Providing Read Committed Isolation Level in
Non-Blocking ROWA Database Replication
Protocols*

J. M. Bernabé-Gisbert, J. E. Armendéariz-Inigo, R. de Juan-Marin, F. D.
Munoz-Escofi

Instituto Tecnolégico de Informética
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia, Spain
{jbgisber, armendariz, rjuan, fmunyoz}@iti.upv.es

Abstract. Total order ROWA strategies are widely used in replicated
protocol design. Normally, these protocols provide higher isolation guar-
antees like Serialisable or Snapshot Isolation but, for some applications,
a more permissive isolation level like Read Committed fits better. Some
centralised database management systems provide Read Committed as a
default isolation level but in replicated systems it is rare to find proposals
and systems supporting it. In this paper we extend the notion of Read
Committed to a replicated environment, giving the necessary theoretical
background to construct Read Committed ROWA database replication
protocols.

1 Introduction

Since the starts of distributed and replicated database theory, Serialisable isola-
tion level has been the main objective in concurrency control works. In the last
half of the nineties, Snapshot Isolation (SI in the sequel) has also grown as a
good isolation level in replication protocols since provides isolation guarantees
near to serialisable but allows to develop better replication protocols in terms
of performance due to its intrinsic optimistic orientation. Unlike serialisable, SI
avoids the use of read locks, which improves performance in applications with a
higher reads rate, something typical in most web applications.

However, in some applications it is required even less consistency than the
one already provided by SI, since their main goal is to achieve a better per-
formance in terms of response time. As an example, in web applications like
street directories or news portals, users only can read information updated only
by administrators or especial content provider users. In this case, normal users
transactions are read-only and never will fall in phenomena involving their writes

* This work has been partially supported by FEDER and the Spanish MEC under
grant TIN2006-14738-C02.

like lost update [1] (r1(x)...wa(z)...w1(x), T1 modifies x without seeing T5 up-
date). Seeing information a bit older or seeing updates between queries is also
normal and, in some cases, even expected (for example, in a latest news list).
In these environments, weaker isolation levels like Read Committed (RC in the
sequel) make sense and this is the reason why it is normally supported by cen-
tralised database management systems (DBMS in the sequel). In some of them
is in fact the default isolation level provided [2].

Unfortunately, few works have been done about providing RC isolation level
in distributed environments ([3], [4]) and, as far as we know, only appears as a
part of a more general study about isolation levels in DBMSs.

In this paper we give a new RC definition, named Loose Read Committed
(LRC), between Berenson [1] and Adya [3] ones in terms of avoided phenomena.
We define also Generalised Loose Read Committed (GLRC) isolation level defini-
tion as a relaxed version of LRC useful in replicated environments. We also proof
the equivalence between Adya PL-2 and GLRC isolation levels and give the nec-
essary background to provide LRC and GLRC in a replicated setting, defining
the necessary concepts of LRC-equivalence, GLRC-equivalence, one-copy LRC
and one-copy GLRC. At the end, we give some guidelines to provide LRC and
GLRC in the most typical database replication schemes, defined in [5], giving
special attention to ROWA certification and weak-voting. All our work has been
influenced by previous works like [3] or [6], that were centred in SI and Gener-
alised SI.

The rest of the paper is divided as follows. In Section 2 we give some necessary
definitions used in the rest of the document. Section 3 presents LRC definition.
The notions of one-copy equivalence in LRC are introduced in Section 4. Section
5 introduces GLRC and translates the concept of one-copy equivalence to this
isolation level. In Section 6, we talk briefly about providing LRC and GLRC in
the most used database replication protocol schemes [5]. Finally, conclusions are
presented in Section 7.

2 Basic Definitions

In this work, the database is composed by a set of items. An item x can be read
(r(z)) and written (w(z)).

The database is accessed by way of transactions which are issued by user
applications. A transaction is composed by a sequence of read and write opera-
tions and a commit ¢ or an abort a, which must be always the last one. Given
a transaction T;, r;(z), w;(z), ¢; and a; represent a T; read, write, commit and
abort operations, respectively. In terms of the notation used in this paper, we
will use o; to represent a T; operation without specifying its type. A T; read
of the last modification performed by T} on item z is represented as r;(z;).

ri(2;,1) represents the read by T; of the 1-th modification of + made by transac-
tion 7}. If no item index is specified, the read is over the last item value written
by any transaction before the present read. With w;(z;) we represent the final
modification of x made by T; and w;(z;;) the 1-th one. Formally:

Definition 1 (Transaction) A transaction over a set of operations O is a total
order < which:

celT VaeT

ceTiffagT
IfceTNYo#£ceT,o<c
IfaeT No#taeT, 0<a

Given 01,09 € T, 01 < 02 V 03 < 01

A committed transaction is a transaction whose final operation is a commit.
In the same way, an aborted transaction is a transaction which ends with an
abort.

Definition 2 (History) A history H over a set of transactions T =Ty, ..., T,
represents a possible execution of T. Formally, a history is a partial order <pg
where:

— For every T; € T and every o; € T;, 0; € H.
— For every T; € T and every 01,040 € T; If 01 < 040 € Ty, 051 <pg 0i2 € H.
— Ifri(z;) € H then w;(x;) € H ANwj(x;) <g ri(z;).

3 Read Committed Definitions

3.1 Previous Definitions

Since ANSI proposed its SQL isolation level definitions, some authors have pro-
posed their own ones trying to eliminate ANSI weaknesses as long as its strengths
are kept. One of the most referenced works is the revision made by Berenson
et al. [1]. This work avoids the ambiguities of ANSI definitions at the cost of
losing implementation independence since their definitions were based on lock-
ing techniques. To solve this, Adya et al. [3] proposed a new set of definitions
in his thesis trying to be precise and implementation independent at the same
time. To do that, Adya defines a new kind of dependency graph (named Direct
Serialisation Graph), an extension of the Serialisation Graph used by Bernstein
in [7] , to represent dependencies between transactions in histories. In Adya’s
work, the equivalent isolation level to RC was PL-2. Actually, this level is a
bit more relaxed than RC because allows a transaction to see a non-committed
value, only if it belongs to a transaction that will eventually commit. In PL-2, a
transaction can also read older item values instead of the latest one, not like in
Berenson RC definition. For example, the following history:

w;j(x5) wi(zr) 7i(75) ¢j ek ¢

Is not a valid RC history since T; read loses T}, « update and the value read
belongs to Tj, which has not committed at the time the read is performed.

We have taken Adya’s isolation level PL-2 and redefined it avoiding the use of
graphs. This allows us to differentiate two isolation levels: LRC and GLRC. The
first one represents the classic isolation level supported by centralised DBMSs
where a read over an item sees its last value written at the time the read is
performed. In GLRC we allow a transaction to see an old value of an item so, in
this case, is equivalent to Adya’s PL-2. This is useful in replicated environments
because a node can start a transaction before applying writesets of previous
transactions already executed in other nodes ([6]). It is important to notice that
LRC is a particular case of GLRC.

3.2 Loose Read Committed definition

Before introducing the LRC definition, we need to introduce some concepts.
Given a history H over a set of transactions 7', given 13, T},T}, € 1 and given
an item « of the database:

Definition 3 (reads from) T; reads from T if r;(x;) € H

Definition 4 (overwrites) T; overwrites T; if w;(z) € H ANw;(xz) € H A
w;(z) <g w;i(r) A Pwy(z) € Hiw;(z) <y wi(z) <pg wi(z)

Definition 5 (depends on) T; depends on T if T; reads from T; or T; over-
writes Tj.

Therefore, we can then establish a partial order between transactions in a
history by using the depends on relation:

Definition 6 (dependency order) Given a history H over a set of transac-
tions T, given T3, T; € T, we say that T; — T; if T; depends on 1. By the
transitive rule, if T; — T; and Ty, — T} then T, — T;.

With these definitions in mind, we can give a formal LRC history definition.

Definition 7 (LRC History) A history H over a set of transactions T is a
LRC History if, given T3, T; € T, these conditions hold:

1. If T; reads from T and aj € Tj:a; € T;.
2. If ri(zj,) € H,Bwj(zjm) € Him > L.
4. If ri(w;) € H, Awy (1) such that wj(z;) < wg(wg) < 7i(7;).

The first condition prevents a transaction to read an item value written by an
aborted transaction to avoid dirty reads. The second condition ensures that all
reads are always performed over final transaction values and never over interme-
diate ones. In the third condition, all dependencies within two transactions must
follow the same direction. This forces LRC-histories to serialise transactions by
its reads from and overwrite dependencies. Note that this simulates locking RC
effects without being dependent on locking techniques. Finally, condition four
remarks that every read over any database item must always see its last modi-
fication performed by any transaction.

LRC definition is very close to RC, as defined in [1], but is not exactly the
same. In ours, a committed transaction must always see item values written by
transactions which will eventually commit. In [1], a transaction can only see
committed transactions values and an attempt to read a non committed one
results in a lock of such transaction until commits or aborts. Basically, this is
the difference between the loose and the strict Dirty Read phenomenon inter-
pretation in [1]. For example, the following history:

H1 = ri(wo) wi(xi) i (i) r5(y0) ri(yo) ¢ wi(yi) ci

is forbidden in RC but is allowed in LRC isolation level. Suppose that x¢g =
50,y9 = 50, T; writes z; = 10,y; = 90 and exists the integrity constraint
ic: x4+ y = 100. In H, Tj reads x; = 10 and yo = 50 and sees an inconsis-
tency in ic since x; + yo = 60 # 100.

This phenomenon could seem important enough to justify the use of RC in-
stead of LRC but there are at least two reasons against this thought. First of all,
RC avoids H1 but does not avoid the following one, which has the same effects
(i.e., transaction T} reads values yo and z;, being 50 and 10, respectively, and
violating the IC requiring z + y = 100):

H2 = rj(yo) ri(xo) wi(xi) 7i(yo) wi(ys) cirj(x:) ¢

In fact, similar examples with integrity constraint violations can be found in
practically all isolation levels different from a serial execution in a centralised
DBMS.

On the other hand, this work is addressed to replicated environments (See
Section 8) and every node is supposed to have a local DBMS providing RC.
Therefore, H1 will be avoided in local nodes and hence in the replicated system.

We think that this kind of phenomenon must be taken into account in ap-
plications that need high isolation guarantees as, for example, bank account
managers. This kind of applications needs higher isolation levels like Snapshot
Isolation or Serialisable. This paper is addressed to a kind of applications where

these integrity constraints are not normally used and is preferable avoid locks in
order to increase performance.

Until now, we have defined some useful general database concepts. From now
on, we are going to apply and extend these concepts to replicated environments
in order to present GLRC as an isolation level near to LRC useful in such envi-
ronments and give some guides about implementing LRC and GLRC in database
replication protocols.

4 Generalised Loose Read Committed

As it has seen before, the single difference between LRC and GLRC is the fact
that GLRC allows a transaction to read an older version than the latest one at
the time the read operation is performed.

Definition 8 (GLRC History) A history H over a set of transactions T is
Generalised Loose Read Committed (GLRC) iff, given T;, T; € T and an item
x of the database:

1. If T; reads from T and a; € Tj:a; € T;.
2. If ri(zj,) € H,Bwj(zjm) € Him > L.
3. If T; — T; then ~(T; — T).

Note that LRC definition 7 is GLRC one plus condition four.

5 Replicated System Model

We suppose a fully replicated system composed by N nodes interconnected by
a reliable network. We suppose the existence of a group communication service
with atomic total order multicast support. Every node has a local copy of every
item in the database.

A history H represents the user view of the execution of transactions. From
the server side every replica N, views its own execution and hence its own history
H,. To decide where all node executions drive to a global Loose Read Committed
equivalent execution we need to introduce the concept of one-copy Loose Read
Committed equivalence.

6 One-Copy Loose Read Committed equivalence

In a fully replicated environment, every node stores a copy of every item. When
a transaction is executed, at least its writes must be eventually propagated to
all replicas. Its reads must be performed at least in one replica, maybe in more.

In the first case, we have a Read One Write All strategy (ROWA), commonly
used in replicated environments due to its good performance [8] since read-only
transactions can be executed locally in one of the nodes without any further
communication.

We represent as rf(z), wf

%(x), ¢ and a? a read, write, commit and abort
operation of a given transaction T; executed in node N,. A transaction 7T; is

local to node N, if T;’s reads are performed in N,.

We define T} as the transaction composed by the operations of T; executed
in node N,. Formally:

Definition 9 Given a transaction T; and a node N,, we define T* as a trans-
action composed by:

If wi(z) € T;, wi(x) € TP

If ri(x) € T; AT is local to Ny, re(x) € TF.

If c; €Ty, ¢ in T}

— Ifa; €Ty, af in T},

If 0i1 < 0i2 in T, and 041, 0i2 € T} then o}y < ol inT}

We can define a new kind of histories in a similar way as Bernstein does in [7].
In our work these histories will be named as Replicated Histories or R-Histories.

Definition 10 (R-History) An R-History H, over a transactions set T and a
nodes set N is a partial order <, where:

— For every T} of T; € T and every of € T}, of € H.,.
— For every T of T; € T and every ofy,05 € T If o}y < ofy € T, oy <,
a
0fy € H;.
= Ifri(x;) € Hy then it exists w§(x;) € H, such that w§(z;) <, v{(z;).

We say that an R-History is one-copy loose read committed (1C-LRC) if it is
LRC-equivalent to an LRC history. To define LRC-equivalence we use as basis
the view equivalence definition made by Bernstein in [7].

Definition 11 (LRC-equivalence) Given an R-history H, over N and T and
a LRC history H, H, is LRC-equivalent to H over T if:

— For every node N, € N, of T} reads from T5" in H.,, T; reads from T} in H.
— For every node N, € N, if wi(x) is the last write in H,, w;(x) is the last
write in H.

Notice that H is a LRC history so all reads over an item see always its last
update made before the read in <y order.

7 One-Copy Generalised Loose Read Committed
equivalence

We can also extend the one-copy loose read committed definition to one-copy
generalised loose read committed (1C-GLRC) extending also LRC-equivalence
definition to GLRC-equivalence by defining H as a GLRC history instead of a
LRC one. Formally:

Definition 12 (GLRC-Equivalence) An R-History is one-copy generalised
loose read committed if is GLRC-equivalent to a GLRC history. Given an R-
history H, over N and T and a GLRC history H, H, is GLRC-equivalent to H
over T if:

— For every node Ny € N, if T{" reads from T} in H.,, T; reads from T; in H.
— For every node N, € N, if wi(x) is the last write in H,, w;(x) is the last
write in H.

8 Providing Read Committed in Some Typical Database
Replication Techniques

At this point, it has been introduced how to evaluate whether a replicated
database history fulfils 1C-LRC or 1C-GLRC. In a replicated system, the way
transactions are executed, and hence, histories are built, are managed by a repli-
cation protocol. In the literature there have been lots of database replication
protocol proposals. As it has been pointed out before, the most effective way to
achieve database replication is by ROWA protocols. In the same way, there has
been may attempts to classify them according to several factors [9,10,5]: server
architecture, update propagation, replica interaction, transaction termination,
... In this section, we will follow the database replication schemes presented in

[5]-

We will always name as delegate server or Ny the node to which the client
sends the transaction. We also suppose in every node a local DBMS which pro-
vides (locally) RC isolation level.

8.1 Active Replication

With Active Replication, once the delegate server receives a client transaction,
propagates it in a message using total order broadcast. Once a node delivers
the message, executes the transaction and, if it is the delegate server, sends the
response to the client.

First of all, we know that all local DBMSs provide the RC level. By definition
of active replication, we also know that all messages are delivered in the same
order to all replicas and all of them execute transactions in delivery order. So,
given a set of transactions 7', to proof that every node sees the same reads from

dependencies and obtains the same final values, we only need to ensure that every
node DBMS executes the transaction in a deterministic way, that is, given the
same set of transactions provided in the same order the result is always the same.

It is easy to prove that if every node executes the same transactions in the
same order and the local DBMS of every node is deterministic and provides RC,
all nodes histories will be RC and equivalent among them.

Read-only transactions can be executed only in its delegate replica without
being broadcast to the rest of the nodes. LRC guarantees are ensured to these
transactions since the delegate node local DBMS provides RC and no consistency
checks have to be made between nodes because no writes are performed.

8.2 Primary Copy Replication

In Primary Copy Replication, all transactions are executed in the same delegate
server, named primary node. Once a transaction is executed and commits, its
writeset is broadcast to the other nodes, named secondary nodes. In any case,
the response is forwarded to the client by the primary node. Since all local
DBMSs provide RC, the primary copy clearly provides the same level. Total
order broadcasts and applying writesets in delivery order ensures consistency
in secondary nodes. Since all broadcast messages have the primary node as the
sender, providing total order is as simple as numbering messages in incremental
order.

8.3 Certification-Based Replication

In this case, the delegate server executes locally the transaction operations until
a commit is requested. Before applying it, the node collects all written items
(writeset) and all accessed items (readset) in order to broadcast them to all
nodes. Once a node receives a transaction writeset and readset, it tries to certify
them against previous committed ones to decide if the former must commit or
abort. Since all nodes have the same information, every node will take the same
decision without any consensus phase. In a non delegate server, the writeset of a
committing transaction must be applied. In the delegate server, the transaction
is committed and the result returned to the client.

But, what must our protocol do to produce LRC histories? And GLRC?
Since all nodes fulfil locally RC guarantees and all nodes deliver the readsets
and writesets in the same order, if we apply the writesets in the same delivery
order we will ensure that all overwrite conflicts are solved in the same way in all
nodes. To do that, every delivered transaction must have higher priority than
local transactions in the local database. If a writeset conflicts with a local trans-
action then the last one must be aborted in the local DBMS. If this transaction
has already sent its writeset and readset, they will be eventually delivered and
certified, so the local abort does not need to be transmitted to the client. In

other cases, the client must be informed.

We also need to ensure that all reads from conflicts are solved in the same
way in all nodes. Since the reads are performed only in the delegate server, we
do not need to check if all nodes have the same reads from dependencies, like in
active replication, but we need to ensure that every read sees the last applied
update. In GLRC this last condition is not necessary, which is an important
difference, as we can see in the following example.

Suppose that a transaction 7; starts in a node IV,, reads T; modification of
item 2 and requests its commit. Since local DBMS provides RC, z; is the last
update of x performed in N, at the time T; reads it. Before T; writeset and
readset are delivered, transaction Tj’s ones arrive modifying item . Since all
nodes apply writesets and readsets in the same order, in all nodes T} will be
applied after T; but before T;. So, T; has lost T},’s x update.

In GLRC, this effect is allowed so we can guarantee GLRC ensuring RC in
every local DBMS and applying the writesets in the same order they are deliv-
ered. Notice that readsets are not needed at all so we do not have to broadcast
them.

In LRC a transaction is not allowed to lose updates, so every node must check
every transaction read to ensure that has not seen older values and abort it if
this happens. To do that, the protocol needs every transaction readset and they
must be broadcast. In order to check if some read has been made over an older
value, we can include in the readsets and writesets the versions read and written.
This implies a global version management support in our database replication
protocol. To detect if some read is over an older item version, we must check if
some previous writesets have established a newer one over the same item.

8.4 Weak Voting Replication

As we have seen, the certification technique is based on broadcasting writesets
and readsets to allow every node to check conflicts by itself in a certification step.
In weak voting only writesets are broadcast so reads are only seen in the delegate
node and hence only this node can detect a transaction reads from dependencies.

Again, overwrite dependencies can be guaranteed applying transactions in
the same order they are delivered. Like in certification, reads from guarantees
are also ensured by local DBMSs except by the fact that a transaction can lose
updates. Since GLRC allows losing updates, with this isolation level we do not
have to do anything more.

On the contrary, in LRC losing updates is not allowed and we need to take
care about it. Unfortunately, in this case every node does not have every trans-
action readset (readsets are not broadcast) and only every transaction delegate

server knows its reads. Therefore, if the delegate server detects that some trans-
action 7T; has lost an update, it must advise the rest of the nodes with an abort
message before they apply T; writeset. In other case, a T; commit message must
be sent. In consequence, once a writeset is delivered, every node must wait until
a confirmation or abort message —associated to this writeset— arrives from the
delegate server therefore a new broadcast is necessary to provide LRC.

Notice that a certified-based GLRC database replication protocol is also a
weak-voting one and vice versa. Note that the single difference between these
two schemes resides in how reads over older item values are detected and just
this feature is not needed in the GLRC isolation level. This implies an impor-
tant simplification on the normal weak voting behaviour. When a weak voting
protocol is used for providing the serialisable isolation level, a second multicast
(reliable but without total order) is always needed in order to notify whether
the transaction has been committed or aborted. For GLRC, that multicast is
not needed, since no information regarding readsets is needed in order to decide
how a transaction should be terminated.

9 Conclusions

In this paper, we have presented the new Generalised Loose Read Committed
isolation level, a weaker version of RC useful in replicated environments since a
read is allowed to see older versions. We have also presented the necessary one-
copy equivalence for LRC and GLRC as a basis to deduce where some database
replication protocol fulfils these isolation levels restrictions. Finally, we have used
this knowledge to define the steps to be followed to obtain LRC or GLRC with
the most typical database replication protocol schemes defined in [5].

10 Appendix 1: PL-2 and GLRC equivalence

The PL-2 isolation level was presented by Adya in [3]. The Adya isolation level
definitions were based on DSG graphs. In a DSG graph, every vertex is a com-
mitted transaction and every edge represents some kind of dependency between
its two vertices.

Definition 13 (DSG dependency edges) There are three kinds of depen-
dencies:

— Direct read-dependency: T; directly read-depends on T} if reads some item
value written by T).

— Direct write-dependency: T; directly write-depends on Tj if overwrites some
item value written by T}.

— Direct anti-dependency: T; directly anti-depends on T if overwrites some
item value read by T}.

Direct read-dependency and direct write-dependency are considered as de-
pendency edges. Notice that these definitions are analog to reads from and over-
write relations we have defined previously (page 4).

Definition 14 (PL-2 isolation level) PL-2is defined as the level which avoids
the following three phenomena:

— Gla: Aborted Reads: a committed transaction T; reads some item value writ-
ten by an aborted transaction T}.

— G1b: Intermediate Reads: a committed transaction T; reads some item value
written by T; which is not its final item modification.

— Glec: Circular Information Flow: if a history H contains a directed cycle
consisting entirely of dependency edges.

Theorem 1 Given a history H, H is a PL-2 history iff is also GLRC.

proof 1: A GLRC history H is also a PL-2 history. By absurd reduction,
we suppose the existence of at least one GLRC history H which is not PL-2.
G1la and G1b are avoided since they are identical to GLRC conditions 1 and 2
(page 6). Hence, G1c phenomena must appear since we have supposed that H
is not PL-2. G1le rises when DSG(H) has a dependency cycle [3]. A dependency
cycle is composed only by dependency edges. As we said before, if a transaction
T, directly read-depends on T} then T, reads from T3. In the same way, if Ty,
directly write-depends from T}, then Ty overwrites Tj. So, taking randomly two
transactions 7; and Tj of the dependency cycle, it exists a dependency path
between T; and T; (T; # T;) and another dependency path between T; and T;.
Since every edge of the path is a depends on relation and applying transitivity,
T; — T; and T; — T;, which contradicts condition 3 of GLRC.

proof 2: A PL-2 history H is also a GLRC history. By absurd reduction,
suppose that exists a PL-2 history which is not GLRC. Again, H clearly fulfils
1 and 2 GLRC definition conditions (page 6) since they are equivalent to PL-2
Gla and G1b phenomena. As we suppose that H is not GLRC, 3 must not be
fulfilled in H so there are at least two transactions T; and T} such T; — T} and
T; — Tj;. By definition of — partial order, if 7; — T; then either T; depends
on T} or exists some Tj:T; — T}, and T; depends on Tj. We can also apply the
same reasoning to 7; — T}, so we finally have a path of dependencies among a set
of transactions starting with 7; and ending with 7. Remember that a depends
on relation must be an overwrite or a reads from one. reads from is equivalent
to directly read-depends relation defined by Adya, and overwrite is equivalent
to directly write-depends. So, we have a dependency edges path between T; and
T;. As T; — T; also, we can construct another dependency path from 7} to T3,
which closes a dependency cycle in DSG(H) and Glc¢ appears. So, H is not a
PL-2 and we have reached a contradiction.

References

10.

Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E., O’Neil, P.: A cri-
tique of ANSI SQL isolation levels. In: Proc. of the ACM SIGMOD International
Conference on Management of Data, San José, CA, USA (1995) 1-10

. PostgreSQL Global Development Group: PostgreSQL 8.2.4 documentation (2007)

Accessible in URL: http://www.postgresql.org/docs/8.2/interactive/index.html.
Adya, A., Liskov, B., O'Neil, P.: Generalized isolation level definitions. In: IEEE
Intnl. Conf. on Data Engineering, San Diego, CA, USA (2000) 67-78
Bernabé-Gisbert, J.M., Salinas-Monteagudo, R., Irin-Briz, L., Munoz-Escoi, F.D.:
Managing multiple isolation levels in middleware database replication protocols.
In: Proc. of the 6th Intnl. ISPA Conf., Sorrento (Naples), Italy, Springer (2006)
511-523

Wiesmann, M., Schiper, A.: Comparison of database replication techniques based
on total order broadcast. IEEE Trans. Knowl. Data Eng. 17(4) (2005) 551-566
Elnikety, S., Pedone, F., Zwaenepoel, W.: Database replication providing gen-
eralized snapshot isolation. In: 24th IEEE Symposium on Reliable Distributed
Systems, Orlando, FL, USA (2005) 73-84

Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

Jiménez-Peris, R., Patifio-Martinez, M., Alonso, G., Kemme, B.: Are quorums an
alternative for data replication? ACM Trans. Database Syst. 28(3) (2003) 257-294
Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The dangers of replication and a
solution. In: SIGMOD Conference, Montreal, Canada (1996) 173-182

Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., Alonso, G.: Database repli-
cation techniques: A three parameter classification. In: SRDS. (2000) 206-215

