
MADIS-SI: A Database Replication Protocol with Easy Recovery

J.E. Armendáriz-Iñigo1, J.R. Garitagoitia2

F.D. Muñoz-Escoı́1, J.R. González de Mendı́vil2
Technical Report ITI-ITE-06/05

1 Instituto Tecnológico de Informática 2 Dpto. Matemática e Informática
Universidad Politécnica de Valencia Universidad Pública de Navarra

Camino de Vera s/n Campus de Arrosadı́a s/n
46022 Valencia, Spain 31006 Pamplona, Spain

Ph./Fax: (+34) 96 387 72 37 / 72 39 Ph./Fax: (+34) 948 16 95 39 / 95 21
{armendariz, fmunyoz}@iti.upv.es {joserra, mendivil}@unavarra.es

July 12, 2006

Abstract
In this paper we propose an eager update everywhere replication protocol, called MADIS-SI, with constant interaction for

a middleware architecture. It exchanges only one message per transaction and its commitment is decided by a distributed
certifier located at each replica. The delivery of these messages must be total ordered which is performed by a Group
Communication System (GCS). All committed transactions are stored in a sequencer that permits us to define a recovery
protocol and a garbage collector. Finally, we provide a correctness proof of the protocol as a whole.

1 Introduction
Database replication is a very attractive way for enterprises in order to increase their performance and tolerate node failures.
These advantages imply the price of maintaining data consistency. Traditionally, database replication has been achieved by
the modification of the DBMS internals, such as [4, 5, 19, 16, 22]. This approach presents good performance but lacks of
compatibility between different DBMS vendors. The alternative approach is to deploy a middleware architecture that creates
an intermediate layer that features data consistency. The idea is that the database replication system may be used following the
JDBC style of existing applications, making totally transparent the details of replication for final users. However, one of the
major drawbacks of the middleware approach, is that the replication module has (in general) to re-implement many features
that are provided by the DBMS. Besides, the original database schema has to be modified with standard database features,
such as functions, triggers, stored procedures, etc. [26], in order to manage additional metadata that eases replication. This
alternative introduces an additional overhead that penalizes performance but it permits to get rid of DBMSs’ dependencies.
Hence, the goal is to design a system that penalizes as less as possible, e.g, using triggers and stored procedures or accessing
logs.

These previous solutions assumed that each node contains a DBMS providing a serializable isolation level (mainly a Two
Phase Locking (2PL) [4] DBMS) or a Snapshot Isolation (SI) level [3] that with the proper design of the application may
achieve serializable behavior [12, 11]. Thus, it can be ensured, the strongest correctness criterion for transactional access
in replicated data which is 1-Copy-Serializable (1CS) [4]. 1CS implies a serial execution over the logical data unit although
there are many physical copies. Replication protocols are specified in order to ensure data consistency. Database replication
protocols have been classified according to [14]: who can perform updates (primary copy [30] and update everywhere [20,
22]) and the instant when a transaction update propagation takes place (eager [5] and lazy [27, 29]). In eager replication
schemes, updates are propagated inside the context of the transaction. On the other hand, lazy replication schemes follow
the next sequence: update a local copy, commit the transaction and propagate changes to the rest of available replicas. Data
consistency is straightly forward by eager replication techniques although it requires extra messages. On the contrary, data

copies may diverge on lazy schemes and, as there is no automatic way to reverse committed replica updates, a program
or a person must reconcile conflicting transactions. Regarding to who performs the updates, the primary copy requires all
updates to be performed on one copy and then propagated; whilst update everywhere allows to perform updates at any
copy but makes coordination more complex [31]. Another parameter considered for replication protocols is the degree of
communication among sites [31]: constant interaction, where a constant number of messages are exchanged between sites for
a given transaction, and linear interaction, where a site propagates each operation of a transaction to the rest of sites. The last
parameter is how a transaction terminates [31]: voting, when an extra round of messages are required to coordinate replicas
such as the 2-Phase-Commit (2PC) [4] protocol or non voting, a site decides on its own whether a transaction commits or is
rolled back, such as a certifier [23, 11]. Conclusions derived from [14] state that the best solution for fixed networks is the
development of eager update-everywhere replication protocols with a fixed number of messages exchanged per transactions.
Hence, several replication protocols were proposed following these hints and the Read One Write All Available Approach
(ROWAA) [5, 20, 26, 1] all of them providing 1CS.

The big problem with 1CS is that read operations may become blocked (some protocols has to propagate readsets and is
more likely to become involved in a distributed deadlock). Some authors [26] relax this fact, queries (read only transactions)
are executed only at the site they are submitted. Queries are executed using SI so that they do not interfere with updates. The
potential blocking of read operations is not very attractive for web applications with workloads made of large fractions of
readonly transactions, i.e. those resulting from the generation of dynamic Web content. In [11] the conventional SI theory
is revised to cater for this isolation level in replicated databases, where read operations may not “see” the latest system
snapshot1. Hence, a transaction can observe an older snapshot of the database but the write operations of the transaction are
yet valid update operations for the database at commit time; this states the definition of Generalized SI (GSI). In GSI, a read
operation may never become blocked. Furthermore, two certifier-based algorithms (centralized and distributed) are proposed
in [11] that are the milestone of the replication protocol stated in this paper.

SI replication protocols have been proposed for a middleware architecture [23]. They propose a new correctness crite-
rion One Copy SI (1CSI), where a distributed certified replication protocol is proposed, where transactions performing read
operations may become blocked at the beginning of the transaction (never during its lifetime), while a write set (which it is
extracted from the write ahead log) is being applied but permits the application of concurrent write sets as long as they do not
conflict. As there is no way to access the DBMS internals, an application of a certified remote write set may be rolled back
by the DBMS (it may write/write conflict with a local transaction) and must be reattempted until it is finally committed.

In this paper, we propose an evolution of the distributed certifier algorithm proposed in [11], MADIS-SI, where all replicas
perform the certification test. Each database replica maintains a version number (v, initially set to zero) and a sequencer,
containing 〈v, transaction id, write set〉 tuples. At the start of a transaction, the DBMS provides the transaction with a
snapshot equal to its current database version, and assigns to the transaction a snapshot version. Reads and writes execute
locally against this snapshot, without any communication. When a read-only transaction completes, nothing further needs
to be done. When an update transaction completes, it needs to be certified to commit successfully. MADIS-SI total-order
multicasts the write set of the transaction to the rest of nodes. The delivery of this message starts the certification process
which consists of checking that there are no write/write conflicting transaction already committed whose version number are
higher than the snapshot version of the already delivered transaction. All local write/write conflicting transactions are rolled
back and the write set is applied (no other write operation may be performed while a write set is being applied). Thus, we do
not have to reattempt the application of write sets. However, some special mechanism for conflict detection and concurrency
control at the middleware layer with a minimal help from the underlying DBMS. This permits an easy detection of write set
conflicts in the middleware and makes some optimizations possible when we are programming database replication protocols
at that layer. This feature will be also outlined in this paper.

Regarding to node failures and its recovery, MADIS-SI reads the last version from the disk of the rejoining node. Then, it
sends the version of that snapshot to a given recoverer node to obtain the most recent updates which are applied in the same
way they were committed. Besides, MADIS-SI includes a mechanism for garbage collection of the sequencer, each replica
periodically sends (each time a transaction is committed) its version number to the rest of replicas. Whenever, the minimum
version of all nodes is changed, then it can be removed from the sequencer, the write sets associated to versions less than the
minimum version.

We provide the correctness proof for MADIS-SI, i.e. it is GSI. The criteria for implementing GSI are: (i) Each submitted
transaction to the system either commits or aborts at every site (global atomicity); (ii) All update transactions are committed
in the same total order at every site (total order). The reason for doing this, it is because it has not been provided the whole

1If we assume that every transaction is going to be globally committed, we will consider that it is globally committed as soon as it has been firstly
committed at any replica.

2

correctness proof in [11]. In order to achieve this, the MADIS-SI protocol has been defined as a state transition system similar
to the one proposed in [28]. This approach may be viewed as the I/O automata [24] composition of all the system components
such as: the middleware layer, the DBMS module, the GCS and the user application.

The rest of this paper is structured as follows. Section 2 introduces the system model. Some background information about
MVCC is outlined in Section 3. The formalization used for the protocol’s presentation is sketched in Section 4. Section 5
describes the MADIS-SI protocol, whilst Section 6 is devoted to its correctness proof. Finally, conclusions end the paper.

2 System Model and Definitions
The system (Figure 1) considered in this paper is composed by N sites (or nodes) which communicate among them using a
Group Communication System (GCS) [7] by message exchange (m ∈ M , where M is the set of possible messages that may
be generated in our system) through reliable channels. We assume a fully replicated system. Each site contains a copy of the
entire database and executes transactions on its data copies. Our middleware provides a JDBC interface to applications and is
an abstraction of the MADIS architecture [17]. An application submits transactions for its execution over its local DBMS via
the middleware module. The replication protocol coordinates the execution of transactions among different sites to ensure a
Generalized Snapshot Isolation (GSI) level [11]. Actions in Figure 1 are shown with arrows, they describe how components
interact with each other. Actions may easily be ported to the particular GCS primitives and JDBC methods.

Clients access to the system by way of specific user applications, i.e. no modification is needed for existing applications,
using a MADIS JDBC driver [17] to issue transactions. In the following, T denotes the set of all possible transactions and OP

denotes the set of all possible operations that may be submitted to the database. A transaction, t ∈ T , submits operations
(SQL statements), op ⊆ OP , for its execution over its local DBMS via the middleware module.

We assume a partially synchronous system; different sites may run at different rates, and message delay is unknown
but under certain bounded limit. Otherwise, with an asynchronous distributed system with failures no consensus can be
reached [13] and group membership cannot be solved, excepting the addition of a failure detector [6].

In regard to failures, we assume a partial amnesia crash [9] model. We consider this kind of failures as we want to deal
with node recovery after its failure. It occurs when, at restart, some part of the state is the same as before the crash, while
the rest of the state is reset to a predefined initial state. In our model, all committed transactions prior to a node failure are
maintained when it joins again the system. On the other hand, active transactions are rolled back and some state variables
are missed once the node crashes, this will be depicted afterwards. Hence, the recovery protocol must transfer the missed
updates of faulty nodes and update the state variables associated to the protocol.

Figure 1: Main components of the system.

3

2.1 Database Management System
We assume that a database is a collection of uniquely identified data items. Several versions of each data item may co-
exist simultaneously in the database, but there is a total order among versions of each data item. We consider databases
providing SI [3]. The DBMS, as it is depicted in Figure 1 offers an abstraction of a JDBC interface to the middleware. After an
operation submission in the context of the given transaction, the DB.notify(t, op) informs about the successful completion
of an operation (run); or, abort due to DBMS internals, a transaction will only be unilaterally aborted if it is involved in a
local deadlock. As a remark, we also assume that after the successful completion of a submitted operation, a transaction may
commit at any time. We have added two functions which are not provided by DBMSs, but may easily be built by standard
database functions:

• DB.WS(t) retrieves the set of objects written by t and the respective log [26].

• getConflicts(WS(t)) = {t′ ∈ T : WS(t′) ∩ WS(t) 6= ∅}. It returns the set of write/write conflicting transactions
between a given write set and current active transactions.

2.1.1 Detecting Write/Write Conflicts

We describe a technique for managing concurrency control which combines the simplicity of using DBMS core support while
maintaining the product independence of a middleware solution. Hence, instead of having to request and wait for termination,
conflicting transactions may be immediately aborted. By reducing the abortion delay, the system becomes ready faster for
processing other active transactions. We have implemented and tested our approach in PostgreSQL. Our solution needs to
scan the system’s locking tables. Similar tables are used in virtually all DBMSs, (e.g., the V$LOCK view in Oracle 9i, the
DBA LOCK in Oracle 10g r2, the sys.syslockinfo table of Microsoft SQL Server 2000 - converted into a system view in
SQL Server 2005 -, etc.) so that this scheme is seamlessly portable to all of them, since only standard SQL constructs are
used.

Coming back to conflict detection, the main advantage of our approach is the use of the concurrency control support of the
underlying DBMS. Thereby, the middleware is enabled to provide a row-level control (as opposed to the usual coarse-grained
table control), while all transactions (even those associated to remote write sets) are subject to the underlying concurrency
control support. Its implementation is based on the following two elements:

• The database schema is enhanced by the stored function getBlocked(). It looks up blocked transactions in the
DBMS metadata (e.g., in the pg locks view of the PostgreSQL system catalog). It returns a set of pairs consisting of
the identifiers of a blocked transaction and of the transaction that has caused the block. If there is no conflict when
this function is called, it returns the empty set. Moreover, these DBMSs only provide read access to this system table.
So, reading such views or tables does not compromise the regular activity of the DBMS core nor the activity of other
transactions.

• An execution thread per database is needed that cyclically calls getBlocked(). Its cycle is configurable and is
commonly set to values between 100 and 1000 ms. It runs on the middleware layer. Once this thread has received a
non-empty set of conflicting pairs of transactions, it may request the abortion of one of them. For this purpose, each
transaction has a priority level assigned to it. By default, it aborts the transaction with smaller priority but takes no
action if both transactions have the same priority level.

This mechanism should be combined with a transaction priority scheme in the replication protocol. For instance, we might
define two priority classes, with values 0 and 1. Class 0 is assigned to local transactions that have not started their commit
phase. Class 1 is for local transactions that have started their commit phase and also for those transactions associated to
delivered write sets that have to be locally applied. Once a conflict is detected, if the transactions have different priorities,
then the one with the lowest priority will be aborted. Otherwise, i.e., when both transactions have the same priority, no
action is taken and they remain in their current state until the lock is released. Similar, or more complex approaches might be
followed in other replication protocols that belong to the update everywhere with constant interaction class [31].

2.2 Transaction
It is a sequence of read and write operations on data items, followed by either a commit or an abort operation. In a database
providing SI, a transaction t ∈ T obtains at the beginning of its execution the latest snapshot of the database, reflecting the

4

writes of all transactions that have committed before transaction t starts. Each transaction has an identifier including the
information about the site where it was first created (node(t)), called its transaction master site, in order to know if it is
a local or a remote transaction. A transaction t created at site i (node(t) = i) is locally executed and follows a sequence
initiated by create(t) and continued by multiple begin operation(t, op), end operation(t, op) pairs actions in a normal behav-
ior. The begin commit(t) action makes the replication protocol start to manage the commit of t at the rest of replicas. The
end commit(t) notifies about the successful completion of the transaction. An abort(t) action may be generated by the local
DBMS or by a replication protocol decision. For simplicity, we do not consider an application abort.

Write sets are applied in the context of a remote transaction. Once it has been successfully certified at a remote node,
it is submitted to the DB module, after all write/write conflicting transactions have been rolled back, for its application via
the apply(t,WS(t).ops) action. The finalization of applying the remote updates is notified by the apply notify(t, WS(t).ops)

action. In regard to recovery transactions, they are executed as deferred write set application, so its behavior is exactly the
same as a remote one.

2.3 Group Communication System
A GCS provides communication and membership services (CS and MS respectively), supporting virtual synchrony [7]. We
assume a partially synchronous system and a partial amnesia crash [9] failure model. The communication service has a
reliable multicast. The membership service provides the notion of view, i.e., currently connected and alive nodes. Changes
in the composition of a view (addition or deletion) are reported to the recovery protocol. We assume a primary component
membership [7], where views installed by all nodes are totally ordered (i.e., there are no concurrent views), and for each
pair of consecutive views there is at least one process that remains operational in both. We use strong virtual synchrony (see
Table 1 for an outline of properties of view synchrony [2]) to ensure that messages are delivered in the same view they were
multicast and that two sites transiting to a new view have delivered the same set of messages in the previous view [7, 18].

M1 Each site in V.availableNodes delivers view change(V) unless it crashes before.
M2 All sites that deliver two view changes view change(V1) and view change(V2) deliver them in the

same order.
M3 If a site i in V.availableNodes crashes, then there will be a view W successor of V such that p /∈

W.availableNodes.
M4 If a site i is a member of two consecutive views V andW , then i delivered view change(V).
C1 Let V and W be two consecutive views; all processes that delivered view change(V)

and view change(W) delivered the same set of multicasts between view change(V) and
view change(W).

C2 Let V be the last view delivered by the process that sends a message m; any process that delivers m, delivers
it after view change(V) (and before the next view installation).

C3 Let i, j ∈ V.availableNodes; if i sends a message m to j, then either j delivers m, or j will not be
included in the next view at i and j will not deliver any further message from i until then.

C4 Communication within a view is FIFO-ordered.
C5 A process delivers all multicasts it sends unless it crashes before.

Table 1: Main properties of view synchrony (V indicates a view).

A fundamental property of virtual synchrony is that view changes are globally ordered with respect to message deliveries:
given two consecutive views V and W, any two sites that install both views must have delivered the same set of multicast
messages in view V [21].

The GCS must also guarantee uniform delivery of messages [15], stating that if a site (faulty or not) delivers a message
in the context of a view, then all non-faulty nodes will eventually deliver this message in the given view [7]. This fea-
ture is desirable in order to guarantee atomic commitment in replicated databases. Besides, this protocol needs total order
multicast [6, 10, 15]. We need the following properties to guarantee uniform delivery:

- Uniform Agreement. If a site (whether correct or faulty) delivers a message m, then all correct sites eventually deliver
m.

- Uniform Integrity. For any message m, every site (whether correct or faulty) delivers m at most once, and only if m

was previously multicast by the origin site of m.

5

- Uniform Total Order. If sites i and j both total-order deliver messages m and m′, then i total-order delivers m before
m′, if and only if j total-order delivers m before m′.

3 MVCC Preliminaries
As it has been mentioned before a database is a collection of uniquely identified objects. For each data item x, we denote the
versions of x by xi, xj , . . . , where the subscript is the index of the transaction that installed the version. There is a total order
among the versions of each data item, i.e., they may be ordered by the time at which the version is installed in the database.
Thus a snapshot of the database is a committed state of the database, that is, it includes the installed versions of each data
item until snapshot’s time.

A transaction Ti is a sequence of read and write operations followed by a commit or an abort operation. Each Ti’s write
operation on item x is denoted Wi(xi). If Ti commits, then a new version xi is installed in the database. Each Ti’s read
operation on item version xj is denoted Ri(xj). Ti’s commit or abort is denoted Ci or Ai respectively. For simplicity of
description, we assume a transaction does not read an item x after it has written it and it reads or writes each item at most
once. We denote as readset RSi the set of all items read, and as writeset WSi the set of all items written by Ti. Thus, Ti is a
read-only transaction if WSi = ∅ and is an update transaction otherwise.

In the following discussion, we only consider committed transactions. A complete committed multiversion history h [4]
over a set of transactions T = {T1, . . . , Tn} is a partial order relationship ≺, (h,≺) such that:

1. h contains the operations of each transaction in T and ∀Ti ∈ T, Ci ∈ h.

2. For each Ti ∈ T , and all operations pi, qi in Ti, if pi precedes qi in Ti then pi ≺ qi (in h).

3. If Ri(xj) ∈ h, i 6= j, then Wj(xj) ∈ h, Wj(xj) ≺ Cj ≺ Ri(xj).

Condition (2) indicates that the history preserves all orderings stipulated by transactions. Condition (3) states that a
transaction may not read a version until it has been produced and before a transaction commits, all the transactions that
produced versions it read must have already committed (recoverable history). A transaction Ti reads x from Tj in h if Ti

reads the version of x installed by Tj . Since that version is xj , Ti reads x from Tj if and only if Ri(xj) ∈ h. One can note that
no version is overwritten and that all write operations are final writes. Therefore, two histories h and h′ are equivalent if they
have the same set of operations.

The previous definition states some “little restrictions” about MVCC histories. SI defines that a transaction observes the
“latest” snapshot of the database [3, 11]. Extending this to a replicated database system, it is neither an easy task nor
straightforward. Generalized Snapshot Isolation (GSI) [11] is an attempt to extend SI to replicated databases. GSI is based
on the fact that a transaction needs not necessarily observe the “latest” snapshot. It can observe an older snapshot but
maintaining several properties as those in SI [11]. Conditions can be identified that guarantee serializable execution. With a
suitable choice of “older”, readonly transactions execute without delay or aborts, and they do not cause update transactions
to block or abort. Transactions may, however, observe somewhat older data. To commit an update transaction, its writeset
must be checked against the writesets of recently committed transactions, as before.

Restrictions added to a history h are timed restrictions. A different time is assigned to each database transaction. Thus,
a total timed order consistent with partial order ≺ for history h is obtained. In GSI, each transaction observes a snapshot of
the database that is taken at some time, denoted snapshot(Ti). If transaction Ti sees a snapshot of the database taken at time
snapshot(Ti), then this snapshot includes the updates of all transactions that have committed before snapshot(Ti). To argue
about the timing relationships among transactions, we use the following definitions with respect to transaction Ti:

• snapshot(Ti): the time when Ti’s snapshot is taken.

• start(Ti): the time of the first operation of Ti.

• commit(Ti): the time of Ci, if Ti commits.

• abort(Ti): the time of Ai, if Ti aborts.

• end(Ti): the time of either Ci or Ai.

Notice that snapshot(Ti) ≤ start(Ti) < end(Ti). The time of the first operation of Ti defines start(Ti) since we do not use
an explicit transaction begin operation.

6

4 State Transition Systems
Protocols introduced in this paper are going to be depicted as a state transition system as presented in [28]. In the following
we briefly outline this model. A state transition system M is defined by:

• SignatureM . A set of actions.

• StatesM . A set of state variables and their domains, including an initial condition for each variable.

• TransitionsM . For each action π ∈ SignatureM :

– preM (π). It is the precondition of π in M . It is a predicate in StatesM that enables its execution.
– effM (π). The effects of the action π in M . It is a sequential program that atomically modifies StatesM .

• A finite description of fairness requirements.

In the following we omit M for simplicity. We assume that the initial state is nonempty. For each action π, its associated
precondition, pre(π), and effects, eff(π), define a set of state transitions. More formally, {(p, π, q) : p, q are system states; p

satisfies pre(π); and q is the result of executing eff(π) in p}.
An execution is a sequence of the form: α = s0π1s1 . . . πzsz . . . where the sz’s are system states, the πz’s are actions, s0

is the initial state, and every (sz, πz, sz+1) is a transition of πz. An execution can be infinite or finite. By definition, a finite
execution ends in a state. Note that for any execution α, every finite prefix of α ending in a state is also an execution. Let
Executions denote the set of executions for a system. Executions is enough for stating safety properties but not its liveness
properties (because it includes executions where system liveness requirements are not satisfied).

We next define the executions of the system that satisfy liveness requirements. Let Π be a subset of Signature. The
precondition of Π, denoted pre(Π), is defined by [∃π ∈ Π: pre(π)]. Thus, Π is enabled (disabled) in a state if and only if
some (no) action of Π is enabled in the state. Let α = s0π1s1 . . . πzsz . . . be an infinite execution. We say that Π is enabled
(disabled) infinitely often in α if Π is enabled (disabled) at an infinite number of sz’s belonging to Π. We say that Π occurs
infinitely often in α if an infinite number of πz’s belong to Π.

An execution α satisfies weak fairness for Π [25] if and only if one of the following occurs:

1. α is finite and Π is disabled in the last state of α.

2. α is infinite and either Π occurs infinitely often or is disabled infinitely often in α.

Informally, this means that if Π is enabled continuously, then it eventually occurs.
An execution α is fair if and only if it satisfies every fairness requirement of the system. Let FairExecutions denote the

set of fair executions of the system. FairExecutions is sufficient for defining the liveness properties of the system, as well
as its safety properties.

We allow actions to have parameters. This is a convenient way of defining a collection of actions. For example, consider
an action π(i) with precondition pre(π(i))≡ x = 0 and effects eff(π(i))≡ x← i, where x is an integer and where the parameter
i ranges over (1, 2, . . . , 50). Action π(i) actually specifies a collection of 50 actions, π(1), π(2), . . . , π(50).

We use the term state formula to refer to a predicate in the state variables of the system. A state formula evaluates to true
or false for each state of the system. We consider assertions of the form Invariant(P) and P leads-to Q, where P and Q are
state formulas.

Let α = s0π1s1 . . . πzsz . . . be an (finite or infinite) execution of the system. The execution α satisfies Invariant(P) if and
only if every state sz in α satisfies P . The execution α satisfies P leads-to Q if and only if for every sz in α that satisfies P

there is an sk in α, k ≥ z, that satisfies Q.
The system satisfies Invariant(P) if and only if every execution of the system satisfies Invariant(P). Respectively, the

system satisfies P leads-to Q if and only if every fair execution of the system satisfies P leads-to Q. We allow assertions that
are made up of invariant assertions or leads-to assertions joined by logical connectives and containing parameters.

Finally, as we are describing a distributed system, we use a subscript for each state variable and action to denote where
the state variable belongs to and where the action is executed, respectively.

7

Signature:
{∀ i ∈ N, t ∈ T, m ∈ M, op ∈ OP, WS ∈ {〈oids, ops〉 : oids ⊆ OID, ops ⊆ OP}, q ∈ N, ν ∈ V iews : createi(t),

read operationi(t, op),write operationi(t, op), end operationi(t, op),begin commiti(t), end commiti(t, m),
local aborti(t),discardi(t, m), receive remotei(t, m), remote commiti(t, WS), recover commiti(t, WS),
send garbagei, receive garbagei(m), remove seqi, leavei(ν),view changei(ν),view change recoveringi(ν),
joini(ν), receive recovereri(m), receive applyi(m),execute applyi}.

States:
∀ i ∈ N,∀ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, deferred, aborted, committed},

initially (node(t) = i⇒ statusi(t) = start) ∧ (node(t) 6= i⇒ statusi(t) = idle).
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : nodestatusi ∈ {alive, crashed, recovering}, initially nodestatusi = alive.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z ∧ availableNodes ⊆ N}, initially Vi = 〈0, N〉.
∀ i ∈ N : V repi ∈ N, initially V repi = 0. // V repi holds the version number of replica i
∀ i ∈ N,∀ t ∈ T : SV eri(t) ∈ N, initially ∀ t ∈ T : SV eri(t) = ⊥. // SV eri holds the ver. of each transaction t at replica i
∀ i, j ∈ N : knownV eri[j] ∈ N, initially ∀ j ∈ N : knownV eri[j] = 0. // Last version of each replica known by i
∀ i ∈ N : remcontroli ∈ {true, false}, initially remcontroli = true. // Mutual exclusion for write operations.
∀ i ∈ N : SEQi list of 〈V, t, WS〉 with V ∈ N ∧ t ∈ T ∧ WS ∈ {〈oids, ops〉 : oids ⊆ OID, ops ⊆ OP}, initially SEQi = ∅
∀ i ∈ N : minV ersioni ∈ N, initially minV ersioni = 0.
∀ i ∈ N : applyPendingi ⊆ {〈V, t, WS〉) : V ∈ N ∧ t ∈ T ∧ WS ⊆ {〈oids, ops〉 : oids ⊆ OID, ops ⊆ OP}},

initially applyPendingi = ∅.
∀ i ∈ N : removei ∈ {true, false}, initially removei = true. // Recovery transaction execution

Transitions:
createi(t) // node(t) = i //
pre≡statusi(t) = start ∧ nodestatusi ∈ {alive, recovering}.
eff≡DBi.begin(t); statusi(t)← active.

read operationi(t, op) // node(t) = i //
pre≡statusi(t) = active ∧ nodestatusi ∈ {alive, recovering}.
eff≡ if first op(t) then SV eri(t)← V repi;

DBi.submit(t, op); statusi(t)← blocked.

write operationi(t, op) // node(t) = i //
pre≡statusi(t) = active ∧ nodestatusi = alive

∧ remcontroli.
eff≡ if first op(t) then SV eri(t)← V repi;

DBi.submit(t, op); statusi(t)← blocked.

end operationi(t, op) // node(t) = i //
pre≡statusi(t) = blocked∧

nodestatusi ∈ {alive, recovering}∧
DBi.notify(t, op) = run.

eff≡ statusi(t)← active.

begin commiti(t) // node(t) = i //
pre≡statusi(t) = active ∧ nodestatusi ∈ {alive, recovering}.
eff≡WS ← DBi.WS(t);

if WS = ∅ then // read-only transaction //
statusi(t)← committed; DBi.commit(t)

else
statusi(t)← pre commit;
sendUTOMulticast(〈remote, t, SV eri(t), WS〉).

end commiti(t, m) // node(t) = i ∧ m = 〈remote, t, V, WS〉 //
pre≡ statusi(t) = pre commit ∧ remcontroli ∧

nodestatusi = alive ∧ m = first(channeli).
eff≡ receivei(m); // channeli ← channeli \ {m} //

statusi(t)← committed; DBi.commit(t);
V repi ← V repi + 1;SEQi ← SEQi + 〈V repi, t, WS〉.

discardi(t, m) // node(t) = i ∧ m = 〈remote, t, V, WS〉 //
pre≡statusi(t) = aborted ∧m ∈ channeli.
eff≡ receivei(m).

local aborti(t) // node(t) = i //
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff≡ statusi(t)← aborted.

receive remotei(t, m) // t.node 6= i //
pre≡remcontroli ∧ nodestatusi = alive∧

m = 〈remote, t, V, WS〉 = first(channeli).
eff≡ receivei(m); remcontroli ← false;

if certification(V, WS) then
∀ t′ ∈ DBi.getConflicts(WS.oids) :

DBi.abort(t′); statusi(t
′)← aborted;

DBi.begin(t); DBi.apply(t, WS.ops);
statusi(t)← blocked

else statusi(t)← aborted; remcontroli ← true.

remote commiti(t, WS) // node(t) 6= i //
pre≡statusi(t) = blocked ∧ nodestatusi = alive∧

DBi.apply notify(t, WS.ops) = run.
eff≡ statusi(t)← committed; DBi.commit(t);

remcontroli ← true; V repi ← V repi + 1;
SEQi ← SEQi + 〈V repi, t, WS〉;

recover commiti(t, WS)
pre≡statusi(t) = blocked ∧ nodestatusi = recovering∧

DBi.apply notify(t, WS.ops) = run.
eff≡ statusi(t)← committed; DBi.commit(t);

removei ← true; V repi ← V repi + 1;
SEQi ← SEQi + 〈V repi, t, WS〉;
if empty(applyPendingi) then

remcontroli ← true; nodestatusi ← alive.

� function certification(V ′, W ′) ≡
@ 〈V, t, W 〉 ∈ SEQi : V > V ′ ∧ W ∩W ′ 6= ∅.

Figure 2: State transition system for the MADIS-SI replication protocol.

5 MADIS-SI Protocol Description
In this Section the MADIS-SI protocol is described using a state transition system as depicted in Section 4. MADIS-SI is
presented in Figures 2-4 so as to explain: the data consistency management; some garbage collection actions; and, node
failure and recovery management. Figure 2 contains the signature, state variables and the replication part of MADIS-SI.
Garbage collection actions are shown in Figure 3. Specific failure and recovery actions are described in Figure 4. Hence, we
have split this Section into these three main parts, where the algorithm flow is presented.

8

send garbagei

pre≡V repi > knownV eri[i].
eff ≡sendURMulticast(〈garbage, i, V repi〉).

receive garbagei(m) // m ≡ 〈garbage, j, v〉 //
pre≡m = first(channeli).
eff ≡receive(m); // Remove m from channel //

if v > knownV eri[j] then knownV eri[j]← v.

remove seqi

pre≡mink(knownV eri[k]) > minV ersioni ∧
∃〈V, t, W 〉 ∈ SEQi : V ≤ mink(knownV eri[k]).

eff ≡minV ersioni ← mink(knownV eri[k]);
SEQi ← SEQi \ {〈V, t, W 〉 ∈ SEQi : V ≤ minV ersioni}.

Figure 3: Actions performing garbage collection in the MADIS-SI state transition system.

leavei(ν) // ν = 〈id, availableNodes〉 //
pre≡ν = first(channeli) ∧ i /∈ ν.availableNodes.
eff ≡receive(ν);

∀ t : t ∈ T ∧ statusi(t) /∈ {start, idle, aborted, committed} :
if node(t) = i then

if nodestatusi = recovering∧
statusi(t) = blocked ∧ WS(t) 6= ∅ then

statusi(t)← deferred; DBi.abort(t)
else if statusi(t) ∈ {blocked, active} then

statusi(t)← aborted; DBi.abort(t)
else if statusi(t) = pre commit then

statusi(t)← deferred; DBi.abort(t)
else // node(t) 6= i //

if statusi(t) = blocked then
statusi(t)← deferred; DBi.abort(t);

nodestatusi ← crashed; remcontroli ← true.

view changei(ν) // ν = 〈id, availableNodes〉 //
pre≡ν = first(channeli) ∧ i ∈ ν.availableNodes∧

nodestatusi = alive.
eff ≡receive(ν); Vi ← ν.

view change recoveringi(ν) // ν = 〈id, availableNodes〉 //
pre≡ν = first(channeli) ∧ nodestatusi = recovering∧

recovereri 6∈ ν.availableNodes ∧ i ∈ ν.availableNodes
@ m = 〈apply, ·, ·〉 ∈ channeli.

eff ≡receive(ν); Vi ← ν;
recovereri ← select(ν.availableNodes);
sendRUnicast(〈to recover, i, V repi〉, recovereri).

receive recovereri(m) // m = 〈to recover, j, V rep〉 //
pre≡m ∈ channeli ∧ nodestatusi = alive ∧ remcontroli.
eff ≡receive(m);

sendRUnicast(〈apply, SEQi(V rep, V repi], V repi〉, j).

joini(ν) // ν = 〈id, availableNodes〉 //
pre≡ν = first(channeli) ∧ i ∈ ν.availableNodes ∧

nodestatusi = crashed.
eff ≡receive(ν); Vi ← ν; nodestatusi ← recovering;

remcontroli ← false; removei ← true;
recovereri ← select(ν.availableNodes);
sendRUnicast(〈to recover, i, V repi〉, recovereri).

receive applyi(m) // m = 〈apply, SEQ, V 〉 //
pre≡m ∈ channeli ∧ nodestatusi = recovering.
eff ≡applyPendingi ← SEQ.

execute applyi

pre≡¬empty(applyPendingi) ∧ removei .
eff ≡remcontroli ← false; removei ← false;

〈V, t, WS〉 ← oldest(applyPendingi);
applyPendingi ← applyPendingi \ {〈V, t, WS〉};
DBi.begin(t); DBi.apply(t, WS.ops);
statusi(t)← blocked.

Figure 4: Actions performing crashing and recovering tasks in the MADIS-SI replication protocol.

5.1 Replication Protocol Actions
First of all, it is important to note that in this part of the protocol description we assume a failure-free environment (dealing
with failures is introduced in Section 5.3). Informally, each time a client application issues a transaction (local transaction),
all its operations are locally performed over its master site. A transaction t starts the execution at its master site (it is a
local transaction at this site), since statusi(t) = start as node(t) = i. It invokes the createi(t) action followed by a sequence
of pairs of the form read operationi(t, op) or write operationi(t, op) and end operationi(t, op), each pair corresponds to
a successful completion of a SQL statement. The invocation of a read/write operation submits the SQL statement to the
database (DBi.submit(t, op)) and statusi(t) = blocked. Hence, the transaction t may not execute any action until it gets
notified by the database, i.e. DBi.notify(t, op) ∈ {run, abort}. In case of a DBi.notify(t, op) = run then a new operation or
a commit may be requested (statusi(t) = active), otherwise the local aborti(t, op) is enabled and rolls back transaction t, i.e.
statusi(t) = aborted.

When the transaction t issues all its operations, it request a commit2 of its operations via the begin commiti(t) action.
If it is a read-only transaction, it will directly commit in the local database replica and statusi(t) = committed. Otherwise,
MADIS-SI starts the interaction with the rest of system nodes. It multicasts, using the total-order communication primitive [7],
the version (SV eri(t), its snapshot) and the write set of the transaction.

Upon total-order delivery of this message at all nodes: receive remotej(t, 〈remote, t, V, WS〉), with j ∈ N \ {i}; or,
end commiti(t, 〈remote, t, V, WS〉). We will start with the execution of receive remotej(t, 〈remote, t, V, WS〉) at node j.

2We do not model abort actions, for simplicity. They simply roll back all changes done in the database, and as they do not have interacted with the rest
of nodes yet, there is no need to exchange messages.

9

The first thing MADIS-SI does is the execution the certification test (specified as a logical predicate in a function in Figure 2),
in other words, it checks whether another transaction, say t′, has committed before t and their write set (WS(t)

T

WS(t′) 6= ∅)
intersection is non-empty. If the transaction t fails it will put statusj(t) = abort. If t succeeds then all write-conflicting trans-
actions already executing at j are rolled back and the write set is applied in the context of a local transaction at j, from now
on denoted as a remote transaction at that node. It is important to take into consideration the existence of the remcontrolj

state variable in this action, this governs applying sequentially the write sets at a given node and that any other write oper-
ation performed by local transaction is forbidden. The write set WS is submitted to the database (DBj .apply(t,WS.ops)).
Transaction t waits for the successful completion of the write set, via DBj .apply notify(t, WS.ops), that directly com-
mits the transaction since it enables the execution of the remote commitj(t, WS) action. This commits the transaction
statusj(t) = committed at node j and permits new remote transactions to be applied or new write operations from local trans-
actions (remcontrolj = true). Hence, the MADIS-SI protocol is a constant interaction one [31] as it only sends one message
per transaction.

5.2 Garbage Collection Actions
As transactions are committed at each node i ∈ N the size of SEQi may indefinitely grow. We have defined a set of actions
aiming to remove those write sets applied at all nodes in the system. For this purpose, each node stores in the knownV eri

array where each k ∈ N index stores the greatest V repk received at node i and in minV ersioni the lowest V rep that all nodes
have applied, i.e., the latest position removed from their SEQi by all nodes.

The behavior of this part of the MADIS-SI protocol is as follows: each time a transaction is committed at a given node
i ∈ N , the send garbagei is enabled3 and multicasts (using the basic service) its V repi to all available sites. This message
will be eventually delivered at all available nodes, as there is no special ordering assumptions about message ordering,
they may be delivered in a different way than they were sent. The reception of this message enables the execution of the
receive garbagek(〈garbage, j, v〉) at all k ∈ N that are available in that view. This action updates the knownV erk[j] if it is
greater than the one already stored.

The knownV eri array is executed every time the enabling condition of the remove seqi action is evaluated to true, i.e. the
minimum value of all knownV eri positions is greater than the current minV ersioni. The value of the latter will be updated
and the respective positions of SEQi until the new value of minV ersioni are removed, as it is depicted in the remove seqi

action of Figure 3.

5.3 Failure and Recovery Actions
This part of the protocol description deals with actions to be done when a view change is fired by the GCS [7]. These actions
are fired each time the set of current available nodes change, either by a node failure or rejoining site (see Figure 4).

5.3.1 Node Failure

When a node i fails the leavei(〈id, availableNodes〉) models the failure of a node or when the GCS forces the “shutdown” of
a node. The protocol rollbacks all DBMS transactions, although it must distinguish among all different status of transactions.
Moreover, it must take into account the state of the node (nodestatusi) for each transaction. Hence, local transactions
still in their read and write phase will be aborted in the DBMS and switch their status to aborted. Transactions t with
statusi(t) = pre commit are set to deferred. This deferred state is a formalism so as to determine the fate of a transaction
since the remote message may be never delivered. In such a case, this transaction may be finally aborted at its local replica
and the remainder set of nodes know nothing about this transaction so statusj(t) = idle with j ∈ N and j 6= i. Otherwise, the
transaction may pass the certification and commit at all available replicas and, afterwards it must be recovered at this replica
by the execution of the respective execute applyi action (this will be described afterwards in the recovery part). Finally, these
crashed nodes “remember” some state variables, such as SEQi, nodestatusi, statusi and knownV eri, so we have a partial
amnesia crash failure model [9].

The rest of replicas j ∈ N that install the next view, they may invoke the view changej(〈id, availableNodes〉) provided
that nodestatusj = alive. Otherwise, if they are recovering and they do not have received the apply message, they will select
a new node as recoverer and start the recovery process again, by means of the view change recoveringi(ν) action.

3This does not imply that the transaction is about to be executed, since a given V repi may not be multicast.

10

This assumption of the crash behavior may be too restrictive for read-only transactions, specially when the node is forced
to shutdown. This kind of transactions may be executed in a crashed node as they do not affect the correctness of our
algorithm as they are reading from a valid system snapshot; thus, guaranteeing GSI. We may optimize the behavior of MADIS-
SI when a node is forced to shutdown, permitting the execution of read-only transactions. In other words, we may modify the
preconditions of the following actions: createi(t), read operationi(t, op); and, begin commiti(t) to include the crashed state
for nodestatusi.

5.3.2 Rejoining of a Node

The role of a recovery protocol is to identify what transactions are missing in a recovering node, obtain these transactions
from a recoverer node and apply them to the recovering node. Recover will take place on a version number basis, each
installed version will be applied in an ascending manner such as they were originally applied, in the context of a recovery
transaction. Hence, a recovery transaction is like a deferred remote transaction, i.e. a deferred application of a certified write
set.

The MS detects the joining of a node i to the system. Previously alive nodes that install this new view will invoke the
view changej(〈id, availableNodes〉) whilst the joining node calls the joini(〈id, availableNodes〉) action. This last action
selects the recoverer4, say k ∈ N with k 6= i, and sends its V repi to k in a to recover message.

The recoverer gathers the information sent by the recovering node (via the receive recovererk(〈to recover, i, V repi〉)

action). With the sent V repi it sends the missed updates to the recovering node in an apply message. The reception of this
message at the recovering node starts the recovery process.

5.3.3 Recovery Process

The recovery process is initiated when the receive applyi(〈apply,SEQ, V 〉). The recoverer assigns this sequence to the
applyPending queue, along with the removei state variable, that enables the execute applyi action. Each element of apply-
Pendingi represents each committed transaction sorted by its certification version number. They are serially applied and no
remote, read5 or write operation is permitted while they are being applied. Once a missed writeset is applied, the transaction
is committed the V repi is increased and the next element in applyPending is scheduled and submitted to the DBMS. Once
the recovery process is finished, there are no more elements in applyPendingi, the nodestatusi variable is switched to alive.

6 Correctness Proof
This Section contains the most important proofs (deadlock-free, atomicity and GSI) of the MADIS-SI state transition system
(explained in Figures 2-4). We continue using the notation and definitions of a state transition system [28] and outlined
in Section 4. It is important to note that all finite executions of the state transition system are enough for defining safety
properties. Liveness properties require weak fairness for an action execution so that if an action is continuously enabled then
it will be eventually executed.

Lemma 1. MADIS-SI is deadlock free.

Proof. We prove that the system is deadlock free:

• There is no distributed deadlock among sites since messages are delivered to all sites in the same order. Thus, there are
no circular waits between nodes [8]. MADIS-SI rollbacks some of these delivered transactions whilst committing the
rest in the same order they were delivered.

• Deadlocks at each site are also impossible, we will show it by inspection:

– Deadlock between local transactions is directly resolved by the underlying DBMS.
– Deadlock between a local and a remote transaction is not possible since a successfully certified remote transaction

aborts all local conflicting transactions and by means of the variable remcontroli no local transaction may perform
a write operation until the remote transaction finishes.

4The recoverer election procedure is orthogonal to the recovery protocol and we will not pursue it any further.
5Read operations may be permitted, we do not consider them here for symmetry. In fact, they do not affect to the correctness proof.

11

– In a similar way, it is not possible that two remote transactions may become involved in a deadlock cycle. Remote
transactions are applied one after the other since their execution is managed by remcontroli.

– Deadlock between a recover transaction and a local or remote transaction is not possible since remcontroli is
disabled and it will not be enabled until the recovery process is finished.

– Deadlock between recover transactions is not feasible since they are executed sequentially one after the other.
This is governed by the execute applyi action that is enabled by the remcontroli and removei variables.

The following Property establishes some desirable properties of the algorithm. In other words, we need for the definition
of the sequencer at each node (seqi) that all V s stored are different. Moreover, each writeset stored in the sequencer was
generated by some transaction, i.e. for each tuple 〈V, t, WS〉 ∈ s.SEQi there is a t ∈ T such that WS = WS(t).

Property 1. Let α = s0π1s1 . . . πnsn . . . be an arbitrary execution of the MADIS-SI state transition system, we have that

a. ∀〈V, t, WS〉 ∈ SEQi, WS = WS(t).

b. Para cualesquiera dos elementos distintos 〈V, t,WS〉, 〈V ′, t′, WS′〉 ∈ SEQi, se cumple V 6= V ′.

Proof. By induction over the length of α.

- Induction Base. Initially, s0.SEQi = ∅. Hence, the two conditions are trivially satisfied.

- Induction Hypothesis. Let us suppose that both conditions hold at state sz, we have to check that the Property will
satisfied for any sz+1.

- Induction Step. Actions that do not modify the content of sz.SEQi trivially satisfies the Property as sz+1.SEQi =

sz.SEQi. Hence, if elements belonging to sz.SEQi satisfy the Property then both will be still valid for the elements of
sz+1.SEQi.
By inspection of Figures 2-4, the actions that modifies the content of sz.SEQi are: end commiti (t, 〈remote, t, V, WS〉),
remote commiti(t, WS), recover commiti(t,WS) and remove seqi.

1. πz+1 = remove seqi, this action only removes elements of sz.SEQi so sz+1.SEQi ⊆ sz.SEQi. If all elements
belonging to sz.SEQi satisfy the Property then a subset of it will hold the Property too.

2. πz+1 = end commiti(t, 〈remote, t, V, WS〉), the 〈V, t, WS〉 tuple added to sz.SEQi so as to obtain sz+1.SEQi

takes its elements from a received message (〈remote, t, V, WS〉). This message was sent by the begin commiti(t)

action, it ensures that WS = WS(t). Hence, this tuple added to sz.SEQi satisifies Property a. Besides, as
all elements inserted in SEQi always take their V value from V repi. The value of V repi has been previously
increased before it is asigned to a new tuple that is going to be inserted in SEQi. Hence, Property b is satisfied at
state sz+1.

3. πz+1 = remote commiti(t,WS), this is very similar to the previous one.
4. πz+1 = recover commiti(t, WS), if this action is enabled at sz it will be because statusi(t) = recovering and

DBi.apply notify(t, WS.ops) = run. In other words, a recovering process is taking place at site i. During
the recovery process, missing transactions are applied by execute applyi. These transactions are extracted from
applyPendingi, being the receive applyi(〈apply,SEQ, V 〉) action in charge of inserting them in applyPendingi.
This message could only be sent by the receive recovererj(m) executed at a node j 6= i that makes SEQ ⊆

sz′ .SEQj , with z′ < z. The induction hypothesis at the given state is held as z′ < z, hence sz′ .SEQj satisfies
Property a and in the same way all the elements in the parameter SEQ of the message, i.e. all elements of
applyPendingi that will be sequentially added to SEQi by successive invocations of the recover commiti(t,WS)

action. It is clear that elements contained in sz+1.SEQi satisfy Property a as elements in sz.SEQi and those
contained in applyPendingi satisfy it too. They also satisfy Property b as the 〈V, t, WS〉 tuple inserted in sz.SEQi,
satisfies that V = V repi and the latter has been previously incremented.

12

Right now, it should be clear the SEQi could be managed as a set. When a set of transactions execute concurrently, their
operations may be interleaved. We model such an execution by a structure called a history [4]. A history H indicates the
order in which the operations of the transactions were executed relative to each other. Since some of these operations may be
executed in parallel, a history is defined as a partial order. If transaction Tk specifies the order of two of its operations, these
two operations must appear in that order in any history that includes Tk. In addition, we require that a history specify the
order of all conflicting operations that appear in it. Recall that for SI two operations are said to conflict if they both operate
on the same data item and both are write operations.

In order to define the correctness of the MADIS-SI protocol we have to study the local history of committed transactions
(C(H)) at site i, denoted as Hi for our state transition system [4]. Hi is the sequence of transactions committed at site i inserted
in the order they were committed, more formally, let t′, t′′ ∈ Hi, t′ is previous to t′′ in Hi if and only if DBi.commit(t′) is
previous to DBi.commit(t′′). However, our protocol interacts with the rest of sites by way of transaction that issue write
operations (i.e. whose write sets are non-empty). Therefore, the SEQi variable only contains non-empty write sets of
committed transactions. We have to define the projection hi of Hi as the resulting history obtained by removing those
transactions from Hi whose write set is empty (i.e. read-only transactions), while maintaining the order of the remaining
transactions. More formally hi = Hi/{t : statusi(t) = committed ∧ WS(t) 6= ∅}. It is only needed the sequence hi in order
to study wether the MADIS-SI protocol is correct. In other words, if the algorithm ensures GSI [11] due to the fact that read
operations are performed over valid versions.

In the following we are going to establish a relationship between the local history and some variables of the MADIS-SI state
transition system. From Property 1 we can establish that each t is bounded to its writeset WS(t). Each t is also bounded to a
V which is different and is sequentially increased. We may use seqi (sorted sequence of t ∈ T based on V) instead of SEQi

(set of tuples) without loosing information.

Definition 1. For a given site i ∈ N , let SEQi = {〈V, t,WS〉 : V ∈ N ∧ t ∈ T ∧WS ∈ {〈oids, ops〉 : oids ⊆ OID, ops ⊆ OP}}

the set of committed transactions with WS 6= ∅ at site i. We define the sequence of transactions seqi in the following way:

1. 〈V, t, WS〉 ∈ SEQi ⇒ t ∈ seqi.

2. Let 〈V, t, WS〉, 〈V ′, t′, WS′〉 ∈ SEQi, if V < V ′ then t is previous to t′ in seqi.

3. No other t belongs to seqi: Let t ∈ T , t ∈ seqi ⇒ 〈V, t, WS〉 ∈ SEQi for some V and WS.

It is important to note that transactions belonging to seqi from a given site i ∈ N are already committed transactions.
Furthermore, in the absence of garbage collection (we remove from the MADIS-SI state transition system the next actions:
send garbagei, receive garbagei(〈garbage, j, v〉) and remove seqi), seqi is equivalent to hi. If the garbage collection process
is enabled then the remove seqi action will delete a subset of SEQi in each invocation. The deleted subset of SEQi is denoted
as G = {〈V, t, WS〉 : V ≤ minV ersioni}. Let us denote as θ the sequence obtained from G in the same way as we did for seqi

and SEQi.
At this point it may be defined a new sequence, named garbagei which is derived from the elements removed from SEQi.

The next definition establishes the formal definition of the sequence garbagei.

Definition 2. Let α = s0π1s1 . . . πnsn be an arbitrary execution of the MADIS-SI state transition system at site i ∈ N and let
θ1, θ2, . . . , θn be the sequence of removed transactions in site i by π1, . . . , πn (some of them will be empty sequences). Let us
denote sn.garbagei as the concatenation of these sequences: sn.garbagei = θ1 · θ2 · · · · · θn in i ∈ N .

One can realize that for each site i ∈ N the sequence hi is the result of linking together garbagei with seqi. This is stated
in the following Property.

Property 2. Let α = s0π1s1 . . . πnsn . . . be an arbitrary execution of the MADIS-SI state transition system and i ∈ N , we have
that hi = garbagei · seqi.

Proof. By induction over the length of α.

- Induction Base. Initially, at s0 we have that s0.SEQi = ∅, hence s0.seqi = ε and also s0.hi = s0.garbagei = ε and at
this state the condition is trivially held.

- Induction Hypothesis. Let us assume that this is true for state sz, hence we have sz.hi = sz.garbagei · sz.seqi.

13

- Induction Step. We have to check all the possible set of actions πk+1 that modify any of the terms contained in the
equality. By inspection of Figures 2-4, the only actions that change the value of sz.SEQi are πk+1 ∈ {end commiti(t,

〈remote, t, V, WS〉), remote commiti(t, WS), remove seqi, recover commiti(t, WS)}. Let us see each action in detail:

1. πz+1 = end commiti(t, 〈remote, t, V, WS〉). By inspection of its effects a local transaction is committed, i.e. t

is added to Hi and since its associated write set is non-empty is included in hi, sz+1.hi = sz.hi · t. Hence, its
respective V repi value is increased and is the greatest at i. Thus, sz+1.SEQi = sz.SEQi + {〈V repi, t, WS〉},
consequently t is concatenated to seqi, sz+1.seqi = sz.seqi · t. It is important to note that garbagei has not been
modified (sz+1.garbagei = sz.garbagei). Therefore, the property still holds.

2. πz+1 = remote commiti(t, WS). This action commits a remote transactions, its effect are quite similar to case
(1).

3. πz+1 = remove seqi. It removes one or several elements from SEQi. Let us denote as G the set of removed
elements and θ its respective sequence. The elements of G corresponds to those tuples 〈V, t, WS〉 ∈ SEQi such
that V ≤ minV ersioni. Therefore, minV ersioni splits sz.seqi into two parts. Elements belonging to G, so
belonging to θ, are in the first part (constitute a prefix) of sz.seqi. Hence, sz+1.garbagei = sz.garbagei · θ and
sz.seqi = θ · sz+1.seqi. Besides, this action does not commit any transaction so hi is not modified. Therefore,
sz.garbagei · sz.seqi = sz+1.garbagei · sz+1.seqi and sz.hi = sz+1.hi.

4. πz+1 = recover commiti(t, WS). It is invoked by a recovering node when it is applying the missed updates while
it remained crashed. Again, its effects are the same as case (1).

Property 3. Let α = s0π1s1 . . . πnsn . . . be an arbitrary execution of the MADIS-SI state transition system and i ∈ N , we have
that |hi| = V repi.

Proof. By induction over the length of α.

- Induction Base. Initially, s0.hi = ε and s0.V repi = 0. Thus, condition is trivially held.

- Induction Hypothesis. Let us suppose that at state sz, it is verified that |sz.hi| = sz.V repi, let us check that it will be
verified at any state sz+1.

- Induction Step. By inspection of Figures 2-4, we may verify that actions that do not modify sz.hi they do not modify
sz.V repi either. Therefore, there is nothing to worry about them. Actions that modify sz.hi also modify sz.V repi.
These actions are: end commiti(t, 〈remote, t, V, WS〉), remote commiti(t,WS) and recover commiti(t, WS). In all
of them, an element is added to sz.hi when a DBi.commit(t) action is performed (with WS(t) 6= ∅), i.e. |sz+1.hi| =

|sz.hi|+ 1, and the three actions make sz+1.V repi = sz.V repi + 1. Hence, the Property is verified in sz+1.

Let us record hi[V] as the V -th element of the hi sequence. Thus, hi[V] = t is representing the 〈V, t, WS(t)〉 tuple. We
are going to set up two important Properties. the first one states that a transaction is only executed once at each site (without
taking into account wether it is a recovery transaction or not). The second Property defines that an update transaction (whose
readset may be empty or not) is executed at all nodes over the same database version.

Property 4. Let α = s0π1s1 . . . πnsn . . . be an arbitrary execution of the MADIS-SI state transition system and i ∈ N , we have
that ∀V, V ′ ≤ |hi|, V 6= V ′ ⇔ hi[V] 6= hi[V

′].

Proof. By induction over the length of α.

- Induction Base. Initially , s0.hi = ε, and the condition is trivially held.

- Induction Hypothesis. Let us suppose that ∀V, V ′ ≤ |sz.hi|, V 6= V ′ ⇔ sz.hi[V] 6= sz.hi[V
′] is verified in state sz. We

have to check that is also verified for any state sz+1.

14

- Induction Step. As elements contained in sz.hi are not going to be modified, we have to concentrate on actions (πz+1)
adding elements to sz+1.hi. By inspection of Figures 2-4, the set of actions that modify hi are: end commiti(t, 〈remote,

t, V, WS〉), remote commiti(t,WS) and recover commiti(t,WS). Let us check each one of them in a more detailed
manner:

1. πz+1 = end commiti(t, 〈remote, t, V, WS〉). It adds an element t ∈ T to sz.hi so sz+1.hi = sz.hi · t. Let us see
that t may not already be at sz.hi. This action is enabled when sz.statusi(t) = pre commit, the three mentioned
actions insert elements into hi. They also put statusi(t) = committed and there is no other action enabled for a
transaction with statusi(t) = committed. Hence, this action is not enabled for transactions belonging to sz.hi and
only new transactions may be added.

2. πz+1 = remote commiti(t,WS). This case is similar to the previous one.
3. πz+1 = recover commiti(t, WS). This action is enabled for nodes i ∈ N such that sz.nodestatusi = recovering

provided that DBi.apply notify(t, WS.ops) = run. This action is invoked in a recovering node, performing
the recovery process by way of the execute applyi action. This last action applies transactions contained in
applyPendingi that has been already filled by the receive applyi(〈apply,SEQ, V 〉) action with the content of
SEQ. The SEQ component of the tuple is defined by another node, say j ∈ N , by the execution of the
receive recovererj(〈to recover, i, V repi〉) action so that SEQ = SEQj(V repi, V repj]. We have to verify that
SEQ does not contain elements already inserted into SEQi.
We already know that j sent the 〈apply, SEQ,V 〉) message in a previous state to sz. Hence, the induction hy-
pothesis is satisfied and SEQj does not contain repeated elements (If SEQj contains repeated elements and, by
Property 2, hj will have repeated elements too in contradiction with the hypothesis).

Property 5. Let α = s0π1s1 . . . πnsn . . . be an arbitrary execution of the MADIS-SI state transition system. Let i, j ∈ N two
different nodes, we have that if ∀V ≤ |hi|, V

′ ≤ |hj |, V = V ′ ⇔ hi[V] = hj [V
′].

Proof. By induction over the length of α.

- Induction Base. Initially, s0.hi = ε, hence condition is trivially satisfied.

- Induction Hypothesis. Let us suppose that ∀V ≤ |sz.hi|, V
′ ≤ |sz.hj |, V = V ′ ⇔ sz.hi[V] = sz.hj [V

′] is verified in
state sz. We have to check that is also verified for any state sz+1.

- Induction Step. As elements contained in sz.hi or sz.hj are not going to be modified, we have to concentrate on actions
(πz+1) adding elements to sz+1.hi or sz+1.hj . By inspection of Figures 2-4, the set of actions that modify hi or hj

are: end commiti(t, 〈remote, t, V, WS〉), remote commiti(t, WS), recover commiti(t, WS), end commitj(t, 〈remote,

t, V, WS〉), remote commitj(t, WS), recover commitj(t, WS). Let us check each one of them in a more detailed
manner:

1. πz+1 = end commiti(t, 〈remote, t, V, WS〉). It adds an element t ∈ T to sz.hi so sz+1.hi = sz.hi ·t. By Property 4,
t was not already at sz.hi. We have to consider two different scenarios:

– |sz.hi| < |sz.hj |. The πz+1 = end commiti(t, 〈remote, t, V, WS〉) action is fired by the total order delivery
of the message. Thanks to view synchrony this message was delivered also to site j in the same order that
is delivered to i. By Property 4, t was not already at sz′ .hj with z′ < z and by Property 3 sz.V repi =

sz′
−1.V repj. As this action increases in one unit the V repi value and t is the same the Property is held.

– |sz.hi| ≥ |sz.hj |. There is nothing to be done as the V value of the Property is increased but the respective
V ′ remains the same. Hence, by induction hypothesis, the Property holds.

2. πz+1 = remote commiti(t,WS). This case is similar to the previous one.
3. πz+1 = recover commiti(t, WS). This action is enabled for nodes i ∈ N such that sz.nodestatusi = recovering

provided that DBi.apply notify(t, WS.ops) = run. This action is invoked in a recovering node, say k 6= i ∈ N ,

15

performing the recovery process by way of the execute applyi action. This last action applies transactions con-
tained in applyPendingi that has been already filled by the receive applyi(〈apply,SEQ, V 〉) action with the con-
tent of SEQ. The SEQ component of the tuple is defined by k, with the execution of the receive recovererk(〈to-
recover, i, V repi〉) action so that SEQ = SEQj(V repi, V repj]. We have to verify that SEQ does not contain

elements already inserted into SEQi.
We already know that j sent the 〈apply, SEQ,V 〉) message in a previous state to sz. Hence, by Property 4 does
not contain repeated elements. The execute applyi action respects the original commit ordering. Again, we have
to consider two different scenarios depending on the length of hi and hj :

– |sz.hi| < |sz.hj |. By Property 4, t was not already at sz′ .hj with z′ < z and by Property 3 sz.V repi =

sz′
−1.V repj. As this action increases in one unit the V repi value and t is the same, the Property is held.

– |sz.hi| ≥ |sz.hj |. There is nothing to be done as the V value of the Property is increased but the respective
V ′ remains the same. Hence, by induction hypothesis, the Property holds.

Now we have to verify a safety property for committed transactions for every pair i, j ∈ N and show that their commitment
ordering of transactions is prefix of the other or vice versa.

Property 6. Let α = s0π1s1 . . . πnsn . . . be an arbitrary execution of the MADIS-SI state transition system. Let i, j ∈ N such
that |hi| ≤ |hj | then hi is a prefix of hj .

Proof. This Property will be proved by induction over the length of α.

- Induction Base. Initially, at s0 we have that s0.hi = s0.hj = ε and the property trivially holds.

- Induction Hypothesis. Let us assume that this is true for state sz, i.e. for any i, j ∈ N such that |sz.hi| ≤ |sz.hj | it is
verified that sz.hi is a prefix of sz.hj .

- Induction Step. We have to consider two different situations:

1. Let |sz.hi| < |sz.hj | where actions may modify hi or hj .
Actions that may modify hi and hj are those that may add new elements to seqi amd seqj , and to SEQi and SEQj

respectively (see Property 2). By inspection of Figures 2-4, the set of actions that add new terms either to SEQi

or to SEQj are: πk+1 ∈ {end commiti(t, 〈remote, t, V, WS〉), remote commiti(t, WS), recover commiti(t, WS),

end commitj(t, 〈remote, t, V, WS〉), remote commitj(t, WS), recover commitj(t, WS)}. Let us see its behavior
with each action in detail:
(a) πk+1 ∈ {end commitj(t, 〈remote, t, V, WS〉), remote commitj(t, WS), recover commitj(t, WS)}. The prop-

erty still holds at z + 1, since at z we have that sz.hi was a prefix of sz.hj . As the effects of these actions
append a transaction to sz.hj , then sz.hj is a prefix of sz+1.hj then sz.hi is a prefix of sz+1.hj , moreover
sz.hi = sz+1.hi, hence sz+1.hi is a prefix of sz+1.hj .

(b) πz+1 = end commiti(t, 〈remote, t, V, WS〉). This action is invoked by a node whose nodestatusi = alive, as
this message will be eventually total-order delivered to all available nodes in this view Vi. Thus, t will be
applied in the same order at all nodes. Let sz+1 the state when site i commits t and sz′ the state when site j

commits t. By Property 5, sz+1.V repi = sz′ .V repj . Besides, as |sz.hi| < |sz.hj | and by Property 2 z′ < z.
By Property 2, sz+1.hi = sz′ .hj , and as sz′ .hj = sz′

−1.hj · t, applying the same at site i : sz+1.hi = sz.hi · t.
We obtain that sz+1.hi = sz′ .hj .
As z′ < z, then sz.hj = s′z.hj ·φ, it may occur that φ = ε (in general |φ| ≥ 0). Substituting in sz+1.hi = sz′ .hj

we have that sz.hj = sz+1.hi · φ so sz+1.hi is always a prefix of sz.hj ; as hj always grows, it will be also a
prefix of sz+1.hj .

(c) πz+1 = remote commiti(t, WS(t)). This action corresponds to the commitment of a remote transaction.
The message containing the remote transaction will be eventually delivered at all available nodes in this
view. This case is quite similar to case (1b), as we must take into account the total order delivery of all
messages delivered in Vi to all available nodes and the certification process of the delivered transaction.
There was a state z′ ≤ z where πz′ = receive remotei(t, 〈remote, t, V, WS(t)〉). Now we have to check

16

if the concatenation of t to sz.hi constitutes a prefix of sz.hj . Again, as transactions are committed at all
available sites in the order they are delivered, site j has “seen” the same state as i, sz.hj = sz.hi · φ, being
the first element of φ transaction t (similar reasoning to case (1b)), therefore t will commit at site i. Hence,
sz+1.hj = sz.hj = sz.hi · φ = sz.hi · t · φ

′ = sz+1.hi · φ
′, with φ′ the remaining sequence of committed

transactions at site j. Therefore, the Property still holds.
(d) πz+1 = recover commiti(t, WS). This action is invoked by a node whose nodestatusi(t) = recovering. All

missed updates for this node have been sent by the recoverer node (via the receive applyi(〈apply,SEQ, V 〉)

action). This action enabled the ordered execution of missed updates, contained in applyPendingi ⊆

{〈V, WS〉}, sorted by its associated V value by the execute applyi action. Each element contained in
applyPendingi is executed one after the other, furthermore, this represents the order in which they were
committed in the view where they were delivered and certified. Hence, the execution of πz+1 holds the Prop-
erty, sz+1.hj = sz.hj = sz.hi · φ = sz.hi · t · φ

′, with φ′ the remaining sequence of committed transactions at
site j. Thus, the Property still holds.
This case has a special issue since it is generated by the execute applyi action. This recover action sequen-
tially executes write sets sorted by its associated value V , i.e. the order in which they were applied in the
system. Hence, this case is also reduced to case (1b).

Respectively, actions affecting the length of hj along the execution of α do not modify the fact that hi is a prefix
of hj as elements are never removed from hj .

2. |sz.hi| = |sz.hj |. We are going to study the actions that modify hi (the case of j is the same by symmetry).
Actions that modify hi are those that may modify by adding new terms to seqi, and to SEQi (see Property 2). By
inspection of Figures 2-4, the set of actions that may add new elements to SEQi are: πk+1 ∈ {end commiti(t,

〈remote, t, V, WS〉), remote commiti(t, WS), recover commiti(t,WS)}.
Due to the total order delivery of messages and the induction hypothesis, the parameters of actions must be the
same for i and j since the state of DBi and DBj must be the same.
If πz+1 ∈ {end commiti(t, 〈remote, t, V, WS(t)〉), remote commiti(t

′, WS′), recover commiti(t
′′, WS′′)} then

we have that hj is a prefix of hi and the Property still holds. We only have to change the site identifiers to verify
the same Property again.
In the same way, if πz+1 ∈ {end commitj(t, 〈remote, t, V, WS(t)〉), remote commitj(t

′, WS′), recover com-
mitj(t

′′, WS′′)}. The property still holds, since at z we have that sz.hi was a prefix of sz.hj . As the effects
of these actions append a transaction to hj , more formally sz+1.hj ← sz.hj · t

′′′, with t′′′ a local, remote or recover
transaction. Hence, sz+1.hi = sz.hi is still a prefix of sz+1.hj .

As it can be deduced by the proof of Property 6 there is no loss of generality in the definition of it, since we can use site
identifiers in an interchangeability manner.

Figure 5 shows the valid status transition for a transaction t in the system, according to the node state (nodestatusi

in Figure 2). Its associated transitions has been modified from what it has been stated in the algorithm specification (see
Figure 2) to distinguish between an abort coming from a replication protocol or a DBMS decision from an abort induced by
the leavei(ν) action (Figure 4). Hence, for a crashed node we have defined: aborted(c) for those local transactions aborted
still in their read & write phase; and deferred(c) that reflects the fact that a local transaction in the pre commit state or a
remote transaction have been aborted; it is important to note that the latter ones are the ones to be recovered.

Another interesting fact is that the remote and recovery transactions execution have no difference. In fact, recovery
transactions behave as remote transactions but deferred from their original applications6. Moreover, recovery transactions
may be attempted several times before it is successfully applied.

The following Property formalizes the status transition shown in Figure 5. It indicates that some status transitions are
unreachable, i.e., if sk.statusj(t) = pre commit and sk′ .statusj(t) = active with k′ > k. Moreover, some states are final such
as committed and aborted (or aborted(c) in Figure 5). Thus, there is no action in α such that sk′′ .statusj(t) = aborted with
k′ > k′′ > k. This Property also reflects the several re-attempts of recovery transactions until they are finally committed.

Property 7. Let α = soπ1s1 . . . πzsz . . . be an arbitrary execution of the MADIS-SI state transition system and t ∈ T . Let
αj(t) = s0.statusj(t) s1.statusj(t) . . . sz.statusj(t) be the sequence of status transitions of t at site j ∈ N , obtained from α

6Although, a recovery transaction may reflect the execution of a missed local transaction, as it has been stated before.

17

Figure 5: Valid transitions for a given statusi(t) of a transaction t ∈ T . The parenthesis in some status reflects the
nodestatusi where the transaction t is executed.

by removing the consecutive repetitions of the same statusj(t) value and maintaining the same order apparition in α. The
following Property holds:

1. If node(t) = j then αj(t) is a finite prefix of some sequence that match one of the next regular expressions:

(a) start · active · (blocked · active)∗ · pre commit · committed

(b) start · active · (blocked · active)∗ · pre commit · aborted

(c) start · (active · blocked)+ · (aborted|aborted(c))

(d) start · active · (blocked · active)∗ · (aborted|aborted(c))

(e) start · active · (blocked · active)∗ · pre commit · deferred(c)

(f) start ·active ·(blocked ·active)∗ ·pre commit ·deferred(c) ·(idle(r) ·blocked(r) ·deferred(c))∗ · idle(r) ·blocked(r) ·

committed

2. If node(t) 6= j then αj(t) is a finite prefix of some sequence that match one of the next regular expressions:

(a) idle

(b) idle · blocked · committed

(c) idle · aborted

(d) idle · (idle(r) · blocked(r) · deferred(c))∗ · idle(r) · blocked(r) · committed

(e) idle · blocked · deferred(c) · (idle(r) · blocked(r) · deferred(c))∗ · idle(r) · blocked(r) · committed

The regular expression shown in Property 7.1e is a prefix of Property 7.1f, this reflects the fact of a local transaction in
the pre − commit state that did not receive its own remote message due to its master node failure. Transitions presented in
Properties 7.1f, 7.2d and 7.2e reflect transitions associated to a transaction that is recovered either at its master site or at a
remote site. The MADIS-SI protocol must guarantee the atomicity of transactions; that is, the transaction is either committed at
all sites or is aborted at all sites. A transaction that reaches the pre commit state, it will send its updates, by way of a uniform
total order multicast, to all available sites (if it is a read-only one it will directly commit) and will be certified at all available
nodes. Once successfully certified, the write set will be applied and directly committed in the database replica. Otherwise,
the transaction is aborted and nothing else has to be done in the database replica.

Before stating the atomicity of committed transactions. We state an assumption about the recovery process duration so
that it does not become an endless process and it really gets the current state of the database.

18

Assumption 1 (System Stability). A node that is being recovered is liable to suffer several crashes along its recovery process.
We assume that if a node recovers often enough, it will eventually exist a installed view in that node where the recovery process
is finished, i.e. all write sets contained in SEQ will be applied.

The following Lemma, a liveness property, states the atomicity of a committed transaction.

Lemma 2. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MADIS-SI state transition system and t ∈ T whose WS(t) 6= ∅.
If there is i ∈ N such that sz.statusi(t) = committed, then there is z′ > z such that sz′ .statusj(t) = committed for all
j ∈ sz′ .Vj .availableNodes.

Proof. We have two different scenarios to consider:

1. i = node(t). We assume that t is a committed transaction. Hence, it has passed either by (7.1a) or (7.1f). The most
important fact is that statusi(t) = pre commit at some point in its execution lifetime. Thus, the remote message was
multicast and the execution of the end commiti(t, 〈remote, t, V, WS〉) action ensures, by way of the uniform property
of delivered messages, that the set of available nodes that installed the next view have committed the transaction via
Property 5 and follow the status transition shown in Property 7.2b.
Once t is committed, it is included in SEQi. Nodes j /∈ sz.V.availableNodes, those crashed when the transaction
was executed, will need to call the joinj (〈id, availableNodes〉), this action enables the receive recoverk(〈to rec-
over, j, V rep〉) action in a proper recoverer node k. This action sends an apply message that contains the missed
updates, i.e. t, in SEQ to the recovering node j. The message arrives and the receive applyj(〈apply,SEQ, V 〉) be-
comes enabled. By way of the execute applyj action transaction t is submitted to the database, and the transaction is
successfully committed as there are no concurrent update transactions and there are enough space in the DBMS. The
previous sequence may be repeated as many times as the recovering node fails and will eventually end up with the
previous sequence of actions as we are under Assumption 1. Finally, it will execute the πz′ = recover commitj(t,WS)

that sets statusj(t) = committed. This reflects transitions shown in Properties 7.2d and 7.2e.
If t has passed through Property 7.1f, it has reached the pre commit (sz.statusi(t) = pre commit) but crashed before
it delivered its own remote message (πz+1 = leavei(ν)), hence sz+1.statusi(t) = deferred and sz+1.nodestatusi(t) =

crashed. However, the rest of available nodes that installed the subsequent view (i.e. those k ∈ ν.availableNodes of
πz+1 = leavei(ν)), delivered and certified the transaction. Thus, it was committed and inserted in SEQk being k an
available node when i crashed. There will be a time when i will rejoin the system and under Assumption 1 and by
hypothesis, it will recover and commit the transaction. Following the same way, failed nodes will rejoin the system
and follow the sequence state at the end of the previous paragraph and it will be eventually committed at all nodes.

2. i 6= node(t). The committed transaction t is a remote transaction. It has passed either by (7.2b), (7.2d) or (7.2e).
Let us start with t executing the transition shown in Property 7.2b. Thus, t was committed in the same view where
the remote message was sent by the master site, say k ∈ N . Let us assume, without generalization loss, that i

was the first node that committed the transaction among all available nodes. This means that the receive remotei(t,

〈remotet, V, WS〉) action has successfully certified t and submitted it to the DBMS. As all conflicting transactions
are rolled back and write operations are blocked, the DBMS will eventually finish applying the write set and the
transaction will be committed by way of the execution of the πz = remote commiti(t,WS(t)) action. This makes
that sz.statusi(t) = commited and sz.SEQi = sz−1.SEQi

S

〈t, sz.V repi, WS(t)〉. Those j ∈ sz.Vi.availableNodes that
installs the next view will commit the transaction, following the same transition shown here, and the Property still
holds, as there will be a state z′ where sz′ .statusj(t) = committed. Those failed nodes will follow the recovery process
stated in 1 and the Property also holds.
If t has passed through transitions shown in Properties 7.2d or 7.2e, it was because it was crashed at the time when t

was originally committed, say z′′ where k ∈ sz′′ .Vk.availableNodes, so sz′′ .statusk(t) = committed and sz′′ .SEQk =

sz′′
−1.SEQk

S

〈t, sz′′ .V repk, WS(t)〉. Respectively, those nodes l /∈ sz′′ .Vk.availableNodes \ {i} will follow the same
status transition as i, i.e. Properties 7.2d or 7.2e.

In a similar way, we may formally verify that if a transaction is aborted then it will be aborted at all nodes. This is stated
in the following Lemma.

19

Lemma 3. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the MADIS-SI automaton and t ∈ T with node(t) = i. If
sz.statusi(t) = aborted then ∃ z′ ≥ z : sz′ .statusj(t) = idle for all j ∈ N \ {i} ∨ sz′ .statusj(t) = aborted for all j ∈

sz′ .Vj .availableNodes.

Proof. Again, we have to consider two different case, whether the transaction is local or it is a remote one.

1. i = node(t). The transaction t has passed for one of the sequences reflected in Properties 7.1b- 7.1f. In any case,
we have to re-consider among transaction that reached the pre commit state from those still in their read and write
phase. The former ones have propagated their write sets whilst the latter ones are merely local and the rest of nodes
are unaffected by this fact.
Suppose that t followed the status transition shown in Property 7.1b7, t is a transaction that multicast its remote mes-
sage but another write/write conflicting transaction t′ was delivered before t. More formally, πz = receive remotei(t

′,

〈remote, t′, V ′, WS′〉). This status will be final at i and the message will be discarded. In the rest of available
nodes k that installed the next view, they will execute the πz′ = receive remotek(t, 〈t, V, WS) action that will fail
the certification test, due to the total order delivery of messages (recall the previous transaction t′) and by Prop-
erty 5, it will be aborted, following the transition indicated in Property 7.2c and sz′ .statusk = aborted. Those nodes
l /∈ sz.Vi.availableNodes will never deliver the remote message of t and they are unaware of its existence. Hence,
∃z′ ∈ Z, z′ > z : sz′ .statusl(t) = idle. And the Property still holds.
Finally, suppose that t is a local transaction still in its read and write phase (Transitions shown in Properties 7.1b- 7.1f).
Therefore a transaction may be aborted by a local aborti(t, op) action or by a receive remotei(t

′, 〈t′, V ′, WS′〉). Hence,
remote nodes j ∈ N \ {i} do not know anything about this transaction and statusj(t) = idle and this status is final as
there is no message exchange.

2. i 6= node(t). There is only one possible transition and it is due to the unsuccessful check of the certification test
via the receive remotei(t, 〈remote, t, V, WS〉) and its status its final. The rest of available nodes in that view (that
installed the next view) will abort the transaction, by total order delivery of messages and by Property 5. Nodes
k /∈ sz.Vi.availableNodes will remain idle. Thus, the Property still holds.

7 Conclusions
In this paper, we present a middleware database replication protocol, called MADIS-SI. It is an evolution of the distributed
certified protocol proposed in [11]. It is an eager update everywhere replication protocol following the ROWAA approach [14]
that only exchanges one message per transaction.

MADIS-SI is GSI [11] provided that each DBMS provides SI [3], where a transaction is either committed or aborted at all
nodes and write sets are applied in the same order at all of them. This protocol is a “non-blocking” ROWAA one, where a
transaction never becomes blocked by the replication protocol during its execution at a replica.

Each node persistently stores its version number and a sequencer containing the already committed transactions. MADIS-SI
includes some actions so that transactions already committed at all nodes are removed from the sequencer. Furthermore, we
have dealt with node failure and recovery so when a node rejoins the node, it sends its current version to a recoverer. The
recoverer passes the missed part of that node. The recovering node will apply them serially; as they have been originally
applied. These ideas were introduced in [11]. We have formally described and verified the correctness of MADIS-SI, using a
formal state transition system [28], since recovery and garbage collection actions were not included in the correctness proof
of [11].

Acknowledgments
This work has been supported by the Spanish Government under research grant TIC2003-09420-C02.

7We do not explicitly consider the transition reflected in Property 7.1f as it is a particular case of a local transaction whose write set never reaches any
other node due to a failure of i, its statusi(t) = deferred and the rest of nodes j ∈ N \ {i} remain unaffected, i.e. statusj (t) = idle.

20

References
[1] J.E. Armendáriz, J.R. Juárez, J.R. Garitagoitia, J. R. González de Mendı́vil, and F.D. Muñoz-Escoı́. Implementing

database replication protocols based on O2PL in a middleware architecture. In IASTED DBA, pages 176–181, 2006.

[2] Alberto Bartoli. Implementing a replicated service with group communication. Journal of Systems Architecture,
50(8):493–519, 2004.

[3] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and Patrick E. O’Neil. A critique of
ANSI SQL isolation levels. In Michael J. Carey and Donovan A. Schneider, editors, SIGMOD Conference, pages 1–10.
ACM Press, 1995.

[4] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery in Database Sys-
tems. Addison Wesley, 1987.

[5] Michael J. Carey and Miron Livny. Conflict detection tradeoffs for replicated data. ACM Trans. Database Syst.,
16(4):703–746, 1991.

[6] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. J. ACM,
43(2):225–267, 1996.

[7] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a comprehensive study.
ACM Comput. Surv., 33(4):427–469, 2001.

[8] Edward G. Coffman Jr., M. J. Elphick, and Arie Shoshani. System deadlocks. ACM Comput. Surv., 3(2):67–78, 1971.

[9] Flaviu Cristian. Understanding fault-tolerant distributed systems. Commun. ACM, 34(2):56–78, 1991.

[10] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast algorithms: Taxonomy and survey.
ACM Comput. Surv., 36(4):372–421, 2004.

[11] Sameh Elnikety, Fernando Pedone, and Willy Zwaenopoel. Database replication using generalized snapshot isolation.
In SRDS. IEEE Computer Society, 2005.

[12] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha. Making snapshot isolation
serializable. ACM Trans. Database Syst., 30(2):492–528, 2005.

[13] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, 1985.

[14] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers of replication and a solution. In H. V.
Jagadish and Inderpal Singh Mumick, editors, SIGMOD Conference, pages 173–182. ACM Press, 1996.

[15] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related problems. Technical
Report TR94-1425, Dep. of Computer Science, Cornell University, Ithaca, New York (USA), May 1994.

[16] JoAnne Holliday, Robert C. Steinke, Divyakant Agrawal, and Amr El Abbadi. Epidemic algorithms for replicated
databases. IEEE Trans. Knowl. Data Eng., 15(5):1218–1238, 2003.

[17] Luis Irún-Briz, Hendrik Decker, Rubén de Juan-Marı́n, Francisco Castro-Company, Jose E. Armendáriz-Iñigo, and
Francesc D. Muñoz-Escoı́. MADIS: A slim middleware for database replication. In José C. Cunha and Pedro D.
Medeiros, editors, Euro-Par, volume 3648 of Lecture Notes in Computer Science, pages 349–359. Springer, 2005.

[18] Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, and Gustavo Alonso. Non-intrusive, parallel recovery of replicated data.
In SRDS, pages 150–159. IEEE Computer Society, 2002.

[19] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-r, a new way to implement database
replication. In Amr El Abbadi, Michael L. Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter
Schlageter, and Kyu-Young Whang, editors, VLDB, pages 134–143. Morgan Kaufmann, 2000.

21

[20] Bettina Kemme and Gustavo Alonso. A new approach to developing and implementing eager database replication
protocols. ACM Trans. Database Syst., 25(3):333–379, 2000.

[21] Bettina Kemme, Alberto Bartoli, and Özalp Babaoglu. Online reconfiguration in replicated databases based on group
communication. In DSN, pages 117–130. IEEE Computer Society, 2001.

[22] Bettina Kemme, Fernando Pedone, Gustavo Alonso, André Schiper, and Matthias Wiesmann. Using optimistic atomic
broadcast in transaction processing systems. IEEE Trans. Knowl. Data Eng., 15(4):1018–1032, 2003.

[23] Yi Lin, Bettina Kemme, Marta Patiño-Martı́nez, and Ricardo Jiménez-Peris. Middleware based data replication provid-
ing snapshot isolation. In SIGMOD Conference, 2005.

[24] Nancy A. Lynch. Distributed Systems. Morgan Kaufmann Publishers, 1996.

[25] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In PODC, pages
137–151, 1987.

[26] Marta Patiño-Martı́nez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso. Middle-r: Consistent database
replication at the middleware level. ACM Trans. Comput. Syst., 23(4):375–423, 2005.

[27] Karin Petersen, Mike Spreitzer, Douglas B. Terry, Marvin Theimer, and Alan J. Demers. Flexible update propagation
for weakly consistent replication. In SOSP, pages 288–301, 1997.

[28] A. Udaya Shankar. An introduction to assertional reasoning for concurrent systems. ACM Comput. Surv., 25(3):225–
262, 1993.

[29] Jeff Sidell, Paul M. Aoki, Adam Sah, Carl Staelin, Michael Stonebraker, and Andrew Yu. Data replication in mariposa.
In Stanley Y. W. Su, editor, ICDE, pages 485–494. IEEE Computer Society, 1996.

[30] Michael Stonebraker. Concurrency control and consistency of multiple copies of data in distributed ingres. IEEE Trans.
Software Eng., 5(3):188–194, 1979.

[31] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. Alonso. Database replication techniques: A three parameter
classification. In Proc. of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS’00), pages 206–217,
October 2000.

22

