The NanOS Microkernel:
A Basis for a Multicomputer Cluster Operating System*

Francesc D. Munoz-Escoi
José M. Bernabéu-Auban
Departament de Sistemes Informatics i Computacié
Universitat Politecnica de Valencia
Cami de Vera, s/n
46071 Valencia - SPAIN
Tel: 34 6 387-7069, FAX: 34 6 387-7358, e-mail: {fmunyoz, josep}@iti.upv.es

Abstract NanOS is an object-oriented microker-
nel that has been taken as the basis to develop a
distributed operating system. It provides a set of
abstractions that can be used to build user-level ap-
plications. They are: objects, agents and tasks. An
agent is a protection domain which holds a collec-
tion of objects and a set of references to other ez-
ternal objects. Tasks are execution threads that can
invoke objects placed in external agents. So, tasks
can traverse multiple agents as a result of an object
inwvocation. A local object invocation service is also
provided by the NanOS microkernel.

To extend the microkernel-based services, which
are intended to only a machine, to a distributed
environment, an object request broker is being de-
signed. This ORB manages inter-machine invoca-
tions. As a result, distributed applications may be
built using the ORB services.

Keywords: Microkernels, Cluster Systems, Object
Oriented OS, Reliability.

* This work was partially supported by the CICYT
(Comisién Interministerial de Ciencia y Tecnologia) un-
der projects TIC 93-0304 and TIC 96-0729.

1 Introduction

Current trends in operating system develop-
ment are based on a minimal kernel, which
takes the form of either a microkernel [1, 2, 7,
12, 14, 15], cache-kernel [4] or exokernel [6].
The latter alternative provides the most ex-

treme solution, since an exokernel only offers
a multiplexing of the physical resources of the
hardware without modeling any high level ab-
straction, such as processes, execution threads,
objects or any other. In this case, the basic sup-
port to develop applications has to be offered
in libraries which provide the traditional kernel
interface.

Microkernels constitute a more conservative
approach. They offer a minimal set of abstrac-
tions that are considered the required basis to
develop user level servers or applications. Usu-
ally this basic abstraction is the object; i.e., a
software module which maintains a state that
is only accessible using a collection of oper-
ations which compose the object’s interface.
Moreover, a microkernel has to provide a dy-
namic abstraction which provides the unit of
execution of the objects’ code. This dynamic
abstraction is the execution thread. To be able
to execute multiple objects, the microkernel has
to offer to the execution threads an object in-
vocation service, allowing them to visit several
objects invoking their interfaces’ operations.

NanOS [10] follows the object-based mi-
crokernel approach. Thus, the object is the
most important abstraction provided by our
kernel. Execution threads, referred to as tasks,
and the invocation service are the other two lo-
gical blocks used to build the system. In our
case, the object abstraction is tightly bound
to the protection domain, or agent. An agent

models an address space where objects can be
placed and protected. Also, the agent is the
unit of resource distribution in our system. It
is the entity which owns the object references
that allow its tasks to invoke external objects
and, in this way, move to other agents.

The aim of NanOS is to provide a flexible
basis to develop a distributed operating system
on top of it. To achieve this goal, an ORB [11]
is being designed to extend the interdomain in-
vocation service capabilities of NanOS to a dis-
tributed object invocation facility. We plan to
give our ORB some support to replicated ob-
jects, allowing in this way the development of
highly available applications. Thus, the ORB
will offer a good platform to develop the upper
levels of an operating system for a multicom-
puter cluster, offering a single-system image.

The rest of the paper describes first the basic
concepts offered by NanOS to its upper levels.
Next, in section 3, the overall structure of the
microkernel is outlined. Section 4 describes
other microkernels, comparing them with our
approach. Finally, section 5 gives some meas-
urements about the services provided and sum-

marizes the most important characteristics of
NanOS.

2 Services and Abstractions

As stated above, the most important abstrac-
tion provided by our microkernel is the object
concept. NanOS deals with object registration,
invocation and deregistering using one of its in-
ternal objects: the ObjectMgr. An object re-
gistration is the first step required to make an
object publicly available. Once an object is re-
gistered, given its name and its local identifier
in its server agent, other agents may get valid
references (object descriptors) for it, resolving
its name. Once an external agent has one ob-
ject descriptor, its tasks are able to invoke any
one of the object’s interface operations. Finally,
the kernel maintains a reference count for each
registered object. Once a reference count de-
creases and gets a zero value, the object is auto-
matically deregistered. An explicit deregistra-

tion operation is provided, too.

The task is the dynamic abstraction provided
by our kernel. A task is an execution thread.
Tasks are scheduled, dispatched and synchron-
ized using the services provided by several ob-
jects that are internal to the kernel, but offer
publicly their interfaces. The current imple-
mentation of all these objects is placed into
the kernel, although future releases will allow
a user-level scheduler, which use the interface
provided by the Dispatcher object. Since, syn-
chronizing objects only depend on the Scheduler
operations, they may be placed at user-level,
too.

Agents are the protection domains of our sys-
tem. An agent is the unit for object descriptor
assignment. So, all tasks running in the same
agent have potentially the same set of accessible
external objects. To support an agent, the mi-
crokernel associates to it a VirSpc object which
represents its virtual address space. Two kinds
of agents exist in our system. The first one is
the user agent, which models each of the user-
level protection domains. It is characterized by
the virtual range of addresses assigned to its
virtual space (the first three gigabytes in our
PC implementation) and for the presence of a
unique entry point to its incoming invocations
(a fixed low address in its virtual space). Ap-
propriate server code has to be attached at this
entry point to maintain a set of pre-allocated
stacks for the incoming tasks and to route the
arriving calls to the suitable object and method.
The other kind of agent is the kernel agent.
The kernel has been modeled as an agent with
its own virtual space (which encompasses the
fourth gigabyte in our PC implementation) and
its entry point (invoked using the appropriate
system calls and managed by the CallMgr ker-
nel object.) Figure 1 depicts an example of
the agents distribution in a machine with the
NanOS microkernel.

Some other kernel-level objects offer the re-
quired service to provide memory management,
as in other kernels [7]. To begin with, the
MemObj, or memory object, is the representat-
ive of some part of the system’s memory. There
are two types of these memory objects. The

KERNEL AGENT (SHARED)

Dispatcher Object Tasks Memory
Manager Manager Manager

I
.
]
I
I
|
| Name
i Server
! Server
|
Server 1
I
|
UNIX
Server

Object
z

Object
X
Device
Driver

VirSpe A VirSpc B

Region B1

List of Frame
Cache objects.

Region Al Obf‘ecl
Pager
Object

NODE 1 NODE 2

USER AGENT 1

ADDRESS SPACE

USER AGENT 2 USER AGENT3 ... USER AGENTN

Figure 1: Agents, virtual spaces and objects in
a system node.

first one backs the image of an object main-
tained in secondary storage; i.e., a persistent
object. The other type represents part of the
main memory of the local machine.

The VirSpc object models a virtual address
space which may be used by the kernel or by
any of the user-level agents. A Region rep-
resents a part of a virtual address space that
has been allocated to map (part of) a MemOb)
on it. A Cache holds the physical pages of a
MemObj that are in use in a node. A Pager
is associated to a MemObj and it must hold a
reference to each one of the Caches that back
part of the memory object pages, providing to
the caches some methods to request new pages
or release some of the cached ones. Finally,
other machine-dependent objects take part in
the memory management, as the MMU and the
TableMgr, which model the MMU of the local
machine and its page tables.

This relationship among MemObjs, Pagers,
Caches, Regions and VirSpcs is depicted in figure
2. In this figure there is a memory object that
has been mapped in two virtual address spaces
located in two different nodes. To make pos-
sible this mapping, a Region has to be declared
in each virtual space, allocating the range of
virtual addresses where the memory object has

Figure 2: Relationship among MemObjs,
Pagers, Caches, Regions and VirSpcs.

to be mapped. Later, a Cache has to be cre-
ated in each node to back the contents of the
memory object needed in those machines. Fi-
nally, a Pager is associated to the memory ob-
ject and bound to the Caches. This Pager is
used to bring the contents of the frames that
hold the memory object contents.

To map some memory in a VirSpc object
some steps must be followed. First of all, a
call to the AllocMem() method of the VirSpc
reserves a Region object in that virtual space,
registering a range of virtual addresses as “in
use.” Next, a valid reference to a MemObj has
to be obtained. Finally, the Map() method at-
taches the memory object to the region cre-
ated earlier. To do this, the virtual space
has to check first if any Cache exists in the
local node backing the memory object being
mapped. If so, this cache was bound earlier
to the MemObj, which provides also a Pager for
the cache frames. If no local cache is found,
a bind operation has to be initiated, creating
a Cache and relating it to the MemObj and its
Pager. In both cases, the Cache is finally at-
tached to the Region, which knows the virtual
addresses range associated to the cache’s pages.
This information is used to establish the virtual
to physical translation data in the page tables
of the MMU when the translation has to be set,
i.e., when the Pager introduces some new pages
in the Cache as a result of a page fault or an ex-
plicit request to get memory for a given virtual

VIRTUAL SPACE A VIRTUAL SPACE B

Memory

Region B1

Region
Object

Region
Object

Regiop0-Cache

Memor
¥ Region-t-Cache

Region Al "’
attach after A Map()

attae after a Map()

List of Frame

objects.

|

Frame

PHYSICAL MEMORY

Figure 3: Memory shared between two address
spaces in the same node.

address. Since only a Cache object is needed
to back a memory object in a node, sharing
memory among multiple address spaces is as
easy as attaching multiple Region objects to the
same Cache, as depicted in figure 3.

This organization of the memory manage-
ment services and the object registration and
invocation mechanisms allows the extension of
the kernel with new objects. For instance, a
device driver can be installed into the kernel if
its code and data are stored in a memory object
and this object is mapped in the VirSpc of the
kernel agent. Later, the kernel Loader must relo-
cate its code to the address where the driver has
been mapped. Finally, the new device driver
object must be registered in the ObjectMgr to
generate an initial object reference which will
be set in the kernel’s name server.

Finally, let us take a look to the objects
invocation service. This is the basic service
provided by the microkernel. Other comple-
mentary services are available when some of the
microkernel objects which have registered their
interfaces are invoked by user-level tasks, but
to use them the invocation service is indispens-
able, too. To start an invocation, the invoker
task must have a valid reference to the object it
wants to call. This object reference, or object
descriptor, may be obtained either resolving the

object’s name in the microkernel’s name server
or receiving it as a returning parameter of a pre-
vious invocation. These object descriptors are
maintained by the agents. When a new agent
is created, it already holds a reference to the
kernel-level name server. Thus, all agent’s tasks
have access to the name server and they are able
to obtain new object references if they know the
name of some external objects.

If the invoker task’s agent has the appropri-
ate descriptor, a call to the microkernel is ini-
tiated. When the microkernel serves the invoke
request, it checks the validity of the object ref-
erence and, if it is correct, translates the object
descriptor to an object identifier that is known
only by the server agent for this object and by
the microkernel. Then the server agent is loc-
ated and installed. Later, the task returns to
user-level at the entry point of the server agent,
where it gets a new stack and executes the skel-
eton code that drives it to the invoked method.
When the task finalizes the execution of the in-
voked method, releases its stack and calls again
the microkernel, which finds out its state in its
previous agent and returns the task to it. Note,
that all these changes are made avoiding any
task switch. In our current implementation in
PC machines, an interdomain invocation and
return as the one described, transferring five 32-
bit arguments, needs 22 ys in a machine with
an Intel Pentium at 90 MHz.

Since the microkernel is modeled as another
agent, it also maintains an object descriptor
table. So, tasks running in the kernel can in-
voke objects placed in other agents. This mech-
anism is used to invoke interrupt handlers or
device drivers that are not installed at the ker-
nel level when an interrupt is raised by a device.
However, kernel services are also provided to
make possible the installation of new device
drivers at kernel level, if needed.

3 Microkernel Organization
The microkernel has been designed as a set

of related objects which serve the invoca-
tion service and provide different interfaces

that user-level tasks may invoke at any time.
This set of objects comprises a reduced sub-
set of machine-dependent objects (the CPU,
CPUContext, MMU, TableMgr and IntrMgr,
which have machine-dependent code but offer
machine-independent interfaces) and a subset of
machine-independent ones, which use the meth-
ods of the latter. Having a little number of
machine-dependent objects, the migration of the
microkernel to other hardware architectures res-
ults easy. In fact, we developed the initial ver-
sion of NanOS on Sun SPARC machines and
later we have ported this kernel to PC’s.

Also, some extensions are being planned to
the object invocation mechanism. An ORB ar-
chitecture is being designed to extend the cur-
rent invocation service, allowing the invocation
of remote objects in a distributed environment.

3.1 Machine-Dependent Objects

The machine-dependent objects do the follow-
ing tasks. The CPU is used to enable and dis-
able interrupts. Also, if a multiprocessor im-
plementation is considered, there are multiple
CPU, MMU and TableMgr objects to model each
one of the processors being considered.

A CPUContext models the set of registers of
the CPU and allows the change of any of their
contents. So, an object of this kind is used to
model the state of a task when it has to release
the CPU when the Scheduler requests this ac-
tion. In the Intel x86 release of NanOS, a CPU-
Context maintains the general CPU registers in
the format of a TSS segment [9]. As a result, the
task switching capability of the x86 processors
is used.

The MMU provides methods to change the
current virtual address space and to update
the mappings placed in the page tables of each
processor. The TableMgr uses its services to
provide a higher-level interface which hides the
physical representation of the page tables and
the number of page table levels maintained by
the MMU, offering the image of a unique and
large page table for each address space. At this
level it is possible to associate physical pages
to the any virtual address space.

Finally, the IntrMgr is used to install different
interrupt handlers for each level of interruption
of the CPU, routing the incoming interrupts to
the appropriate interrupt handler. At this level
there are multiple semi-active tasks, each one
associated to a different interrupt level. When
an interrupt arrives, the processor automatic-
ally does a task switch, blocking the current
task and activating the one associated to the in-
coming interrupt level. Support is also provided
to undo this task switching when the interrupt
handling is terminated, and to report the task
change to the Scheduler. This second alternative
allows the interrupt task to be scheduled and to
invoke objects placed outside the kernel agent.
Thus, if an interrupt task is made schedulable,
the device driver attached to its interrupt hand-
ler may be placed in a user-level agent.

3.2 Machine-Independent Objects

The set of machine-independent objects is a
little bigger. We only describe the most import-
ant objects of this type. The ObjectMgr main-
tains all the registrations of objects that have
been made, holding the identifier of the agent
which serves the new object and the private
identifier of it in that server. This information
is needed to locate the agent where an object
is placed when this object is being invoked.
It also deals with object descriptor manage-
ment, maintaining a reference count for each
registered object, and with the naming service,
allowing the association of names to objects.

The TasksMgr is used to create new tasks and
to register the interdomain calls made by any
of them, allowing in this way their return to
their home agents. To achieve this, each time
a task calls an external object, the TasksMgr
saves the place where the invocation was made
(to this end, the instruction and stack pointers
plus the client agent identifier are saved,) and
this information is chained to the current list of
invocations made by that task. When a task re-
turns from the called object, the kernel restores
its previous state, returning it to the agent and
routine where the call was initiated.

The Scheduler manages the state of all system

tasks, arranging them in any of the 32 avail-
able priority classes. It provides methods to
prepare and suspend tasks; so its services are
required by the synchronizing objects. It uses
a Dispatcher object to do the task switching in
each one of the available processors. All ma-
chine Dispatchers have access to a global pool of
CPUContext objects, which maintain the states
that had all local tasks when they released the
CPU.

Also related to tasks are the Semaphore, Lock
and EventVar objects, which are three differ-
ent classes of synchronization objects, each one
with their own semantics:

e A Semaphore object provides the P() (test)
and V() (increment) methods. They fol-
low the behavior of the original semaphore
primitive [5].

e Locks constitute a variant of the semaphore
object that does not block the owner of the
lock if it requests its suspending method
several times. However, to release a lock,
its owner has to call its Release () method
as many times as it called the Request()
one.

e In an EventVar object, many tasks may
be blocked waiting for the signaling of an
event. When its Signal() method is re-
quested, all the blocked tasks are imme-
diately restarted. Later, the EventVar re-
mains signaled. As a result, if a new task
calls its Wait () method again, it is not sus-
pended unless its Reset () method was pre-
viously called.

Each type of synchronization object accepts
in its suspending method an additional argu-
ment which may be used to provide a timeout
value or to request the test of the blocking state
of the object; i.e., if the current state of the
synchronization object will block the request-
ing task or not.

The CallMgr serves the kernel entry point,
distinguishing between user-level targets, which
receive the generic invocation service and the
kernel-level ones, whose routing is optimized.

There is also an AgentMgr which allows the
creation and destruction of agents in the local
node.

Device drivers are not included as a collec-
tion of objects placed in the kernel. However,
the IntrMgr object described in the previous sec-
tion provides support to install the interrupt
handlers associated to these drivers, either in
the kernel or in user agents. Drivers can be also
placed in the kernel or in user agents, but they
do not belong to the set of objects that build
the microkernel indispensable services. They
have to be registered and installed in the agent
chosen by its programmer.

Finally, a big number of objects are re-
lated to memory management. VirSpcs, Re-
gions, MemObjs, Caches, Pagers and other ob-
jects have been already described in the previ-
ous section. To complete the picture there is a
FrameMgr object which finds out at boot time
the whole machine physical memory and man-
ages the set of available physical pages that ex-
ist in the machine.

3.3 ORB Extensions

A little number of kernel-level objects is needed
to manage object invocations. Therefore, it
is easy to modify the object invocation ser-
vice. We are planning now to develop an ORB
for NanOS which will complete and extend the
current invocation service to provide invoca-
tion support in a multicomputer cluster. To
do this task, a new network device driver and a
transport protocol server are being implemen-
ted. The ORB will use their services to com-
municate with other ORB’s in the other nodes
of the cluster.

A multicomputer cluster offering a single-
system image is the kind of system we are de-
veloping on top of NanOS. A system like this
offers the advantage of an easy increase in the
computing power of the system adding more
machines to the cluster. To allow that, a flex-
ible configuration tool must be designed and in-
cluded in the system. Also, we plan to extend
the ORB with support for replicated objects,
offering different replication strategies, ranging

Table 1: Executable and source code sizes.

Concept Source | Exec
(Lines) | (Bytes)
Whole kernel 19.636 | 46.493
Language:
C++ 16.787 | 39.413
Assembler 2.849 7.080
Arch. dependency:
Independent 14.785 | 35.577
Dependent 4.851 10.916

from passive replication [3] (a primary and mul-
tiple backups) to fully active replication [13]
(multiple primaries offering different classes of
consistency, and having also as many backups
as needed). This will allow the development of
highly available applications.

3.4 Code Size

Table 1 sums up the figures about the kernel
size. All the source code is fully commented.
Removing comments, approximately a 50 % of
the lines would be eliminated.

This table shows first the entire size of the
kernel source code (in lines) and that of the ker-
nel text image (in bytes).

The second group of figures divides the kernel
code according to the implementation language.
As we can see, only a 15% of the source code has
been written in assembler. Once this code has
been compiled, its 7.080 bytes mean the 15% of
the total object code, too.

Considering hardware dependency, the 25%
of the source code must be translated to port
the kernel to a different architecture. In the
current PC release, this source code generates
the 23% of the text image.

4 Related Work

The architecture of the NanOS microkernel is
based on two layers of objects that provide a

minimal set of services and abstractions that
make possible the development of user-level ap-
plications and servers. The bottom object layer
is composed by a set of architecture-dependent
objects. On top of it, there are a set of
architecture-independent objects. The abstrac-
tions provided are the object, the agent —or
protection domain— and the task —or execu-
tion thread. The unique kernel service is object
invocation. As a result of this architecture we
have an efficient microkernel that can be easily
migrated to different machines.

The exokernel approach proposed in [6] does
not consider kernel abstractions as a convenient
model to develop the operating system support.
Thus, exokernels do not provide any abstrac-
tion to its upper levels, and its operating sys-
tem interface has been lowered to the hardware
level. As a result, the user-level code has to
manage itself all the hardware. The advantages
of this approach, according to its authors, are
more performance, reliability, adaptability and
flexibility than microkernels. But, this has to be
achieved writing the appropriate code to man-
age the hardware at user-level. Therefore, the
exokernels are not portable and require addi-
tional programming efforts to write a user-level
application.

Cache-kernels [4] follow an approach similar
to exokernels. So, they have the same advant-
ages and drawbacks.

The Paramecium [15] and Spring [7] mi-
crokernels are also object-based. Paramecium
places more emphasis in its support to integrate
new objects at kernel level, using certification
techniques to ensure a good level of security
when these objects are included in the kernel.
Besides certification services, it provides pro-
cessor and memory management and a name
service. The Spring nucleus, on the other hand,
only provides the object abstraction and the ob-
ject invocation service. All other services may
be implemented at user level.

Our solution is similar to the ones provided
by Paramecium and Spring. In our case, it
is also possible to include new objects in the
kernel, as device drivers, to decrease the time
required to serve the interrupts raised by the

device, or to improve its invocation time, since
the kernel is always mapped and active, inde-
pendently of the current active user agent.

5 Summary

The NanOS microkernel offers
support for object-oriented services and applic-
ations. Its main services include object invoc-
ation, memory management and device driver
support. NanOS also provides a reduced set
of abstractions which comprises objects, agents
and tasks.

The kernel itself has been organized as a set
of cooperative objects. Some of them offer pub-
lic interfaces to the upper levels. Synchron-
ization objects, memory providers and virtual
spaces are three examples of kernel objects of
this kind.

Portability and efficiency were key design
objectives of this system. To increase the
portability of the kernel code a reduced
set of architecture-dependent objects with
architecture-independent interfaces was con-
sidered in the design stage of the kernel develop-
ment. As a result, porting NanOS to other ar-
chitectures implies the rewriting of all these ob-
jects. Currently, we already have two releases
of our kernel running in two different architec-
tures. So, the first objective has been accom-
plished. Efficiency is provided by the invocation
service, which allows interdomain invocations
without needing any task switch to do so.

We plan to build a distributed object-
oriented operating system offering, among oth-
ers, a UNIX interface to applications. The
NanOS kernel is the base for this future sys-
tem. It has to be extended with network sup-
port in the next stage of its development. At the
same time, we are designing an ORB which will
provide a good platform to develop distributed
applications and servers. We plan to extend
this ORB with additional services such as the
support and management of replicated objects,
which will provide the basis for highly available
applications and servers.

References

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

J. M. Bernabéu-Auban, P. W. Hutto,
Y. A. Khalidi, M. Ahamad, W. F. Ap-
pelbe, P. Dasgupta, R. J. LeBlanc, U.
Ramachandran: The Architecture of Ra: A
Kernel for Clouds. In Proc. of the 22nd An-
nual Hawaii International Conference on
System Sciences, Jan. 1.989.

B. Bershad, C. Chambers, S. Eggers, C.
Maeda, D. McNamee, P. Pardyak, S. Sa-
vage, E. G. Sirer: SPIN - An FExtensible
Microkernel for Application-Specific Op-
erating System Services. In Proc. of the
6th ACM SIGOPS European Workshop,
Wadern, Germany, Sept. 1.994, pp. 68-71.

N. Budhiraja, K. Marzullo, F. B.
Schneider, S. Toueg: The Primary-Backup
Approach. In S. J. Mullender Ed., Distrib-
uted Systems (2nd edition), pp. 199-216.
Addison-Wesley, Wokingham, England.

D. R. Cheriton, K. J. Duda: A Caching
Model of Operating System Kernel Func-
tionality. In Proc. of the 6th ACM SIGOPS
European Workshop, Wadern, Germany,
Sept. 1.994, pp. 88-91.

E. W. Dijkstra: Cooperating Sequential
Processes. Technical Report EWD-123,
Technological University, Eindhoven, the
Netherlands, 1.965.

D. R. Engler, M. F. Kaashoek, J. W.
O’Toole: The Operating System Kernel as
a Secure Programmable Machine. In Proc.
of the 6th ACM SIGOPS European Work-
shop, Wadern, Germany, Sept. 1.994, pp.
62-67.

G. Hamilton, P. Kougiouris: The Spring
Nucleus: A Microkernel for Objects. Proc.
of the 1993 Summer Usenix conference,
Cincinnati, June 1.993.

Y. Khalidi, M. Nelson: The Spring Vir-
tual Memory System. Sun Microsystems
Laboratories Technical Report SMLI-93-9,

[10]

[11]

[12]

[13]

[14]

[15]

Mountain View (California), March 1.993,
23 pgs.

H. P. Messmer: The Indispensable PC
Hardware Book (2nd edition). Addison-
Wesley Publishing Company, Wokingham,
England, Apr. 1.995, 1336 pgs.

F. D. Mufioz-Escoi, J. M. Bernabéu-
Auban: The NanOS Object Oriented Mi-
crokernel: An Qwerview. Technical Re-
port DSIC-1I/1/97, Univ. Politecnica de
Valéncia, Valéncia, Spain, Feb. 1.997, 17
pgs.

Object Management Group: Common
Object Request Broker Architecture and
Specification. OMG Document Number
91.12.1.

U. Ramachandran, S. Menon, R. J. Le-
Blanc, Y. A. Khalidi, P. W. Hutto, P.
Dasgupta, J. M. Bernabéu-Aubén, W. F.
Appelbe, M. Ahamad: Clouds: Fzperi-
ences in Building an Object Based Distrib-
uted Operating System. Technical Report,
Georgia Institute of Technology, Atlanta,
GA, June 1.989.

F. B. Schneider: Replication Manage-
ment Using the State-Machine Approach.
In S. J. Mullender Ed., Distributed Sys-
tems (2nd edition), pp. 166-197. Addison-
Wesley, Wokingham, England.

T. Stiemerling, A. Whitcroft, T. Wilkin-
son, N. Williams, P. Osmon: Fuvaluating
MESHIX - A UNIX Compatible Micro-
Kernel Operating System. In Proc. of the
Autumn 1.992 OpenForum Technical Con-
ference, Utrecht, The Netherlands, Nov.
1.992, pp. 45-58.

L. van Doorn, P. Homburg, A. S. Tan-
enbaum: Paramecium: An FEztensible
Object-Based Kernel. Technical Report,
Vrije Universiteit, Amsterdam, The Neth-
erlands, 1.995.

