
COLUP: The Cautious Optimistic Lazy Update
Protocol∗

Luis Irún-Briz, Francesc D. Muñoz-Escoı́, Josep M. Bernabéu-Aubán
Instituto Tecnológico de Informática

Universidad Politécnica de Valencia, 46071 Valencia, Spain
Email: {lirun,fmunyoz,josep}@iti.upv.es

Abstract

Lazy update protocols have proven to have an undesirable behavior in respect to the
abortion rate in scenarios with high degree of access conflicts. In this paper, we present
the problem of the abortion rate in such protocols from the statistical perspective, in
order to provide an expression that predict the probability of an object to be out of date
during the execution of a transaction.

It is also presented a pseudo-optimistic algorithm that makes use of this expres-
sion, allowing the system to reduce the abortion rate, and maintaining stable, or even
improve, the number of processed transactions per second.

The proposal is validated by means of an empirical study of the behavior of the
algorithm and the expression. Finally, an adaptative technique to adjust the algorithm
behavior is also described, in order to optimize its improvements.

Keywords: distributed databases, concurrency control, database replication

1 Introduction

Fault tolerance and performance enhancement are two of the most important advantages
of distributed systems. To achieve this, replication has been proven to be a powerful and
versatile approach. In the area of distributed databases, consistency requirements introduce
a new parameter in the problem, and the proposed solutions used to be centered in it.

In distributed databases, a set of algorithms for concurrency control [1] (known as up-
date everywhere protocols) tries to maximize the use of every node in a replicated system,
by means of the execution of each transaction in a unique node in the system. This makes
possible for every node in the system to execute a different transaction at the same time, but

∗This work has been partially supported by the EU grant IST-1999-20997 and the Spanish grant TIC99-
0280-C02-01.

it becomes necessary, once the transaction is locally committed, to propagate its changes to
the rest of the system. These techniques provide an improvement of the performance, but
make it necessary to introduce any kind of consistency control in the system.

Optimistic consistency protocols allow a transaction to use every object needed with-
out any control, maintaining a timestamp [2] (or version number) for each accessed object.
When a transaction tries to be committed, then it becomes necessary to reach a consensus
with the other involved nodes about the absence of conflicts for the objects accessed by the
transaction. This consensus is commonly performed as a unique ”voting algorithm” at com-
mit time. If any node in the system holds in its local database a more recent version of any
object accessed by the transaction, then the transaction must be aborted. The main disad-
vantage of optimistic techniques consists of the increase of the probability for a transaction
to be aborted in commit time.

On optimistic approaches, the update propagation is used to be done using the ”constant
interaction” approach, performing all the propagation at a time. A transaction trying to
commit must ensure that every object accessed in its execution has the adequate version,
aborting the transaction if the consensus cannot be achieved.

When a transaction succeeds its commit phase, it must propagate its changes. If this
propagation is completely performed inside the commit phase, then the update propagation
is usually named eager update propagation. On the other hand, it is possible, in order to
reduce the overhead in the system, to delay this propagation beyond the commit phase [3].

If this is done, the consensus made at commit time about the object versions will also
refer to the check that every object accessed by the transaction held an updated value in the
local database when it occur, making it necessary for the consistency protocol to abort a
potentially higher number of transactions.

The use of laziness [4] can improve the performance in certain scenarios, because it
makes possible to broadcast a lower number of updates when read operations are mainly
local. In such scenarios, each node in the system trends to access to a concrete set of
objects. So, these objects are often modified by transactions executed in this node, and
there are a lower number of foreign transactions (i.e. executed in other nodes) that access
to these objects.

The conjunction of optimistic and lazy approaches increases the transaction abortion
rate, and makes such systems unusable when the system load grows up, because the higher
number of object-collisions will produce a higher number of aborts. Moreover, this growth
of the abort number will degrade the performance of the system, because the time spent
in aborted transactions becomes useless [4]. This inconvenience of lazy and optimistic ap-
proaches can be attenuated by means of a more careful design of the concurrency protocol.

This paper provides an statistical study of the increase in the abortion rate caused by the
use of lazy replication, and uses these results to make a proposal of a new algorithm to solve

the concurrency control in a distributed transactional system (e.g. distributed databases),
making use of the lazy paradigm, and maintaining the optimistic approach in a certain de-
gree. In addition, we present in this paper the results of a simulation of the algorithm,
showing the adequacy of our approach, and providing an exhaustive description of the be-
havior of our model.

To this end, the following section describes a basic optimistic lazy protocol for the
concurrency control, and discusses its behavior in terms of transactions per second, abortion
rate, etc. Section 3 performs an analysis of the abortion rate in such protocols, and provides
an statistical expression of this rate. In section 4 a modification of the basic algorithm is
presented, introducing the results presented in section 3 in order to improve the behavior
of the abortion rate. An exhaustive study of our proposal is shown in section 5, where the
simulated system is detailed, and the obtained results are described. Section 6 compares
this protocol with other systems. Finally, section 7 gives some conclusions.

2 The Optimistic Lazy Protocol

The basic consistency protocol presented in this section is a variation of one of the consis-
tency protocols currently implemented in the GlobData Project[5] (described in [6, 7]).

In the GlobData project, a software platform is used to support database replication.
This platform, is called COPLA, and provides an object-oriented view of a network of rela-
tional DBMSs. The COPLA architecture is structured in three different layers, which inter-
act using CORBA interfaces, enabling the placement of each layer in a different machine.
Thus, multiple applications (running in different nodes) may access the same database
replica using its local ”COPLA Manager”. The COPLA Manager of each node propa-
gates all updates locally applied to other database replicas using its replication management
components.

The basic optimistic Lazy Protocol implemented in GlobData is named ”Lazy Object
Multicast Protocol” (LOMP). It will be described in 2.2; further clarifications are presented
in the subsections thereafter.

2.1 Node Roles

Considering a given session that tries to commit, the nodes involved in its execution may
have four different roles:

• Active node. The node where the COPLA Manager that has directly served the ses-
sion’s execution is placed.

• Owner node. For a concrete object, the node where this object was created. During

the consensus process performed at commit time of a session, the owner of an object
will be asked to allow this session to complete the commit. Thus, it is the manager
for the access confirmation requests sent by the active nodes at commit time. The
management of these access confirmation requests is similar to lock management,
but at commit time. These requests are detailed in section 2.2.

We will denote that a node Nk owns an object oi with the expression Nk = own(oi).

• Synchronous nodes. If one of our goals is to provide fault tolerance, it becomes
necessary a set of nodes that provides guarantees about the last version written for
a certain object. So, for each session that is committing, the owner of each written
object must multicast this update to a set of synchronous nodes, within the commit
phase.

We will denote that a node Nk is a synchronous replica of an object oi with the
expression Nk ∈ S(oi).

• Asynchronous nodes. For an object, all the other nodes that have a COPLA Man-
ager replicating the database. In these nodes, the session updates will be eventually
received.

We will denote that a node Nk is an asynchronous replica of an object oi with the
expression Nk ∈ A(oi). Note that: own(oi) ∈ S(oi), and A(oi) ∩ S(oi) = ∅.

2.2 Protocol

As described above, the GlobData-LOMP consistency protocol multicasts object updates to
all synchronous nodes when a session is allowed to commit. Consistency conflicts among
sessions are resolved with an optimistic approach, using object versions. To this end, the
protocol uses some meta-data tables in the database where the current object versions can
be stored.

This protocol can be classified [1] as optimistic constant interaction, performing an
update everywhere with lazy propagation, and with voting termination. A complete de-
scription can be found in [8].

3 Statistical Analysis of the Abortion Rate

In this section, a set of expressions describing the abortion rate will be presented. In the
presentation, we will use a set of basic assumptions about the nodes in the system, the
sessions executed, and the objects accessed by the sessions.

3.1 Assumptions for the Model

These assumptions are the following:

• There are K COPLA managers running in the system. Each one can be considered
as a ”node” Nk=1..K .

• Each node in the system manages a complete replica of the database. This database
contains N different objects.

• A session S can be written as a tuple S = [R(S),W (S)] where:

– R(S) is the set of objects read by the session S. It is also named ”readset of S”.
R = {ri}i=1..|R|

– W (S) is the set of object written by the session S (or ”writeset of S”).

W = {wi}i=1..|W |

• We assume that W (S) ⊆ R(S). And the objects contained in R(S) and W (S) can
be expressed as tuples: oi = [id(oi), ver(oi), val(oi), t(oi), ut(oi)] where:

– id(oi) is a unique identifier for the object. The identifier includes the owner
node (the node where the object was originated), a sequential number estab-
lished within the context of each node, and other information used to calculate
conflicts.

– ver(oi) is the version number of the accessed object.

– val(oi) is the value read (or written) by the session for the object.

– t(oi) is the local time the object was accessed at.

– ut(oi) is the local time the object was more recently updated at.

3.2 Analysis

We can define the probability for a session S to be aborted as:

PA(S) = 1− (PCconc(S) · PCoutd(S))

• being PCconc(S) the probability for S to conclude without concurrency conflicts.

• and PCoutd(S) the probability for S to conclude without ”outdate conflicts”.

The goal of this section is to determine the value of PCoutd(S), in order to predict the
influence our LOMP has into the abortion rate in the system.

To this end, we can calculate this probability in terms of the probability of a session to
conclude with conflicts produced by the access to outdated objects (PAoutd(S)):

PCoutd(S) = PCoutd(ri)
nr

taking nr as the number (in mean) of objects read by a session,

PCoutd(S) = PCoutd(ri)

∑
k nrk
K (1)

moreover, PCoutd(ri) is the probability for an object ri to have an updated version in the
instant the session accesses it. This probability can be expressed in terms of the probability
for an object to be accessed in an outdated version (PAoutd(ri)) as:

PCoutd(ri) = 1− PAoutd(ri)

Now, let’s see the causes of these conflicts: we took ri as an asynchronous object in the
active node that has not been updated since ut(ri); the outdated time for ri satisfies δ(ri) =
t(ri)− ut(ri); it can be seen that PAoutd(ri) depends on the number of sessions that write
ri having the chance to commit during δ(ri). Let PAT,ri be the probability for another
concurrent session T (that has success in its commit) to finalize with ri ∈W (T). Then,

PAoutd(ri) = (PAT,ri)
C

where C depends on the number of write-sessions that can be committed in the system
during δ(ri) . . .

PAoutd(ri) = (PAT,ri)
∑
k wtpsk×δ(ri) (2)

Now, we can rewrite PAT,ri as 1 − PCT,ri , being PCT,ri the probability for a concurrent
write-session T (that has success in its commit) to finalize with ri 6∈W (T). That is:

PCT,ri = P [ri 6∈W (T)]

if W (T) = {w1, w2, . . . wnw(T)}, then in mean, PCT,ri =
(
P [ri 6= wj∈{1..nw}]

)nw
taking

nw as the mean of |W (T)| for every write-session in the system.

PCT,ri =
(
P [ri 6= wj∈{1..nw}]

)
∑
k nwk
K (3)

The next step consists of the calculation of P [ri 6= wj∈{1..nw}]. To do this, we must observe
the number of objects in the database (N). The probability that an accessed object is a given
one is 1

N , thus:

P [ri 6= wj∈{1..nw}] = 1− 1

N

Finally, the complete expression for PAoutd can be rewritten as follows:

PAoutd(ri) =

(
1−

(
1− 1

N

)
∑
k nwk
K

)∑
k wtpsk×δ(ri)

(4)

This expression provides a basic calculation of the probability for an object access to cause
the abortion of the session by an out-of-date access.

The expression can be calculated with a few parameters. Only nwk and wtpsk must
be collected in the nodes of the system in order to obtain the expression. Thus, it becomes
possible for a node to estimate the convenience for an object to be locally updated before
being accessed by a session. This estimation will be performed with a certain degree of
accuracy, depending on the ”freshness” of the values of nwk and wtpsk the node has. The
way the expression can be used, and an adequate mechanism for the propagation of these
parameters will be presented in section 4.

4 COLUP: The Cautious Optimistic Lazy Update Protocol

An expression for the probability for an object to cause the abortion of a session has been
presented in section 3. This expression can be used to predict the convenience for a session
to ensure that an object that is asynchronously updated has a recent version in the local
database.

To this end, it becomes necessary to introduce a new request in the basic algorithm. An
active node for a session will send an ”Update request” to the owner of an object, in order
to get an updated version of such object.

This update request message can be sent from an active node to an owner node along
the session execution, in order to maintain updated (in a certain degree) the objects being
about to be accessed by the session.

This technique will reduce the probability of abortion caused by the accesses to outdated
objects within the sessions. This improvement is based in the outdated time, shown as δ(oi)
in the expression for PAoutd(oi).

4.1 Modification of the LOM Protocol

The way the COPLA manager decides to send or not an update request for an object that is
about to be accessed is quite simple:

1. During the life of a session, an access to an object oi is requested by the application.
This access is intercepted by the COPLA manager of the active node, and then the

probability of being outdated is calculated for the object oi. If the active node is a
synchronous (or owner) node for oi, this probability is 0. This is because the protocol
ensures that incoming updates of the object will abort every transaction conflicting
with the updated object.

In the active node is an asynchronous node for oi, then the COPLA manager will use
the expression of PAoutd(oi). To perform this calculation, it is needed δ(oi): the time
elapsed from the last update received for oi.

2. If this probability exceeds a certain threshold Tc, then the COPLA manager sends the
update request to the owner of oi. If the threshold is not reached, the protocol contin-
ues as described in section 2.2. Section 5 will present an empirical approximation to
determine an optimum value for the threshold Tc.

3. In other case, after the COPLA manager allows the session to continue, it waits for
the update request response. This response indicates whether the local version of oi
is updated, or outdated (then, the response contains the newest version for the object).
If the local version must be updated, then the update is applied in the local database,
and the update time is also written down.

4. Once the COPLA manager has ensured that oi is updated, the required access to the
object can continue.

By forcing to update an object before the session accesses it, the COPLA manager
decreases the value of δi, to the length of the session. Thus, the chance for a session to
success the commit phase is higher.

This technique implies that every update performed in the asynchronous nodes of an
object must include a timestamp of the instant the update is performed at. Note that it is not
necessary to use global time, but it is only necessary the local time for each node.

5 Results

We have validated the algorithm presented above by implementing a simulation of the sys-
tem. In this simulation, we have implemented nodes that concurrently serve sessions, ac-
cessing to different objects of a distributed database.

We have also modeled the concurrency control, and the lazy update propagation proto-
col used by LOMP.

5.1 Assumptions

The assumptions for the implementation of the simulation are compatible with the ones
taken for the model calculation, and the values have been established to increase the number
of conflicts produced by the transactions executed in the system:

• There are 4 nodes in the system, each holding a full replica of the database, that
contains 20 objects. Each node executes transactions, accessing the database.

• For every object, a local replica holds the value of the object, and the version corre-
sponding to the last modification of the object.

• There are three types of transactions:

1. ”read-only” transactions: reads three objects.

2. ”read-write” transactions: reads three objects, then writes these objects.

3. ”read&read-write” transactions: reads six objects, then writes three of them.

• The probability for a transaction to be of these types is 0.2, 0.4, and 0.4 respectively.

• The model supports the locality of the access by means of the probability for an ac-
cessed object to be owned by the node where the transaction is started. For read-only
transactions, this is 1/4, (as the system contains 4 nodes, this models no locality for
read-only transactions). For read-write transactions, and read&read-write transac-
tions, the probability is 3/4.

• The cost of each operation is shown in time units (t.u.):

– Read operation in a local database: LR = 0.01 t.u.

– Write operation in a local database: LW = 0.02 t.u.

– Cost of a local-update request: LUR = KLUR × LR,KLUR = 5

– Cost of a confirmation request: CR = 0.6× LUR

• In order to provide a complete study of the algorithm, subsection 5.5 will include
different executions of the simulation, with values for the constant KLUR ∈ [1..10].

• The simulation time has been fixated at 1,422 t.u., discarding the first 2 t.u. as stabi-
lization time for the simulation. This allows to start up to 60,000 transactions.

Due to the characteristics of the expression shown in section 3 the algorithm becomes
very sensible for low values of the established threshold. To relax this, we have applied

an escalation to the basic expression of PAoutd(oi). The goal of this escalation is to dis-
tribute the values provided by PAoutd(oi) in a more homogeneous way. The scaled function
PAtra(oi) just expands the main range of values taken by PAoutd(oi) into a wider scale,
and compacts the residual range. The rest of the section studies each parameter of the
protocol using the normalized expression (PAtra).

5.2 Abortion Rate

The main goal of the COLUP algorithm consists of the reduction of the abortion rate. This
reduction is achieved by the adjustment of the value of a threshold. When the probability
for an object to be outdated (PA(oi)) is greater than this threshold, an update request is
sent to the owner of the object. This reduces the probability of abortion of the transaction,
because it is reduced the time the objects are out of date in each node.

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

A
bo

rt
io

n
ra

te
 (

%
)

Threshold

K_LUR=5

PA_tra

(a) Abortion rate

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

U
na

cc
ur

ac
y

(%
)

Threshold

K_LUR=5

PA_tra

(b) Inaccuracy

Figure 1: Evolution of the protocol for different thresholds

Figure 1(a) shows the evolution of the abortion rate for different thresholds.

In one extreme, when the threshold is fixated to 0, the protocol will try to update every
accessed object. This causes the lower abortion ratio.

In this case, the behavior of the protocol is similar to an eager protocol. In such algo-
rithms, every object update is always propagated to each node in the system. The disadvan-
tage of this approach appears when the same object is updated several times before another
node performs an access to it. In contrast, in the case of COLUP with Threshold = 0, the
disadvantage consists of the unnecessity of performing update requests when the accessed
object is already up-to-date.

On the other hand, when a Threshold = 1 is fixated, the protocol behavior is the same
than a pure lazy protocol: no update is performed, unless a transaction is aborted.

5.3 Accuracy of the Prediction

When the expression exceeds the established threshold for an object, and an update request
is sent, it is possible for the response of this request to contain the same version for the
requested object (e.g. when the object was, in fact, up to date). We name this situation
”Inaccurate prediction”.

The more accurate the predictions are, the less overhead the algorithm introduces in the
system. This accuracy of the predictions will be given by the fixated threshold: higher val-
ues for the threshold should provide more accurate predictions, but, as seen in the previous
section, the abortion rate suffers an increase.

The figure 1(b) shows the evolution of the inaccuracy of the prediction, for different
values of the threshold. The figure shows a gradual decrease in the inaccuracy when the
threshold is increased. But, for higher values of the threshold, the number of update requests
is very low, and the corpus of the experiment is not valid.

In general, it can be observed that higher values for the threshold increase the accuracy
of the prediction.

5.4 Performance

In the middle point, it can be found a balance between accuracy and abortion rate. In this
point, the time spent in aborted transactions will be low, and the overhead introduced by the
updates will be useful in the most of the cases. Then, the number of transactions committed
per second should be maximized, keeping low the abortion rate.

In figure 2(a), the performance of the system is analyzed through the number of transac-
tions served per time unit. It is shown how the number of transactions committed when the
COLUP gives a pure lazy behavior (i.e. Threshold = 1.0) is higher than the performance
obtained for a ”paranoiac COLUP” (i.e. Threshold = 0.0). In the middle point, it can be
found a threshold maximizing the performance.

In our experiments, it has been proven that the evolution of the system for different
thresholds evidences an optimum value, maximizing the performance of the system. In
addition, the abortion rate when this threshold is used, can be kept below to a reasonable
limit.

10

11

12

13

14

15

16

17

0 0.2 0.4 0.6 0.8 1

T
ra

ns
ac

tio
ns

 p
er

 t.
u.

Threshold

K_LUR=5

PA_tra

(a) Number of transactions committed per t.u.
(c.t.p.s.) for different thresholds

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8 9 10

T
ra

ns
ac

tio
ns

 c
om

m
ite

d
pe

r
t.u

.

K_LUR

Transactions commited per t.u. in the optimum threshold

PA_tra

(b) Evolution of c.t.p.s. in the optimum for dif-
ferent KLUR

Figure 2: Productivity of the protocol

5.5 Optimum Threshold

In order to evaluate the behavior of the algorithm for different configurations, we have
considered that the most relevant parameter is the cost introduced by the LocalUpdate mes-
sages. For higher values, the better option may be to avoid any local update, because the
cost of this update will be higher than the time spent in the transaction if the the transaction
is finally aborted.

To analyze this, we have repeated the simulation giving different values to this cost (i.e.
making KLUR take values from [1..10]). For eachKLUR, we have taken the optimum value
of the thresholds, in terms of committed transactions per second. Figure 2(b) shows how
the reduction of the cost of an update request (lower values of KLUR) allows the protocol
to improve the system with better performances.

6 Related Work

Pessimistic consistency control for distributed databases [9] uses the principle of ”locks”
in order to avoid concurrent transactions to access to the same object in an inadequate
mode. This approach minimizes the number of aborted transactions, but the overhead of the
management of the locks degrades the performance of the system.

In the other hand, the traditional approach for optimistic consistency control was pre-
sented in [10, 11], and its main advantage consists on the reduction of the blocking time of

the transactions, using ”timestamps” (or ”timestamps” [2]) as the basis for its implementa-
tion. The main disadvantage of optimistic consistency protocols consists of the increase in
the abortion rate.

Lazy update protocols, introduced in [12], presents a new approach for the propagation
of the updates, in contrast to the traditionally used ”eager replication”. Lazy update pro-
tocols takes advantage of the fact that an object can be written several times for different
transactions before another transaction tries to read it.

Current work on consistency protocols for replicated databases can be found using either
eager [13] or lazy protocols [3]. Pros and cons of both approaches are described in [4], and a
good classification of consistency control protocols was presented in [1], according to three
parameters: server architecture, server interaction, and transaction termination.

7 Conclusions

Lazy update protocols have not been widely exploited due to its excessive abortion rate on
scenarios with high probability of access conflicts. Nevertheless, such protocols can provide
important improvements in the performance of a distributed system, when the abortion rate
can be kept low, and the locality of the accesses is appreciable.

We have presented an statistical study of the abortion rate (as disadvantage of lazy
protocols), in order to provide an expression for the probability for an accessed object to be
out of date (PAoutd(oi)), and cause a further abortion of the accessing transaction.

We have also described a lazy update protocol, that uses this expression to obtain a
good behavior in respect to the abortion rate, and even improving the performance of the
system. In addition, the design of this protocol allows a variety of behaviors from a pure
lazy protocol, to a ”paranoiac” behavior.

A complete empirical study of the protocol has been done, validating either the proposed
expression and the predicted behavior of the protocol.

References

[1] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. Alonso. Database replication
techniques: A three parameter classification. In Proc. of the 19th IEEE Symposium on
Reliable Distributed Systems (SRDS’00), pages 206–217, October 2000.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison Wesley, Reading, MA, EEUU, 1987.

[3] F. Ferrandina, T. Meyer, and R. Zicari. Implementing Lazy Database Updates for an
Object Database System. In Proceedings of the Twentieth International Conference
on Very Large Databases, pages 261–272, Santiago, Chile, 1994.

[4] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solu-
tion. In Proc. of the 1996 ACM SIGMOD International Conference on Management
of Data, pages 173–182, Montreal, Canada, 1996.

[5] Instituto Tecnológico de Informática. GlobData Web Site, 2002. Accessible in URL:
http://globdata.iti.es.

[6] Luis Irún, Francesc Muñoz, Hendrik Decker, and Josep M. Bernabéu-Aubán. Copla:
A platform for eager and lazy replication in networked databases. International Con-
ference on Enterprise Information Systems, April 2003.

[7] Francesc Muñoz, Luis Irún, Pablo Galdámez, Josep Bernabéu, Jordi Bataller, and
Mari-Carmen Bañul. Globdata: A platform for supporting multiple consistency
modes. Information Systems and Databases, pages 137–143, September 2002.

[8] Francesc Muñoz, Luis Irún, Pablo Galdámez, José Bernabéu, Jordi Bataller, and Mari-
Carmen Bañuls. Flexible management of consistency and availability of networked
data replications. Flexible Query Answering Systems, pages 189–206, October 2002.

[9] P. A. Bernstein and N. Goodman. An algorithm for concurrency control and recovery
in replicated distributed databases. ACM Trans. on Database Sys., 9(4):596–615, Dec.
1984.

[10] Maurice Herlihy. Apologizing versus asking permission: Optimistic concurrency con-
trol for abstract data types. ACM Trans. on Database Sys., 15(1):96–124, March 1990.

[11] E. Rahm. Empirical performance evaluation of concurrency and coherency control
protocols for database sharing systems. ACM Trans. on Database Sys., 18(2):333–
377, June 1993.

[12] Parvathi Chundi, Daniel J. Rosenkrantz, and S. S. Ravi. Deferred updates and data
placement in distributed databases. In Proceedings of the 12th International Confer-
ence on Data Engineering, pages 469–476. IEEE Computer Society, February 1996.

[13] B. Kemme and G. Alonso. A suite of database replication protocols based on group
communication primitives. In International Conference on Distributed Computing
Systems, pages 156–163, 1998.

