A Weak Voting Database Replication
Protocol Providing Different Isolation Levels

March 13, 2007

J.R. JuareZZ — J.E. Armendéariz2 — J.R. Gonzalez de Mendivit
F.D. Mufioz-Esco? — J.R. Garitagoitial

(1) Departamento de Matematica e Informatica
Universidad Publica de Navarra, Campus de Arrosadia s/@0&1Pamplona, Spain

{irjuarez, mendivil, joserra}@unavarra.es

(2) Instituto Tecnoldgico de Informatica

Universidad Politécnica de Valencia, Camino de Vera s/n24®alencia, Spain
{armendariz, fmunyoz}@iti.upv.es

ABSTRACT. Database replication protocols have been usually designeatrder to support a
single isolation level. This paper proposes a middlewamication protocol able to manage
three different isolation levels over multi-version DBMBat provides Sl level: GSI, Sl, and
serializable. This ensures a better support for applicagithat demand different isolation levels
for their transactions. Additionally, this protocol is algble to merge the coordination of the
replicas for each isolation level, using a weak voting agmto for all of them, whilst other
recent protocols need a certifying technique for GSI, or £2Ble for serializable level.

RESUME. Des protocols de réplication de bases de données ont étéulfibment congus pour

supporter un seul protocole d’isolement. Cet article prepain protocole middleware de ré-
plication qui peut contréler trois niveaux différents dlement sur SGBD multi-version qui
offrent le niveau Sl : GSI, Sl et serializable. Ceci assurangilleur soutien des applications

avec transactions qui demandent niveaux différents. Es, jglel protocole peut également fu-
sionner la coordination des copies pour chaque niveau tisent, en utilisant un approche

de vote faible pour tous, tandis que les autres protocolesnts ont besoin d'une technique
d’attestation pour GSI, et de la reégle de 2PC pour le niveaiatizable.

KEYWORDSDistributed data, replication protocols, isolation legemiddleware
MOTS-CLES données distribuées, protocoles de réplication, nivedisolément, middleware

* Work supported by the Spanish Government under researah §H&2006-14738-C02.

NOTERE 2007. Volume X - hX/2007, pages 1 ton

2 NOTERE 2007. Volume X - hX/2007

1. Introduction

Snapshot Isolation (SI) is a transaction isolation levebiduced in [BER 95] and
implemented, using multiversion concurrency control gmeyal commercial Database
Management Systems (DBMS) as Oracle, PostgreSQL or MiftrS8€1. among oth-
ers. Sl provides a weaker form of isolation than the sewddlie level [BER 87]. Un-
der Sl, a transaction reads data from a snapshot so thatsitadlethe updates done
by transactions that committed before the transactionestats first operation. The
resulting modifications due to its writes are installed witles transaction commits.
However, a transaction will successfully commit if and oiflyhere is not a con-
current transaction that has already committed before antesf its written items
were also written by the transaction that wants to commiadRenly transactions that
are executed under Sl level are neither delayed, blockedalmarted and they never
cause update transactions to block or abort. This behaviarportant for workloads
dominated by read-only transactions, such as those neguttbm dynamic content
Web servers. These characteristics turn Sl into an atteaigolation level because it
provides sufficient data isolation while it maintains a gpedformance.

Many enterprise applications demand high availability adt-tolerance since
they have to provide continuous service to their users. Ebieaing such functional-
ities, the common solution consists in deploying multigplicas of the information
being used by such applications. One of the available da¢ategplication approaches
is to deploy a middleware architecture [IRU 05, LIN 05, PAT] @%at creates an in-
termediate layer that features data consistency, beimgperent to the final users,
isolating the DBMS details from the replication managemenhhis simplifies and
provides a great flexibility to the development of replicatprotocols. Furthermore,
middleware solutions can be maintained independently@blBMS and may be used
in heterogeneous systems. Recently, several databaseatiewl protocols based on
the middleware approach have been proposed using DBMSsdprg\SI isolation
level [MUN 06, LIN 05, ELN 05].The implementation of theseopucols is based on
acertificationprocess to commit a transaction in the system. The basicamésth be-
hind these protocols follows the eager update everywheieetion strategy, which
establishes that first a transaction is locally performed taen changes grouped in
a writeset are propagated to the rest of the sites before d¢bimgn This strategy
based on the use of the Read-One Write-All-Available (ROWApproach [GRA 96]
allows these protocols to be able to scale quite well. Infgeation protocols, write-
sets are total order broadcast and at their delivery theyamgpared with the ones
contained in a log. This log stores the writesets of alreamyroitted transactions in
order. If the delivered writeset conflicts with other wrigdésncluded in the log, then
the transaction being certified is aborted and otherwisdlicammit. Thus, it is only
needed to broadcast (using the total-order facility) [CHKpdhe message and keep a
log, as part of the replication protocol.

In [MEN 06], it is formally proved that the isolation levelgrided by these proto-
cols is Generalized Snapshot Isolation (GSI), as statedliN[05]. The GSl isolation
level allows a transaction in the replicated system to reaolder snapshot, although,

A Weak Voting Replication Protocol 3

in contrast with Sl, this snapshot may not be the latest $ratjof the database system.
Besides, it is also formally proved in [MEN 06] that the Sldééeannot be achieved
in a replicated environment without blocking transactiahsheir beginning. This is
necessary to guarantee that a transaction sees the |ateskeid version of the repli-
cated items. Another important aspect to consider is thatrembic rule (stated in
[ELN 05]) permits transactions to be executed in a seriblzavay over GSI level.
Thus, the certification mechanism that provides GSI levehsha better performance
compared to Sl, since it is not necessary to obtain the latgsion of the system.
However, transaction aborts may be greater with GSI in attirfly environments and
data freshness may be compromised too. Moreover, to preeidalizable executions
following the mentioned dynamic rule, certification-basdgbrithms must propagate
transaction readsets, what is actually prohibitive. Toszde extent, the necessity of
a garbage collector in these protocols implies some additioverhead, since they
must keep track of their certification log to avoid its bowas# growing.

In this paper, we propose a database replication protoca foiddleware archi-
tecture, calledid-Rep Most existing protocols are only able to provide a singte is
lation level, in particular, GSI when the database replpawvide Sl level. However,
our replication protocol offers a greater flexibility to digations, providing different
isolation levels to transactions: GSI, Sl and serializé8ER).Mid-Repis a weak vot-
ing [WIE 05] replication protocol which follows the eagepdate-everywhere strat-
egy. Thus, transactions are locally executed and then @saage propagated, fol-
lowing a ROWAA approach. All changes performed in the dasabare grouped in
a writeset and delivered to the rest of the sites using a twtsr broadcast delivery,
as in the certification mechanism. After its successfuligpfibn, a reliable delivery
of a commit or abort message from its master site will decitietiver the transaction
must commit or however abort. Our protocol does not need #eeat certification
and hence there is no need of using a garbage collector. Mergbis not necessary
to propagate the readsets to provide serial execution, ededewhen using certifi-
cation. Current certification protocols are only able toyide GSI level. However,
our Mid-Repprotocol includes a mechanism that, although it blocks #girming of
transaction execution, allows to additionally provide &ldl by sending a start mes-
sage total ordered with regard to the transaction writesktghis way, we achieve
our aim to propose a single replication protocol to providféecent isolation levels
according to the application requirements.

The rest of this paper is organized as follows: The systematisdntroduced in
Section 2. The formalization of our protocol and a brief mglof its correctness proof
is presented in Section 3. In Section 4, we propose some eahamnts for improving
protocol performance. Finally, conclusions end the paper.

2. System Model and Definitions

For our proposal, we have taken the advantage from our puewiorks [MURN 06]
and other middleware architectures providing databadeetion [LIN 05]. Thus, a

4 NOTERE 2007. Volume X - hX/2007

weak voting replication protocoMid-Rep is proposed taking advantage of the capa-
bilities provided by a middleware architecture called MAIMUN 06]. For the sake

of the explanation of the replication protocol, an abstaacbf the MADIS middle-
ware architecture is presented in this Section. In the ¥alig, we highlight different
aspects dealing with the design of the system and its operati

P — e —_— i — —

create(t)

i B
begin_operation(t,op) Middleware |
Replication

B end_operation(t,op)|
Transaction

t beain_commit(t) sendim

Comm. Serwv.

v

Replication
end_commit(t) and Recovery recaive(m) GCS
Protocol < Memb. Serv.

abort(t)

DB begin(t) n |
DB .commit(t) DB.notify(t,op) :
DB.abort(t) Lo |
DB submit(t,op) .
DB.WS(t) 1
DB getConflicts(WS) |

Database

Figure 1. Main components of the system

The replicated system is composed /f sites communicating by message ex-
change. We assume a full replication system, i.e. eachrgitedes an instance of a
DBMS which contains a copy of the entire database. Users pplications submit
transactions to the system. The middleware forwards theimetoespectively nearest
(local) site for their execution. The replication proto@oleach replica coordinates
the execution of the transactions among different sitesisoiee the required isolation
level for the transactions. The actions shown with arrowbigure 1 describe how
components interact with each other. Actions may easilydréeg to the particular
communication primitives and DBMS JDBC-like operations.

Communication System Communication among sites is mainly based on the ser-
vices provided by a Group Communication System (GCS) [CHD ®hksically, a
GCS consists of a membership and a communication servic® [BH. Themem-
bership servicanonitors the set of participating sites and provides theith won-
sistent natifications in case of failures, either real ompsased. Note that, although
we consider the possibility of system failures, we are nanhgado detail in this work

the recovery algorithm, for sake of space lack. Toenmunication servicsupports
different messaging services that provide several messeljyery guarantees. A re-
liable broadcast primitiveR_broadcast) ensures that messages are always delivered
to correct processes despite failures. It also providesah doder broadcast delivery
(T'O_broadcast) that guarantees all sites deliver messages in the very sades.
Each sitek has two input buffers for storing messages depending om tiadivery
guarantees: one for the reliable broadcast messdgesiinnel;) and another for
the total order broadcast messag€®)(channely). Therefore, broadcasting a mes-
sage will imply filling the corresponding buffer in all desdtions.

A Weak Voting Replication Protocol 5

Database We assume a DBMS ensuring ACID transactions and complyitigtive
Sl level. The DBMS, as it is depicted in Figure 1 gives to theaieware some com-
mon actions.D B.begin(t) begins a transaction D B.submit(t, op), whereop rep-
resents a set of SQL statements, submits an operation @kndin the context of the
given transaction. After a SQL statement submission, thé3.noti fy(t, op) informs
about the successful completion of an operatiamj; or, its rollback @bort) due to
DBMS internals (e.g. deadlock resolution, enforcing Slelexs thefirst-updater-
winsrule orfirst-committer-wingule determines, etc). As a remark, we also assume
that after the successful completion of a submitted opamddy a transaction, it can be
committed at any time. In other words, a transaction may lilatenally aborted by the
DBMS only while it is performing a submitted operation. Higaa transaction ends
either by committingD B.commit(t), or rolling back,D B.abort(t). We have added
two additional functions that DBMSs do not provide by defait may be built by
standard database mechanisms [JIM 02, MUN 06]. The adiBniV S(t) retrieves
the transaction writeset, i.e. the set of pdsject identi fier, value) for the objects
written by the transactioh In a similar way, the functio® B.getCon flicts(W S(t))
provides the set of conflicting transactions between a ggitand current active ones.

Transaction Execution Different transactions may be created in the replicated sy
tem. Each transactianhas a unique identifier that contains the information abloait t
site which was firstly created irt.gite), called itstransaction master siteThis field

is used to know whether it is a local or a remote transactisan3actions created are
locally executed at its master site and then interacts d@adplication protocol with
the other replicas when the application wishes to commitrdresaction, following a
ROWAA strategy. Thus, remote transactions containing theeget of the transaction
are executed in the rest of available sites of the system.awstction also contains
information about its isolation levet.gnode). Each transaction can select an isolation
level (GSI, Sl or SER), depending on its requirements, atoéginning of its exe-
cution. Our protocol is able to provide GSI level by defagitien that transactions
are atomically committed at all sites and their commit isllgtordered [MEN 06].

In order to obtain a serializable level, all the read operatifor SER transactions
are parsed to turn them intGELECT FOR UPDATE” statements. This makes possible
to see read-write conflicts as they were write-write, froma beginning of a transac-
tion till its commit time. Thus, since this satisfidgnamic serializability condition
(DSC) [ELN 05], a serializable level is achieved. It is imfzont to remark that the
proposed protocol only sends the actual writeset, withaeitiding the readset in the
SER mode, to the rest of the sites. The price to pay for avgithe readset propaga-
tion in the SER mode is to wait for the decision message,tigeéds a weak voting
mechanism based on two message rounds: a total order messagavith the write-
sets and another reliable message round with the final dacisicommit or abort.
This weak voting mechanism also avoids the usegdidage collectosince it is not
necessary to keep a log with the writesets of transactiatttmmitted previously.

A Sl transaction isolation level is achieved by usstgrt points in the transactions.
Thesestart points guarantee that, when a transaction begins its érecitthas seen
all the changes applied in the system before that point. ,tbubtain SI, théMid-Rep

6 NOTERE 2007. Volume X - hX/2007

protocol broadcastsstart message (using a total order primitive) and the transaction
will remain blocked until this message is delivered. Othisayin GSI or SER, the
transaction starts straight away its reading and writinggeh The rest of the protocol
has a similar operation for all the supported isolation lewd it is summarized in
the following. During the commit phasklid-Reptotal-order broadcasts the writeset
to all available replicas. Upon delivery of this message egdica it will block all
write operations performed in the replica until the conftletection and the writeset
application are done. Moreover, no other writeset coulddg@ied until the previous
writeset application is finished. The writeset deliveryhest inaster node will broadcast
acommit message (if it was not previously aborted) using a relialbaticast service.
The delivery of this message will commit the applicationttd tvriteset at the rest of
replicas. In the following Section we describe in detail pinetocol operation.

3. Replication Protocol Description

The Mid-Repprotocol, presented in this paper, is modelled as a statsitian
system (introduced in Figures 2 and 3). Itincludes a setatéstariables and actions,
each one of them subscripted with the node identifier whexgdlne considered. State
variables include their domains and an initial value forreeariable. The value of the
state variables defines the system state. Each action inafeetsansition system has
an enabling condition (preconditiopre in Figure 3), a logic predicate over the state
variables. An action can be executed only if its preconditsoenabled, i.e. if its pred-
icate is evaluated toue on the current state. The effects of an actiefiiqi Figure 3)
is a sequential program that atomically modifies the stat@btes; hence, new ac-
tions may become enabled while others become disabledatasglg. Weak fairness
is assumed for the execution of each action, i.e. if an aégsi@ontinuously enabled
then it will be eventually executed. Although the state $iion system seems a static
structure, it defines the algorithm’s execution flow. Thidl e easy to understand
after the explanation given in this Section. Without gelieation loss, we assume
a failure free environment throughout the protocol desmip Figure 2 shows the
protocol signature, which is the set of possible actionsaymver execute. It contains
also the definition of the states variables of the transgistem and their correspond-
ing initial values. In this Figurel represents the set of possible transactiddshe
set of messages that can be exchanged’aRdhe set of operations that can be sub-
mitted to the database. Figure 3 describes the set of pessitibns, detailing their
preconditions and effects. We explain such algorithm orstdwiel.

A transaction: can start its execution at any sikewhich will be considered as its
master site (it is docal transaction at this site) at any time, singetusy(t) = idle
is the initial value for a transaction state. It invokes theate(t) action, where
transaction is created in the local database replica asthitss is set tactive to allow
operations to be submitted. If a CSl level has been estadihr the transaction, a
start message will be total order broadcast to all the replicase fféinsaction will
be blocked §tatusy(t) = tostart), preventing new operations from being submitted

A Weak Voting Replication Protocol 7

Signature:

{Vk e N,t e T,m € M,op C OP: createy(t),discardy(t, m), begin_operation, (¢, op),
end_operation, (¢, op), begin_commit, (t), end_commit (¢), receive_commit (t),
receive_starty (t), receive_WS (t),local_abort(t), receive_abort; (¢)}

States

Vk € N,t € T: statusy(t) € {idle, tostart, active, blocked, pre_commit, await,
tocommit, toabort, committed, aborted}, initially statusy (t) = idle

Vk € N: TO_channely, C {m: m = (start,tyorm = (ws, t)Vt € T}, initially TO_channel, = 0

Vk € N: R_channel;, C {m: m = {commit, tyorm = (abort, t)Vt € T}, initially R_channely = 0

Vk € N: localy : boolean initially local) = false

Vk € N: ws_runy: boolean initially ws_runj = false

Figure 2. Signature and states for the state transition system of/iiceRep protocol

to the local database until the reception of the start messageceive_starty(t), in
order to guarantee that transaction is going to see thd @a¢sbase snapshot.

The transaction creation action is followed by a sequenqgeagt of the actions
begin_operation(t,op) and end_operationg(t,op). Each pair corresponds to a
successful completion of a SQL statement. The invocatioa &fgin_operation
submits the SQL statement to the databaBé3{.submit(t,op)) and sets its sta-
tus toblocked. This is allowed provided that transaction is not blockedtivwg for
the start messagesfatusi(t) = active). Besides, we have to consider that a lo-
cal transaction may conflict with a writeset application akaote transaction once
executed theeceive_W Sy (t) action. Writeset modifications must be applied atom-
ically in the database, without allowing other local or reentransactions to conflict
with the modified values, to prevent consistency problents aso distributed and
local deadlock situations. This may happen when a writeatfmar is submitted to the
databasetpe(op) = WRITE). Also, when working in a serializable environment
(t.mode = SER), read operations must be considered as write opesdtiasrder to
guarantee the isolation level. In both cases, an operatithrbgsubmitted only if
there is no writeset being applied in the database (un; = false).

After the submission of an operation to the database, theaion may be aborted
by the DBMS replicalpcal_aborty(t, op)). This is only possible for local transac-
tions. The causes of abortion are mainly related to the eafoent of the Sl level
or to a local deadlock. Thend_operation action will be eventually invoked after
the operation is successfully completed in the databas¢hendcal transaction may
submit a new statement. Once the transaction is done, iestg|its commitment by
means of théegin_commity(t) action, asstatus = active. In this action, the trans-
action writeset is collected from the databag&3.1V S(t)). If the transaction is a
read only transactiori{' S = () the transaction will commit immediately. Otherwise,
the replication protocol broadcasthaitesetmessage to all the replicas using the total
order delivery and change the transaction statyse¢o commit

Writeset message s, t)) reception at the master site of the transactiosi{e =
k), where transaction should hav&itus,(t) = pre_commit, leads to the execution
of the receive_W S (t) action in that site. In order to enable this action, it is also
necessary that there is no other writeset being applieddarddiabase(ws_runy)

8 NOTERE 2007. Volume X - hX/2007

Transitions:
createy (t) [/lt.site =kl receive_starty (t)
pre = statusy (t) = idle pre = A(start, t) firstin TO_channely,
eff=if t.mode = Sl then A ws_rung A —localy
statusy (t) «— tostart statusy, (t) = tostart.
TO_broadcast((start,t)) eff= remove(m) from TO_channely,
else if t.site = k then
statusy (t) < active DBy, .begin(t)
DBy, .begin(t) statusy, (t) < blocked

D By, .submit(t, first_op)
begin_operation, (t,op) [/l t.site =kl

pre=statusy (t) = active A = (ws_runy A receive_ WS, (t) /lt.site=kll
(type(op) = WRITE V t.mode = SER)). pre=(ws, t) firstin TO_channely,
eff = statusy (t) < blocked A —ws_rung A —localy
D By, .submit(t, op) A statusy (t) = pre_commit.
eff= remove(m) from TO_channely,
end_operation, (t,op) /t.site =kl statusy (t) < tocommit
pre = statusy (t) = blockedA localy, «— true
DBy, .notify(t, op) = run. R_broadcast({commit,t))

eff = statusy (t) «— active
receive_WS, (t) /lt.site # kll

end_operation, (t, t.ws) [/l t.site # kI pre =(ws, t) firstin TO_channely,
pre =D By, .noti fy(t, ws) = run. A —ws_rung A —localy.
eff=if statusy (t) = blockedthen eff= remove(m) from TO_channely,
statusy (t) «— await if statusy (t) = toabortthen
else ifstatusy (t) = tocommitthen statusy, (t) < aborted
statusy (t) < committed else
D By,.commit(t) A — getConflicts(t.ws)
ws_runy +— false foreach t’ in A
else ifstatusy (t) = toabortthen statusy (t') < aborted
statusy, (t) < aborted DBjy,.abort(t")
D By,.abort(t) if statusy (t') = pre_commithen
ws_runy — false R_broadcast({abort,t))
DBy, .begin(t)
begin_commit, (t) //t.site =kl statusy, (t) < blocked
pre = statusy (t) = active DBy, .submit(t, t.ws)
eff=t. WS «— DB, . WS(t) ws_runy «— true
if t. WS = () then
statusy (t) < committed receive_commit (t) //t.site # kI
D Bj,.commit(t) pre =(commit, t) firstin R_channel.
else eff= remove(m) from R_channely,
statusy (t) < pre_commit if statusy (t) = awaitthen
TO_broadcast({ws, t)) statusy, (t) «+ committed
D By, .commit(t)
end_commit, (t) [/l t.site = kI ws_runy «— false
pre = statusy (t) = pre_commitA elsestatusy (t) < tocommit
(commit, t) firstin R_channely,
eff= remove(m) from R_channely, receive_abort,(t) //t.site # kll
statusy, (t) «— committed pre=(abort, t) firstin R_channely,.
D By, .commit(t) eff= remove(m) from R_channely,
localy, + false if statusy (t) = awaitthen
statusy, (t) <« aborted
local_abort (t,op) [/l t.site = kI D By, .abort(t)
pre = statusy, (t) = blockedA ws_runy, — false
DBy, .notify(t,op) = abort. elsestatusy, (t) = toabort

eff = statusy (t) «— aborted

discardy (t, m)
pre = statusy (t) = abortedA m € anychannely
eff = remove(m) from correspondinghannel,

Figure 3. Transitions for the state transition system of Mig-Rep protocol

A Weak Voting Replication Protocol 9

and there is no other local transaction waiting to commito¢aly) as well. This
action will broadcast @ommitmessage with a reliable servic® (broadcast) and
sets the transaction statustt@ommit in order to emphasize that this transaction is
about to commit. Beside this, the varialiteal, is set totrue in order to point that
there is a transaction waiting for its commit message tolfirmmmit into the local
database. The main aim of thiemmitmessage is related to recovery issues, but are
not explained in this paper for sake of brevity. The recaptidthis message at the
transaction master site will finally commit the transactiiothe local database replica
and will set the variabléocal, to true, allowing other transactions to commit.

In the other sitest(site # k), the reception of a writeset messade{, t)) will
create a remote transaction in that site ifthecive_W S (t) action becomes enabled.
In order to guarantee the global atomicity of a transactibis, a must that a remote
transaction, not yet submitted to execution, never abomsrete transaction already
submitted to the database or a local transaction waiting tmimmit message. For that
reason, theeceive_W Sk (t) action requires that no other writeset is being applied in
the database-(ws_runy) and also that no local transaction is waiting caly) for
commit. Unless the transaction corresponding to the weitkad been aborted previ-
ously by its master site, theeceive_ W Sk (t) action aborts all the local transactions
conflicting with the received writesefXBy..getCon flicts(t.ws)). This is necessary
to prevent remote transactions from becoming blocked byndlicting local transac-
tion. Afterward, it applies the writeset in the databaBe3,.submit(t, t.ws)) and sets
the variablews_runy to true until writeset application ends (either with the commit-
ment or the abortion of the remote transaction). It is imatto note that aborting all
local conflicting transactions before the execution of agntransaction has several
consequences. If one of the conflicting local transactiens thepre_commitstate,
it is necessary to broadcast abort message (it will enable theceive_aborty(t) in
the rest of sites) to abort its remote transactions.

Once the writeset is successfully applied,dh€_operationy(t, t.ws) for that site
(t.site # k) becomes enabled. ¢dbommitor abortmessage has been received through
the corresponding actionrdceive_commity(t) or receive_abort(t)), transaction
status will have been modified and it will be waiting for conifbcommit) or abort
(toabort) respectively. Thus, remote transaction will simply corhariabort locally
in that replica and in both cases the writeset applicatiamgss will have finished
(ws_runy «— false) and other writesets may be applied into the database. Witer
the transaction has to wait for the master site decision hod it changes it status
to await Hence, once successfully applied the writeset, the remepf the commit
(receive_commit) or abort message{ceive_abort) will commit or abort the remote
transaction. Note that reliable broadcast latency is Idvan total order one and that
applying a writeset takes some time. Hence, a reliable rgessih the final decision
of commit or abort may be delivered before the reception efliteset message,
which is broadcast in total order as our protocol statesefoiie its application. This
implies that if the final decision arrives before the writdsas been applied, it will be
necessary to indicate that it has to commit or abort straifflt the application of the
writeset by changing its status to the corresponding tseMmmitor toaborf).

10 NOTERE 2007. Volume X -HX/2007

Proof of Correctness

In the following lines, we are going to outline the correasgroof of our algo-
rithm. As proved in [MEN 06], a ROWA replication protocol genates One Copy
Schedules of the transactions that verify the GSI levelyipiing that the following
conditions are fulfilled: (a]Sl replicas)each database replica provides Sl isolation
level; (b) (atomicity)each transaction submitted to the system will be either citimm
ted at all sites, or will be aborted at all sites if it is abdrte one site; and (cftotal
order of committed transactiongansactions that have been committed follows the
same total order at all sites.

The proposed replication protocol is based on the use obdatareplicas that pro-
vide Sl isolation level, therefore tH&l replicascondition is fulfilled. Theatomicityis
also fulfilled by the following reasoning: let us consideatlkx remote transactian
with a writesett.ws, aborts somewhere. Given that the protocol does not all@w pr
cessing new writeset messages (run; = true), that the conflicting local transac-
tions have been previously abortétd’(e DBy.getCon flicts(t.ws) : statusg(t') =
aborted) and that blocks between writesets application and local operations are
prevented (precondition diegin_operation()), then the only way a transaction has
aborted is through the reception of théhort, t) message from the transactibmas-
ter site. Therefore, the transaction master site had totbitat order broadcast the
t.ws to all the sites and afterward thabort, t) message. By the reliable property
of TO_broadcast and R_broadcast, the statusy(t) will finally becometoabort or
aborted. The same argument is valid for a transactidhat commits through the cor-
responding actions. Necessarily, in the transaction mageits status iso_commit
or committed and for the rest of the sites is eithier commit or committed. Given
that each writeset is delivered in total order and that olnéyrhaster site is allowed to
broadcast the commit or abort decision, the actions thathréze finalization of the
transactions will be enabled and the final decision reachiully, thetotal order of
committed transactionsondition is also verified given that the writesets are aeba
in total order at all the sites and they are applied in segei@fter having reached the
final decision of committing or aborting and hence all contedttransactions have
committed in the same order. Therefore, our protocol ggeer@ne Copy Schedules
of the transactions that verify GSI. Given that the SER anch&dle are restrictions to
GSI, is can be proved that the restrictions are verified ferghid transaction types.

4. Performance Optimizations

In essence, the protocMid-Reppresented in this paper is pessimistic. On one
hand, writesets received from a remote site are applied ftee another in each
database replica. On the other hand, this protocol avoilsttie remote writesets
become blocked by local transactions, disabling for thappse potential conflicting
local transactions’ access to the database. The main algedtthe proposed proto-
col is simply to show that it is possible to achieve the thesdgtion levels considered
(GSI, Sl and SER) with the very same protocol. However, duéstpessimistic na-

A Weak Voting Replication Protocol 11

ture, the expected performance is quite poor. Neverthetesgral optimizations can
be taken into account in order to improve significantly itsfpenance. Basically, it

is necessary to increase first the concurrency betweensatitgplications and local
transactions, and also among the writeset applicatiomssbkves.

Our protocol includes a deadlock prevention schema in a@evoid that trans-
actions become blocked in the local database replicas. ifialimprovement to be
considered is the replacement of this deadlock preventiechainism with a detection
mechanism as the one stated in [MUN 06] that has been suattgssfplied in several
works with satisfying results.This mechanism is based ofoekbdetection mecha-
nism that uses the concurrency control support of the upiterDBMS. Thereby, the
middleware is enabled to provide a row-level control (asasgal to the usual coarse-
grained table control), while all transactions (even thassociated to remote write-
sets) are subject to the underlying concurrency contropsttp The block detection
mechanism looks periodically for blocked transactionshiea DPBMS metadata (e.g.,
in thepg_locks view of the PostgreSQL system catalogue). It returns a spaw$
consisting of the identifiers of the blocked and blockingigactions and the replica-
tion protocol will decide which one must abort. This detestmechanism provides
several advantages that increase the protocol perform&tene hand, this mecha-
nism allows remote writesets to be directly submitted todhtabase replicas, without
the necessity of checking conflicts with existing trangaxdi This reduces the proto-
col overhead, since unnecessary calls to database pesitike avoided when there
is no conflicting local transaction. Beside this, this metia of deadlock detection
also allows local transactions to be concurrently execwididwritesets applications.
This implies a higher degree of concurrency and thereforeteebperformance. If a
transaction associated to a remote writeset is aborted jthell be necessary simply
to reattempt to apply the writeset in the database untileseatc

Most of the applications present a low conflict rate. In thises it is not neces-
sary to apply writesets in sequence since we can schedwdeaséransactions in the
database concurrently. At the delivery of a remote writepattocol will check if
there is any writeset scheduled in the database that cenflith the incoming one.
If no conflict is detected, replication protocol will pernsitheduling the writeset ap-
plication in the database. Otherwise, it must wait on themitment of the writesets
scheduled in the database. Note that scheduled transaatiost commit in the same
order of the total order delivery, so as to guarantee th#aiem levels are fulfilled.

Apart from increasing system concurrency, we can reducditie a transaction
must wait in order to obtain the latest snapshot in the SllleWe can consider an
optimistic approach for Sl transactions, in which it is netassary to wait for the
reception of the start message in order to be able to subreitatipns to database.
Different writesets may be applied in the database replicdi the reception of the
start message for a given transaction. Only if none of théieghprritesets is going to
conflict when transaction tries to commit, Sl level will behgeved. Thus, depending
on the number of writesets applied during that time, thetkbgia certain probability
of having achieved the Sl level, what can be enough for sorpkcagions.

12 NOTERE 2007. Volume X -HX/2007

5. Conclusions

This paper has presented a single middleware databaseatiqhi protocol able
to support different degrees of isolatiol,(GSI and serializable) on top ddBMSs
supportingsI. This provides a great flexibility in the application devyahoent process.
Its main advantage is that it does not need a certificationga® but a weak voting
one. This fact represents a novelty o@treplicas, since it usually reduces the abor-
tion rate and avoids the drawbacks certification presentd) as keeping track of its
log. Since the proposed protocol is rather pessimistic, aelalso pointed out some
optimizations for increasing its performance.

6. References

[BAR 04] BarTOLI A., “Implementing a Replicated Service with Group Commattiion.”,
Journal of Systems Architectyreol. 50, num. 8, 2004, p. 493-519, Elsevier.

[BER 87] BERNSTEINP. A., HaDzILACOS V., GOODMAN N., Concurrency Control and
Recovery in Database Systemgidison Wesley, 1987.

[BER 95] BERENSONH., BERNSTEINP. A., GRAY J., MELTON J., O'NEIL E. J., O'NEIL
P. E., “A Critique of ANSI SQL Isolation Levels.” SIGMOD Conferencel 995, p. 1-10.

[CHO 01] CHOCKLER G., KEIDAR |., VITENBERG R., “Group communication specifica-
tions: a comprehensive studyACM Comput. Suryvol. 33, num. 4, 2001, p. 427-469.

[ELN O5] ELNIKETY S., FEDONEF., ZWAENOPOELW., “Database Replication Using Gen-
eralized Snapshot Isolation”SRDS IEEE-CS, 2005.

[GRA 96] GRAY J., HELLAND P., O'NEIL P. E., $S1ASHA D., “The Dangers of Replication
and a Solution.”, AGADISH H. V., MumiIck |. S., Eds.,SIGMOD ConferenceACM
Press, 1996, p. 173-182.

[IRUO5] IRUN L., DECKERH., DE JUAN R., CASTRO F., ARMENDARIZ J. E., MUROZ
F. D., “MADIS: A Slim Middleware for Database Replication."Euro-Par, vol. 3648 of
LNCS Springer, 2005, p. 349-359.

[JIM 02] JIMENEZ-PERISR., AATINO-MARTINEZ M., KEMME B., ALONSOG., “Improving
the Scalability of Fault-Tolerant Database ClustersCDCS 2002, p. 477-484.

[LINO5] LIN Y., KEMME B., PATINO-MARTINEZ M., JIMENEZ-PERIS R., “Middleware
based Data Replication providing Snapshot Isolatio®&IGMOD Conference2005.

[MEN 06] pDE MENDIVIL J. R. G., RMENDARIZ J. E., GARITAGOITIA J. R., RUN L.,
MuRoz F. D., “Non-blocking ROWA Protocols Implement GSI Using S#fficas”, report
num. ITI-ITE-06/04, 2006, ITI.

[MUN 06] MuNozF.D.,R.A J., Ruiz M. |., IRUN L., DECKERH., ARMENDARIZ J. E.,
DE MENDIiVIL J. R. G., “Managing Transaction Conflicts in Middleware-8&®atabase
Replication Architectures”,SRDSIEEE-CS, 2006, p. 401-410.

[PAT 05] PATINO-MARTINEZ M., IMENEZ-PERISR., KEMME B., ALONSOG., “MIDDLE-
R: Consistent database replication at the middleware .levAlCM Trans. Comput. Syst.
vol. 23, num. 4, 2005, p. 375-423.

[WIE 05] WIESMANN M., SCHIPERA., “Comparison of Database Replication Techniques
Based on Total Order BroadcastlEEE TKDE, vol. 17, num. 4, 2005, p. 551-566.

