ROI: An Invocation Mechanism for Replicated Objects

F. D. Muiioz-Escoi

P. Galdamez

J. M. Bernabéu-Auban

Inst. Tecnologico de Informdtica, Univ. Politécnica de Valencia, Spain

Jfmunyoz@iti.upv.es

Abstract

The reliable object invocation mechanism provided by
HIDRA for the coordinator-cohort and the passive replica-
tion models offers support to ensure that all the replicas of
the object being invoked are correctly updated before such
an invocation is terminated. This mechanism also ensures
that if a primary or coordinator replica crashes, the client
is able to reconnect to the previously initiated invocations,
collecting their results without requiring their reexecution.
All this support is provided transparently to the client of
the replicated objects, which does not notice any difference
respect to the invocations made to non-replicated objects.
Moreover, the protocols described in the paper deal also
with the failure of any of the objects involved in this kind of
invocations.

1. Introduction

Several approaches have been taken in different toolkits
and distributed operating systems to support fault tolerant
objects. Some of them are based on checkpointing, either
on stable storage or in object replicas, and some others on
replicated objects. In any case, a system of this kind needs
an invocation mechanism to request the services provided
by these fault tolerant objects.

When replicated objects were considered, one of the first
proposed approaches consisted in making replicated proce-
dure calls [4] to invoke simultaneously all object replicas.
However, this solution had to be used carefully, because
inconsistent states of the replicas could be reached if dif-
ferent invocations were not received in the same order in
all object replicas. This led to the adoption of totally or
causally ordered multicast protocols to ensure the consis-
tency of the object replicas. The use of this solution does
not seem to be very attractive, because these protocols re-
quire additional messages to guarantee the correct order and
this introduces delays in the requests service. Moreover,
the active replication model [12] assumed in these cases

pgaldam@iti.upv.es

Jjosep@iti.upv.es

forces all object replicas to locally serve each request, each
of them executing the same actions in their respective do-
mains. This model clearly leads to a significant waste of
computing power.

Other solutions use different types of transactions to en-
sure that a replicated object invocation modifies the state
of all object replicas and that no other conflicting invoca-
tion may see the updates until this one terminates success-
fully. Since replicated objects may use the services pro-
vided by other replicated objects, nested transactions [10]
are needed. However, the support needed by an unrestricted
model of nested transactions is expensive because it im-
plies the use of a distributed concurrency control mecha-
nism, a deadlock detection protocol and a deadlock reso-
lution mechanism; besides the support needed to roll back
transactions.

In HIDRA [5], we use a reliable object invocation (ROI)
mechanism to invoke replicated objects that follow the
coordinator-cohort model [2]. Besides guaranteeing con-
sistency and forward progress of all invocations, our ROI
mechanism also ensures that the invocation is completed
even if some replicas fail while it is being performed. It also
guarantees that in a chain of nested ROIs a reconnection is
made when some server replica crashes. This reconnection
is able to collect the saved results of the previous attempt,
and thus, it does not need the reinitiation of that ROI.

The rest of the paper is structured as follows. Section 2
describes the problems that have to be solved by the ROI
mechanism and outlines the support given by other HIDRA
components to build it. Section 3 presents the agents in-
volved in a ROI. Section 4 describes the protocol and Sec-
tion 5 analyzes the most important failure cases. Finally,
Section 6 compares our solution with those of other systems
and Section 7 concludes the paper.

2. Reliable Object Invocation Problem

HIDRA uses object replication as a means to provide
highly available objects. Different object replication models
are currently supported. The ROI mechanism is used in the

models that only use an active server replica, propagating
the updates to the rest of replicas using state checkpoints.

In other distributed operating systems, nested transac-
tions have been used to ensure the ACID properties; i.e.,
atomicity, consistency, isolation and durability of updates.
In HIDRA, it is required that replicated objects follow a
layered structure [5] where an object can only use the ser-
vices provided by objects placed below it. This ensures that
no invocation cycle may arise when invocation chains are
considered. As a result, no deadlock can occur due to con-
currency control considerations.

So, compared to nested transactions, our ROI mecha-
nism has the following differences and additional proper-
ties:

e Relaxed isolation. Since no deadlock may happen and
an invocation is never rolled back, the updates made
by a given ROI may be immediately known by other
ROIs.

e Forward progress. An invocation cannot be aborted
once it has modified the state of an object replica.

e Client transparency. Programmers of singleton client
objects do not see any difference between an invoca-
tion to a single object and an invocation to a replicated
object.

e The additional objects needed in the ROI protocol and
all protocol steps have to support the failure of any ROI
agent.

e Retained results. The results of a ROI have to be re-
tained by the replicas of the invoked object until all
replicas (if any) of the client object have gotten them.
Thus, if the primary replica of a client fails, another
replica can get the results without needing a reexecu-
tion of the method previously invoked by the faulty
client replica.

The solution proposed in HIDRA for its ROI mechanism
relies on some additional objects that are created each time
a replicated object is invoked. These objects are needed to
manage the termination of the invocation in all replicas of
the invoked object:

e RoilD. Our support creates an object of this kind in the
client domain each time a ROI is initiated. This object
identifies the ROI, being needed to detect retries of the
ROI in case of failures of the client or the coordinator
(See Section 3 for details on ROI agents).

e TObj. The TODbj is needed to detect when all repli-
cas of the invoked object have been consistently up-
dated and have terminated the invocation. It is mainly
needed by our concurrency control mechanism [11].

e CObj. The CObj is a replicated object that is initially
created in the coordinator domain and is maintained by
our ORB support. The CObj is needed to detect when
the retained results and the rest of the ROI context may
be safely discarded.

The ROI protocol is similar to a simplified commit pro-
tocol where no rollbacks may arise. HIDRA provides other
mechanisms that have been used to develop this protocol.
First, it provides an unreferenced notification. When either
a single or a replicated object has lost all its client refer-
ences, it receives an asynchronous unreferenced notifica-
tion. In case of a replicated object, all its replicas receive
it. Also, if a client tries to invoke a crashed object and this
object is replicated, our HIDRA support on the client side
detects this situation and reinitiates the invocation on an-
other object replica. If no other replica may be found, the
client object receives an exception that notifies the failure
of the object.

3. Reliable Object Invocation Agents

We call agents all components of a ROI that have a dif-
ferent role in this mechanism, and which participate in the
ROI completion. In the coordinator-cohort model we use
four agents:

Client. Itisthe domain which initiates the invocation on the
replicated object.

Coordinator. Itis the object replica which receives and pro-
cesses locally the invocation made by the client. As
the invocation proceeds, it may perform several check-
points on the cohort replicas.

Cohort. Each one of the object replicas which has not re-
ceived the client invocation and that will receive the
checkpoints initiated by the coordinator.

Service Serializer (SS). It is an agent needed in this repli-
cation model to guarantee that all invocations are only
allowed to proceed when no other conflicting invoca-
tion is being processed in the rest of object replicas.

In the passive model, only an object replica (the primary)
receives all client invocations. In this replication model no
service serializer is needed, since a local concurrency con-
trol mechanism may be used by the primary replica. The
protocol described in this paper assumes the coordinator-
cohort model.

4. ROI Mechanism

The basic ROI mechanism is depicted in figures 1
through 3, where the rectangles represent object references

and the boxes with rounded corners represent object in-
stances. A ROI consists of the following steps (the agent
which initiates the step is cited in parentheses):

The RoilD obtains
a CObj reference.
Resy

Q@ creaion
@ The SS receives a @ Once serialized,

of RoilD
RoilD ref. and the ROI reaches

Cohort
creates a TObj the object code.

of Cobj and TOb] replica.

Invocation

Figure 1. Steps 1 through 4 in a ROl (assuming
single client).

1. Creation of the RoilD (Client). If the client is repli-
cated, a special synchronous checkpoint is needed be-
fore the invocation is initiated. In this checkpoint, the
RoilD is created by our ORB and it is transferred, with
the RoilD assigned to the current method execution in
the client, to the client replicas which will reuse it in
case of failure.

If that checkpoint was not made, the RoilD is created
now and marshaled. In this case, a SINGLETON flag
is set in the invocation stream to indicate that the client
is not a replicated object.

2. Reception of the invocation stream (Coordinator). The
replica chosen as the coordinator for this ROI receives
the invocation stream and unmarshals the RoilD refer-
ence. The invocation is still not delivered to its target
object.

If the SINGLETON flag is not set, this coordinator
checks if the current ROI is a replay of another pre-
vious one. To this end, it tries to match the received
RoilD reference among the buffered ROI contexts and
ROI results associated to already terminated invoca-
tions (see steps 6 and 7) whose replicated client failed.
If this context is found, the results of the previous at-
tempt are gotten and the reply is immediately returned
to the client which retakes the protocol in step 8 (This
is needed to discard the retained results in all server
replicas).

If the context is not found, the CObj and TObj first
replicas are created in the server coordinator domain.

. Serialization request (Coordinator). The coordinator
makes a Serialize () request to the SS. The SS
receives RoilD and TODbj references and it creates a
replica of the TObj. The internal reference of the TObj

replica in the SS is immediately released. Thus, when
the ROI is completed in the server side, this object re-
ceives an unreferenced notification.

The serializer blocks the current ROI until all its prede-
cessor RoilDs have been reported as completed. Once
this happens, the SS terminates the serialization re-
quest and this ROI is allowed to continue.

. The coordinator invokes the Results () method of

the RoilD (Coordinator), transferring a CObj reference
if the client is not replicated (otherwise, this invocation
is not needed). Later, it invokes its actual object code.
Once this code has been invoked, it may initiate check-
point invocations to the cohort replicas.

A RoilD reference is needed in all checkpoints to iden-
tify the ROI associated to that checkpoint.

[RoilD] (TOb)

- (RoilD - RailD
lient Client

Checkpoint Last checkpoint

et et |

ceived and the CObj
and TObj replicas @ The method invocation
are created. terminates.

Figure 2. Steps 5 through 7 in a ROL.

. The first checkpoint is made (Coordinator). A CObj

and a TObj references are included in the checkpoint
message by our checkpoint support. They are needed
to create their replicas in the cohort domains. More-
over, a copy of the invocation arguments received by
the coordinator is also sent to the cohorts.

. The last checkpoint is made (Coordinator). When a co-

hort receives the last checkpoint for the ROI, it saves a
copy of the results in the retained results buffer, associ-
ating them to the appropriate RoilD and CObj. It also
releases the internal TObj reference of its replica. The
internal CObj reference is only released if the client is
a singleton object.

. The method invocation terminates (Coordinator).

Once the coordinator replica has terminated the
method execution, it returns control to the skeleton
placed in its domain. Then, the results are also saved in
the retained results buffer and the reply is returned to
the client. It also releases the internal TObj reference
of its replica, which raises the unreferenced notifica-
tion for this replicated object (see step 9). The internal
CObj reference is only released if the client is a single-
ton object. Otherwise, a CObj reference is included in
the return-of-invocation message.

[Cog | The CObj reference

is released.

Client

(8a) Client receives the reply.

{Coord} {Cohon}
i
[RoilD |

Sw

o The unreferenced notification
is delivered.

Figure 3. Steps 8 through 10 in a ROI.

8. The client receives the invocation reply (Client). If the
client is not replicated, the RoilD releases the CObj
reference. This originates an unreferenced notification
to the CODbyj replicas.

If the client is replicated, it has to make a syn-
chronous checkpoint which transfers the received
CObj reference and the invocation results to the
client replicas. Later, the client invokes the oneway
DiscardResults () method of the CObj. This in-
vocation is needed because we must guarantee that the
retained results are not discarded until all client repli-
cas have gotten these results.

All client replicas release their internal RoilD refer-
ences.

9. The TObj replicas in the serializer, coordinator and
cohorts receive the unreferenced notification (Replicas
and SS). When this happens the ROI has terminated
on the server side. So, the serializer tags the ROI as
terminated and destroys its context. Also, the repli-
cas destroy their copy of the input arguments and their
TObj replicas.

10. When the CObj replicas receive the asynchronous un-
referenced notification or the DiscardResults()
invocation, all the context associated to this ROI (re-
tained results, RoilD and CObyj) is discarded.

Finally, when the RoilD references have been released
in all server replicas, the RoilD receives the unrefer-
enced notification and it is destroyed.

As a consequence of this last step, the invocation has
been successfully completed and all the object replicas have
updated their state accordingly.

5. Failure Analysis

This section describes the behavior of the ROI protocol
when one or more than one of its agents fail. Depending on
the protocol step where the failure arose, different actions

may be appropriate. So, each failure case is decomposed ac-
cording to the step where it happened. Moreover, the failure
cases are divided in single and multiple failures according
to the number of agents involved in the failure.

5.1. Single Failures

We assume the SS is replicated in such a way that it only
fails when the whole service has failed [11]; i.e., when at
least a replica of the service objects remains alive, the SS is
able to serve its requests. So, our protocol has only to deal
with the failure of the client, the coordinator or any of the
cohorts of a given ROI.

5.1.1. Client Failure

The management of client failures depends on the type
of client (either single or replicated). So, both cases are
discussed separately.

Single Client. If the client fails once the step 1 has been
completed, no special action has to be taken by the rest of
ROI agents. Interaction with the client is only needed in
step 4 —when the Results () method of the RoilD is
invoked— and in step 8 —the client receives the invocation
results—. In step 4, the coordinator receives an exception as
the result of the Results () invocation, since the RoilD
no longer exists. This exception can be ignored, and the
protocol goes on. Later, in step 8§ the results cannot be de-
livered, but this does not matter. Finally, the release of the
CObj reference in the client domain was implicitly made
when the client failed. As a consequence, step 10 is reached
without needing any client activity.

Replicated Client. 1If the client fails before the first step
has been completed, then if at least the initial synchronous
checkpoint has arrived to one of its replicas, that replica will
be able to repeat later the invocation using the same RoilD.

Once step 1 has been completed, the failure of the client
implies that a reconnection has to be made by any other
client replica to collect the results produced by the first at-
tempt. The retry will use the same RoilD, so it will be
easily identified as a retry and it will get the retained re-
sults, if any, or it will wait for these results. Once the re-
sults are gotten, the protocol follows as described in step
8. Then, the new client replica has to explicitly invoke the
DiscardResults () at the end of step 8, to discard the
retained results of the server replicas. Note that the TObj
unreferenced notification was raised in the first attempt and
that this allows other conflicting ROIs to proceed, indepen-
dently of how long the retained results are maintained.

5.1.2. Coordinator Failure

The failure of the coordinator is always detected by the
client, whose support receives the notification of the failure.
Then our client support has to choose another coordinator
replica and invoke it again.

If the coordinator failure happened before step 3 the pro-
tocol is reinitiated from the start, reusing the same RoilD.
No special action is needed, since no other agents know
about this ROI.

If the failure happens after the serialization request but
before the first checkpoint is made, the SS has already or-
dered the ROI. Since the ROI is restarted using another co-
ordinator, a different TObj and CObj are created. As a re-
sult, if the client is not replicated, the RoilD has to ignore
the Results () invocation made using the old CObj, re-
leasing that CObj reference. This happens when a new in-
vocation to the Results () method arrives carrying the
new CODbj reference. Also, the SS does not try to associate
the new serialization request to the same ROI. So, the new
attempt is serialized again. The previous one was tagged as
terminated when the TObj received the unreferenced notifi-
cation. These actions are depicted in Figure 4.

cli ((RoiD) Client
ient
The coord. calls the Results(
New
Coordinator

Exception method. The RoilD gets the'

new

oord,

bi RoilD RoilD
0ilD con) O The SS serializes
again.
(a) (b)

Figure 4. Failure of the coordinator in steps 3
or 4. (a) Initial situation. (b) Reattempt after
failure.

Once the first checkpoint is made, if the coordinator fails,
the new coordinator replica does not need to make a serial-
ization request because it already has CObj and TODbj repli-
cas and knows that this ROI was already serialized, as it is
depicted in Figure 5. In this case, when the ROI reaches the
new coordinator (step 1 in the figure), the invocation con-
tinues from the point received in the latest checkpoint (steps
2 and 3a in the figure).

If the last checkpoint was also sent by the crashed coor-
dinator, the new one has already finished the ROI and main-
tains the results and output arguments. Note that in the case
of a singleton client we need to transfer a CODbj to the client
domain as soon as possible (step 4 of the protocol) to ensure
that the CObj does not receive an unreferenced notification
if the coordinator fails once the last checkpoint has been
made and before the results are returned to the client. Thus,
we ensure that the results are still retained in this situation
and that the client is able to get them in this retry.

So, when the coordinator checks if this RoilD is already

known (step 2), it will find that the ROI has terminated and
it will return its buffered results immediately (step 3b).

Client Client
CObj

— Rephy() (1) nvocation ey
New
rdinaty Cohort Coordinator Cohort
Chks
bj TObj TObj TObj
oilD CObj RoilD CObj RoilD CObj RoilD CObj

The RoilD, CObj and
TObj are found.

No serialization request is needed.

() (b)

Figure 5. Failure of the coordinator after step
4. (a) Initial situation. (b) Reattempt after
failure.

5.1.3. Cohort Failure

When a cohort failure arises, it is detected by our support
which updates the information needed to do the checkpoints
in this service. Once this action is done, the ROI is allowed
to progress normally.

5.2. Multiple Failures

When the failure of multiple agents in a ROI is consid-
ered, several cases arise which may include different agents
in a chain of nested ROIs. The failure of one or more co-
horts is not problematic and it can be managed as it was
explained in Section 5.1.3.

So, the cases which have to be dealt with are the simul-
taneous failure of a coordinator and its client and the failure
of all the replicas which compose a service and whose fail-
ure may break a chain of nested ROIs. These two cases are
outlined in the following sections.

5.2.1. Coordinator and Client Failures

When the coordinator and client agents fail before the
first checkpoint has been made by the coordinator, the SS
may have already ordered the current ROI (if step 3 was
reached), and if this was done, the SS has lost its TObj client
reference. So, when the ORB reconfigures its state and re-
builds the reference counts, the TODbj replica of the SS re-
ceives an unreferenced notification, and the SS assumes that
this ROI has been terminated. If the client was a replicated
object, the ROI will be reinitiated on another coordinator
replica. But this reattempt will use a different TObj object,
and it will be serialized again (and as a different ROI) by
the SS.

A different case arises when the failure happens once at
least the first checkpoint was made by the crashed coordi-
nator and before the last checkpoint was terminated (step 6
of the ROI protocol). Since the first checkpoint also carries
a copy of the input arguments of the invocation, all live co-
hort replicas are able to continue the ROI, but one of them
has to be chosen as the new coordinator.

In this case, the TObj replicas do not receive any unref-
erenced notification since its replicas in the cohort domains
have not released their client reference. So, the remain-
ing cohorts have to cooperate to successfully terminate the
ROIL. To this end, a new coordinator replica is chosen in the
HIDRA reconfiguration steps and it will resume the ROI. As
a result, the resumed ROI eventually reaches step 7. Since
the client failed, the results cannot be delivered to it. But a
copy of them is retained in all replicas of the invoked object.
This copy is released if the client was not a replicated ob-
ject when the unreferenced notification arrives to the CObjs.
Otherwise, it is maintained, waiting for a replay of the ROI
made by another client replica.

Finally, if this multiple failure arises after step 7 and the
client was not replicated, all cohorts finalize and release the
ROI context and buffered results; otherwise, the results and
the ROI context are maintained until another attempt is reis-
sued by one of the client replicas.

5.2.2. Service Failures

If an entire service fails, probably more than one chain of
nested ROIs will be broken. As shown in Fig. 6, the client
of the failed server will receive an exception as a result of
the invocation.

If the failed object was also the client of a replicated
object, then this invoked object will maintain the results
of that ROI indefinitely. To avoid this situation, once the
TObj has been discarded, our support has to check peri-
odically if the RoilD references maintained in the server
replicas are still valid. To this end, they can use the stan-
dard CORBA: :object::nonexistent() operation
which returns TRUE when the client reference points to an
object which no longer exists. Once these replicas have no-
ticed that all client replicas have crashed, the retained results
can be discarded.

6. Related Work

Replication of software components is a common way
to achieve high availability. Multiple techniques have been
used to ensure the consistency of the replicas, and they are
based either on atomic multicasting, transactional support
or some kind of checkpointing. The solution varies accord-
ing to the replication model being used.

Our ROI mechanism is conceived to ensure the consis-
tency when a replicated object is invoked. Our system de-

RoilD1
Client
CObjl
RoilD2
Coordinatorl Cohortl
CObj2

TObj1
Cobjl) [RoilDI

Exception

‘ SS1 ‘

RoilD1 RoilD1

Coordinator3

‘ Cohort3 ‘

TObj3 TObj3

RoilD3 RoilD3] (CObj3) [RoilD3

Figure 6. Failure of all object replicas.

sign guarantees that an initiated invocation always is com-
pleted by all the object replicas and that when a failure
arises and a reply is needed, the invocation is able to col-
lect the results of the previous attempt or to continue its
actions from the failure point. Moreover, the coordinator-
cohort and passive models being used permit some load bal-
ancing if we vary the coordinator or primary replica chosen
at each invocation.

The systems based on an active replication model [12]
need to use some atomic multicast protocol [1, 3, 13] to
ensure that all replicas receive the same requests in the
same order. However, this replication model needs that each
replica processes locally all requests, updating accordingly
their state. Although each replica does not need to know
the existence of the rest, this approach cannot be used to
balance the load of a distributed system. Moreover, the pro-
tocols needed for atomic multicast need some delays and
messages to ensure that the appropriate order is followed.
There have been a lot of systems which follow this model
[4, 9]. Some of them [4] also need some kind of transac-
tions to add more replicas to the replicated object, incurring
in additional costs. We consider this model too expensive
—in terms of messages and computing power— and inflex-
ible —because the management of a shared resource by all
object replicas seems complicated.

The original design of the coordinator-cohort model [2]
also associated an identifier to each incoming request and
maintained the retained results to avoid reexecutions of the
request in case of failure. But its solution does not give a

practical rule about how (and when) retained results can be
discarded. Its solution only relies on the synchrony of the
needed checkpoints. Moreover, it does not consider the fail-
ure of the whole replicated object and its consequences on
the objects it previously invoked, which maintain these re-
tained results indefinitely. The only solution provided for
this case consists in making the checkpoints in stable stor-
age, too. Later, some replicas have to be recovered and they
have to reinitiate the invocation once they have read their
state.

Finally, another technique to ensure the consistency of
the object invocations is the use of nested transactions and
some concurrency control mechanism as in [6, 7, 8]. The
support for transactions should be included in the object in-
vocation mechanism to be transparent for the programmer,
and this does not happen in [6] nor in [8]. Also, some care
must be taken to avoid deadlocks or to detect them and abort
the appropriate transactions.

7. Conclusions

The reliable object invocation mechanism described here
provides the basis to ensure the consistency of the replicated
objects supported by our HIDRA architecture. The context
associated to each invocation is created and propagated by
some components of the HIDRA ORB, so this mechanism
is transparent for the programmer of client objects.

The objects involved in a ROI allow that each agent
knows immediately when the ROI has been successfully ter-
minated and they also make possible a fast detection of the
failure of any agent, ensuring that the protocol manages cor-
rectly that situation.

This invocation mechanism can be used in the passive
and the coordinator-cohort replication models, it requires
few additional messages to ensure the consistency of all
replicas and it also supports seamlessly the failure of sev-
eral of its agents.

Finally, the ROI mechanism also provides a cheaper in-
vocation support than those used in active replication mod-
els, which need atomic multicast protocols. Additionally,
the replication model assumed in the ROI can be the basis
to balance the load of the distributed system, choosing at
each time the more appropriate coordinator replica.

References

[1] O. Babaoglu and A. Schiper. On group communication in
large-scale distributed systems. In Proc. ACM SIGOPS Euro-
pean Workshop, Dagstuhl, Germany, volume 29(1) of ACM
Operating Systems Review, pages 62—-67, 1995.

[2] K.P.Birman, T. Joseph, T. Raeuchle, and A. El Abbadi. Im-
plementing fault-tolerant distributed objects. IEEE Trans. on
SW Eng., 11(6):502-508, June 1985.

[3] K.P.Birman and R. van Renesse. Reliable Distributed Com-
puting with the Isis Toolkit. IEEE Computer Society Press,
Los Alamitos, CA, 1994.

[4] E.C. Cooper. Replicated Distributed Programs. PhD thesis,
Univ. of California, Berkeley, CA, April 1985.

[5] P. Galdimez, F. D. Muifioz-Escoi, and J. M. Bernabéu-
Auban. High availability support in CORBA environments.
In F. P145il and K. G. Jeffery, editors, 24th Seminar on Cur-
rent Trends in Theory and Practice of Informatics, Milovy,
Czech Republic, volume 1338 of LNCS, pages 407—414.
Springer Verlag, November 1997.

[6] S. Ghemawat. Automatic replication for highly available
services. Technical report, MIT-LCS-TR-473, MIT Lab. of
Comp. Sc., January 1990.

[7] T. Hirotsu and M. Tokoro. Object-oriented transaction sup-
port for distributed persistent objects. In Proc. of the 2nd
International Workshop on Object-Orientation in Operating
Systems, September 1992.

[8] M. C. Little and S. K. Shrivastava. Replicated K-resilient
objects in Arjuna. In Proc. of IEEE Workshop on the Man-
agement of Replicated Data, Houston, Texas, pages 53-58,
November 1990.

[9] S. Maffeis. Run-Time Support for Object-Oriented Dis-
tributed Programming. PhD thesis, Dept. of Comp. Sc.,
Univ. of Zurich, February 1995.

[10] J. E. B. Moss. Nested transactions: An approach to reliable
distributed computing. Technical report, MIT/LCS/TR-260,
MIT Lab. for Comp. Sc., 1981.

[11] F. D. Muioz-Escoi, P. Galdimez, and J. M. Bernabéu-
Auban. HCC: A concurrency control mechanism for repli-
cated objects. In Proc. of the VI Jornadas de Concurrencia,
Pamplona, Spain, pages 189-204, July 1998.

[12] EB. Schneider. Replication management using the state-
machine approach. In S. J. Mullender, editor, Distributed
Systems (2nd ed.), pages 166-197. Addison-Wesley, Wok-
ingham, UK, 1993.

[13] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A
flexible group communication system. Communication of
the ACM, 39(4):76-83, April 1996.

