
A Weak Voting Database Replication
Protocol Providing Different Isolation Levels

March 13, 2007

J.R. Juárez1 — J.E. Armendáriz2 — J.R. González de Mendívil1
F.D. Muñoz-Escoí2 — J.R. Garitagoitia1

(1)Departamento de Matemática e Informática
Universidad Pública de Navarra, Campus de Arrosadía s/n, 31006 Pamplona, Spain

{jr.juarez, mendivil, joserra}@unavarra.es

(2) Instituto Tecnológico de Informática
Universidad Politécnica de Valencia, Camino de Vera s/n 46022, Valencia, Spain

{armendariz, fmunyoz}@iti.upv.es

ABSTRACT. Database replication protocols have been usually designedin order to support a
single isolation level. This paper proposes a middleware replication protocol able to manage
three different isolation levels over multi-version DBMSsthat provides SI level: GSI, SI, and
serializable. This ensures a better support for applications that demand different isolation levels
for their transactions. Additionally, this protocol is also able to merge the coordination of the
replicas for each isolation level, using a weak voting approach for all of them, whilst other
recent protocols need a certifying technique for GSI, or a 2PC rule for serializable level.

RÉSUMÉ. Des protocols de réplication de bases de données ont été habituellement conçus pour
supporter un seul protocole d’isolement. Cet article propose un protocole middleware de ré-
plication qui peut contrôler trois niveaux différents d’isolement sur SGBD multi-version qui
offrent le niveau SI : GSI, SI et serializable. Ceci assure unmeilleur soutien des applications
avec transactions qui demandent niveaux différents. En plus, ce protocole peut également fu-
sionner la coordination des copies pour chaque niveau d’isolement, en utilisant un approche
de vote faible pour tous, tandis que les autres protocoles récents ont besoin d’une technique
d’attestation pour GSI, et de la règle de 2PC pour le niveau serializable.

KEYWORDS:Distributed data, replication protocols, isolation levels, middleware

MOTS-CLÉS :données distribuées, protocoles de réplication, niveaux d’isolement, middleware

* Work supported by the Spanish Government under research grant TIN2006-14738-C02.

NOTERE 2007. Volume X - n◦ X/2007, pages 1 to n



2 NOTERE 2007. Volume X - n◦ X/2007

1. Introduction

Snapshot Isolation (SI) is a transaction isolation level introduced in [BER 95] and
implemented, using multiversion concurrency control, in several commercial Database
Management Systems (DBMS) as Oracle, PostgreSQL or Microsoft SQL among oth-
ers. SI provides a weaker form of isolation than the serializable level [BER 87]. Un-
der SI, a transaction reads data from a snapshot so that it sees all the updates done
by transactions that committed before the transaction started its first operation. The
resulting modifications due to its writes are installed whenthe transaction commits.
However, a transaction will successfully commit if and onlyif there is not a con-
current transaction that has already committed before and some of its written items
were also written by the transaction that wants to commit. Read-only transactions that
are executed under SI level are neither delayed, blocked, nor aborted and they never
cause update transactions to block or abort. This behavior is important for workloads
dominated by read-only transactions, such as those resulting from dynamic content
Web servers. These characteristics turn SI into an attractive isolation level because it
provides sufficient data isolation while it maintains a goodperformance.

Many enterprise applications demand high availability andfault-tolerance since
they have to provide continuous service to their users. For achieving such functional-
ities, the common solution consists in deploying multiple replicas of the information
being used by such applications. One of the available database replication approaches
is to deploy a middleware architecture [IRÚ 05, LIN 05, PAT 05] that creates an in-
termediate layer that features data consistency, being transparent to the final users,
isolating the DBMS details from the replication management. This simplifies and
provides a great flexibility to the development of replication protocols. Furthermore,
middleware solutions can be maintained independently of the DBMS and may be used
in heterogeneous systems. Recently, several database replication protocols based on
the middleware approach have been proposed using DBMSs providing SI isolation
level [MUÑ 06, LIN 05, ELN 05].The implementation of these protocols is based on
acertificationprocess to commit a transaction in the system. The basic mechanism be-
hind these protocols follows the eager update everywhere replication strategy, which
establishes that first a transaction is locally performed and then changes grouped in
a writeset are propagated to the rest of the sites before committing. This strategy
based on the use of the Read-One Write-All-Available (ROWAA) approach [GRA 96]
allows these protocols to be able to scale quite well. In certification protocols, write-
sets are total order broadcast and at their delivery they arecompared with the ones
contained in a log. This log stores the writesets of already committed transactions in
order. If the delivered writeset conflicts with other writeset included in the log, then
the transaction being certified is aborted and otherwise it will commit. Thus, it is only
needed to broadcast (using the total-order facility) [CHO 01] one message and keep a
log, as part of the replication protocol.

In [MEN 06], it is formally proved that the isolation level provided by these proto-
cols is Generalized Snapshot Isolation (GSI), as stated in [ELN 05]. The GSI isolation
level allows a transaction in the replicated system to read an older snapshot, although,



A Weak Voting Replication Protocol 3

in contrast with SI, this snapshot may not be the latest snapshot of the database system.
Besides, it is also formally proved in [MEN 06] that the SI level cannot be achieved
in a replicated environment without blocking transactionsat their beginning. This is
necessary to guarantee that a transaction sees the latest installed version of the repli-
cated items. Another important aspect to consider is that a dynamic rule (stated in
[ELN 05]) permits transactions to be executed in a serializable way over GSI level.
Thus, the certification mechanism that provides GSI level shows a better performance
compared to SI, since it is not necessary to obtain the latestversion of the system.
However, transaction aborts may be greater with GSI in conflicting environments and
data freshness may be compromised too. Moreover, to provideserializable executions
following the mentioned dynamic rule, certification-basedalgorithms must propagate
transaction readsets, what is actually prohibitive. To a lesser extent, the necessity of
a garbage collector in these protocols implies some additional overhead, since they
must keep track of their certification log to avoid its boundless growing.

In this paper, we propose a database replication protocol for a middleware archi-
tecture, calledMid-Rep. Most existing protocols are only able to provide a single iso-
lation level, in particular, GSI when the database replicasprovide SI level. However,
our replication protocol offers a greater flexibility to applications, providing different
isolation levels to transactions: GSI, SI and serializable(SER).Mid-Repis a weak vot-
ing [WIE 05] replication protocol which follows the eager-update-everywhere strat-
egy. Thus, transactions are locally executed and then changes are propagated, fol-
lowing a ROWAA approach. All changes performed in the database are grouped in
a writeset and delivered to the rest of the sites using a totalorder broadcast delivery,
as in the certification mechanism. After its successful application, a reliable delivery
of a commit or abort message from its master site will decide whether the transaction
must commit or however abort. Our protocol does not need the use of certification
and hence there is no need of using a garbage collector. Moreover, it is not necessary
to propagate the readsets to provide serial execution, as needed when using certifi-
cation. Current certification protocols are only able to provide GSI level. However,
our Mid-Repprotocol includes a mechanism that, although it blocks the beginning of
transaction execution, allows to additionally provide SI level by sending a start mes-
sage total ordered with regard to the transaction writesets. In this way, we achieve
our aim to propose a single replication protocol to provide different isolation levels
according to the application requirements.

The rest of this paper is organized as follows: The system model is introduced in
Section 2. The formalization of our protocol and a brief outline of its correctness proof
is presented in Section 3. In Section 4, we propose some enhancements for improving
protocol performance. Finally, conclusions end the paper.

2. System Model and Definitions

For our proposal, we have taken the advantage from our previous works [MUÑ 06]
and other middleware architectures providing database replication [LIN 05]. Thus, a



4 NOTERE 2007. Volume X - n◦ X/2007

weak voting replication protocol,Mid-Rep, is proposed taking advantage of the capa-
bilities provided by a middleware architecture called MADIS [MUÑ 06]. For the sake
of the explanation of the replication protocol, an abstraction of the MADIS middle-
ware architecture is presented in this Section. In the following, we highlight different
aspects dealing with the design of the system and its operation.

Figure 1. Main components of the system

The replicated system is composed ofN sites communicating by message ex-
change. We assume a full replication system, i.e. each site includes an instance of a
DBMS which contains a copy of the entire database. Users and applications submit
transactions to the system. The middleware forwards them tothe respectively nearest
(local) site for their execution. The replication protocolin each replica coordinates
the execution of the transactions among different sites to ensure the required isolation
level for the transactions. The actions shown with arrows inFigure 1 describe how
components interact with each other. Actions may easily be ported to the particular
communication primitives and DBMS JDBC-like operations.

Communication System. Communication among sites is mainly based on the ser-
vices provided by a Group Communication System (GCS) [CHO 01]. Basically, a
GCS consists of a membership and a communication service [BAR 04]. Themem-
bership servicemonitors the set of participating sites and provides them with con-
sistent notifications in case of failures, either real or suspected. Note that, although
we consider the possibility of system failures, we are not going to detail in this work
the recovery algorithm, for sake of space lack. Thecommunication servicesupports
different messaging services that provide several messagedelivery guarantees. A re-
liable broadcast primitive (R_broadcast) ensures that messages are always delivered
to correct processes despite failures. It also provides a total order broadcast delivery
(TO_broadcast) that guarantees all sites deliver messages in the very sameorder.
Each sitek has two input buffers for storing messages depending on their delivery
guarantees: one for the reliable broadcast messages (R_channelk) and another for
the total order broadcast messages (TO_channelk). Therefore, broadcasting a mes-
sage will imply filling the corresponding buffer in all destinations.



A Weak Voting Replication Protocol 5

Database. We assume a DBMS ensuring ACID transactions and complying with the
SI level. The DBMS, as it is depicted in Figure 1 gives to the middleware some com-
mon actions.DB.begin(t) begins a transactiont. DB.submit(t, op), whereop rep-
resents a set of SQL statements, submits an operation (denotedop) in the context of the
given transactiont. After a SQL statement submission, theDB.notify(t, op) informs
about the successful completion of an operation (run); or, its rollback (abort) due to
DBMS internals (e.g. deadlock resolution, enforcing SI level as thefirst-updater-
wins rule orfirst-committer-winsrule determines, etc). As a remark, we also assume
that after the successful completion of a submitted operation by a transaction, it can be
committed at any time. In other words, a transaction may be unilaterally aborted by the
DBMS only while it is performing a submitted operation. Finally, a transaction ends
either by committing,DB.commit(t), or rolling back,DB.abort(t). We have added
two additional functions that DBMSs do not provide by default, but may be built by
standard database mechanisms [JIM 02, MUÑ 06]. The actionDB.WS(t) retrieves
the transaction writeset, i.e. the set of pairs〈object identifier, value〉 for the objects
written by the transactiont. In a similar way, the functionDB.getConflicts(WS(t))
provides the set of conflicting transactions between a writeset and current active ones.

Transaction Execution. Different transactions may be created in the replicated sys-
tem. Each transactiont has a unique identifier that contains the information about the
site which was firstly created in (t.site), called itstransaction master site. This field
is used to know whether it is a local or a remote transaction. Transactions created are
locally executed at its master site and then interacts via the replication protocol with
the other replicas when the application wishes to commit thetransaction, following a
ROWAA strategy. Thus, remote transactions containing the writeset of the transaction
are executed in the rest of available sites of the system. A transaction also contains
information about its isolation level (t.mode). Each transaction can select an isolation
level (GSI, SI or SER), depending on its requirements, at thebeginning of its exe-
cution. Our protocol is able to provide GSI level by default,given that transactions
are atomically committed at all sites and their commit is totally ordered [MEN 06].
In order to obtain a serializable level, all the read operations for SER transactions
are parsed to turn them into “SELECT FOR UPDATE” statements. This makes possible
to see read-write conflicts as they were write-write, from the beginning of a transac-
tion till its commit time. Thus, since this satisfiesdynamic serializability condition
(DSC) [ELN 05], a serializable level is achieved. It is important to remark that the
proposed protocol only sends the actual writeset, without including the readset in the
SER mode, to the rest of the sites. The price to pay for avoiding the readset propaga-
tion in the SER mode is to wait for the decision message, i.e. it needs a weak voting
mechanism based on two message rounds: a total order messageround with the write-
sets and another reliable message round with the final decision to commit or abort.
This weak voting mechanism also avoids the use of agarbage collectorsince it is not
necessary to keep a log with the writesets of transactions that committed previously.

A SI transaction isolation level is achieved by usingstartpoints in the transactions.
Thesestart points guarantee that, when a transaction begins its execution, it has seen
all the changes applied in the system before that point. Thus, to obtain SI, theMid-Rep



6 NOTERE 2007. Volume X - n◦ X/2007

protocol broadcasts astart message (using a total order primitive) and the transaction
will remain blocked until this message is delivered. Otherwise, in GSI or SER, the
transaction starts straight away its reading and writing phase. The rest of the protocol
has a similar operation for all the supported isolation levels and it is summarized in
the following. During the commit phase,Mid-Reptotal-order broadcasts the writeset
to all available replicas. Upon delivery of this message at areplica it will block all
write operations performed in the replica until the conflictdetection and the writeset
application are done. Moreover, no other writeset could be applied until the previous
writeset application is finished. The writeset delivery at the master node will broadcast
acommit message (if it was not previously aborted) using a reliable broadcast service.
The delivery of this message will commit the application of the writeset at the rest of
replicas. In the following Section we describe in detail theprotocol operation.

3. Replication Protocol Description

The Mid-Repprotocol, presented in this paper, is modelled as a state transition
system (introduced in Figures 2 and 3). It includes a set of state variables and actions,
each one of them subscripted with the node identifier where they are considered. State
variables include their domains and an initial value for each variable. The value of the
state variables defines the system state. Each action in the state transition system has
an enabling condition (precondition,pre in Figure 3), a logic predicate over the state
variables. An action can be executed only if its precondition is enabled, i.e. if its pred-
icate is evaluated totrue on the current state. The effects of an action (eff in Figure 3)
is a sequential program that atomically modifies the state variables; hence, new ac-
tions may become enabled while others become disabled respectively. Weak fairness
is assumed for the execution of each action, i.e. if an actionis continuously enabled
then it will be eventually executed. Although the state transition system seems a static
structure, it defines the algorithm’s execution flow. This will be easy to understand
after the explanation given in this Section. Without generalization loss, we assume
a failure free environment throughout the protocol description. Figure 2 shows the
protocol signature, which is the set of possible actions it may ever execute. It contains
also the definition of the states variables of the transitionsystem and their correspond-
ing initial values. In this Figure,T represents the set of possible transactions,M the
set of messages that can be exchanged andOP the set of operations that can be sub-
mitted to the database. Figure 3 describes the set of possible actions, detailing their
preconditions and effects. We explain such algorithm on thesequel.

A transactiont can start its execution at any sitek, which will be considered as its
master site (it is alocal transaction at this site) at any time, sincestatusk(t) = idle
is the initial value for a transaction state. It invokes thecreatek(t) action, where
transaction is created in the local database replica and itsstatus is set toactive to allow
operations to be submitted. If a CSI level has been established for the transaction, a
start message will be total order broadcast to all the replicas. The transaction will
be blocked (statusk(t) = tostart), preventing new operations from being submitted



A Weak Voting Replication Protocol 7

Signature:
{∀ k ∈ N, t ∈ T, m ∈ M, op ⊆ OP : createk(t), discardk(t, m), begin_operation

k
(t, op),

end_operation
k
(t, op), begin_commit

k
(t), end_commitk(t), receive_commitk(t),

receive_startk(t), receive_WSk(t), local_abortk(t), receive_abortk(t)}
States:
∀ k ∈ N, t ∈ T : statusk(t) ∈ {idle, tostart, active, blocked, pre_commit, await,

tocommit, toabort, committed, aborted}, initially statusk(t) = idle
∀ k ∈ N : TO_channelk ⊆ {m : m = 〈start, t〉orm = 〈ws, t〉∀t ∈ T}, initially TO_channelk = ∅
∀ k ∈ N : R_channelk ⊆ {m : m = 〈commit, t〉orm = 〈abort, t〉∀t ∈ T}, initially R_channelk = ∅
∀ k ∈ N : localk : boolean, initially localk = false
∀ k ∈ N : ws_runk : boolean, initially ws_runk = false

Figure 2. Signature and states for the state transition system of theMid-Repprotocol

to the local database until the reception of the start message, inreceive_startk(t), in
order to guarantee that transaction is going to see the latest database snapshot.

The transaction creation action is followed by a sequence ofpairs of the actions
begin_operationk(t, op) and end_operationk(t, op). Each pair corresponds to a
successful completion of a SQL statement. The invocation ofa begin_operation

submits the SQL statement to the database (DBk.submit(t, op)) and sets its sta-
tus toblocked. This is allowed provided that transaction is not blocked waiting for
the start message (statusk(t) = active). Besides, we have to consider that a lo-
cal transaction may conflict with a writeset application of aremote transaction once
executed thereceive_WSk(t) action. Writeset modifications must be applied atom-
ically in the database, without allowing other local or remote transactions to conflict
with the modified values, to prevent consistency problems and also distributed and
local deadlock situations. This may happen when a write operation is submitted to the
database (type(op) = WRITE). Also, when working in a serializable environment
(t.mode = SER), read operations must be considered as write operations in order to
guarantee the isolation level. In both cases, an operation will be submitted only if
there is no writeset being applied in the database (ws_runk = false).

After the submission of an operation to the database, the transaction may be aborted
by the DBMS replica (local_abortk(t, op)). This is only possible for local transac-
tions. The causes of abortion are mainly related to the enforcement of the SI level
or to a local deadlock. Theend_operation action will be eventually invoked after
the operation is successfully completed in the database andthe local transaction may
submit a new statement. Once the transaction is done, it requests its commitment by
means of thebegin_commitk(t) action, asstatus = active. In this action, the trans-
action writeset is collected from the database (DBk.WS(t)). If the transaction is a
read only transaction (WS = ∅) the transaction will commit immediately. Otherwise,
the replication protocol broadcast awritesetmessage to all the replicas using the total
order delivery and change the transaction status topre_commit.

Writeset message (〈ws, t〉) reception at the master site of the transaction (t.site =
k), where transaction should havestatusk(t) = pre_commit, leads to the execution
of the receive_WSk(t) action in that site. In order to enable this action, it is also
necessary that there is no other writeset being applied in the database (¬ws_runk)



8 NOTERE 2007. Volume X - n◦ X/2007

Transitions:

createk(t) // t.site = k //
pre≡statusk(t) = idle
eff≡ if t.mode = SI then

statusk(t)← tostart
TO_broadcast(〈start, t〉)

else
statusk(t)← active
DBk.begin(t)

begin_operation
k
(t, op) // t.site = k //

pre≡statusk(t) = active∧ ¬(ws_runk ∧
(type(op) = WRITE∨ t.mode = SER)).

eff≡ statusk(t)← blocked
DBk.submit(t, op)

end_operation
k
(t, op) // t.site = k //

pre≡statusk(t) = blocked∧
DBk.notify(t, op) = run.

eff≡ statusk(t)← active

end_operation
k
(t, t.ws) // t.site 6= k //

pre≡DBk.notify(t, ws) = run.
eff≡ if statusk(t) = blockedthen

statusk(t)← await
else ifstatusk(t) = tocommitthen

statusk(t)← committed
DBk.commit(t)
ws_runk ← false

else ifstatusk(t) = toabortthen
statusk(t)← aborted
DBk.abort(t)
ws_runk ← false

begin_commit
k
(t) // t.site = k //

pre≡statusk(t) = active
eff≡ t.WS ← DBk.WS(t)

if t.WS = ∅ then
statusk(t)← committed
DBk.commit(t)

else
statusk(t)← pre_commit
TO_broadcast(〈ws, t〉)

end_commitk(t) // t.site = k //
pre≡statusk(t) = pre_commit∧

〈commit, t〉 first in R_channelk
eff≡ remove(m) from R_channelk

statusk(t)← committed
DBk.commit(t)
localk ← false

local_abortk(t, op) // t.site = k //
pre≡statusk(t) = blocked∧

DBk.notify(t, op) = abort.
eff≡ statusk(t)← aborted

discardk(t, m)
pre≡statusk(t) = aborted∧m ∈ anychannelk
eff≡ remove(m) from correspondingchannelk

receive_startk(t)
pre≡∧〈start, t〉 first in TO_channelk

∧¬ws_runk ∧ ¬localk
statusk(t) = tostart.

eff≡ remove(m) from TO_channelk
if t.site = k then

DBk.begin(t)
statusk(t)← blocked
DBk.submit(t, first_op)

receive_WSk(t) // t.site = k //
pre≡〈ws, t〉 first in TO_channelk

∧¬ws_runk ∧ ¬localk
∧ statusk(t) = pre_commit.

eff≡ remove(m) from TO_channelk
statusk(t)← tocommit
localk ← true
R_broadcast(〈commit, t〉)

receive_WSk(t) // t.site 6= k //
pre≡〈ws, t〉 first in TO_channelk

∧¬ws_runk ∧ ¬localk.
eff≡ remove(m) from TO_channelk

if statusk(t) = toabortthen
statusk(t)← aborted

else
A← getConflicts(t.ws)
for each t′ in A

statusk(t′)← aborted
DBk.abort(t′)
if statusk(t′) = pre_committhen

R_broadcast(〈abort, t〉)
DBk.begin(t)
statusk(t)← blocked
DBk.submit(t, t.ws)
ws_runk ← true

receive_commitk(t) // t.site 6= k //
pre≡〈commit, t〉 first in R_channelk.
eff≡ remove(m) from R_channelk

if statusk(t) = await then
statusk(t)← committed
DBk.commit(t)
ws_runk ← false

elsestatusk(t)← tocommit

receive_abortk(t) // t.site 6= k //
pre≡〈abort, t〉 first in R_channelk.
eff≡ remove(m) from R_channelk

if statusk(t) = await then
statusk(t)← aborted
DBk.abort(t)
ws_runk ← false

elsestatusk(t) = toabort

Figure 3. Transitions for the state transition system of theMid-Repprotocol



A Weak Voting Replication Protocol 9

and there is no other local transaction waiting to commit (¬localk) as well. This
action will broadcast acommitmessage with a reliable service (R_broadcast) and
sets the transaction status totocommit in order to emphasize that this transaction is
about to commit. Beside this, the variablelocalk is set totrue in order to point that
there is a transaction waiting for its commit message to finally commit into the local
database. The main aim of thiscommitmessage is related to recovery issues, but are
not explained in this paper for sake of brevity. The reception of this message at the
transaction master site will finally commit the transactionin the local database replica
and will set the variablelocalk to true, allowing other transactions to commit.

In the other sites (t.site 6= k), the reception of a writeset message (〈ws, t〉) will
create a remote transaction in that site if thereceive_WSk(t) action becomes enabled.
In order to guarantee the global atomicity of a transaction,it is a must that a remote
transaction, not yet submitted to execution, never aborts aremote transaction already
submitted to the database or a local transaction waiting to its commit message. For that
reason, thereceive_WSk(t) action requires that no other writeset is being applied in
the database (¬ws_runk) and also that no local transaction is waiting (¬localk) for
commit. Unless the transaction corresponding to the writeset had been aborted previ-
ously by its master site, thereceive_WSk(t) action aborts all the local transactions
conflicting with the received writeset (DBk.getConflicts(t.ws)). This is necessary
to prevent remote transactions from becoming blocked by a conflicting local transac-
tion. Afterward, it applies the writeset in the database (DBk.submit(t, t.ws)) and sets
the variablews_runk to true until writeset application ends (either with the commit-
ment or the abortion of the remote transaction). It is important to note that aborting all
local conflicting transactions before the execution of a remote transaction has several
consequences. If one of the conflicting local transactions is in thepre_commitstate,
it is necessary to broadcast anabortmessage (it will enable thereceive_abortk(t) in
the rest of sites) to abort its remote transactions.

Once the writeset is successfully applied, theend_operationk(t, t.ws) for that site
(t.site 6= k) becomes enabled. Ifcommitor abortmessage has been received through
the corresponding action (receive_commitk(t) or receive_abortk(t)), transaction
status will have been modified and it will be waiting for commit (tocommit) or abort
(toabort) respectively. Thus, remote transaction will simply commit or abort locally
in that replica and in both cases the writeset application process will have finished
(ws_runk ← false) and other writesets may be applied into the database. Otherwise,
the transaction has to wait for the master site decision and thus it changes it status
to await. Hence, once successfully applied the writeset, the reception of the commit
(receive_commit) or abort message (receive_abort) will commit or abort the remote
transaction. Note that reliable broadcast latency is lowerthan total order one and that
applying a writeset takes some time. Hence, a reliable message with the final decision
of commit or abort may be delivered before the reception of the writeset message,
which is broadcast in total order as our protocol states, or before its application. This
implies that if the final decision arrives before the writeset has been applied, it will be
necessary to indicate that it has to commit or abort straightafter the application of the
writeset by changing its status to the corresponding one (tocommitor toabort).



10 NOTERE 2007. Volume X - n◦ X/2007

Proof of Correctness

In the following lines, we are going to outline the correctness proof of our algo-
rithm. As proved in [MEN 06], a ROWA replication protocol generates One Copy
Schedules of the transactions that verify the GSI level, providing that the following
conditions are fulfilled: (a)(SI replicas)each database replica provides SI isolation
level; (b)(atomicity)each transaction submitted to the system will be either commit-
ted at all sites, or will be aborted at all sites if it is aborted in one site; and (c)(total
order of committed transactions)transactions that have been committed follows the
same total order at all sites.

The proposed replication protocol is based on the use of database replicas that pro-
vide SI isolation level, therefore theSI replicascondition is fulfilled. Theatomicityis
also fulfilled by the following reasoning: let us consider that a remote transactiont,
with a writesett.ws, aborts somewhere. Given that the protocol does not allow pro-
cessing new writeset messages (ws_runk = true), that the conflicting local transac-
tions have been previously aborted (∀t′ ∈ DBk.getConflicts(t.ws) : statusk(t′) =
aborted) and that blocks between writesett.ws application and local operations are
prevented (precondition ofbegin_operation()), then the only way a transaction has
aborted is through the reception of the〈abort, t〉 message from the transactiont mas-
ter site. Therefore, the transaction master site had to firsttotal order broadcast the
t.ws to all the sites and afterward the〈abort, t〉 message. By the reliable property
of TO_broadcast andR_broadcast, thestatusk(t) will finally becometoabort or
aborted. The same argument is valid for a transactiont that commits through the cor-
responding actions. Necessarily, in the transaction master site its status isto_commit

or committed and for the rest of the sites is eitherto_commit or committed. Given
that each writeset is delivered in total order and that only the master site is allowed to
broadcast the commit or abort decision, the actions that reach the finalization of the
transactions will be enabled and the final decision reached.Finally, thetotal order of
committed transactionscondition is also verified given that the writesets are delivered
in total order at all the sites and they are applied in sequence after having reached the
final decision of committing or aborting and hence all committed transactions have
committed in the same order. Therefore, our protocol generates One Copy Schedules
of the transactions that verify GSI. Given that the SER and SImode are restrictions to
GSI, is can be proved that the restrictions are verified for the said transaction types.

4. Performance Optimizations

In essence, the protocolMid-Reppresented in this paper is pessimistic. On one
hand, writesets received from a remote site are applied one after another in each
database replica. On the other hand, this protocol avoids that the remote writesets
become blocked by local transactions, disabling for that purpose potential conflicting
local transactions’ access to the database. The main objective of the proposed proto-
col is simply to show that it is possible to achieve the three isolation levels considered
(GSI, SI and SER) with the very same protocol. However, due toits pessimistic na-



A Weak Voting Replication Protocol 11

ture, the expected performance is quite poor. Nevertheless, several optimizations can
be taken into account in order to improve significantly its performance. Basically, it
is necessary to increase first the concurrency between writeset applications and local
transactions, and also among the writeset applications themselves.

Our protocol includes a deadlock prevention schema in orderto avoid that trans-
actions become blocked in the local database replicas. An initial improvement to be
considered is the replacement of this deadlock prevention mechanism with a detection
mechanism as the one stated in [MUÑ 06] that has been successfully applied in several
works with satisfying results.This mechanism is based on a block detection mecha-
nism that uses the concurrency control support of the underlying DBMS. Thereby, the
middleware is enabled to provide a row-level control (as opposed to the usual coarse-
grained table control), while all transactions (even thoseassociated to remote write-
sets) are subject to the underlying concurrency control support. The block detection
mechanism looks periodically for blocked transactions in the DBMS metadata (e.g.,
in thepg_locks view of the PostgreSQL system catalogue). It returns a set ofpairs
consisting of the identifiers of the blocked and blocking transactions and the replica-
tion protocol will decide which one must abort. This detection mechanism provides
several advantages that increase the protocol performance. On one hand, this mecha-
nism allows remote writesets to be directly submitted to thedatabase replicas, without
the necessity of checking conflicts with existing transactions. This reduces the proto-
col overhead, since unnecessary calls to database primitives are avoided when there
is no conflicting local transaction. Beside this, this mechanism of deadlock detection
also allows local transactions to be concurrently executedwith writesets applications.
This implies a higher degree of concurrency and therefore a better performance. If a
transaction associated to a remote writeset is aborted, then it will be necessary simply
to reattempt to apply the writeset in the database until succeed.

Most of the applications present a low conflict rate. In this case, it is not neces-
sary to apply writesets in sequence since we can schedule several transactions in the
database concurrently. At the delivery of a remote writeset, protocol will check if
there is any writeset scheduled in the database that conflicts with the incoming one.
If no conflict is detected, replication protocol will permitscheduling the writeset ap-
plication in the database. Otherwise, it must wait on the commitment of the writesets
scheduled in the database. Note that scheduled transactions must commit in the same
order of the total order delivery, so as to guarantee that isolation levels are fulfilled.

Apart from increasing system concurrency, we can reduce thetime a transaction
must wait in order to obtain the latest snapshot in the SI level. We can consider an
optimistic approach for SI transactions, in which it is not necessary to wait for the
reception of the start message in order to be able to submit operations to database.
Different writesets may be applied in the database replicasuntil the reception of the
start message for a given transaction. Only if none of the applied writesets is going to
conflict when transaction tries to commit, SI level will be achieved. Thus, depending
on the number of writesets applied during that time, there will be a certain probability
of having achieved the SI level, what can be enough for some applications.



12 NOTERE 2007. Volume X - n◦ X/2007

5. Conclusions

This paper has presented a single middleware database replication protocol able
to support different degrees of isolation (SI, GSI and serializable) on top ofDBMSs
supportingSI. This provides a great flexibility in the application development process.
Its main advantage is that it does not need a certification process but a weak voting
one. This fact represents a novelty overSI replicas, since it usually reduces the abor-
tion rate and avoids the drawbacks certification presents, such as keeping track of its
log. Since the proposed protocol is rather pessimistic, we have also pointed out some
optimizations for increasing its performance.

6. References

[BAR 04] BARTOLI A., “Implementing a Replicated Service with Group Communication.”,
Journal of Systems Architecture, vol. 50, num. 8, 2004, p. 493-519, Elsevier.

[BER 87] BERNSTEIN P. A., HADZILACOS V., GOODMAN N., Concurrency Control and
Recovery in Database Systems, Addison Wesley, 1987.

[BER 95] BERENSONH., BERNSTEINP. A., GRAY J., MELTON J., O’NEIL E. J., O’NEIL

P. E., “A Critique of ANSI SQL Isolation Levels.”,SIGMOD Conference, 1995, p. 1-10.

[CHO 01] CHOCKLER G., KEIDAR I., V ITENBERG R., “Group communication specifica-
tions: a comprehensive study.”,ACM Comput. Surv., vol. 33, num. 4, 2001, p. 427-469.

[ELN 05] ELNIKETY S., PEDONE F., ZWAENOPOELW., “Database Replication Using Gen-
eralized Snapshot Isolation.”,SRDS, IEEE-CS, 2005.

[GRA 96] GRAY J., HELLAND P., O’NEIL P. E., SHASHA D., “The Dangers of Replication
and a Solution.”, JAGADISH H. V., MUMICK I. S., Eds.,SIGMOD Conference, ACM
Press, 1996, p. 173-182.

[IRÚ 05] IRÚN L., DECKER H., DE JUAN R., CASTRO F., ARMENDÁRIZ J. E., MUÑOZ

F. D., “MADIS: A Slim Middleware for Database Replication.”, Euro-Par, vol. 3648 of
LNCS, Springer, 2005, p. 349-359.

[JIM 02] JIMÉNEZ-PERISR., PATIÑO-MARTÍNEZ M., KEMME B., ALONSOG., “Improving
the Scalability of Fault-Tolerant Database Clusters.”,ICDCS, 2002, p. 477-484.

[LIN 05] L IN Y., KEMME B., PATIÑO-MARTÍNEZ M., JIMÉNEZ-PERIS R., “Middleware
based Data Replication providing Snapshot Isolation.”,SIGMOD Conference, 2005.

[MEN 06] DE MENDÍVIL J. R. G., ARMENDÁRIZ J. E., GARITAGOITIA J. R., IRÚN L.,
MUÑOZ F. D., “Non-blocking ROWA Protocols Implement GSI Using SI Replicas”, report
num. ITI-ITE-06/04, 2006, ITI.

[MUÑ 06] M UÑOZ F. D., PLA J., RUIZ M. I., I RÚN L., DECKER H., ARMENDÁRIZ J. E.,
DE MENDÍVIL J. R. G., “Managing Transaction Conflicts in Middleware-Based Database
Replication Architectures”,SRDS, IEEE-CS, 2006, p. 401-410.

[PAT 05] PATIÑO-MARTÍNEZ M., JIMÉNEZ-PERISR., KEMME B., ALONSOG., “MIDDLE-
R: Consistent database replication at the middleware level.”, ACM Trans. Comput. Syst.,
vol. 23, num. 4, 2005, p. 375-423.

[WIE 05] WIESMANN M., SCHIPER A., “Comparison of Database Replication Techniques
Based on Total Order Broadcast.”,IEEE TKDE., vol. 17, num. 4, 2005, p. 551-566.


