
I/O States as Seen by Concurrent Transactions

Hendrik Decker ? and Francesc D. Muñoz-Escóı ?

Instituto Tecnológico de Informática, 46071 Valencia, Spain
hendrik@iti.upv.es, fmunyoz@iti.upv.es

Abstract. If not all resources accessed by a database transaction are
protected from being accessed by other concurrent transactions, then
the state “seen” by the transaction is not necessarily identical to any
committed state, nor to any snapshot of the current contents of the
stored data. For the theory of concurrent database transactions as well
as for all database applications that involve concurrency, it is important
to be precise about the states with which theories or applications are
dealing. Based on a non-standard notion of data resource, we propose
a formalization of committed states, snapshots and I/O states that are
‘seen’ by concurrent transactions. We intend to apply our concept of
states to an application of inconsistency-tolerant integrity checking for
concurrent transactions.

1 Introduction

For a database transaction T executed concurrently with other transactions in
some history, the problem discussed in this paper is to determine which is the
state ‘seen’ by T as its ‘input’ (i.e., the state from which T first reads data),
and which is the state that is partially determined by its ‘output’ (i.e., by the
writeset of T ).

For convenience, we shall from now on simply speak of ‘transactions’, al-
though we exclusively deal with database transactions. On the other hand, it
can be supposed that the issues discussed in this paper may bear relevance not
only for transactions in databases, but also for transactions in other applications
with concurrent processes.

The traditional approach for avoiding well-known anomalies of concurrent
transactions (dirty reads, lost updates, unrepeatable reads) is to protect all re-
sources accessed by a transaction T . Protection usually is achieved by locking
accessed resources from beginning to end of T . That way, a sufficient isolation
level of T is obtained. By isolating concurrent transactions, the history of their
execution becomes serializable. Serializability means that concurrently executed
transactions have the effect as of being executed in a one-by-one sequence, i.e.,
any interference between them that could be caused by their concurrency is
avoided.

However, for many applications, locking off resources means to block them
unnecessarily. For instance, read transactions that are only interested in the
? Partially supported by FEDER and the Spanish MEC grant TIN2006-14738-C02-01



current value of a locked data resource may be unduly delayed. Fortunately,
however, concurrent transactions of many applications may remain serializable
with suitably relaxed locking policies.

Depending on the application, even the serializability requirement can be re-
laxed sometimes, without incurring unwanted consequences. For instance, most
commercial database systems only offer ‘snapshot isolation’ for concurrent trans-
actions. That has the advantages of being easily implemented and of providing
faster throughput than total isolation, while providing a consistent view of some
state of the database to each transaction. The disadvantage is that the state seen
by concurrent transactions that run with snapshot isolation is not necessarily
the most recently committed one.

In theory and practice, it is often necessary to be precise about the states
related to concurrent transactions, e.g., for reasoning about their content, their
integrity, their accessibility, their chronology and their coordination. Thus, it
should be useful to be able to clearly distinguish between states that are snap-
shots (i.e., the values of the data items at any one point of time), states that are
committed or not, states that are seen as input by transactions and states that
are determined by the output of transactions.

In the literature, it is common to discuss ‘snapshots’, ‘committed states’,
and states ‘seen’ by transactions. Also, state-like phenomena like ‘spheres of
control’, ‘checkpoints’, ‘savepoints’ are addressed frequently. However, precisely
differentiating definitions of different kinds of states are mostly missing. This
paper, in particular its section 2, is an attempt to close that gap.

In section 3, we briefly address related work. In section 4, we conclude.
We assume a basic familiarity with databases in general [19], and in particular

with concurrent database transactions [2] [13].

2 Revisiting established notions wrt. concurrency

We revisit established notions and formalizations traditionally used in the liter-
ature on concurrent transactions in databases.

Drawing from [9, 2, 16], we introduce in 2.1 - 2.3, revised notions of resource
(a.k.a. data item), snapshot, committed state, i/o state, action (a.k.a. operation),
transaction, history (a.k.a. schedule) and serializability.

Our concurrency model does not recur on physical data items, nor on ‘ob-
jects’, nor on snapshots, nor on committed states, but on logical truth values of
relational tuples in i/o states.

2.1 Databases, Resources, States, Snapshots, Transactions

A database is a schema S of relational table structures over some language LS

[19]. Throughout the remainder, we assume that some arbitrary schema S is
given.

A resource is a unit of storable information. As in [16], the only resources
considered in this paper are the elements of the Herbrand base of LS .



A database state (in short, state) is a mapping from resources to {true, false}.
A state is partial if the mapping is partial.

Throughout, states are denoted by symbols D and convenient adornments
thereof. The value of a resource r in a state D is denoted by D(r).

For a state D and a resource r, we say that the value of r is known (true or
false) in D if D(r) = true or, resp., D(r) = false. Else, r is unknown in D.

Note that the definition of ‘state’ above abstracts away from any aspect of
time, sequence or dynamics. As opposed to that, the authors of [2] define that
“the values of the data items at any one time comprise the state of the database.”
We call such states snapshots. Examples of snapshots and other kind of states
are given later, in 2.2.

States are changed over time by actions, to be defined next.
An action is an operation that acts on precisely one resource, except begin

and end, as defined below, which act on no or, resp., possibly many resources.
Each action is executed atomically at one point of time. (We assume a suffi-

ciently fine-grained unbounded sequence of discrete time points at which actions
are executed.)

Typical actions are read and write. Two actions conflict if both act on the
same resource and one of them is a write.

A transaction is a finite set of actions that is partically ordered over time.
Each transaction T consists of precisely one begin, precisely one end of the form
commit or abort, and a finite set of access actions, each of the form read(r) or
write(r), where r stands for a resource. The begin (end) of T is earlier (resp.,
later) than each access of T . Conflicting actions in T are never executed at the
same time.

We may speak elliptically of a transaction T when in fact we have an execu-
tion of T in mind.

Distinguished examples of snapshots are the states at the time a transaction
T begins and, resp., ends, which we denote by Db

T and, resp., De
T .

To read a resource r means to query if r is true or false of the current state.
So, queries correspond to transactions that read the resources needed to return
answers. To write r means to either insert or delete r, i.e., effect a state change
such that r becomes true or, resp., false. For actions read(r) and write(r) of a
transaction T , we also say that T accesses (reads or, resp., writes) r. If T writes
r and commits at some point of time t, we also say that T acts on and commits
r at time t (t may remain unmentioned). Thereby, T confirms its last write to r.

For a transaction T , let CT denote the set of transactions that are concurrent
with T , i.e., that execute at least one action in the interval between the begin
and the end of T . In particular, T ∈ CT .



2.2 Histories, I/O states

Informally, a history is a possibly concurrent execution of transactions, i.e., ac-
tions of several transactions may be executed at the same or interleaved points
of time. (We assume a sufficiently fine-grained unbounded sequence of discrete
points of time that underlies all executions of actions.)

Formally, a history H of a set of transactions T is a partial order of the union
of all actions of all T ∈T, such that, for each T ∈T and each pair of actions
(A, A′) in T such that A is before A′ in T , A also is before A′ in H, and con-
flicting actions in H are never executed at the same time.

Note that, by this definition, histories are complete in the sense of [2], i.e.,
they contain each action of each T ∈T.

A long history be informally defined as a history that spans over an extended
period of time (typically, several hours, possibly days). Note that a long history is
not the same as a long transaction, nor a collection of long transactions. Rather,
all (or most) of the transactions in a long history may be of regular, relatively
short duration. Thus, the typical case of a long history is that it involves a large
number of transactions, the beginnings of ends of which partially overlap with
each other. Long histories typically occur in OLTP applications like on-line seat
reservation systems.

For convenience, we say that a transaction T is in H if H is a history of a
set of transactions T and T ∈T.

In general, we assume that histories are inclusive, i.e., for each transaction
T in H, also each transaction T ′ ∈CT is in H; otherwise, scheduling may not
consider all possible conflicts. Thus, histories may be arbitrarily long, to the
extent that the beginning of a long history may be forgotten or unknown, and
its end may be out of sight.

Distinguished snapshots at which no access takes place are the states at the
time of the earliest begin and the latest end in H, denoted by Db

H and, resp.,
De

H . De
H is called the final state of H.

For a resource r and a point of time t, the committed value of r at t in H
is defined as the value of r that has been committed most recently by some
transaction T in H. Thus, for the commit time tc of T , tc ≤ t holds, and no
transaction in H other than T commits r at any time in the interval [tc, t].

In concurrency theory, there are states that are not necessarily snapshots, i.e.,
the values of resources do not necessarily correspond to the same point of time.
Examples of such notions of states are, e.g., the ‘states seen by transactions’ [9],
‘global states’ [10], and ‘distributed snapshots’ [4].

Another example is the class of committed states. It is defined by the com-
mitted value of each resource at some time t in H. Note that, in general, the
committed state at time t is different from the snapshot at t.

Another example of states that are not necessarily snapshots is the class of
i/o states. They are partial, since transactions usually ‘see’ (access) only part of
the database. In 2.3, we use i/o states also for characterizing serializability.

For a transaction T and a resource r, the value of r in the input state Di
T of T

is the committed value of r immediately before T accesses r first. The value of r



in the output state Do
T of T is the value of r immediately after T accessed r last.

If a resource is not accessed by T , its values in Di
T and Do

T remain unknown.
Clearly, Di

T ⊆Db
T and Do

T ⊆De
T if T is executed in isolation. I/o states are

not necessarily snapshots, since they may not exist at any fixed point of time.
In particular, Di

T and Do
T may be different from Db

T or, resp., De
T . For instance,

a resource may be committed after the begin of T but before T accesses it first.
Or, a resource, after having been accessed last by a read operation of T , may be
written by some T ′ in CT before T ends. Also, Di

T and Do
T are not necessarily

identical to any committed state at any point of time.
For example, consider distinct resources r, r′ and a history H of transactions

T0 , T1 , T2 which begin at a time, then T0 inserts r and r′ at a time and
commits, then T1 reads r, then T2 deletes r and r′ at a time and commits, then
T1 reads r′ and commits. Clearly, r is true and r′ is false in Di

T1 = Do
T1 , which

is not a committed state at any time of H. Yet, in general, Di
T and Do

T are the
first and, resp., the last state ‘seen by’ T .

I/o states facilitate the modeling of long histories in ‘non-stop’ DBSs for
24/7 applications, where the initial or terminal committed states at the time
of the begin or the end of histories may not exist or may be out of sight. Also
the modeling of histories with relaxed isolation requirements is easier with i/o
states, since they do not necessarily coincide with committed states.

2.3 Serializability

The serializability of a history H (usually taken care of transparently by a DBS

module called scheduler) prevents anomalies (lost updates, dirty reads, unre-
peatable reads) that may be caused by concurrent transactions in H [2].

A history H is serial if, for each pair of distinct transactions T, T ′ in H
(and thus also for T ′, T ), the begin of T is before or after each action of T ′,
i.e., transactions do not interleave. Intuitively, a serializable history H “has the
same effect as some serial execution” of H, where the “effects of a history are the
values produced by the Write operations of unaborted transactions”, thus pre-
venting that actions of concurrent transactions would “interfere, thereby leading
to an inconsistent database” [2]. Anomalies are not the only possible cause of
integrity violation, and integrity sometimes is preserved in spite of anomalies.
Thus, serializability helps to avoid some, but not all possible integrity violations.

There are several definitions of serializability in the literature [21]. The fol-
lowing one generalizes view serializability [2], but still ensures that, for each
serializable history H, the same effects are obtained by some serial execution of
H.

A history H is called serializable if the output state of each transaction in
H is the same as in some serial history HS of the transactions in H such that
Db

HS = Db
H . For example, the history of T0 , T1 , T2 in 2.2 is not serializable.

In practice, less permissive but more easily computable definitions of seri-
alizability are used. Locking, time stamping or other transaction management
measures may be used for implementing various forms of serializability [9, 2].



3 Related work

Related work by [4] [10] concerned with difficulties of defining states in the
context of concurrency and distribution has already been mentioned in 2.2.

The rest of this section is written in anticipation of an application of the re-
vised concepts of concurrency presented above to the field of integrity checking.
All integrity checking methods that are described in the literature or are imple-
mented in database products claim to preserve integrity satisfaction whenever
the database is updated by some transaction T . Integrity satisfaction and viola-
tion is always defined with regard to some state. Hence, the following question
arises: Which are the states that are claimed to satisfy integrity in databases
with concurrent transactions?

In early work [12, 8, 14, 9, 1, 11], a distinction is made between integrity vio-
lations caused either by anomalies of concurrency or semantic errors. In [8, 14],
concurrency is not dealt with any further. In [12, 9, 1, 11], integrity is not looked
at in detail. Also in later related work, either concurrency or integrity is passed
by, except in [3, 20, 16]. These papers address the particular problem of integrity
satisfaction in the final state De

H of a history H, while ignoring the problem
of integrity guarantees for states De

T or Do
T of transactions T ∈H that do not

coincide with De
H .

In [3], Böttcher observes that integrity checks are read-only actions without
effect on other operations, possibly except abortions due to integrity violation.
Some scheduling optimizations made possible by the unobtrusive nature of read
actions for integrity checking are discussed in [3].

For write transactions, the parametrizable actions of which are specified
ahead of their execution, Martinenghi and Christiansen describe in [16] how
to augment transactions with locks and actions for simplified integrity checking,
so that their serializable execution guarantees integrity preservation.

The states that are guaranteed to satisfy integrity usually are the states ‘af-
ter the update’, often under the premise that integrity is satisfied in the state
‘before the update’. Such ‘before’ and ‘after’ states are clearly defined for trans-
actions executed in isolation, since then they coincide with Db

T and, resp., De
T .

However, as soon as isolation is compromised, it is not obvious which states can
be guaranteed to satisfy integrity.

Each transaction T usually is required to preserve the satisfaction of integrity
in the case that CT = ∅. Then, each serializable history of concurrent transac-
tions that comply with this requirement is guaranteed to preserve integrity from
‘before’ to ‘after’ states [9]. But, again, if serializability is compromised, then
such guarantees become questionable.

Even if isolation and serializability are not compromised, there is another
difficulty of applying methods for integrity preservation to concurrent transac-
tions: the input states of transactions do not necessarily include all resources
that have to be accessed by the integrity checking method. Hence, guarantees
made with regard to the i/o states of transactions become questionable if the
integrity constraints involve data that are not contained in the i/o states. Such



situations typically arise with transactions that update a table that is in a foreign
key relationship with some other table.

First steps to find answers to these questions are taken in [7].
Difficulties of identifying equivalent, i.e., mutually consistent states as seen by

concurrent transactions in replicated databases are discussed in [17]. Additional
difficulties of coordinating standard replication protocols with integrity checking
are addressed in [18] [15].

4 Outlook and Conclusion

We have defined states ‘seen by’ concurrent transactions as partial states called
i/o states. They typically contain unknown values.

For concurrent transactions and even more so for long histories, it is virtually
impossible to guarantee totally consistent committed states at all times. For i/o
states, the requirement of total consistency is even more difficult to comply with.
Thus, an inconsistency-tolerant approach to integrity checking is needed. Based
on i/o states and a recently introduced notion of inconsistency-tolerant integrity
checking [5, 6], we have scrutinized, restated and generalized, in an extended
draft of this paper, the classic result that integrity preserved in isolation is
sufficient for preserving integrity concurrently. Ongoing work is concerned with
a further elaboration and publication of that draft.

References

1. R. Bayer. Integrity, Concurrency, and Recovery in Databases. Proc. 1st ECI,
LNCS vol. 44, 79-106. Springer, 1976.

2. P. Bernstein, V. Hadzilacos, N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

3. S. Böttcher. Improving the Concurrency of Integrity Checks and Write Operations.
Proc. 3rd ICDT, LNCS vol. 470, 259-273. Springer, 1990.

4. M. Chandy, L. Lamport. Distributed Snapshots: Determining Global States of
Distributed Systems. ACM TOCS 3(1):63-75, 1985.

5. H. Decker, D. Martinenghi. A relaxed approach to integrity and inconsistency in
databases. Proc. 13th LPAR, LNCS vol. 4246, 287-301. Springer, 2006.

6. H. Decker, D. Martinenghi. Classifying Integrity Checking Methods with regard to
Inconsistency Tolerance. Proc. 10th PPDP, 195-204. ACM Press, 2008.

7. H. Decker, F. D. Muñoz-Escóı. Business Rules for Concurrent e-Commerce Trans-
actions. Proc. 4th DEECS, IEEE CS, to appear, 2009.

8. K. Eswaran, D. Chamberlin. Functional Specification of a Subsystem for Data Base
Integrity. Proc. 1st VLDB, 48-68. ACM Press, 1975.

9. K. Eswaran, J. Gray, R. Lorie, I. Traiger. The Notions of Consistency and Predicate
Locks in a Database System. CACM 19(11):624-633, 1976.

10. M. Fischer, N. Griffeth, N. Lynch. Global States of a Distributed System.
IEEETrans. SoftwareEng. 8(3):198-202, 1982.

11. G. Gardarin. Integrity, Consistency, Concurrency, Reliability in Distributed Data-
base Management Systems. In C. Delobel, W. Litwin (eds), Distributed Databases,
335-351. North-Holland, 1980.



12. J. Gray, R. Lorie, G. Putzolu. Granularity of Locks in a Shared Data Base. Proc.
1st VLDB, 428-451. ACM Press, 1975.

13. J. Gray, A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

14. M. Hammer, D. McLeod. Semantic Integrity in a Relational Data Base System.
Proc. 1st VLDB, 25-47. ACM Press, 1975.

15. Y. Lin, B. Kemme, R. Jiménez-Peris, M. Patiño-Mart́ınez, J. E. Armendáriz-́Iñigo:
Snapshot Isolation and Integrity Constraints in Replicated Databases. To appear
in Transactions on Database Systems, 2009.

16. D. Martinenghi, H. Christiansen. Transaction Management with Integrity Check-
ing. Proc. 16th DEXA, LNCS vol. 3588, 606-615. Springer, 2005.

17. F. D. Muñoz-Escóı, J. M. Bernabé-Gisbert, R. de Juan-Maŕın: Surveying Correct-
ness Criteria in Replicated Databases with Snapshot Isolation. Proc. 17th JCSD,
Universidad Politécnica de Valencia, 2009.

18. F. D. Muñoz-Escóı, M. I. Ruiz-Fuertes, H. Decker, J. E. Armendáriz-́Iñigo, J. R.
González de Mendivil. Extending Middleware Protocols for Database Replica-
tion with Integrity Support. Proc. OTM 2008, Part I, LNCS vol. 5331, 607-624.
Springer, 2008.

19. R. Ramakrishnan, J. Gehrke. Database Management Systems, 3rd edition.
McGraw-Hill, 2003.

20. A. Silberschatz, Z. Kedem. Consistency in Hierarchical Database Systems. JACM
27(1):72-80, 1980.

21. K. Vidyasankar. Serializability. To appear in L. Liu, T. Özu (eds), Encyclopedia of
Database Systems. Springer, 2009.


