
A Middleware Database Replication Protocol
Providing Different Isolation Levels

J.R. Juárez∗, J.R. González de Mendı́vil∗, J.R. Garitagoitia∗, J.E. Armendáriz†, F.D. Muñoz-Escoı́†
∗Dpto. Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain

†Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, 46022 Valencia, Spain
Email: {jr.juarez, mendivil,joserra}@unavarra.es, {armendariz, fmunyoz}@iti.upv.es

Abstract— Database replication protocols have been usually
designed in order to support a single isolation level. This paper
proposes a middleware protocol able to manage three different
isolation levels over multi-version DBMSs: GSI, SI, and serializ-
able. This ensures a better support for applications that demand
different isolation levels for their transactions. Additionally, this
protocol is also able to merge the coordination of the replicas
for each isolation level, using a weak voting approach for all of
them, whilst other recent protocols need a certifying technique
for GSI and SI, or a 2PC rule for serializable level.

I. INTRODUCTION

Database replication is a very attractive approach since it
increases the performance and availability, by storing copies
of the same data at multiple sites. The price to pay is to keep
copies consistent across the whole system. Several correctness
criteria have been developed for replicated databases: One
Copy Serializable (1CS) [1]; Generalized Snapshot Isolation
(GSI) [2]; and, One Copy Snapshot Isolation (1CSI) [3]. The
fulfillment of these correctness criteria depend on the DBMS
replicas used at each site.

The implementation of database replication systems has two
main approaches. Originally, the DBMS-core was modified
so as to include some communication support and means to
deal with transactions coming from remote sites [1], [4], [5].
This solution is highly dependent on the DBMS used. The
alternative approach is to develop a third software layer that
isolates the DBMS details from the replication management [6],
[7]. However, middleware solutions often lack scalability and
exhibit a number of consistency and performance issues. The
reason is that in most cases the middleware has to handle the
database as a black box, and hence, cannot take advantage of
the many optimizations implemented in the database kernel.

We propose a database replication protocol for a middleware
architecture (Mid-Rep). In this protocol, Snapshot Isolation
SI) [8] database replicas are considered, since most com-
mercial DBMSs provide this isolation level. Most protocols
are only able to provide a single isolation level. However,
our replication protocol offers much more flexibility to ap-
plications, providing different isolation levels to transactions:
GSI, SI and serializable (SER). Generally, the different levels
featured depend on: the transaction isolation level provided
by the underlying DBMS (in this case SI); the ordering of
commit operations at all nodes; and, the starting point of
transactions [9]. Mid-Rep is a non-certified replication protocol

which is, up to our knowledge, the first protocol proposed in
this way.

II. THE MIDDLEWARE APPROACH

In this work we took the advantage from our previ-
ous works [7] and other middleware architectures providing
database replication [6], [3]. In the following we highlight
some aspects dealing with the design of the system and the
isolation levels.

While developing replication protocols, it is a must not
to re-implement features provided by the underlying DBMS,
since DBMSs perform these tasks much more efficiently. The
writeset must be efficiently picked up from the DBMS. The
writeset contains the updated/inserted/removed tuples identi-
fied through the primary key. Furthermore, in order to circum-
vent the reattempts of writesets proposed in [3], it is needed
to provide a conflict detection mechanism [10], which uses
the concurrency control support of the underlying DBMS. As
shown in [11], it is better to deploy replication protocols with
constant interaction. Besides, the update propagation should
be made using the total order multicast facility [12] in order
to avoid the drawbacks of 2PC protocols [1].

Regarding to the isolation level of the local replica it may (or
not) determine the isolation level of the one copy equivalent
isolation level reached in a replicated setting. For instance,
if a strict serializable DBMS (such as 2PL) is used then a
1CS will be obtained. In order to increase the replication
protocol performance, the correctness criterion can be relaxed.
Assuming that SI DBMSs are used, we can reach easily GSI
using a simple certification process.

Database replication protocols providing GSI or 1CSI [2], [3]
are based on a certification process to commit a transaction
in the system. Thus, it is only needed to multicast (using the
total-order facility) [12] one message and keep a log, as part
of the replication protocol, of already committed transactions.
However, this certification mechanism, which can only provide
GSI, has several drawbacks. A garbage collector is needed
for keeping track of its log. Besides, to provide serizable
executions transaction readsets must be propagated and this
is prohibitive.

Nevertheless, achieving a 1CSI isolation level implies block-
ing transactions at their beginning [9]. However, our protocol
does not need the use of certification, hence there is no need
of using a garbage collector. For the same reason, it is not



· Upon start request of Ti at site k
I. Case Ti.level = SI:

1. TO-broadcast(Ti, k, start);
· Upon select, update, insert, delete request of Ti at site k

I. If first operation of Ti ∧ Ti.level = SI then
1. Await status(Ti)= start;

· Upon commit request of Ti at site k
I. Ti.WS := getwriteset(Tik) from local Rk;
II. status(Ti) := pre commit;
III. TO-broadcast(Ti, Ti.WS);
· Upon TO-deliver(m) at site k

I. Case m = 〈Ti, node, start〉:
1. If k = node then status(Ti):= start;
2. Else Ignore message

II. Case m = 〈Ti, WS〉:
1. Obtain wsmutex
2. If status(Ti) ∈ {toabort, aborted} then Ignore message
3. Else
a. If Ti.site = k then

- status(Ti):= committable;
- R-broadcast(〈Ti, commit〉);
- Await status(Ti)= tocommit;
- DBk .commit(Ti); status(Ti):= committed;

b. Else
- For all Tm in get conflicts(WS, Ti.level)
∧ status(Tm) 6= committable do
? DBk.abort(Tm);
? If status(Tm) = pre commit then R-broadcast(〈Ti, abort〉);
? status(Tm):= aborted;

- DBk .apply(Ti, WS);
- Await status(Ti) ∈ {tocommit, toabort};
- If status(Ti) = tocommit then
? DBk.commit(Ti); status(Ti):= committed;

- Else
? DBk.abort(Ti); status(Ti):= aborted;

4. Release wsmutex;
· Upon R-deliver(m) at site k

I. Case m = 〈Ti, commit〉: status(Ti):= tocommit;
II. Case m = 〈Ti, abort〉: status(Ti):= toabort;

Fig. 1. Mid-Rep algorithm at replica Rk

necessary to propagate the readsets to provide serial execution,
as needed when using certification.

III. MID-REP REPLICATION PROTOCOL

We propose a non-certified replication protocol (see Fig-
ure 1), called Mid-Rep, where transactions can select their
transaction isolation level (GSI, SI or SER), to be used in a
middleware architecture where each node contains a DBMS
providing SI transaction isolation level.

Different transactions may be created in the replicated sys-
tem. Each transaction can select an isolation level, depending
on its requirements, at the beginning of its execution. Mid-Rep
protocol is able to provide GSI level, given that transactions are
atomically committed at all nodes and their commit is totally
ordered [9].

In order to obtain a serializable level, Mid-Rep parses all the
read operations for SER transactions to turn them into “SELECT
FOR UPDATE” statements. This makes possible to see read-
write conflicts from the beginning of a transaction till its
commit time. Thus, since this satisfies dynamic serializability
condition (DSC) [2], a serializable level is achieved.

An approximation of the SI level can be easily achieved
by using start points in the transactions. These start points
guarantee that, when a transaction begins its execution, it have
seen all the changes applied in the system before that point.

Thus, to obtain SI, the Mid-Rep protocol multicasts a start
message (using a total order primitive) and the transaction will
remain blocked until this message is delivered. Otherwise, the
transaction starts straight away its reading and writing phase.

The price to pay for avoiding the read set propagation in
the SER mode is awaiting the message reception. Thus, the
protocol has two message rounds: a total order message round
with the write sets and another reliable message round with
the final decision.

During the commit phase, Mid-Rep total-order multicasts
the write set to all available replicas. Upon delivery of this
message at a replica it will block all write operations per-
formed in the replica until the conflict detection and the write
set application are done. Moreover, no other write set could be
applied until the previous write set application is finished. The
write set delivery at the master node will multicast a commit

message (if it was not previously aborted). The delivery of
this message will commit the application of the write set at
the rest of replicas.

ACKNOWLEDGMENT

This work has been supported by the Spanish Government
under research grant TIN2006-14738-C02.

REFERENCES

[1] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman, Con-
currency Control and Recovery in Database Systems, Addison Wesley,
1987.

[2] Sameh Elnikety, Fernando Pedone, and Willy Zwaenopoel, “Database
replication using generalized snapshot isolation.,” in SRDS. 2005, IEEE-
CS.

[3] Yi Lin, Bettina Kemme, Marta Patiño-Martı́nez, and Ricardo Jiménez-
Peris, “Middleware based data replication providing snapshot isolation.,”
in SIGMOD Conference, 2005.

[4] Michael J. Carey and Miron Livny, “Conflict detection tradeoffs for
replicated data.,” ACM Trans. Database Syst., vol. 16, no. 4, pp. 703–
746, 1991.

[5] Shuqing Wu and Bettina Kemme, “Postgres-R(SI): Combining replica
control with concurrency control based on snapshot isolation.,” in ICDE.
2005, pp. 422–433, IEEE-CS.

[6] Marta Patiño-Martı́nez, Ricardo Jiménez-Peris, Bettina Kemme, and
Gustavo Alonso, “MIDDLE-R: Consistent database replication at the
middleware level.,” ACM Trans. Comput. Syst., vol. 23, no. 4, pp. 375–
423, 2005.

[7] Luis Irún, Hendrik Decker, Rubén de Juan, Francisco Castro, Jose E.
Armendáriz, and Francesc D. Muñoz, “MADIS: A slim middleware
for database replication.,” in Euro-Par. 2005, vol. 3648 of LNCS, pp.
349–359, Springer.

[8] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil, “A critique of ANSI SQL isolation
levels.,” in SIGMOD Conference. 1995, pp. 1–10, ACM Press.

[9] J. R. González de Mendı́vil, J. E. Armendáriz, J. R. Garitagoitia, L. Irún,
and F. D. Muñoz, “Non-blocking ROWA Protocols Implement GSI
Using SI Replicas,” Tech. Rep. ITI-ITE-06/04, ITI, 2006.

[10] Francesc D. Muñoz, Jerónimo Pla, Marı́a Idoia Ruiz, Luis Irún, Hen-
drik Decker, José Enrique Armendáriz, and José Ramón González
de Mendı́vil, “Managing transaction conflicts in middleware-based
database replication architectures,” in SRDS. 2006, IEEE-CS, Accepted
for publication.

[11] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha, “The
dangers of replication and a solution.,” in SIGMOD Conference, 1996,
pp. 173–182.

[12] Gregory Chockler, Idit Keidar, and Roman Vitenberg, “Group commu-
nication specifications: a comprehensive study.,” ACM Comput. Surv.,
vol. 33, no. 4, pp. 427–469, 2001.


