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Abstract

Snapshot isolation has received a considerable amount
of attention in the context of full database replication. Such
popularity is mainly because read-only transactions execut-
ing under snapshot isolation are never blocked or aborted.
In partial replication, where each replica holds only a part
of the database, transactions may require access to remote
databases. Each remote read operation of the transaction
must execute in a consistent global database snapshot as
the local operations; if such a snapshot is not available, the
transaction must be aborted.

In this paper we are interested in the effects of distributed
transactions on the abort rate of partially replicated snap-
shot isolation systems. We present a simple probabilistic
analysis of transaction abort rates for two different concur-
rency control mechanisms: lock- and version-based. The
former models the behavior of a replication protocol pro-
viding one-copy-serializability; the latter models snapshot
isolation. Our analysis reveals that in the version-based
system the execution abort rate decreases exponentially as
the number of data versions available increases. As a con-
sequence, in all cases considered, two versions of each data
item were sufficient to eliminate aborts due to distributed
transactions.

1. Introduction

Most work on database replication using group commu-
nication concentrates on full replication strategies. How-
ever, scalability of such protocols is limited under update-
intensive workloads: Each replica added to the system
allows to submit more transactions; if such transactions
modify the database, they will add load to every individ-
ual database. To improve the scalability of the system,
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databases can be replicated partially only. Unfortunately,
it is not obvious how to extend many of the protocols devel-
oped for full replication to systems with partial replication.
If each replica keeps only part of the database, a transac-
tion may require access to data stored on remote replicas
and thus, a distributed execution involving more than one
replica becomes necessary.

The problems introduced by distributed transactions in
partially-replicated systems differ depending on the con-
currency control mechanism used. In lock-based systems
transactions executing over multiple replicas will acquire
locks on remote data items and thus, may increase the like-
lihood of distributed deadlocks [11], a problem that group
communication protocols can mitigate [1]. In version-based
systems both local and remote read operations of each trans-
action must execute in a consistent global database snap-
shot. However, obtaining the requested snapshot for remote
reads may be a challenge in some contexts (e.g., middleware
approaches based on standard off-the-shelf databases).

The majority of partial replication solutions in the litera-
ture guarantee one-copy serializability (e.g., [5, 6, 7, 10, 12,
13, 15, 17]) and assume that database replicas adopt lock-
based concurrency control. Several of these protocols (e.g.,
[6, 7, 15, 17]) build on the strong assumption that transac-
tions can always execute locally at one database site. Such
an assumption requires prior knowledge of the workload
and a very precise data distribution over the replicas (e.g.,
[8]) or at least a single replica that holds the whole database
(e.g., [6]). The protocols in [2, 16] allow distributed transac-
tions by ensuring that all remote accesses are able to find the
required data version. The work in [2] orders the beginnings
of distributed transactions at all the replicas involved and,
thus, prevents local executions. The authors of [16] propose
to use special “dummy” transactions, created at all database
sites every time an update transaction commits. All remote
operations must execute within the dummy transaction as-
sociated with the required database snapshot. Maintaining
a high number of dummy transactions may affect the per-
formance of the system.



In this paper we are interested in the effects of distributed
transactions in partially replicated database systems. Both
distributed deadlocks and failed remote read operations re-
sult in aborted transactions. Hence, we introduce a proba-
bilistic model for abort rates of partially replicated systems
when lock- and version-based concurrency control mecha-
nisms are used. Our study revealed that the abort rate of
transactions in the execution phase in a version-based sys-
tem decreases exponentially with the number of data ver-
sions available. As a consequence, in all cases considered,
two versions of each data item were sufficient to eliminate
the aborts due to distributed transactions. Furthermore, in
the version-based system even if the workload over the par-
tially replicated system is dominated by read-only transac-
tions, but the few update transactions perform a lot of write
operations, read-only distributed transactions can still suffer
from a noticeable number of aborts. This is in contrast to
typical fully replicated version-based systems, in which the
number of versions available in each replica is unbounded,
and thus, read-only transactions never abort.

Summing up, this paper makes the following contribu-
tions: (a) we introduce a probabilistic analysis of the abort
rates of partially replicated systems when lock- and version-
based concurrency control mechanisms are used; (b) we
show how the number of data versions available affect the
abort rate of the version-based system; (c) we identify the
settings under which snapshot isolation can be safely used
with partial replication.

The remainder of this paper is organized as follows. In
Section 2 we introduce the system and replication models
considered. Section 3 describes our probabilistic analysis
of abort rate of lock- and version-based systems. We dis-
cuss the results of the analytical evaluation in Section 4 and
present final conclusions in Section 5.

2. System model

2.1. Sites and communication

We consider an asynchronous distributed system com-
posed of a set of database sites. Sites communicate through
message passing and do not have access to a shared mem-
ory or a global clock. Sites may fail by crashing, but do
not behave maliciously. We also assume the existence of a
total-order multicast oracle — the implementation of such
an oracle requires additional assumptions about our system,
but this is out of the scope of this paper. Total-order multi-
cast allows messages to be sent to a subset of database sites
in the system and guarantees that (a) if a database site de-
livers a message m then every site in the subset delivers m;
(b) no two database sites deliver any two messages in differ-
ent orders; and (c) if a site broadcasts message m and does
not fail, then every concerned site eventually delivers m.

2.2. Database and transactions

A database is a set of data items. Database sites have a
partial copy of the database. No database site is expected
to store the whole set of items, although that is not for-
bidden. A transaction Ti is a sequence of read and write
operations on data items followed by a commit or an abort
operation. A transaction is called read-only if it does not
contain any write operation; otherwise it is called an update
transaction. The transaction’s readset and writeset identify
the data items read and written by the transaction, denoted
as rs and ws, respectively.

2.3. Consistency criteria

We are interested in two consistency criteria for repli-
cated databases: serializability (SR) [4] and snapshot isola-
tion (SI) [3].

Serializability. A typical correctness criterion for repli-
cated databases is one-copy serializability (1SR)[4]. In-
formally, 1SR requires the execution of concurrent trans-
actions on different replicas to appear as if transactions
were executed in some sequential order on a single replica.
To guarantee serializability most DBMSs implement two-
phase locking (2PL) or strict 2PL concurrency control [4],
where locks on data items are handled by a transaction in
two consecutive phases during its execution. In a replicated
setting, 2PL may result in high abort rates as aborts grow
with the third power of the number of replicas [11]. It has
been shown that total-order multicast can be used to reduce
the aborts due to replication in the presence of locking [1].

Snapshot Isolation. In snapshot-isolated databases trans-
actions read data from a committed snapshot of the database
taken at the time the transaction starts. All transactions ex-
ecute without interfering with each other, however, transac-
tion Ti can only successfully commit if there exists no other
transaction Tj that committed after Ti started and updated
the same data items (first-committer-wins rule). If no such
a transaction exists, then Ti can commit and its updates will
be visible to all the transactions that start after Ti’s commit.

In [9] the authors extend snapshot isolation to replicated
databases and define generalized snapshot isolation (GSI).
GSI is based on the observation that a transaction need not
necessarily observe the latest snapshot. In the rest of this
paper we use the terms snapshot isolation and generalized
snapshot isolation interchangeably.

In a partially replicated system, transactions execute us-
ing a global database snapshot that may be composed of
several individual partial snapshots, taken by different repli-
cas. Obviously, the global snapshot should be consistent



across replicas. A global snapshot composed of several par-
tial snapshots is consistent if it could be taken by a single
replica containing all the database.

2.4. Replication model

We assume a partial replication model where the origi-
nal database is partitioned and replicated over the database
sites. We call local the replica to which the transaction
is submitted, and remote the replica which contains data
items accessed by the transaction and not stored at the local
site. Similarly, an operation is called local if it is executed
on a local replica, and remote otherwise. Transactions that
access data at more than one database site during execution
are called distributed.

We distinguish two phases through which transactions
pass during processing:

1. Execution phase. Transactions are initially submit-
ted to one database site. However, in partial repli-
cation, where each replica only holds a subset of the
database, transactions may require access to data items
not available locally. In such a case, transaction’s oper-
ations are forwarded to one of the database sites hold-
ing the required items and executed remotely. If the
database engine adopts lock-based concurrency con-
trol, such distributed transactions inevitably introduce
the possibility of distributed deadlocks; if the repli-
cas implement snapshot isolation, the key problem is
to obtain a consistent global snapshot of the database
composed of individual snapshots taken at each replica
involved in the execution of the distributed transac-
tion. We assume that every remote request includes
the required snapshot version. Upon processing such
a request the remote site demands the correct snapshot
from the database. If such a version of the data is not
available, the transaction is aborted.

2. Termination phase. Read-only transactions commit
immediately upon request. Update transactions are
forwarded to all (or a subset of) database sites using
the total-order multicast primitive. We assume that all
database sites involved in the execution of the transac-
tion eventually reach a consistent decision on the trans-
action’s fate: commit or abort. Depending on the repli-
cation protocol, this may require a voting phase as part
of the transaction’s termination (e.g., [17]). For differ-
ent consistency criteria, different certification tests are
used. Two concurrent update transactions Ti and Tj

are allowed to commit only if:

- (to ensure 1SR) Ti and Tj executed at distinct
replicas, Ti has been delivered first and ws(Ti)∩
rs(Tj) = ∅ [14]. If Ti and Tj execute at the same

replica, the local database scheduler guarantees a
serializable execution.

- (to ensure SI) The writesets of Ti and Tj do not
intersect, that is, ws(Ti) ∩ ws(Tj) = ∅. We
assume that SI is implemented using strict first-
committer-wins rule, i.e., transactions are never
aborted during the execution phase because of a
write-write conflict.

If the transaction passes the certification test, its up-
dates are applied on all copies of modified data items.

3. Analytical Model

In partial replication settings where each replica holds
only a subset of the database, support for execution of dis-
tributed transactions is inevitable, unless “perfect data par-
titioning” is assumed.1 In lock-based systems distributed
transactions may get involved in distributed deadlocks,
while in version-based systems remote read operations may
be unable to obtain the requested database snapshot at re-
mote replicas. Both distributed deadlocks and failed remote
read operations result in aborted transactions. Hence, the
goal of our probabilistic analysis is twofold: (a) to quantify
the abort rate of transactions due to distributed execution;
and (b) to estimate the abort rate of transactions at the ter-
mination phase.

The replicated system is modeled as a number of
database servers, sites, and a fixed-size database composed
of DB SIZE items. Every database item has a number
of copies uniformly distributed over the replicas. Thus,
the entire system consists of DB SIZE · copies resources.
All transactions submitted to the database have the same
number of operations op and all operations take the same
op time to execute. An operation is defined as a read
or a write on one data item; as a consequence, a single
SQL statement may consist of many operations. Each data
item has the same probability of being accessed (there are
no hotspots). We model neither communication between
database sites — both local and remote accesses to data
items have the same cost — nor failures of the replicas.

Every database site receives TPS transactions per
second, so the total load over the replicated system is
TotalTPS = TPS · sites and there are always txn =
TotalTPS ·op ·op time concurrent transactions executing.
Every transaction is read-only with the probability of L.
Each operation within the update transaction has the prob-
ability k to be a read operation. The number of concurrent

1If the database is partitioned so that every transaction can execute at
a single site, support for distributed transactions is not needed. However,
such an approach requires prior knowledge of the workload and a very
particular data distribution over the replicas or at least a single site that
holds the whole database.



read-only transactions in the system is r txn = L·txn, each
with op read operations. The number of update transactions
is given by w txn = (1− L) · txn with r op = k · op read
and w op = (1 − k) · op write operations. We also require
that the average number of data items accessed by concur-
rent transactions do not exceed the database size. The main
parameters of the model are listed in Table 1.

DB SIZE database size

TPS
number of transactions per second
submitted to the database site

L fraction of read-only transactions
op number of operations in a transaction

k
fraction of read operations in update
transactions

op time time to execute an operation in seconds
sites number of replicas in the system

copies number of copies of each data item

Table 1. Model parameters

In the following two sections we introduce our proba-
bilistic analysis for evaluating the abort rate of partial repli-
cation when lock- and version-based concurrency control
mechanisms are used. We assume that the lock-based model
ensures 1SR, while the version-based model provides GSI.

3.1. Lock-based system

Our model has been strongly influenced by the analytical
model introduced by Gray et al. in [11], where the authors
analyze the deadlock rate of fully replicated database sys-
tems based on locking only. Besides the assumptions con-
sidered throughout our probabilistic modelling, the work in
[11] does not account for read operations — all transactions
are composed of updates only. In this paper we model read
operations within update transactions as well as read-only
transactions. To calculate the abort rate at the termination
phase, we have followed the ideas introduced in [14].

Execution phase. As in [11], we suppose that, in aver-
age, each transaction is about half way complete, thus the
number of resources locked by executing transactions is at
most

res locked = ro read locks + u locks, (3.1)

where
ro read locks =

r txn · op
2

, (3.2)

u locks = u write locks + u read locks

=
w txn · w op

2
+

w txn · r op

2
=

w txn · op
2

.
(3.3)

From Eq. 3.3, the probability that a read operation waits
because of update transactions is

p r op waits u =
u write locks

DB SIZE · copies

=
w txn · w op

2 ·DB SIZE · copies
.

(3.4)

Similarly, p w op waits u and p w op waits r are the
probabilities that a write operation waits for resources
locked by update and read-only transactions:

p w op waits u =
u locks

DB SIZE · copies

=
w txn · op

2 ·DB SIZE · copies
,

(3.5)

p w op waits r =
ro read locks

DB SIZE · copies

=
r txn · op

2 ·DB SIZE · copies
.

(3.6)

Now we can calculate the probability that a read-only trans-
action waits for resources held by update transactions,

p r tran waits u = 1− (1− p r op waits u)op, (3.7)

and the probability that an update transaction waits because
of other update transactions,

p u tran waits u = 1− (1− p r op waits u)r op

× (1− p w op waits u)w op,

(3.8)

and because of read only transactions,

p u tran waits r = 1−(1−p w op waits r)w op. (3.9)

A deadlock is created if transactions form a cycle waiting
for each other. We do not consider deadlocks that involve
more than two transactions: deadlocks composed of cycles
of three or more transactions are very unlikely to occur [11].
So the probability for a read-only transaction to deadlock is

p r deadlock ≈ p r tran waits u · p u tran waits r

r txn
,

(3.10)
and the probability that an update transaction deadlocks is

p w deadlock ≈ p u tran waits u2

w txn

+
p u tran waits r · p r tran waits u

w txn
.

(3.11)

From Eq. 3.10 and 3.11, read-only and update transactions
deadlock rates are:

r deadlock rate =
p r deadlock

op · op time
, (3.12)



w deadlock rate =
p w deadlock

op · op time
. (3.13)

Finally, we can estimate the total number of deadlocks of
the system (in transactions per second) as

aborts deadlock = r deadlock rate · r txn

+ w deadlock rate · w txn.
(3.14)

Termination phase. If there is only one copy of each data
item (i.e., there is no replication), strict 2PL ensures seri-
alizability and thus transactions are not aborted during the
termination phase. For more than one copy, two conflict-
ing transactions executing concurrently at distinct database
sites may violate 1SR. As mentioned in Section 2.4, to en-
sure 1SR, each committing transaction has to pass the cer-
tification test which checks that there is no transaction that
executed concurrently and updated data items read by the
committing transaction. Notice that conflicts appear only if
transactions access different copies of the same item.

We consider only those transactions that were not
aborted during execution. Thus, TotalTPS, the number
of read-only and update transactions are:

TotalTPS′ = TotalTPS − aborts deadlock, (3.15)

r txn′ = r txn · (1− p r abort), (3.16)

w txn′ = w txn · (1− p w abort), (3.17)

txn′ = TotalTPS′ · op · op time. (3.18)

If there are only two concurrent transactions in the system,
the probability that an update transaction passes the certifi-
cation test is (1− w op/DB SIZE)r op. Then the prob-
ability that the i-th transaction passes the certification test
after the commit of (i− 1) transactions is

p i txn pass =
(

1− (i− 1) · w op

DB SIZE

)r op

. (3.19)

On average, the probability that a transaction does not pass
the certification test is

p txn no pass = 1− 1
N
·

N∑
i=1

p i txn pass, (3.20)

where N is the number of concurrent update transactions,
excluding those that execute at the same replica and do not
cause certification aborts:

N = w txn′ · sites− 1
sites

. (3.21)

Consequently, the abort rate of update transactions that do
not pass the certification test is defined as follows:

u abort rate =
p txn no pass

op · op time
. (3.22)

And at last, the total number of aborts due to the certifica-
tion test is

aborts sr cert = u abort rate · w txn′. (3.23)

3.2 Version-based system

During the execution, transactions are aborted if the re-
quested versions of the data items are not available. We
assume that all database sites are able to maintain up to V
versions per data item, e.g. with V = 1, transactions can
only obtain the current version of the data item. Notice that
we assume a strict first-committer-wins rule, i.e., transac-
tions are never aborted during the execution phase due to
write-write conflict; such conflicts are resolved at termina-
tion.

Execution phase. In the same way as Eq. 3.1, during its
execution, a transaction updates at most w op resources.
Therefore, at any time there are res upated exec =
(w txn · w op)/2 resources updated because of the trans-
actions in the execution phase. Some of these transactions
will be successfully certified and their updates will be prop-
agated to all the copies of the data items accessed. These
remote updates will influence the total number of resources
updated.2 Therefore, during termination there are

res updated term =
(copies− 1) · w txn′ · w op

2
× p commit

(3.24)

resources updated, where w txn′ is defined in Eq. 3.34.
p commit is the probability for an update transac-
tion to pass the certification test and is equal to 1 −
p w abort term (see Eq. 3.38). Hence, the total number of
resources updated is res updated = res updated exec +
res updated term and, consequently, the probability for
an item to be updated V times by concurrent transactions
is:

p item v updated =
(

res updated

DB SIZE · copies

)V

. (3.25)

The probability for a read operation to abort is the same
as the probability of waiting for V locks, i.e., the probability
of V concurrent transactions to update the same item:

p r op abort = p item v updated. (3.26)

2We do not account for remote updates in the lock-based model since
in general the deadlock rate is very small and some remote updates will
not affect significantly the final deadlock rate.



Since each read-only transaction has op operations, the
probability for a read-only transaction to abort is

p r abort = 1− (1− p r op abort)op, (3.27)

and the probability of abort of an update transaction is

p w abort = 1− (1− p r op abort)r op. (3.28)

From Eq. 3.27 and 3.28, the abort rates for read-only and
update transactions are as follows:

r abort rate =
p r abort

op · op time
, (3.29)

and
w abort rate =

p w abort

op · op time
. (3.30)

Therefore, the total number of aborts during the execution
phase of transactions is

aborts exec = r abort rate·r txn+w abort rate·w txn.
(3.31)

Termination phase. Similarly to Eqs.3.15–3.18, we have
to recalculate the number of concurrent transactions that
reach the termination phase:

TotalTPS′ = TotalTPS − aborts exec, (3.32)

r txn′ = r txn · (1− p r abort), (3.33)

w txn′ = w txn · (1− p w abort), (3.34)

txn′ = TotalTPS′ · op · op time. (3.35)

Furthermore, transactions aborted during the execution
phase also affect the fraction of read-only and update trans-
actions present at the termination phase:

L′ =
r txn′

txn′
. (3.36)

Thus, the probability that a write operation conflicts with
another write operation is

p w op con =
w txn′ · w op

2 ·DB SIZE
. (3.37)

The probability that an update transaction aborts is

p w abort term = 1− (1− p w op con)w op. (3.38)

Update transactions abort rate due to write-write conflicts is
determined as

w abort rate term =
p w abort term

op · op time
. (3.39)

Finally, the total number of aborts at the termination phase
is

aborts si cert = w abort rate term · w txn′. (3.40)

4. Analytical Evaluation

4.1. Objectives

We have analytically estimated the transaction abort rate
of a partially replicated system to answer the following
questions:

• What is the impact of distributed transactions on the
abort rate of 1SR and SI systems?

• How do data versions affect the abort rate of SI sys-
tems in the context of partial replication?

• Under which environments are SI systems comparable
to 1SR lock-based systems ?

In the following we present the parameters used through-
out the evaluation.

4.2. Parameter values

As a base scenario we consider a system composed of
8 database sites and 2 copies of 2.500.000 items database.
Every database site executes 100 transactions per second.
Each transaction takes 0.170 seconds to execute and is com-
posed of 200 operations. 90% of the transactions in the
workload are update transactions.3 All the parameters used
are summarized in Table 2; parameters of the base scenario
are highlighted in bold.

Parameter Values considered
DB SIZE 2.500.000
TotalTPS 400, 800

op 200
op time 0.170/op

L 0, 0.1...1
V 1, 2, 3, 4

sites 1, 8
copies 1, 2, 8

Table 2. Model parameter values

In all figures we report the percentage (%) of transactions
aborted during execution and termination or just the total
system abort rate. In the execution phase the lock-based
system is denoted as LB; VB V represents the version-
based system, where V is the number of versions available
per data item (e.g. VB 1 indicates a scenario where only the
current data version is obtainable). In the termination phase
we denote the different systems as 1SR and SI V .

3We used the TPC-C benchmark [18] as a reference for our base case
parameters. Our implementation of the benchmark for 5 warehouses re-
sults in a database of 2.595.055 items and an average transaction response
time of 0.170 seconds. In TPC-C update transactions account for 92% of
the workload.
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Figure 1. Standalone vs. fully replicated system, TotalTPS = 800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100
8 sites, 2 copies

A
b

o
rt

 r
a

te
 %

(e
x

e
c

u
ti

o
n

)

k ! fraction of read operations

 

 

LB

VB 1

VB 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100
8 sites, 2 copies

A
b

o
rt

 r
a

te
 %

(t
e

rm
in

a
ti

o
n

)

k ! fraction of read operations

 

 

1SR

SI 1

SI 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100
8 sites, 2 copies

T
o

ta
l 
a
b

o
rt

 r
a
te

 %
k ! fraction of read operations

 

 

LB+1SR

VB 1+SI

VB 2+SI

(a) during execution (b) during termination (c) total abort rate

Figure 2. The effects of distributed transactions; base scenario

4.3. Standalone vs. fully replicated system

Figure 1 compares the execution and termination abort
rates for standalone and fully replicated systems. The stan-
dalone lock-based system has very low deadlock rate and
there are no aborts due to the certification test (see Fig-
ure 1(a)): if two conflicting transactions execute concur-
rently at the same replica, the local database scheduler
will serialize them, and thus both transactions can commit.
Adding replicas increases the number of transactions exe-
cuting at distinct sites, thus the aborts due to lack of syn-
chronization grow accordingly (see Figure 1(b)). Differ-
ently from the model introduced by Gray et al. [11], where
the deadlock rate rises as the third power of the number
of replicas, in our replication model all commits of update
transactions are ordered and thus replication does not in-
crease the deadlock rate of the 1SR system — the aborts in
Figure 1(b)) are due to the certification test. We further use
the lock-based 1SR system as a baseline for analyzing the
aborts of partially replicated SI systems. In a version-based
system, even if two conflicting transactions execute at the
same database site, only one is allowed to commit — notice
that in SI two concurrent transactions conflict if they update

the same data item. Therefore, replication does not affect
the system abort rate. Moreover, there are no aborts due to
unavailable consistent snapshots in the standalone and the
fully replicated systems; in both cases the number of data
versions available is unbounded.

4.4. Two data versions are sufficient to elim-
inate execution aborts

Figure 2 presents the transaction abort rate during (a) ex-
ecution and (b) termination, and (c) the total system abort
rate for the base scenario configuration. If only a single
data version is available during the execution of transactions
under version-based concurrency control, up to ≈ 22% of
transactions may abort due to failed reads (see Figure 2(a),
VB 1 curve). The abort rate depends on the number of write
operations in update transactions. With 100% of write op-
erations in update transactions, only read-only transactions
can abort due to not obtaining the requested database snap-
shot. On the other hand, with 100% of read operations there
are no updates and, hence, no failed reads.

The availability of at least one additional data version is
sufficient to almost completely eliminate the aborts during



execution (Figure 2(a), VB 2 curve)! This is because the
number of data versions available reduces the abort rate ex-
ponentially (see Eq. 3.25). We investigate this phenomenon
further in Figure 3, which depicts the system abort rate at
the execution phase when increasing the number of avail-
able versions. Two versions of each data item reduce the
execution aborts so that they become insignificant (0.06%
in the worst case). Therefore, increasing further the number
of versions available will not affect remarkably the abort
rate.
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Figure 3. The effects of versions available;
base scenario, y-axis in logarithmic scale

If update transactions contain a high number of read
operations, VB 1+SI can be as good as LB+1SR, while
VB 2+SI may even outperform LB+1SR (see Figure 2(c),
when 60% or more of read operations in update transac-
tions). However, if the workload is dominated by update
operations, version-based systems abort more transactions,
regardless of the number of versions per data item available.
This is due to the differences in the certification test. As pre-
sented in Section 2, to ensure SI the certification test of a
version-based system checks write-write conflicts between
concurrent transactions, while to ensure 1SR the certifica-
tion test of a lock-based system checks read-write conflicts.
With a lot of update operations the probability of write-
write conflicts increases and thus, the version-based system
exhibits higher abort rate. During the termination phase, the
abort rate of SI 1 is lower than SI 2 (see Figure 2(b)). This
is because in the termination phase our model accounts for
aborts that happen during execution. Since in VB 1 a lot
of transactions are aborted during execution, fewer transac-
tions reach the termination phase, and consequently, fewer
transactions are aborted.

4.5. The impact of read-only transactions

To evaluate the impact of read-only transactions in the
workload, we have varied the L parameter. Figure 4 illus-

trates the total system abort rate when L = 0.9. The abort
rate of both LB+1SR and VB 2+SI is very low, since with
very few updates the termination abort rate is small and it
is unlikely that transactions deadlock during the execution.
However, for VB 1+SI, if the fraction of write operations
in the transactions is high, the execution aborts dominate
the total system abort rate. If all update transactions per-
form a lot of write operations, read-only transactions still
have a significant probability of aborting due to not obtain-
ing the requested version of the data item. For example,
for VB 1+SI, L = 0.9 and k = 0, the probability for
a read operation to abort due to not obtaining the correct
version is 0.541 · 10−3, but the probability for a read-only
transaction to abort during execution is 0.102 (see Eq. 3.26
and 3.27, respectively). Thus, even if the workload over
the partially replicated system is dominated by read-only
transactions, but the few update transactions perform a lot
of updates, read-only distributed transactions can still cause
a noticeable number of aborts. This is in contrast to typical
fully replicated SI systems, in which the number of versions
available in each replica is unbounded, and thus, read-only
transactions never abort.
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Figure 4. The effects of increasing read-only
transactions in the workload; L = 0.9

4.6. The environments beneficial to SI
version-based systems

Figure 5 depicts the environments under which SI can
be safely used with partial replication. We have varied
the L and k parameters and report the results where the
total system abort rate is equal to or below 20% with
TotalTPS = 400 (Figure 5(a)) and TotalTPS = 800
(Figure 5(b)). The dark and light gray areas represent
configurations of version-based SI systems with one (i.e.,
VB 1+SI) and two data versions available (i.e., VB 2+SI).
Workloads composed of a lot of read-only transactions and
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Figure 5. Configurations where abort rate of SI systems is ≤ 20%; base scenario

workloads where update transactions contain many read op-
erations represent environments beneficial to SI systems.

5. Final Remarks

This paper presents a simple probabilistic analysis of
abort rates in partially replicated systems. Two concurrency
control mechanisms are considered: lock- and version-
based. The lock-based system models the behavior of
a replication protocol providing one-copy serializability,
while the version-based system ensures snapshot isolation.

In our probabilistic model adding replicas to the system
has a different impact on lock- and version-based systems.
The difference comes from the distinct certification tests.
The throughput over a database site has a linear impact on
the total system abort rate, while the number of operations
has an exponential effect on the aborts for both lock- and
version-based systems. Augmenting the number of opera-
tions increases the number of concurrent transactions in the
system (TPS ∗ op ∗ op time), and thus has a quadratic im-
pact on the number of resources updated or locked (e.g., see
Eq. 3.1). However, once we calculate various probabilities
(e.g. probability that transaction waits), the number of op-
erations appears in the exponent of the formula (e.g. see
Eq. 3.7). The impact of the database size is smaller: be-
ing just at the denominator of the Eq. 3.1 formula, reducing
database size, increases the total system aborts.

The presented analytical evaluation revealed that in the
version-based system the number of data versions avail-
able decreases the execution abort rate exponentially. As a
consequence, in all cases considered, two versions of each
data item were sufficient to eliminate the aborts due to dis-
tributed transactions. Furthermore, in the version-based
system even if the workload over the partially replicated
system is dominated by read-only transactions, but the few
update transactions perform a lot of updates, read-only dis-

tributed transactions can still cause a noticeable number of
aborts, as opposed to typical full replication protocols, in
which the number of versions available is unbounded, and
thus, read-only transactions executing under snapshot isola-
tion are never aborted.
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