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Abstract Globdata is a software tool that provides an object-oriented
view of a set of replicated relational databases. These databases may be
distributed in a wide area environment. To ensure consistency among
the independent databases that build this environment some protocols
are needed. These protocols have to reach a high degree of transaction
completions, aborting a minimal percentage of them, and ensuring the
consistency of all the databases.

A system of this kind may be used in the development of applications for
companies that have several branch offices, such as banks, hypermarkets,
etc. Usually, these companies have a large amount of operations that
can be solved with local information, but sometimes the information
generated in other branches is also needed. The services provided by
Globdata allow an efficient completion of both kinds of requests.

1 Introduction and Motivation

When an organization starts an internet project, a variety of objectives must be
met. Many of the current internet applications (i.e., e-bank applications) manage
huge amounts of information. This information is mainly accessed with a strong
geographical locality. In addition, these types of application usually strive for a
high degree of availability, since they offer services not only to external, but also
to internal clients, which must be capable of accessing the information at any
time. The locality of the accesses suggest that in many cases the database can
be partitioned [12,4]. In many scenarios, it may be necessary to replicate the
information in a set of servers, each one attending its local clients. The different
replicas of the database must be then interconnected, a WAN being usually the
best fit alternative.

Another example of this scenario can be found in telephony applications,
managing large amount of information, where access patterns are highly local.

When the databases containing the information must be replicated, it be-
comes necessary to introduce protocols and algorithms that provide a min-
imal set of guarantees about the consistency of the data [1,13]. The tradi-
tional approaches for replicating databases are centered in the use of fast LAN’s
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[9,10,8,6,5], where network-intensive protocols are used. In internet applications,
the network is a limited resource, and the problems introduced by the WAN must
be appropriately dealt with [11,3,2].

The Globdata project [7] strives to provide a solution for these kinds of
applications in which efficiency, availability and high volume data handling must
be achieved. It does so by defining a specific architecture for a set of replicated
databases, together with a programming APT and a set of consistency modes for
data access.

This paper presents a proposal of protocols capable of meeting the consis-
tency requirements posed by Globdata’s goals. Although several protocols with
slightly different goals are presented, all of them share a characteristic: They can-
not be classified as pessimistic, since transactions are allowed to proceed locally,
being checked for consistency violations at commit time. When a consistency
violation is found, the transaction is rolled back.

The rest of the paper is organized as follows. Section 2 provides some common
concepts shared by all consistency protocols, and several characteristics of the
Globdata environment where the protocols are used. Section 3 presents an overall
version of all consistency protocols and discusses the algorithm choices that can
be adopted and the resulting algorithms, once these options have been chosen.
In section 4 we describe in detail one of the consistency protocols outlined in
the previous section. Section 5 discusses how failures can be managed in all
consistency protocols, since the failure handling procedures are common for all
of them. Section 6 describes the actions taken when a faulty node recovers, and
finally, in section 7 we provide some concluding remarks.

2 Common Concepts

Within Globdata, each replica of the database communicates with the other
replicas through the local consistency managers. Consistency managers are, thus,
in charge of implementing the consistency protocols which drive a Globdata
system. Globdata’s proposed architecture places them as mediators for every
data access action the local sessions (i.e., transactions) perform.

Some of the protocols use lazy replication. Consequently, not all system nodes
have the latest version of each object. As a result, considering a particular object,
the set of nodes can be assigned one of the following roles:

— Ouwner node: It is the node where the object has been created. It is the
manager for access confirmation requests (see below) for the object; i.e., it
allows or denies these requests when the session initiators ask it about them.

— Synchronous nodes: They are the nodes preconfigured in the system to main-
tain the up-to-date replicas of the object. Their number for each object is
preconfigured. They are needed for fault tolerance.

— Deferred nodes: These nodes do not usually maintain up-to-date replicas
of the object, although they may have synchronous replicas sometimes (at
least, when the session that has caused the latest object version has been
initiated in one of them).
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The approach we take to concurrency control is influenced by the fact that
data may be lazily replicated, voiding the possibility of using traditional locks.
Each object is, thus, assigned an owner node which controls accesses to that
object. This control is only enforced when sessions try to commit.

When a session initiates its commit phase, the owner nodes of the accessed
objects are contacted to discover if the session has used the latest committed
versions of the objects. In this case, the owners validate the accesses, and the
session can be committed. If any of the objects read by the session is reported to
have an outdated version, the session is flagged for abortion. We refer to these
contact actions as “access confirmation requests”, since they only ask the owners
about the correctness of the object versions used by the session.

Globdata has been designed for distributed systems that may use wide area
networks. Within WANSs, nodes may fail and network partitions may happen.
Globdata needs, thus, the services of an appropriate membership protocol. This
membership service assigns static node identifiers to the nodes that form the
system, reducing the length of a node identifier. Consistency protocols require
node identifiers to record the object ownership, as well as the role assigned to
each node when a particular object is considered.

Since we use access confirmation request management, session identifiers (or
SID’s, for short) must include in their fields the identifier of the node that has
initiated them. Thus, in case of node failure, the consistency protocol knows
which granted access requests belonged to the faulty node, being able to manage
the situation appropriately.

Objects also use an identification structure similar to sessions. For instance,
object identifiers (OIDs) hold the static identifier of the node that has created
them. When a node fails, all its objects are inherited by a new manager. However,
this change in the management has to be written down by all live nodes in some
records that they hold. These tables are later used to find the manager for each
object.

Moreover, we also need to hold an object version associated to each object.
This helps when a node recovers, since it only needs to send to one of its neigh-
bors the last object version known for each object maintained in the recovering
database. When a node receives that message, it replies with all changes that
must be applied to bring the recovering database up to date.

An object version number includes the SID of the session that has written
its last value. This information is used to build the graph of causal precedent
sessions in the consistency protocols based on session updates (see sections 3.3
and 4 for details).

In case of partition failures; i.e., when some network links fail and two or more
node subgroups! remain isolated, we only allow the subgroup with a majority of
up-to-date replicas of a given object to work with sessions where that object is

! We use the term “subgroup” for naming each of the sets of communicating nodes that
have appeared after the network partition. Each subgroup is unable to communicate
with any other.
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involved. If a partition arises or if some node fails, the role of the faulty owners?
is moved to one or more than one of the remaining live managers.

3 Overall Protocol Descriptions

All consistency protocols follow a common basic algorithm that consists of the
following steps:

1. Each consistency manager maintains in the database a set of tables with
meta-data, that is, data needed to implement a particular consistency pro-
tocol. In particular, all the protocols keep in meta-data tables information
about the versions of the objects stored in the local database.

When a local session tries to read an object in a database access, the local
consistency manager checks its version in the local database. If the consis-
tency manager finds that the local version is outdated, it sends a message to
the owner node of the object requesting the latest updates. The local session
is blocked until these updates have arrived and have been applied to the
local database. In fact, the query that originated this read access still has
not been executed in this database.

Write accesses are not managed this way. They are directly applied to the
database without any check. However, although no check is made some
records are taken for all accesses. Actually, for each access made in a ses-
sion the sets of objects read or written in those accesses are written in the
meta-data tables to be able to build later the readset and writeset of each
session.

2. When a session tries to commit, its local consistency manager retrieves the
read and write sets of the session and sends an access confirmation request
to each one of the owners of the objects involved in that session, including
for each object, its OID, object version and access mode (read or write).
When an owner receives one of the above messages, it compares the version
of the object within the message with the latest versions for that object. If
they are equal, the owner grants the requested access permission and sets this
SID as the current owner of that access grant. The access grant is exclusive
if the access mode was “write” or shared if the access mode was “read”.
The grant is assigned to the requester until its session has propagated its
updates to, at least, the synchronous set of replicas for the objects involved
in the session. Once the session has been committed in this set of nodes, the
session initiator releases the access grants after changing the version of their
managed objects accessed in write mode within the requesting session.
While a session holds access grants, other sessions that request the same
grants in conflicting modes receive a deny reply to their requests. When
such a reply is delivered, the consistency manager that requested that grant
aborts the corresponding session.

2 And this only can happen if we ensure that at least an up-to-date replica of the
managed object remains in the live group.
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Using the above approach, different consistency protocol variants can be
designed providing support for different kinds of consistency modes. Next we
describe the three consistency modes we care about within Globdata. Later we
show how different alternatives in the overall approach lead to those modes, and
finally we outline the protocols resulting from such alternatives.

3.1 Consistency Modes

Three different consistency modes are considered in Globdata. Each session that
uses the Globdata services may only use one of these modes at a given time,
although there are methods in the API for changing the consistency mode asso-
ciated to the application sessions. These consistency modes are:

— Plain: This mode only allows isolated read requests and guarantees that all
accessed objects respect session causal commit order. However, the versions
of the accessed objects may not be the latest ones; i.e., they may be out of
date.

— Checkout: This mode is a permissive variation of the transaction mode dis-
cussed below. In checkout mode, the isolation property is not guaranteed.
Thus, if several sessions have read accesses on a given object, one of these
sessions is allowed to promote its access to write mode (this can break seri-
alizability, thus, within a standard transactional setting this would lead to
the blocking of the promoting transaction, or to the abort of a transaction).
However if two of these sessions promote their read accesses to write mode
for the same object, one of them is aborted.

— Transaction: The usual transaction guarantees (basically, the ACID proper-
ties) must be provided.

We have described the consistency modes in increasing order of restrictive-
ness; i.e., transaction mode allows less concurrency conflicts than checkout mode,
and checkout mode less than plain mode. So, when two sessions that use differ-
ent consistency modes conflict, some rules have to be adopted to resolve that
conflict. In practice, we use the rules of the more restrictive mode.

3.2 Protocol Alternatives

The consistency algorithm shown at the beginning of section 3 admits various
choices in several of its steps. We outline these options and their multiple alter-
natives now. The chosen characteristics generate different kinds of consistency
protocols that we describe later.

These are the algorithm characteristics that admit multiple choices:

— Update multicast when a session commits: A protocol may broadcast the
session changes when it commits. In this case, all object replicas are syn-
chronous and if the commit procedure is careful with the session commit
order, all consistency modes can be easily guaranteed.
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On the other hand, the session changes can be multicast only to a reduced
set of replicas (those placed in the preconfigured synchronous replicas for the
objects involved in the session). This management leads to lazy replication.
Since different objects may reside in different sets of synchronous nodes,
special care has to be taken to guarantee all consistency modes when lazy
replication is used.

— Per object or per session update propagation: If lazy replication is used, when
a session commits we have to choose whether all session updates have to be
propagated to all nodes where at least a synchronous replica of any updated
object exists, or the updates are propagated per object. The second option
implies that if two objects have been modified in a session and they do not
reside in the same set of synchronous nodes, then we only propagate to each
set of synchronous replicas the changes that involve one object, but not all
session changes.

The first option guarantees that plain mode consistency is satisfied, however
the second option does not always guarantee that.

Additionally, depending on the consistency mode that a session uses, the
actions that a consistency manager has to do when a session reads objects or
commits are the following;:

— On read accesses: If plain mode is being used, the object version stored

in the local database need not be the latest one. However, causal commit
consistency must be guaranteed, so the session changes have to be stored in
a database only when all sessions that precede the one that is committing
have been already stored in that database. So, plain mode is not problematic
on read accesses if some care has been taken when commit operations were
made using other consistency modes.
For checkout and transaction modes, when a read access is requested, the
consistency manager has to ensure that the latest object version exists in
the local database to avoid the session being rolled back later. If this version
is not present (and this may only happen when lazy replication is used),
it has to be requested to the object owner, notifying it about the object
version stored in the database of that session initiator. When this request
is received by the owner, the requested version has to be returned to the
session initiator. However, since plain mode must be usually guaranteed, not
only the latest version is needed, but all object versions between that stored
in the initiator database and the latest one. Moreover, not only these objects
must be returned: the initiator also needs all other session changes for all
the sessions that have caused these object updates.

— On commit time: There are no commit operations in plain consistency mode
because only read operations are allowed in that mode.

In checkout mode, the read accesses are treated the same way as in transac-
tion mode, but the commit procedure differs a bit. In this mode, if a session
has read an object version that at commit time is not the latest one, it is
not aborted. However, objects in the write set have to be checked at commit
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time and their version must be equal to the latest one. If this does not hap-
pen, the session is aborted. To sum up, read objects may change while the
session is executing, but written objects must not be overwritten by other
concurrent checkout sessions.

In transaction mode, both read and written objects must have their latest
version when the session is committed. If a subsequent change has been made
by another concurrent session, the one that is terminating must be aborted.

3.3 Consistency Protocols

We present three consistency protocols that have different characteristics. They
are the following:

— Full object broadcasting: This protocol uses immediate updates in all sys-
tem databases, so it does not use lazy replication. Thus, the writeset of a
committed session is broadcast to all system nodes and it is immediately
applied. Of course, not all sessions are committed, since object owners must
grant the access confirmation to do so. These access permissions depend on
the consistency mode used by the session.

It supports the three consistency modes and read accesses do not need any
additional action (they can be locally performed without any special han-
dling).

— Simple object update: This protocol uses lazy replication and object updates,
instead of session updates. As a result, although this protocol complies with
all consistency modes, plain mode requires more effort, since the way sessions
that use transaction or checkout mode propagate their updates does not
provide the guarantees needed by plain mode accesses.

Note that at commit time, the updates are only propagated to the preconfig-
ured synchronous replicas of each modified object. Thus, it is possible that
the full effects of a session are not reflected at all nodes that have received
an update message from it: a node can have a synchronous replica for one
of the involved objects, and a deferred replica for one of the other objects.
When a read operation needs a more recent version than the one stored in
the local database, only the latest version is requested (and obtained) from
the object owner. No other contents need to be transferred.

— Session set update: This protocol uses lazy replication and session updates;
i.e., when the updates are transferred to other nodes, not only the object
changes are transmitted to their synchronous replicas, but all session updates
(i.e., the session writeset) are transferred to all nodes that have at least a
synchronous replica of one of the changed objects.

To support plain mode, an additional problem appears: before the effects
of a session can be applied, all sessions preceding it in causal order need to
have been applied before to the same database. Sometimes, however, this
has not yet done. For instance, when an object has a deferred replica in a
given node that has not received any update for a long period of time and
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some of the objects that maintain a synchronous replica in that node have
been modified in the same session.

The sequence of steps needed to get a group of missing sessions is the fol-
lowing:

1. A request is sent to the object owner, asking for the session that has made

the latest change on that object and all its precedent sessions using causal
commit order. All nodes maintain a log of committed sessions, until they
have been applied to all system nodes (when this happens, the session is
removed from the log).
The request also carries the local (and out-of-date) object version number
for the requested object. So, the object owner, following the SID’s stored
in the object versions and scanning the logs, is able to build the graph
of precedent sessions.

2. The object owner replies with the graph of sessions. This graph has as its
root the session that has caused the latest update on the requested object
and that also includes all its precedent sessions following causal commit
order. This causal commit order is easy to find using the SID’s stored in
the object versions. For each session, the log also maintains its writeset
and readset. So, with this information, all the graph can be built. To
add more layers to the graph, only the readsets of the current leaves of
the graph have to be inspected, and all the sessions that appear in the
object versions of those readset objects are included in that layer. When
a session does not appear in the log, it can not be added to the graph
since this means that all its changes have been applied in all system
nodes.

The graph built in this step only maintains the SID’s of the sessions, not
their readsets or writesets.

3. The requester checks the received graph and scans it in depth order,
starting at the leaves and removing from the graph all sessions that have
already been applied to the local database. When the scanning arrives
to a level where no session has been removed, this procedure terminates.
The resulting graph is returned to the object owner node.

4. The object owner receives the returned graph and replies with the read-
sets and writesets of all the sessions found in the graph. These data is
stored in the requester node when it is received, terminating thus the
retrieval of the precedent sessions.

4 Algorithm Specification

This section provides additional details for one of the proposed consistency pro-
tocol. In this protocol, the message transport is assumed reliable (in the sense of
TCP/IP reliability) and a membership service exists, which notifies the system
nodes about the failures and recoveries of other system nodes.
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4.1 Session Set Update Protocol

This protocol transfers the whole set of session updates each time a session is
committed. This set of updates is sent to all nodes that have at least a syn-
chronous replica for one of the objects updated in that session. As a result, plain
mode can be easily supported, without needing any special action; i.e., the reads
can be locally completed without needing any further message exchange.

Each consistency manager executes the following algorithm:

— Every node maintains a log containing every session applied in its local
database. A process is run asynchronously in every node in order to update
each node in the system. When this asynchronous process can ensure that a
session has been applied in every node, this fact is indicated and the session
can be eliminated from the logs.

— When a node detects an out-of-date object in a read request, it locates the
owner node of the object (N,), and sends a request message to it in order
to update its object copy. This request message contains the identifier and
version of the out-of-date object.

— The owner node receives the request message, and looks at its meta-data for
the set of causal dependent sessions, needed to update the requested object
from the given version to the version held in the local database of the owner
node. This process is performed by the following algorithm:

e The owner node looks at the meta-data for the last session that modified
the requested object (T,). In this session, other objects have been read
(the readset of T, or R(T5,)).

e For each object o; contained in R(T,), the node should search its log for
every session T; having o; in its writeset (T} causally precedes T,).

e The node takes then T, and every T; and composes a graph representing
the causal dependencies of T, and every Tj.

e For the last sessions added to the composed graph, the algorithm iterates
in order to include every causal dependency in the causal graph. The
iteration ends when all the logged sessions with causal precedence have
been included in the causal graph.

— The composed graph (that is actually containing statements of sessions) is
sent to the requesting node, which analyzes the graph in order to eliminate
already applied sessions, and to determine whether each session in the graph
can be applied in its local database.

The graph can be cut out at a session 7" when this session 7" has been already
applied in the requesting node. This occurs when every object in the writeset
of T has a lower version than the version held in the local database.

In addition, a session in the graph cannot be applied to the local database
when an object contained in its readset has a higher version than the version
held in the local database (that is, there exists causal precedent session
yet unknown for the requesting node), and this out-of-date object must be
updated before.
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— When the cutting out process is completed, the requesting node sends a new
message to the owner node, requesting the complete writeset (values and
versions) of the meta-session resulting from compacting the graph.

— The owner replies with a message that holds the writesets of each session
included in the previous request. This information can be extracted from the
meta-data tables, since all these sessions have been locally applied by this
owner node and it knows about all these writesets.

Note that “plain” consistency mode is directly implemented, granting that
each update preserves the causal consistency of the local view of the database.
The amount of information needed to provide this functionality consists of:

— A log of every applied session for each node. This implies redundancy in the
logs.

— A session is kept in the log until an asynchronous process determines that
the session has been applied in every node.

5 Failure Analysis

Several failure scenarios must be considered to ensure that these protocols work
when failures arise. We consider two kinds of situations here. The first one deals
with the completion of the steps given in the protocols specification. The second
one deals with the migration of the managing role between nodes. We discuss
both of them next.

5.1 Algorithm Completion

When a node fails, our membership monitor detects this failure and notifies all
of the remaining nodes about this event. Partition failures are notified the same
way, but in this second case the set of faulty nodes may be bigger.

Let us see what happens with the sessions initiated by a faulty node. We
can distinguish the following cases, according to the step at which the failure
happens:

— If one of these sessions has not surpassed its access confirmation granting step
of the algorithm, no record of that session exists in any of the live nodes. So,
that session can be discarded. In fact, when its host node recovers, it must
abort that session, forcing its application to repeat the work.

— If the session fails once it has obtained the remote access grants, but before it
has multicast any update a similar situation arises. No record of the session
updates can be found in any of the live nodes, so the session cannot be
terminated in the remaining nodes. As a result, that session must be aborted
when its host node recovers. However, the faulty node has obtained some
access grants and this may prevent other sessions to work.

To avoid this, a solution is provided. Since the multicasts are atomic and
reliable, if an object update has been received by one of its synchronous
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replicas, all of them have received this update. So, when the membership
service notifies the failure of a node, all object owners scan their grants lists.
If some access has been granted to a session initiated in the faulty node, the
access granter (that is also the owner of the object protected by that grant)
has to check if some update multicast has been received associated to the
SID that requested that access. If no such an update was received, the grant
can be released, otherwise the following point has to be considered.

— If the session has at least initiated the update multicast, its updates may

have arrived to other nodes. In this case, we need to perform the same actions
as in the previous case. The grants held by this session have to be released.
Since the updates have been received, and this may only arise if all grants
were obtained and all changes made (but still not committed) in the original
node, no additional access grant will be needed. Since the session initiator
node has failed, the grants are not needed by any other node that replaces the
faulty one, because this hypothetical replacer node already has committed
this session. As a result, the access grants have already been used correctly
and they must be released now.
No other case needs consideration. Perhaps the session had not been com-
pleted yet, but this only means that it held some grants that have been
released as a consequence of the steps explained above. So, the session has
been completed now.

— If the node has failed once the update multicast was initiated but before the

“updatever” message® has been sent (assuming that this kind of message is
needed for that session), then another problem arises because the node that
eventually inherits the object ownership does not have the version number
information needed to send that message.
When the node promoted as object owner starts its new role, some actions
must be taken. It already knows that it maintains a synchronous replica. It
may decide that another node (or more than one node) has to be promoted
to hold a synchronous replica. This fact depends on the type of configuration
needed. Moreover, it has to broadcast a message to all accessible nodes with
deferred replicas of objects whose management it has inherited. This message
contains the version number of these inherited objects. The deferred nodes
will reply this message indicating the promoted node whether their current
replica is actually out-of-date or not.

5.2 Role Migration

When a node fails, all the objects it managed have to be managed by one of
the live nodes. As a result, the object ownership initially managed in that node
has to be migrated to one of the other nodes. So, we have to discuss two tasks
in this section. The first one deals with the criterion followed to elect the node

3 This message is needed to notify all deferred replicas that hold the latest version
number of the object until now, that this version has changed and that they do not
have an up-to-date version in their local database.
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that will replace the faulty one. The second task deals with the migration of the
access granting management.
Let us see how these tasks may be carried out:

— The election of the replacer node is based on the static identifiers associated
to all preconfigured members of the system. Since each node has an identifier
of this kind, we only need to choose the live node with a synchronous replica
that has the lowest identifier among all those that are greater than that
of the faulty node (or the lowest one, if the faulty node had the greatest
identifier). To be able to elect the new manager, a majority of synchronous
replicas must still exist in the system.

In case of using an even number of synchronous replicas, some criterion
is needed to break the tie in case of network partitions. For instance, the
subgroup that holds the node with lowest identifier among the previous set
of synchronous replicas will maintain the new manager.

We assume that the number of synchronous replicas is known in advance.
In case of network partitions, it may arise that the owner for a given ob-
ject remains alive, but the greater part of its synchronous replicas remain
unavailable. If such a situation arises, the current manager must give up its
role. A problem appears here. If the majority of synchronous replicas are
in another subgroup after the network partition, one of them will take up
the management role, according to the procedure described in the previous
paragraph. However, if those replicas have failed, no other session in the
whole system will be able to use that object again.

— The node that inherits the object ownership has to ask all the others about
the access grants they have; i.e., it has to know which of the grants it manages
has an owner and who is that owner. To this end, each node that holds a grant
that was managed by the faulty node, sends an ownership message to the
new manager. This message contains the identifier of the object associated
to the grant, the access mode, and the SID of the session that holds it. If a
node has no grants, it sends an empty message.

A timeout is set by the new manager to receive all these messages. If some
message has not been received in this period, an explicit request is sent to
that node.

Note that the criterion used to select the replacer node is known by all
managers, so no message is needed to make public the identity of the new
manager.

In case of network partitions, this is also true. If one subgroup loses its
manager for a given object, no session that accesses that object will be
allowed in that subgroup. Moreover, all grants maintained in that subgroup
have to be released, and all sessions that had those access grants must be
aborted.

6 Recovery Analysis

When a node recovers, the membership monitor notifies all live nodes about it.
So, during the reconfiguration of the system state, two tasks must be performed
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related to the new node: recovery of the object ownership (for all the objects
initially created by that node, if any) and updates of its local database to make
it consistent with those of the other nodes.

In order to recover the object ownership no special action must be taken
by the new node. One of the previously active nodes had inherited the object
management for all objects of the currently recovered node. This node must
send to the original owner all its information regarding access grants. Until this
message is received by the recovered node, it can’t manage its incoming access
grant requests or releases. It has to hold them temporarily. Once the message and
the object ownership have been transferred to the recovered node, it resumes the
access grant management. It may happen that an access request or release arrives
later to the node that has returned the object ownership to the recovered node.
If that happens, all these messages must be forwarded to the current manager.
No special action is needed by the sender of such messages. The forwarding is
done by the message receiver, who knows which is the current manager for the
object involved in that request or release.

Another change is needed if the recovered process belongs to the class of
nodes that must maintain synchronous replicas of several objects. The owners of
those objects have to reinclude it in the set of synchronous replicas, and possibly
one of those replicas has to be degraded to the deferred category (although it
initially maintains an up-to-date copy, but eventually it will become obsolete if
it is degraded). No message exchange is needed to do so.

Note also that all the tasks explained above are made during the reconfigura-
tion steps. In these steps no new sessions are allowed and the session management
is temporarily disabled.

In this recovery procedure, the new node sends to one of its neighbors (for
instance, the one that has the greatest probability of having inherited its object
ownership, i.e., the one that has an identifier immediately greater than its) a
request of the updates. In this request it includes the OIDs and object versions
that it has in its local database. As a reply, its neighbor will send a message
with all updates that have to be made to make consistent its database to those
of the other nodes.

7 Concluding Remarks

Global data access is increasingly important to a large number of Internet-based
applications. Such access has to be provided with guarantees of data availability
and consistency. This work proposes an approach to build such applications more
easily and reliably by means of replicating commercial grade, reliable database
engines, and running adequate protocols to keep their data consistent.
Concurrency control in these protocols is quite optimistic, since access confir-
mation requests may be made when local updates have concluded. This behavior
is suitable for distributed replicated databases whose applications usually work
only with “local” data, i.e., data that has been created by other local applica-
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tions, but where replication is needed to improve the access over “remote” data
when the greater part of the sessions use “read only” access.

The algorithms discussed are being implemented within the Globdata Project,
where they will be accesed by different kinds of applications, with different ac-
cess patterns, which will give us in the future, the oportunity to verify the best
performing approach for each kind of application.
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