenez

Abb El Abbadi–Toueg

Naive Naive Agrawal – El Abbadi – Steinke
Pes Pessimistic Agrawal – El Abbadi – Steinke
Opt Optimistic Agrawal – El Abbadi – Steinke

Jim Jimenez – Patiño – Kemme – Alonso

Def Deferred Pacitti – Minet – Simon
Imm Immediate Pacitti – Minet – Simon

Table 3.14: Acronyms for protocols

Table 3.15 has been compiled using information from tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10,
3.11, 3.12 and 3.13. When a metadata field is required by a protocol, this fact is identified by a “X” symbol.
When the “X” symbol is replaced by a different identifier, sayid, this means that the field represented by
this row andid are equivalent or that it can be derived fromid.

3.2.9 Basic metadata

Basic metadata was introduced in 1.3.5 and it is composed of the minimum set of metadata attributes that
could be considered common. This means that whatever protocol is using the system, basic metadata is
updated for all the objects.

Logically, the more protocols we study the more difficult finding common properties will be. This fact
limits an ideal basic metadata setto:

{oid, accesstype, tid, updateinfo}

Beingupdate info an object from a class that encapsulates thetid SQL sentences as well as operations
that allow to update its result set objects independently.

Notice that for a protocol to start working, its metadata hasto be ready. If it is not, and no default
value can be set, then it must be calculated. Forgetting about additional metadata of the protocols that
are not currently during execution and performing this calculation at their start time would have two big
disadvantages:

• Latency:All the database objectsadditional metadatahas to be updated previous to the new protocol
installation.

• Artificial and mistaken values: It may be impossible to establish metadata values if it is not during the
precise moment when they are required.
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Metadata FOB COLU SER CS SI SI-R Abb Naive Pes Opt Jim Def Imm Duration

tid X X X X X X X X X X X X X Transaction
oid X X X X X X X X X X X X X Object
owner oid oid Object
version X X X X X Object
accesstype X X X X X X X X X X X Transaction
lock node X X Transaction
apply into X X X X X X Transaction
threshold X Transaction
timestamp X Object
object info X X X X X X wset val wset val wset val upd nfo upd nfo upd nfo Transaction
BOT X X TS(t) TS(t) TS(t) Transaction
sites X Object
Ar/w X View
qr/w X View
abort/commit X inconflict Transaction
site tid tid tid Transaction
readfrom X Transaction
executed X Transaction
commitable X Transaction
EOT X X boc boc Transaction

Table 3.15: Metadata summary
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The second disadvantage is better explained with an example:

Consider that we are stopping the current protocol, sayP0, and we want to useCOLU . If
timestamp is not set during the execution ofP0, at the changing time all the database metadata
has to be updated and thentimestamp can be set as an ancient date or as a recent one. In both
cases we will losetimestamp real meaning for a while untilCOLU is being executed for a long
time and it makes sense. Not until then, all predictions calculated byCOLU usingtimestamp
would be accurate again.

This explains why, when not default value exists, the maintenance of additional metadata is necessary
for the metaprotocol to be correct.
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Chapter 4

Architecture

All protocols are meant to be implemented under a scenario similar to the one described in section 1.2. A
middleware layer or a component embedded inside the database manager is used for this purpose. Regard-
less of global performance issues, protocol designers pursue further considerations such as transparency and
low overhead.

Low overhead is tightly related to metadata. Metadata is always meant to be easily obtained and to
minimize the required storage space. Transparency means that user API for data retrieval has to be kept
untouched or minimally changed.

Independently of the metaprotocol option chosen for protocols concurrency, in order to provide a fast
change, metadata has to be available whenever the protocol change is requested. This suggests that all
metadata for all protocols has to be maintained even when theprotocols are not loaded. Common attributes
are naturally maintained during transactions execution and particular ones will be worked out as if it were a
background process.
We choose an approach like this one, where metadata is kept updated, because it allows finerChange Points
granularity. If an object is accessed by two consecutive transactions, each one using different protocols, the
second one will have accurate metadata values (for example,version or timestamp). Thus it guarantees that
changing a transaction protocol into a different one can be done.

4.1 Metadata structures

In a data access API such as Java’sJDBC, aTransaction executes queries and updates and obtains several
ResultSet objects. ResultSets contain the accessed objects andResultSetMetaData can be used to obtain
table column names and types.

Based on table 3.15, a similar structure for the protocols metadata will be used.

A transaction will be encapsulated inside aTransaction object. We will not take into account that sev-
eral queries and updates return different ResultSets, we will consider a single ResultSet per transaction that
contains the union of all executed operations’ ResultSets.Values (actual data) for the accessed objects are
only necessary for the user, the protocols work strictly with metadata. However metadata needs to keep
track of this information in order to broadcast it where necessary.

In the end, we will have two structures in charge of all this informationObjectMetaData andTrans-
actionMetaData. Both implement a general MetaData interface which, at least, allows information to be
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serialized.

As most protocols allow the incremental construction of theResultSets, MetaData will be able to be
constructed incrementally, too.

class TransactionMetaData implements MetaData {
String tid; // repository::owner.seq_id
ObjectMetaData[] rset; // Readset = access_type
ObjectMetaData[] wset; // Writeset = access_type
ObjectMetaData[] srset; // Short ReadSet for cs = access_type
TStamp bot; // si, agr protocols (TS)
TStamp eot; // si, pac protocols (timestamp)
TStamp boc; // def-pac, imm-pac (EOT)
SQL[] execution; // User’s SQL sentences = object_info
String[] readfrom; // opt-agr
boolean executed; // jim
boolean commitable; // jim
boolean abort; // naive-agr and opt-agr (inconflict)

public String getRepository(); // derived from tid
public int getNodeOwner(); // derived from tid

// site for agr protocols is obtained from owner
}

This structure for Transactions has an identifier,tid, that acts as a primary key.

access type can be obtained from the lists:rset, srset andwset.

ObjectMetaData lists andexecution build what in table 3.15 was calledobject info. They belong to
the basic metadata and are compulsory for theTransactionMetaData construction. However, theObject-
MetaData lists will be built gradually and soObjectInfo for these lists will.

getNodeOwner() is the way to obtain thesite value for Agrawal et al. It is an option that all protocols
have to obtain the node where the transaction was started.

Timestamps are typically used for ordering purposes and theTStamp data type has to provide means
to maintain this order in a protocol independent manner.TStamp may hold a vector clock that is able to
store [8]’s attribute. For total replication protocols there exist cheaper solutions such as a counter of applied
transactions.

class ObjectMetaData implements MetaData {
String oid; // repository::table::owner.seq_id
int version; // fob, colu, si, si-rep, abb
int lock_node; // fob, colu
int[] apply_into; // For recovery issues in most protocols

// fob, colu, ser, cs, si, si-rep
ObjectInfo info; // Information to apply a single object

// wset_val for agr protocols
long timestamp; // colu
int[] sites; // abb
double threshold; // colu
IntTuple Qrw; // abb
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IntTuple Arw; // abb

public int getNodeOwner(); // derived from oid
public String getRepository(); // derived from oid
public String getTable(); // derived from oid

}

ForObjectMetaData only the identifier,oid, is a common field for all the studied protocols.

getNodeOwner() is the way to obtain theowner value for SiDi protocols.info for wset objects con-
tains information for Agrawalwset value, for Jimenez et al. and Pacitti et al.update info and for all
protocols requiring update information.

timestamp holdsCOLU ’s timestamp attribute. This value is used independently ineach node to obtain
access prediction values from a given formula based on real time differences. That’s why it does not use
TStamp data type because it only allows logical order and has not enough information to deal with time
measures.

In both structures care must be taken for the data types of metadata fields. Forinfo an effort should
be done in the middleware architecture in charge of protocolmanagement to provide a same data type for
objects serialization regardless of the protocol.
Another case is El Abbadi–Toueg’sversion field which holds a tuple(view, sequence) while for the other
protocols needing version information this field holds integer values. In these cases there are two options:
the best one is to find a bidirectional conversion between both data types. If it was not possible then the
fields should not be grouped.
Yet another situation isTS(t) for Agrawal–El Abbadi–Steinke protocols. This field acts asa timestamp and
has different representation for BOT thanSI. In this case it is convenient to consider the rest of timestamps
too (EOT, BOC) and try to find a common representation, such asvector clocks or logic counters, in order
to make them comparable.

4.1.1 Completion and serialization

Serialization of the metadata structures depends on the context of each metadata attribute. The only not null
value of each structure isoid andtid. As soon an object is created, the associatedObjectMetaDatamust be
created.

For a sequential change of protocols completion is only needed for metadata available during object
context. The rest of information is useful for a protocol change in between an active transaction and, for the
sequential case, it can be set to default values.

4.2 Architecture

Figure 4.1 shows the classes model of the metaprotocol architecture. Some components depicted in previous
sections have been deployed into several parts. For example, figure 1.4’sMetaProtocolis now behind the
ProtocolProxyand accesses a set ofMetaDataManagers, one per protocol. In fact, theMetaProtocolconcept
exposed in the previous sections represents all these new components together.

First of all, we explain each component separately:

Transaction: It is the object a user obtains to access data.
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MetaProtocol

Protocol
TransactionMetaData

ObjectMetaData MetaDataManager
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Figure 4.1: Architecture classes model.

Manager: The node’s manager component is the core of the replicated system. It isolates the user from any
replication detail.

TransactionMetadata: See section 4.1.

ObjectMetaData: See section 4.1.

ProtocolProxy: It acts as aDistributor (see figures 2.1 and 1.3).

Protocol: It contains the consistency protocol logic.

Metaprotocol: It contains protocol coordination logic.

MetaDataManager: It contains the metadata management logic of the consistency protocols.

TheManagercreates transactions and attaches each of them to their corresponding metadata objects for
transactions and objects (TransactionMetadataandObjectMetadata). The main task of theManageris to
coordinate the work requested by theTransactionsand to let theProtocolstake care of consistency. The
protocols are “hidden” behind their correspondingProtocolProxyobjects (see section 4.2.1).
When invoked, theMetaProtocolwill take care of the protocols coordination. One of its tasks, metadata
maintenance, is performed by theMetaDataManagerobjects.

4.2.1 Protocol encapsulation

Figure 4.2 shows the part of figure 4.1 that explains how a protocol is split into.

ProtocolProxy Protocol MetaDataManager

Figure 4.2: Protocol components.

TheProtocolProxydecides whichProtocolexecutes the operation. EachProtocolhas aMetaDataMan-
ager. Isolating metadata manager details in a separated component allows to keep all protocols metadata
managers running.
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Observing the collection column of the protocols metadata tables in section 3.2 it can be seen when
the protocol metadata managers have to be invoked. This invocation must be done through theMetaPro-
tocolcomponent because this piece of the architecture is in charge of the administrative events coordination.

Both ProtocolProxyand Protocol can invokeMetaDataManageroperations. However code will be
clearer if one of the two components is selected for this function.

Placing calls inProtocolProxyemulates the AOP paradigm of “@before” and “@after” invocation
clauses. For example:

class COLUProxy implements ProtocolProxy {
...
Protocol p;
...
protected void changeProtocol(Protocol newp) { p = newp; }

public boolean updateObjects(Object[] writes) {

// @before operations
metaproto.setTimestamp(this, writes);

// actual operation
boolean result = p.updateObjects(writes);

// @after operations
metaproto.getVersions(this, writes);

return result;
}

}

However, this might be not enough in all cases and a “@meanwhile” clause may be needed. We can
obtain this placing the metaprotocol calls inside theProtocol.

The invocations contain theProtocolProxyitself for the metaprotocol to know the source of the method
call and to optimizeMetaDataManageraccesses.

The metaprotocol is the core of the main study presented here. It will hold the management algorithms
(see chapter 2) and coordination logic. This coordination logic includes structures to perform conflict access
resolution operations.

4.2.2 Concurrency options

Figure 4.3 shows an object diagram for a case with a user and two open transactions. Here, it can be seen
that theManagerand theMetaProtocolare common and unique.

It can also be seen that allMetaDataManagersare always loaded and fill the contents of the transaction
and objects metadata.

Figure 4.3 shows that theProtocolcomponent is also common but this situation is induced by thefact
that the figure depicts a sequential protocol changing scenario.
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Transaction1

Manager

ProxyB

Transaction2

ProxyB

TrMetaData1
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ProtocolB
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ProtoMetaDataProtoMetaDataProtoMetaDataProtoMetaData

User

TrMetaData2

ObjMetaData1ObjMetaData1ObjMetaData1ObjMetaData2

Figure 4.3: Architecture for sequential changes object model.

Allowing the architecture to be able to hold several protocols concurrently is obtained by having the
proxies to be able to decide independently from each other about the encapsulatedProtocolthey invoke (see
figure 4.4).

Transaction1

Manager

ProxyB

Transaction2

ProxyA

TrMetaData1

ObjMetaData1ObjMetaData1ObjMetaData1ObjMetaData1

ProtocolAProtocolB

MetaProtocol

ProtoMetaDataProtoMetaDataProtoMetaDataProtoMetaData

User

TrMetaData2

ObjMetaData1ObjMetaData1ObjMetaData1ObjMetaData2

Figure 4.4: Architecture for parallel changes object model.

4.2.3 Implementation considerations

While some authors explain about commit queues, others skipthis information due to its low level nature.
When the network message reception frequency surpasses thenode’s capacity to apply updates and perform
commit operations, commit queues hold the to-be-committedmessages that are waiting in the destination
node.

To enforce concurrency most protocols consider that a message is applied as soon as it is received but
this is not always true specially when hardware characteristics differ, load is not balanced or due network
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topology.
We consider this fact out of the scope of the metaprotocol.

4.3 Conflicts detection and resolution

Recalling the concepts outlined in section 1.3.4 conflicts detection is based on the comparison of transaction
Result Sets. For conflicts resolution, the following methods are called extensively:

public void accessObjects(TransactionMetaData tmd, ResultSet rs)
throws ConflictException;

public void releaseObjects(TransactionMetaData tmd, ResultSet rs);

These operations allow us to work over scenarios similar to the one depicted in figure 1.5 from page 9.
Initially, all we need to know is contained in the methods signature: when the methods are invoked, for each
object inrs tmd.tid is stored. The result sets are passed and stored incrementally. That is whyrs is passed
and it is not obtained fromtmd itself, because it is a subset of{tmd.rset, tmd.wset, tmd.srset}.

It is pertinent to pass theTransactionMetaData tmd because we can reach the transaction fromtmd.
It could be possible that a transaction with a stronger isolation mode requested already granted accesses and
the previous ones needed to be revoked. Usingtmd, the transaction can be aborted at any moment and not
only during the call toaccessObjects.
For this means what we need first is an internal operation capable to abort a database transaction at any mo-
ment; such an operation exists in [4] middleware. Lastly, asthe protocol is loaded, its abort process would
be used to notify all the required nodes.

For further explanations assume we have the following variables:

ProtocolID id1, id2;

It is obvious that if id1 = id2 then access conflicts are resolved by the protocol itself. What is not
obvious is the fact that for id1 6= id2 the same applies because several additional actions need tobe taken
into consideration. These actions form the core of the metaprotocol. We will explain them with a simple
example and after that a general case will be shown using pseudo-code notation.

Let’s say we have transactionst1 and t2 with t1.protocolID() = id1, t2.protocolID() = id2 and
id1 6= id2. Imagine the following two user operations executed each one inside one of the transactions and
executed possibly by different users in different nodes:

ResultSet r = t1.execute(SQL1);
...
ResultSet s = t2.execute(SQL2);

Internally, before the user call returns a value,t1’s last operation obtains a result setr and then it executes
the following operation successfully:

accessObjects(t1.metadata, r);

Similarly, beforereleaseObjects(t1.metadata, r) is invoked, at2 operation obtains a result
sets wherer ∩ s 6= ∅ and executes:
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accessObjects(t2.metadata, s);

In case any of the protocols broadcasts the object access operation andaccessObjects() for t2 is exe-
cuted in a node whereaccessObjects() for t1 was previously executed, then id2 decides what to do with
t2 (grant access, queue or deny and abort). After the invocation of these methods each object holds a list of
transactions accessing it and the access mode (read, write and short read). These lists are calledobject ac-
cess queues. For a given transaction isolation level none of the protocols overrides an already granted write
access but a write can be queued behind previous read accesses. A write can be queued behind previous
writes when there is a database lock before the actual commit.

At this point, if any of the transactions aborts, the conflictresolution problem between different proto-
cols is done. If both transactions continue then any of them will try to commit effectively.

Imagine botht1 andt2 want to commit. As we include different delivery guaranteesand lazy protocols,
as soon as id1 and id2 decide that they have all the guarantees needed to commit, they send atotal order
broadcastto all nodes containing the following information:{tid, tofinish= true}.
This message is necessaryand its delivery guarantees are necessary too:

We cannot wait for theeffective commitrequest message to broadcast this information because
we need to order the transactions execution in all nodes.

The message implies an intention to commit. Nodes keep a listof tofinish transactions and accesses to an
object granted for atofinishtransaction will never be revoked.

For this example, lett2 be ordered beforet1. Depending on the transaction isolation mode (this manage-
ment is done by the protocols themselves), as soon as thetofinishmessage is received in a node, transactions
in its object access queues containing at2 entry are aborted (all of them exceptt2). To improve the metapro-
tocol efficiency these abortions can be requested too as soonas thetofinishmessage is received (notice that
this work would have been done afterwards if launched when the effective commit message is received).

After the tofinishtotal order broadcast, the effective commit process continues and the transactions have
to face one of two possible situations:

A) There is notofinishmessage from another transaction or it was ordered aftert2’s one.

B) Another transactions’tofinishmessage was ordered beforet2’s one.

For transactiont2 the case is situation A) and the effective commit request is broadcast in id2 protocol
way so thatt2 finally commits. For transactiont1 the case is situation B) and the transaction finally aborts.
The t1 commit request does not need to be sent. If it had already beensent it would be discarded upon
reception in all the required nodes.

4.3.1 Inter-protocol conflict resolution protocol

In this section we will describe the example above for a general case using pseudo-code pieces:

public void accessObjects(TransactionMetaData tmd, ResultSet rs) {
...
// For all objects in the partial result set
for i in rs do
set_access(rs[i], tmd.tid, rs[i].access_type);

...
}
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Whereset access fills the object access queues.
releaseObjects() performs the opposite operation:

...
// For all objects passed in the parameter
for i in rs do
set_access(rs[i], tmd.tid, none);

...

After the operations are done the user requests a commit:

public boolean commit_request() {
...
boolean result = check_all_conflicts();

if (!result) abort(tid);
else {
result = request_effective_commit(tid);
if (result)
result = transaction_result(tid);

}

return result;
}

check all conflicts() is protocol dependent and works with sets of objects as if they had been granted by
the same protocol.

As it can be seen in the next bit of pseudo-code,effective commit() tries to avoid the commit request
delivery when it is already known that the result is to rollback the transaction:

public boolean request_effective_commit() {
boolean result = false;
...
send(total_order_bcast(tofinish(tid)));
...
if (!tofinish_before(tid)) {
bcast(effective_commit(tid));
result = true;

}

return result;
}

Another thing that thecommit request() code shows is that the transaction final result is collected in the
transaction result() method. This method waits for theeffective commit message to be received and pro-
cessed in the origin-of-commit node. This is necessary because other previoustofinish messages may have
not been delivered yet.

tofinish before return value condition is explained as:
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Abort tid if there is another transaction whose result set interferes with tid’s result set and this
access was granted before tid’s access was requested.
Otherwise allow tid to commit.

Obviously this condition will need to take into consideration transaction isolation properties and the exis-
tence ofshort readsets.

tofinish before() is always a local call:

public boolean tofinish_before(String tid) {
String[] grants;

// For all objects in tid’s complete result set
for i in tid.rs do {
// Get an ordered list of access grants
grants = getTransactionAccessing(rs[i]);

tid_pos = index of tid in grants or -1 if it does not appear;
for j in grants where tofinish[j] == true do {
other_pos = j transaction position in grants;
if ((j <> tid) && (other_pos<tid_pos))

return true;
}

}

return false;
}

When thetotal order bcast(tofinish(tid)) message is received, the following code is executed:

public void tofinish_before_reception(String tid) {
tofinish[tid] = true;

if (tofinish_before(tid))
abort(tid);

else
abort_conflicting_transactions(tid);

}

Theabort(tid) call in this code does not need to send an abort communicationmessage to any of the other
nodes. Thetofinish total order broadcast has already provided enough information everywhere for the nodes
to work out the commit result independently.

The following code describes the steps taken when aneffective commit message is processed at any
node:

public boolean effective_commit_reception() {
...
boolean disard = tofinish_before(tid);
if (!discard) {
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abort_conflicting_transactions(tid);
execute_commit(tid);

}

return discard;
}

transaction result() waits for this method to finish and then it returns the real transaction commit or roll-
back state.

Now that the protocol is described it is worth considering some interesting facts:

• Notice that this code pieces are embedded inside the consistency protocols logic. All protocols process
a commit request user operation and use internal equivalents for the “effective commit” methods.
The metaprotocol methods simply wrap the original protocols methods.

• set access() does not necessarily mean that we are using locks or that we actually execute the opera-
tions before commit (remember that some protocols delay this execution until thecommit request()
call).
set access() aim is to populate the information required for latter intersection of sets queries.

• tofinish message uses total ordering, however it is a very small message containing atid value: as no
tofinish=false message is sent, atofinish reception impliestofinish=true.

• Thetofinish table can be cleaned up each time a transaction ends.

• bcast(effective commit(tid)) is protocol dependent.

• abort conflicting transactions(tid) aborts all transactions whose result sets conflict withtid’s. It has
to use a mechanism similar to the one used in [4] in order to rollback conflicting database transactions
immediately when required.

• abort conflicting transactions(tid) execution before theeffective commit message broadcast is
very convenient because the time elapsed between the total order broadcast of(tofinish(tid)) and
the broadcast ofeffective commit(tid) is not to be underrated; as the last message construction can
be time costly and resources consuming.
An early execution ofabort conflicting transactions(tid) allows the rest of the nodes to advance
work in parallel; specially the abortion of transactions with write operations executed before the com-
mitting one operations. These operations will be blocking the database and must be aborted as soon
as possible.

4.4 The metadata managers and the transaction metadata

Figure 4.5 shows the architecture elements (a more completepicture was shown in figure 4.1) directly
related to metadata maintenance. TheMetaDataManager and theManager are the pieces that populate
TransactionMetaData andObjectMetaData structures:

• TheMetaDataManager is the core of all metadata operations.

• TheManager manages the basic metadata set and other straightforward attributes implicit to calls to
Manager.
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Figure 4.5: Metadata Managers.

When a transaction commits, it collects information, selects the parts needed for each protocol and then
these parts are sent to the corresponding transaction metadata objects for them to perform their persistence.

TransactionMetaData objects are then fairly easy software pieces: They fill the metadata attributes for
eachoid.
To describe the way these attributes are collected, we assume an instancepA of protocolA. The remaining
components are:

Transaction t;
Manager mgr;
ProtocolProxy proxypA;
MetaProtocol mpA;
TransactionMetaData tm;
ObjectMetaData om;

4.4.1 Object metadata collection

Basic type – oid

oid fields can be seen in section 3.2.

class Manager {
public String getNewObjectID();
...

The object identifier is basically a string the system returns that ensures that there will only be one object
with this identifier in the whole system. To achieve this, we propose theoid to have the following fields:

• The repository where it is stored and other hierarchical wrapping classes.

• The owner node identifier. For us, it is the node where the transaction that created the object was
started.

• A sequential number.
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There are other alternatives such as assigning each node a range of possible objects for creation but we
find this option to be a better choice because of the ownershipconcept some protocols use.

We ask theManager for new objects (INSERT sentences) and once created they are obtained from the
TransactionMetaData. With this class we will be able to determine theaccess type too.

Basic type – info

Object Info is maintained by theManager. The manager isolates the protocols from most database pecu-
liarities and one of them is the information required (including dependencies but not its metadata) to update
a given object value in the database.

The Manager is able to obtain theObjectInfo for a set of objects and it is able to receive a set of
ObjectInfo objects and update the database.

Derived type – owner

It can be derived from theoid usingObjectMetaData.getOwnerNode(). For protocols that deal with the
ownership concept, this value is accessed intensively and then, it is advisable to keep the derived value in
memory for successive retrievals.

timestamp

timestamp holds the moment an object was accessed:

proxypA.objectsAccessed(String[] oids) {
...

mpA.tm.setTimeStamp(oids, System.currentTimeMillis());

pA.objectsAccessed(oids);
...

This code can be described simply as:

@before pA.setTimeStamp(oids):
mpA.tm.setTimeStamp(oids, System.currentTimeMillis());

version

When an object is inserted,version is set to one and any time it is updated, it is incremented. If increments
were always one unit increments we could the theManager manage this attribute without help but this is
not always true. Think, for example, about lazy protocols where some nodes don’t participate in certain
transactions execution: This means that some nodes miss some updates.

Our approach forversion management implies that versions have to be broadcast wherenecessary.
For protocols using locks it is included when requesting thelock because the request is done for a certain
version. For other protocols using versions the message allowing to commit includes theversion values.
The same applies for the remaining protocols, for them versions are piggybacked.
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lock node

Granting locks are internal operations invoked during theManager request for commit. This means that we
cannot use the proxies to obtain the metadata.
The protocols that need this attribute areCOLU andFOB and they need a round of lock requests between
the system nodes.

Assume we have an operation for all the protocols that deal with locks:

grantLocks(String[]oids, LockType l);

Where LockType∈ {sread, read,write}.

Remember thatlock node exists only inside a transaction. Once it is finished, its value is useless. As
only these two protocols use it and the process to obtain it isexactly the same,lock node does not difficult
a change between these two protocols.
In a change fromCOLU or FOB to another protocol we will simply discard its value. On the other hand, for
a change from a protocol toCOLU or FOB lock node is useful when the transaction aborts (and it needs to
release locks). This is easily solved sending the release message to all nodes whether the previous protocol
dealt with locks or not (in this latter case, the message is discarded).

apply into

This value is known whentid.getNodeOwner() node knows for sure that the transaction commits and
commands the others to commit too.

@before pA.send(destinations, commit):
mpA.tm.setApply_Into(destinations);

sites

Thesites where an object exists is initially a predefined metadata attribute and each time an object is created
in a node with anINSERT operation, the list is updated.

threshold

Once the timestamp value is obtained,COLU needs to calculate the probability of having these objects
up-to-date and compares them with a the global adaptive threshold.

@before pA.objectsAccessed(oids):
mpA.tm.setTimeStamp(oids, System.currentTimeMillis());
mpA.tm.setThresholds(oids);

If pA has an instance ofCOLU , pA.objectsAccessed()will use the threshold values.

Qrw

qr andqw are obtained combining the information offered bysites and the current view nodes.
TheMembership protocol eventchange-viewcalls the metadata instance in order to updateq values.

Arw

The same that applies for the maintenance ofq values applies forArw values.
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4.4.2 Transaction metadata collection

Basic type – tid

Method signature atManager:

class TransactionMetaData {
public String getTransactionID();
...

The transaction identifier holds a format similar to theoid one. As well as a sequential number, it holds
the repository that the transaction is accessing and the node where the transaction was created.

Basic type – rset, wset and srset (accesstype)

TheManager has to be able to determine which kind of access an object is having from each transaction.
According to this kind, it will include the object in the readset, write set or short read set from the corre-
spondingTransactionMetaData.

Besides updating these lists, theManager will inform the underlying protocol about the accesses. The
protocol can obtain then the lists from theTransactionMetaData structure.

Basic type – execution

The attributeexecution is maintained by theManager. It holds the list of SQL sentences the user has
executed. The consistency protocols broadcast this information in order for the other nodes to apply the
same set of operations (with the same order) everywhere in the system when the transactioncommits.

BOT, EOT and BOC

Operations to create and close transactions are not left to the protocol developer but they are part of the
Metaprotocol facilities that developers are encouraged touse.
Thus, these createTransaction() and closeTransaction() operations reside in theManager and contain times-
tamp retrieval and set the BOT and EOT fields. Actually:

• BOT→ Manager.createTransaction() is called.
If the protocolChange Pointsare the beginning and the end of the transaction then, as BOT duration is
a transaction, there is no problem having two BOT andTS(t) formats. Otherwise both values must be
maintained: BOT is immediately obtained.TS(t) requires piggy-backing messages among different
nodes.

// Constructor
public TransactionMetaData tm() {
bot = System.currentTimeMillis();

}

• EOT: Immediately after the actual database call to commit.

• BOC (Def or Imm ): Begin of commit.
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readfrom

Transactiont obtained its accessed objects values fromreadfrom transactions. TheManager component is
the single piece that is able to know this information so it will complete this information.

executed

Its default value is false and only changes when the commit request is done and the transaction is not yet
to-delivered.

@after pA.commit():
mp.tm.executed = true;

commitable

Set when the transaction isto-delivered in Jim, [18].

abort

abort is known when the protocol decides the result of the transaction

@after pA.commit():
mp.tm.abort = pA.commit();
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Chapter 5

Summary and further considerations

This work has been addressed in different incremental ways.First, we have started explaining in chapters
2 and, optionally, in appendix A how a protocol exchange can be carried out. Once this was settled we un-
dertook the task of the multi-protocol environment definition and design. For that means we needed a set of
protocols and their definition. We have them defined through their metadata in chapter 3. Then we needed a
common architecture, shown in chapter 4. Finally we presented in section 4.3.1 the core of the metaprotocol.

Chapter 4 pursues an architecture for multi-protocol management in general regardless of the replication
model they follow. Section 4.1 thoughts about the metadata structures imply that selecting a unique repli-
cation model would simplify the basic metadata structures1 and would unify the way updates are broadcast.
This would be a good incremental strategy in order to simplify the implementation complexity in its first
phases.

Recall that our goal (section 1.1) is to obtain a light and efficient metaprotocol. We find these properties
to be fundamental as we have focused our success on achievingminimum overhead for the independent
consistency protocols implementation and behaviour in normal conditions.

This same section 1.1 in the introductory chapter also focused on the technical motivation of our work.
Now let us consider some cultural motivations.

Companies reluctance to adopt replication is due to severalreasonable concerns. One of them is re-
dundancy and another one is the impression of loss of controlover the data scope. These concerns limit
most replication approaches to a rack of clusters inside thesame data center. This approach is certainly
necessary and increases availability but, while replication over a WAN would offer countless advantages,
cluster replication still limits scalability through geographically scattered locations heavily under network
bandwidth and it imposes restrictions and operational procedures (such as nightly batch processes or data
inconsistency allowance during certain intervals) to achieve data consolidation over several data centers that
usually interrupt or unbecome the regular service.
An organisation with such a problem is to be a large organisation and, certainly, no single consistency pro-
tocol is able to manage efficiently all its information systems isolation and service level agreement needs.
While the studied protocols solve the redundancy control problem, our metaprotocol allows protocol elec-
tion and exchange and, due to that, it is a very serious reasonto reconsider any previous reluctance towards
replication.

1Specially theTStamp data type fromTransactionMetaData andObjectMetaData.
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Regarding the concern about data control loss, a WAN is not necessarily the Internet. Most compa-
nies have designed private WANs and control privacy inside their global environment with all the available
physical and logical devices. Even though our design can easily include encryption for the data sent though
the network we have not considered privacy as an issue of the metaprotocol itself because the network in-
frastructure (firewalls, secure communications, etc.), the hardware infrastructure (data center security and
operating system security), the application design (responsibilities oriented design, connections encryption,
appropriate database roles and permissions and appropriate application user profiles) and the company pri-
vacy procedures (privacy assurance contracts, restrictedarea accesses, etc.) are more appropriate places to
solve the problem.

Letting information flow through all the nodes obviously requires a certain degree of organisation but not
allowing it imposes a serious burden to a company. Consider that geographical diversity is usually imposed
by different area business needs. These needs lead to different data exploitation requirements. Being able to
share a part of the data while other parts are still private (either because there are mechanisms to guarantee it
or because this part was not replicated) makes unnecessary most consolidation processes because replication
is transparent.

For all the reasons exposed a system capable to hold multipleconcurrent protocols is necessary and
our architecture solves this environment in a simple manner. Multiple protocols are useful for information
systems with many different applications and protocol exchange fits well for simpler environments.
Another potential use of the protocol exchange would be to maintain two exchangeable versions of each
protocol: One fast for non-critical applications or for academical purposes and the other secure for commer-
cial purposes including mechanisms such as protocol queuesserialization, more complete failure models
and cache techniques for memory and processor usage minimization.
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Sequential protocol exchange

Even though sequential protocol exchange is not the goal of this study, it was the first step we took in order
to approach the rest of the work.

This section explains how start an change protocol operations could turn the system to a mono-protocol
environment with exchange capabilities.

A.1 Start protocol

Starting a protocol is introduced in section 2.2.

In order to prevent from installing several protocols at thesame time we will first justify the use of a
install new protocol message.
If it was not used then the first message for each protocol should provide any means for protocol election
decision. Whatever decision is taken one of the protocols would be installed while the others would not.
Transactions using the not-installed protocol cannot be restarted because we cannot assume that the sent
message admits a negative acknowledgement, they have to be aborted. The negative acknowledgement has
to include indications about the protocol to be installed and this may lead to constant disagreement (see
figure A.1).

This reiterative disagreement can be avoided by broadcasting in total order the first message, however
it still leads to one round of one transaction abortion for each of the nodes that choose the loosing protocols1.

These are not an efficient or elegant solutions and we conclude that it is better to use a 2PC algorithm
for protocol installation in order to inform all nodes aboutthe chosen protocol so that they can answer with
a confirmation or a rejection. We will now describe two approaches for theinstall new protocol process:
first–one–wins and voting. Both, especially the voting one,allow nodes to be silent and to decide not to give
any preference and then to follow indications from the othernodes.

A.1.1 First protocol installer wins

void installProtocol(ProtocolID pid) {
if (for all i in nodes stopped[i] == STOPPED)
totalOrderBcast(install_new_protocol(pid));

}

1These nodes are the ones whose transaction first message is ordered behind the first one ordered by the total order.

50



APPENDIX A. SEQUENTIAL PROTOCOL EXCHANGE

Node 1 Node 2 Node 3

p1.firstMsg p2.firstMsg

abort(p2) abort(p3)

proto1

p3.firstMsg

abort(p2)

proto2 proto3

proto2� proto3 proto2

Figure A.1: Start protocol without explicit message.

The previous method starts a protocol installation. No installation is started if a protocol is already in-
stalled and the command is broadcast using a total order service (see [14]). For node failure cases, adding
uniformity to the broadcast delivery guarantees will do.

void receiveInstall(install_new_protocol inst) {
if (stopped[localID] == STOPPED)
startProtocol(inst.pid);

// else discard message
}

Once a node receives aninstall new protocol it installs the protocol if the node is stopped or it discards
the message if a previousinstall new protocol has already arrived.startProtocol() installs the protocol
and changes thestopped flags.

This is an easy protocol but the total order service is costly. One way to overcome this situation is to
choose a coordinator node. This way theinstallProtocol(ProtocolID pid) method substitutes the broadcast
with aunicastinvocation:

void installProtocol(ProtocolID pid) {
if (for all i in nodes stopped[i] == STOPPED)
send(install_new_protocol(pid), coordinator);

}

ThereceiveInstall(install new protocol inst) method changes to:

void receiveInstall(install_new_protocol inst) {
// if stopped install protocol (and change flag:
if (stopped[locaID] == STOPPED)
startProtocol(inst.pid);

// if the node is not stopped discard message in any case:
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else return;

// broadcast an installation request:
if (localID is coordinator)
bcast(inst);

}

Once aninstall new protocol arrives to an stopped node the protocol is installed. If the node has already
installed a protocol then the message is simply discarded. If the node is the coordinator, it sends the message
to the rest of nodes2.

One drawback for this protocol is that the whole procedure has to be restarted if the coordinator node
crashes. For this means, every node that sends aninstall new protocol message to the coordinator writes
this fact down. If the coordinator crashes and thestopped flag is still set toSTOPPED then thein-
stall new protocol message is sent again to the newly elected coordinator.
Coordinator election must be performed independently in each node in a deterministic way. One easy way
to achieve this is to elect the alive node with the lowest nodeidentifier.

A.1.2 Voting installing protocol

As in the previous installation approach, a voting protocolcan be designed usingbcastbased procedure
or a coordinator based one. We discard the pure coordinator based solution here because voting needs
an interval for votes collection and we allow nodes not to send any vote at all. This means that we cannot
expect abstention (install new protocol(null)) messages either because sooner or later3 a vote could be sent.

For the same reason, a total order delivery broadcast based solution will lead to a first–one–wins ap-
proach. Therefore we will use abcast()message and we will use the lapse of time that the firstbcast()needs
to send to all nodes to collect the votes. The resulting protocol uses a mixed approach because, even though
thatbcast()is used for the votes, coordinators are used:

1. The last nodefinishes the voting period.

2. The first nodesends the install request.

At first, when a node wants to install a new protocol, a vote is broadcast:

void installProtocol(ProtocolID pid) {
if (for all i in nodes stopped[i] == STOPPED)
bcast(vote(pid));

}

Votes are written down in a vector structure such as the one used to hold the stopping process information
(stopped):

void receiveVote(vote v, int origin) {
// 1. Write down vote:
vote[origin] = v.pid;

2Notice that it is not necessary to send it to the coordinator again: bcast would be better replaced by amulticast where all the
nodes but the coordinator are included as destinations.

3For example, when the installation requires human interaction.
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// 2. If the current one is the last system node and this is the
// end of the first bcast vote process, notify the coordinator:
NodeID lastID = highestID(view(v));
if (localID == lastID && numVotes(vote) == 1) {
NodeID firstID = lowestID(currentView);
send(voting_done, firstID);

}
}

Furthermore, for the last system node, the second part of themethod sends an unicast message to the
first node if this is the first end of a broadcast that it receives.

This approach is very sensitive to system view changes and code needs to cover more availability cases:

1. Newly incorporated nodes inviewn+1 view are allowed to participate in the voting process but they
have to wait untilviewn’s firstID sends the current voting information to them before broadcasting
their votes.

2. Considerations for new nodes:

(a) lastID is obtained for the view when the vote was sent,viewv , because we need to know the
scope of the broadcast message. This is due to the fact that ifmore nodes overlastID join the
system during the sending process they won’t receive the vote.

(b) Sending information toviewn+1’s new nodes is necessary because if one of these nodes is below
viewn’s firstID it will rule the voting process. As we assume a majority partition model, if they
didn’t receive this information the newfirstID node would take a decision without most of the
votes.

3. Considerations for node failures:

(a) If vn’s lastID node fails, the previous one invn+1 has to sendvoting done again.

(b) If vn’s firstID node fails andvoting done has already been sent, it is sent again to the new
coordinator.

(c) It may be convenient to discuss whether votes from the crashed nodes should be taken into
consideration or not.

Once the first voting broadcast is done, the protocol with more votes is requested for installation in all
nodes in the current view:

void receiveVotingDone(voting_done vdone) {
// votesDone is a global variable
votes_done++;

if (votes_done == 1) {
// getMax() collects the element that appears more times
// inside a given vector
ProtocolID winner = getMax(vote);

bcast(install_new_protocol(winner);
}

}
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An installation message can only arrive from one of the nodesso, when received, it is simply applied:

void receiveInstall(install_protocol inst) {
if (stopped[localID] == STOPPED)
startProtocol(inst.pid);

}

A.2 Change protocol

Changing a protocol was introduced in chapter 2. A sequential change simply needs:

• Stop protocol.

• Sequential start protocol.
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