
Isolating Transactions on Replicated Content Going Mobile∗

José Enrique Armendáriz-Iñigo, Hendrik Decker, Francesc D. Muñoz-Escoı́
Instituto Tecnológico de Informática, Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain
{armendariz, hendrik, fmunyoz}@iti.upv.es

Abstract

Mobile databases are a centerpiece of the dramatic
growth of data-centric applications for mobile computing,
nomadic communication and wireless networks. Replica-
tion of database content is useful in client-server and peer-
to-peer configurations of mobile distributed databases. We
present an adaptation of generalized snapshot isolation for
transactions on content data in mobile networks. This solu-
tion overcomes various limitations of known approaches to
manage mobile database transactions.

1. Introduction

Hardware and bandwidth capacities of devices and net-
works are continuing to grow at phenomenal rates. Thus, in-
creasingly vast amounts of storage as well as more and more
applications (both conventional and innovative) can be em-
bedded on platforms that hitherto had been considered too
limited for accommodating advanced services. As a result,
mobile communication devices such as circuit-switched or
VoIP-based mobile phones, internet-enabled PDAs, hand-
held computers and wireless laptops are increasingly con-
verging in capacity and functionality with more conven-
tional computing systems. One such functionality is content
data processing.

A cornerstone of many data-centric applications is a
mobility-enabled database that stores content data. We say
“content data” for distinguishing it from signalling, protocol
control and other meta data that may need to be kept persis-
tently in some storage device. Our main focus, however,
is on evolving content data and the associated problems of
keeping it available and up-to-date. For convenience, we
are going to simply speak of ”data”, from now on, whereby
we always mean content data.

Data evolve via transactions. Thus, in mobile networks,
a transaction management is needed that is capable of pro-

∗Supported by FEDER and the Spanish MEC under research grant
TIN2006-14738-C02.

viding data availability and transaction processing func-
tionality also during disconnection periods. For networks
and devices with sufficient storage and processing capac-
ity, replication has been an approved means for achieving
availability and reliability. Given the ever-growing capaci-
ties of small devices as observed above, it should therefore
be a natural consequence to use replication technology also
for mobile content. A major hurdle to do so, however, is
that transaction properties such as ACID, or weaker ones as
associated to snapshot isolation (SI), can no longer be guar-
anteed for mobile networks, where disconnection periods
can be arbitrary long.

In this paper, we present an adaptation of General-
ized Snapshot Isolation (GSI) to mobile replicated database
transactions. It overcomes various limitations of other cor-
rectness criteria, by a possibly significant reduction of the
number of message rounds per transaction. We discuss its
advantages for mobile networks and content data-centric
applications. In Section 2, we outline the assumed basic
system architecture. In Sections 3 and 4, we discuss the
necessity of relaxing some correctness criteria for the man-
agement of mobile transactions over replicated data. In Sec-
tion 5, we describe an algorithm for adapting GSI to mo-
bile replication platforms. In Section 6, we address related
work. In Section 7, we conclude.

2. System Architecture

As shown in Figure 1, we assume a single database
server (DBS), consisting of a DBMS and a local backup,
plus backup copies at several distributed base stations (BS).
The DBMS provides SI as the transaction isolation level.
The DBS interacts with Mobile Hosts (MH), from which
Mobile Transactions (MT) are initiated. Each MH commu-
nicates with DBS via a BS. During the lifetime of a MT,
MH may be on the move, being handed over from one BS
to another, or being disconnect, maybe on purpose or due to
some failure. Communication between MH and BS is wire-
less and unreliable, while communication channels between
BS and DBS are reliable.



Figure 1. System Architecture

2.1. Database Server (DBS)

The dispatcher receives requests from various BSs, each
consisting of the updates (i.e., writeset) of a MT, i.e.,
key/value pairs as modified by MT. They are directly for-
warded to the master DBMS that will then process the trans-
action. The dispatcher receives the outcome of the transac-
tion and forwards it to the BS that currently covers the MH.
Moreover, if the transaction is to be committed, it will be
multicast to all other BSs. Replication of the master data
in all replicas can be achieved as outlined in the Ganymed
approach [16].

2.2. Base Station (BS)

The BS serves the MHs that are currently located in its
cell. It receives transactions from the MHs and forwards
them to DBS. The MHs hold a (possibly outdated) copy
of the database, for reducing the overhead at the DBS for
providing database snapshots. Moreover, to have a local
database copy near to the end users enables them to access
data without having to interact with the remote DBS.

2.3. Mobile Hosts (MH)

MHs may suffer strong constraints with regard to power
consumption, cache limitations, hand-overs and available
bandwidth. Each MH can be assumed to have a local
mobility-enabled processor with some database functional-
ity. MH takes care of creating MTs on behalf of the end
users. Apart from specific application needs, current loca-
tion parameters and other mobility-relevant issues, a smart
transaction management will also take into account whether

transactions are read- or write-intensive, as well as what
their consistency requirements and conflict ratios with other
transactions are. Of course, the MH typically does not hold
a complete copy of the database, but only cashed parts ob-
tained from the BS that are accessed by its end users. Exe-
cution of MTs will be discussed in Section 5.

3. Mobile Transactions

Mobile transactions over replicated content data need to
be able to deal with temporary disconnections from the net-
work, when communication with other nodes is not possi-
ble. That is either due to the user’s or application’s delib-
erate decision, or it is caused by an asynchronous interrupt
or crash [15]. Mobile users and applications then will want
to continue their work. Updates by disconnected users are
logged and later propagated to servers. Several problems
may arise for such updates:

(1) conflicting updates from different users,

(2) unpredictability of concurrent update results,

(3) inaccessibility of remote non-replicated content.

There are several proposals to achieve a serializable iso-
lation level for mobile transactions, such as the use of spec-
ulative locking [18], multiversioning [3] and locking proto-
cols [12] [15]. The strong correctness criterion of one-copy
serializability (1CS) [3] needs to be compromised for mo-
bile settings.

Caching of frequently accessed data is crucial for mo-
bile computing since it alleviates availability problems dur-
ing weakly connected and disconnected periods. Consistent
serial caching in mobile nodes is outlined in [10]. Buffering
at the base station level using broadcasts instead of cashes
has been proposed in [14]. Since a large database typically
cannot be cached in its entirety in a small mobile device,
transactions need to be very simple; e.g., [17] proposes to
realize them by stored procedures.

For many mobile applications, transaction conflicts tend
to be rare, if not completely absent, so that strong serializ-
ability is not well-suited, particularly whenever Two Phase
Locking (2PL) [3] is used. It may cause a transaction to
block that is the more annoying the more disconnections
occur. In fact, most databases on the market are content to
provide snapshot isolation (SI) [2], which reduces blocking
and completely avoids it for read operations. Generalized SI
(GSI) extends SI to replicated settings [6]. However, trans-
actions may only see a snapshot that is older than the state at
their commencement, although the interesting non-blocking
properties of SI are preserved. So, the number of message
rounds can be significantly reduced: only transactions with
write access need to communicate with the base station.



4. Isolation Level Criteria

There are several correctness criteria for transactions.
They are based on the one-copy-equivalence principle, i.e.,
several physical copies of an object viewed as a single log-
ical object. We first outline established criteria for the non-
distributed case before moving on to distributed and repli-
cated scenarios.

In general, a transaction contains a set of read and write
operations that lead the database from one consistent state
to another. A “history” models the interleaved execution of
concurrent transactions. Two actions in a history are said
to conflict if they are performed by distinct transactions on
the same data item and at least one of them is a write op-
eration. The most straightforward solution is to implement
serial scheduling by way of two-phase locking (2PL).

Weaker consistency levels have been considered, for re-
ducing the blocking of transactions. Weaker consistency
corresponds to a weaker isolation level, such as Snapshot
Isolation (SI). In SI, each transactionT reads data from
a snapshot of committed data, taken when the transaction
started (Tstart), which may be any time before the trans-
action’s first read. A transaction running in SI is never
blocked for reads from their own snapshot, while seeing
their own updates. Updates by other transactions active af-
ter Tstart are invisible toT . Thus, SI is a kind of mul-
tiversion concurrency control. Transactions are commit-
ted according to the first-committer-wins rule, with commit
timestampsTcommitthat are greater than any already exist-
ing one. The transaction successfully commits only if there
is no other transactionT ’ with a commit timestamp in the
interval [Tstart, Tcommit] that wrote data thatT also wrote.
Otherwise,T will abort.

For coping with the need to further relax isolation levels
for the distributed and fully replicated setting, One Copy
Serializable (1CS), Generalized Snapshot Isolation (GSI)
and One Copy Snapshot Isolation (1CSI) schedules have
been proposed [6, 11, 8].

4.1. One Copy Serializable (1CS)

1CS is the strongest correctness criterion for replicated
databases. Replication is transparent to transactions. Inter-
leaved execution with other transactions is equivalent to a
serially ordered execution of the transactions, i.e., all avail-
able replicas see the same result.

4.2. Generalized Snapshot Isolation (GSI)

With SI, data are read from a snapshot of data committed
at Tstart. The principles of SI are postulated in [6], where
also GSI as a first attempt to port SI to a replicated set-
ting is addressed. In GSI, a transaction sees a local, possi-

bly not up-to-date snapshot. Snapshots may be older than
in a non-distributed database since GSI takes into account
that writesets usually cannot be applied in all replicas at a
time. Thus, transaction writes may see outdated content (the
more so the older the adopted snapshot is), in which case
they are eventually aborted by a younger transaction. Yet,
all relevant properties of SI still hold for GSI, in particular
those that guarantee a serializable behavior. Commitment
of read-only transactions is immediate, even for outdated
content. For a transactionT with non-empty writeset, GSI
requires a certification which dynamically enforces that no
other transaction has updated content thatT has updated
too: The database checks whetherT ’ writeset intersects
with the writeset of any other transaction committed after
Tstart. If all intersections are empty,T commits, else,T
aborts.

4.3. One Copy Snapshot Isolation (1CSI)

1CSI names a refinement of GSI where transactions al-
ways see up-to-date content, i.e., the latest snapshot. So,
1CSI is an attempt to realize strong SI properties in a repli-
cated setting. Its most straightforward implementation may
be accomplished by sending the readsets and writesets of
transactions to the DBS and the appropriate snapshot check
(similar to the certification process) is checked there [8].
This procedure is not feasible in a mobile environment due
to its inherent constraints and even for fixed networks [9].
Another alternative approach is to block the beginning of
transactions till the latest snapshot version is gotten which
may lead to higher response time for read-only transac-
tions [8]. Furthermore, it will block (at the beginning of the
transaction) read operations when they are executed under
SI, making one of its most attractive features useless.

5. Implementing GSI

In this section, we motivate the need of a dedicated trans-
action management for mobile networks in general, and de-
scribe a suitable replication protocol algorithm guarantee-
ing GSI in particular.

5.1. Motivation

We assume that mobile transactions are first executed at
the MH and are later validated by the DBS. It is reasonable
to assume that MTs prefer committed data, although at first,
they must deal with possibly uncommitted data from the
BS. According to TPC-W [19], transactions conform to cer-
tain patterns of data accesses. Hence, if most operations are
read-only, interaction among replicas will be fairly low, i.e.,
GSI then is most suitable. As an example, consider roam-



ing users interested in, e.g., hotel locations, special events,
ticketing information etc.

For write operations, interaction with the DBS is needed
for certification. Moreover, transactions on uncommitted
data by disconnected users may lead to cascading aborts [3].
On the other hand, MHs working with uncommitted data
may receive information of the outcome of an update trans-
action by short messaging, paging services or other means
provided by mobile communication. Thus, GSI is ensured,
while minimizing the amount of messages, as long as down-
loads of accessed database content is non-frequent and mes-
sage upload is reduced to a few writeset items, if any. That
way, the main properties of SI will be preserved, and with
appropriate static or dynamic conditions, serializable histo-
ries can be generated while the number of messages remains
low.

5.2. Transaction Execution

MH starts the execution of an MT by contacting the BS
of its covering cell. The BS then returns the requested
content, executing the transaction on the snapshot of the
database from which the content is taken. The BS maintains
a transaction associated to MT in its underlying DBMS,
since additional information may have to be retrieved from
the same snapshot. However, for simplicity, we assume that
at most one message is needed for the BS.

Read-only accesses of an MT can be committed without
further ado, while for committing writes, key/value pairs
of the MT’s writeset, along with the snapshot, are sent to
the BS. The BS then sends the message to the DBS which
in turn executes the GSI certification process for MT. If it
turns out that MT’s write data have been updated already
before, MT is rolled back and an abort message is sent to
the BS. Otherwise, MT is committed, and the DBS sends
a commit message (along with all possible missed updates
since the snapshot version of MT) to the BS. The BS for-
wards the commit or abort message to the MH. If commit-
ted, the cached version then becomes the committed state. If
aborted, nothing happens to transactions executed at MH af-
ter or concurrent to MT since they obtain a consistent (prob-
ably older) snapshot version.

Note that MH roaming does not affect the transaction
management. Forwarding commit or abort messages is af-
fected only if there is a hand-over during the certification
process. Moreover, the validation of the transaction may be
notified by other means such as using a SMS or MMS if the
MH remains disconnected.

Once MT has been committed, the scheduler multicasts
the writeset of the certified MT along with itsTcommit
timestamp to the rest of BS, using a FIFO communication
service [5]. In turn, the BSs update their database copy
while keeping a consistent older snapshot of the database.

That constitutes the key idea about how GSI is guaranteed
within this transactional schema. As updates are certified in
a single node, the commit operations are ordered, and since
they are propagated according to that order, GSI is guaran-
teed.

Several optimizations may be considered. One is that the
DBS can be one of the BS itself. Its state can be maintained
by a failure detector [4], so that, if BS crashes, one of the
remaining BSs can replace it as the new DBS. Moreover, a
full replicated certifier could be implemented for the entire
system. However, that does not scale well, since all updates
would have to be applied at all available BSs. Note that
both solutions only may make sense for WLANs, but not for
public mobile networks since, in densely populated micro-
cell-covered areas, replication and failure management at
this level is not feasible [9].

6. Related Work

We briefly review some existing mobile transaction man-
agement solutions. They have been conceived as an ex-
tension of distributed transaction management in fixed net-
works. However, divergent characteristics for fixed and mo-
bile networks have been pointed out in [9], such as band-
width limitations and frequent disruptions in mobile net-
works that may need special reconciliation techniques. Sub-
sequently, two mechanisms for achieving serialization by
locking are sketched. In [18], a speculative locking mecha-
nism which converts the write lock to a short lock of the 2PL
is described. A write lock is released as soon as its after-
image is generated, under the assumption that there are no
user aborts. Hence, read-only transactions may read from
two versions. However, if an update transaction is rolled
back, a complex mechanism of cascading aborts is entailed.
Moreover, read-only transactions have to wait for the com-
mitment of previous transactions and even of transient val-
ues. A modification of 2PL by adding a validate lock which
contains a committed but not validated version is proposed
in [12]. In both mechanisms, timestamps (using version
numbers) are used to prevent deadlocks. Transactions are
executed as stored procedures where MTs must wait for ac-
quiring all proper locks before issuing the operations at the
MH. Our approach is totally different: it exchanges fewer
messages with the DBS and, thanks to GSI, avoids all of
the blocking time that otherwise is wasted at the DBS. Mul-
tiversion reconciliation for providing serializability is intro-
duced in [15]: serializability is ensured, although conflict
reconciliation is left to the application.

Driven by burgeoning market needs, commercial ven-
dors are beginning to offer solutions for mobile databases.
The one of Oracle Lite 10g [13] is similar to ours. The
main difference is the way snapshots are handled: Ora-
cle needs different snapshots for different purposes (read-



only, updatable, etc), whereas we provide a, possibly,
older database snapshot of the information needed by the
MH. Moreover, our certification-based conflict detection is
application-independent and does not rely on the DBS. Cur-
rently, a growing trend toward middleware support [1] and
service-oriented architectures for mobile databases [7] can
be observed.

7. Conclusion

We have adapted the GSI transaction correctness crite-
rion of distributed databases to be usable for replicated mo-
bile networks. Our adaptation of GSI is especially useful for
mobile settings since the number of exchanged messages
per transaction is significantly reduced. Thus, many lim-
itations associated with mobile devices can be overcome.
In particular, dynamic web content generation for emerging
mobile applications is expected to work very well.

References

[1] M. Beigl. MODBC - a middleware for accessing databases
from mobile computers. In3rd Cabernet Plenary Workshop,
1997.

[2] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A critique of ansi sql isolation
levels. InSIGMOD Conference, pages 1–10, 1995.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, 1987.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectorsfor
reliable distributed systems.J. ACM, 43(2):225–267, 1996.

[5] G. Chockler, I. Keidar, and R. Vitenberg. Group communi-
cation specifications: a comprehensive study.ACM Comput.
Surv., 33(4):427–469, 2001.

[6] S. Elnikety, F. Pedone, and W. Zwaenopoel. Database repli-
cation using generalized snapshot isolation. InSRDS. IEEE-
CS, 2005.

[7] C. Gollmick. Client-oriented replication in mobile database
environments. Technical Report MINET 03-08, Univ. of
Jena, 2003.

[8] J. R. González de Mendı́vil, J. E. Armendáriz-Íñigo, J. R.
Garitagoitia, L. Irún-Briz, and F. D. Muñoz-Escoı́. Non-
blocking ROWA protocols implement GSI using SI repli-
cas. Technical Report ITI-ITE-06/04, Instituto Tecnológico
de Informática, 2006.

[9] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dangers
of replication and a solution. In H. V. Jagadish and I. S. Mu-
mick, editors,SIGMOD Conference, pages 173–182. ACM
Press, 1996.

[10] S. Lee, C.-S. Hwang, and H. Yu. Supporting transactional
cache consistency in mobile database systems. InMobiDe,
pages 6–13, New York, NY, USA, 1999. ACM Press.

[11] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-
Peris. Middleware based data replication providing snapshot
isolation. InSIGMOD Conference, 2005.

[12] S. K. Madria, M. Baseer, and S. S. Bhowmick. A multi-
version transaction model to improve data availability in mo-
bile computing. InCoopIS/DOA/ODBASE, volume 2519 of
LNCS, pages 322–338. Springer, 2002.

[13] Oracle. Oracle database lite. Accessible in URL:
http://www.oracle.com/technology/
products/lite/index.html, 2007.

[14] W.-C. Peng and M.-S. Chen. Query processing in a mobile
computing environment: Exploiting the features of asym-
metry. IEEE TKDE, 17(7):982–996, 2005.

[15] S. H. Phatak and B. R. Badrinath. Multiversion reconcilia-
tion for mobile databases. InICDE, pages 582–589. IEEE-
CS, 1999.

[16] C. Plattner, G. Alonso, and M. Tamer-Özsu. Extending
DBMSs with satellite databases.VLDB J., 2006. Accepted
for publication.

[17] N. M. Preguiça, C. Baquero, F. Moura, J. L. Martins, R. C.
Oliveira, H. J. L. Domingos, J. O. Pereira, and S. Duarte.
Mobile transaction management in mobisnap. InADBIS-
DASFAA, volume 1884 ofLNCS, pages 379–386. Springer,
2000.

[18] P. K. Reddy and M. Kitsuregawa. Speculative locking pro-
tocols to improve performance for distributed database sys-
tem. IEEE TKDE, 16(2):154–169, 2004.

[19] TPC-W. Transaction processing performance council. Ac-
cessible in URL:http://www.tpc.org, 2007.


