
Revisiting and Improving a Result on
Integrity Preservation byConcurrent Transactions

Hendrik Decker and Francesc D. Muñoz-Escóı ?

Instituto Tecnológico de Informática, UPV, Valencia, Spain

Abstract. We revisit a well-known result on the preservation of in-
tegrity by concurrent transactions. It says that the serializability of
integrity-preserving transactions yields integrity-preserving histories. We
improve it in two ways. First, we discuss divergent interpretations and re-
state them more precisely. Second, we make it applicable in the presence
of inconsistency.

1 Introduction

Transactions in distributed information systems are bound to happen concur-
rently. Each transaction that involves updates may violate the integrity of stored
information. We assume that integrity conditions are expressed by declarative
constraints in the database schema of the information system.

Concurrent transactions usually are required to be serializable, in order to
prevent anomalies that may lead to violations of integrity. The requirement of
serializability is based on the well-known result that, if transactions preserve
integrity when executed in isolation, then also each serializable concurrent ex-
ecution of such transactions preserves integrity [8, 2]. Thus, concurrency seems
to be harmless, as long as each transaction is ensured to preserve integrity in
isolation. However, there are two big problems with this result.

First, there are essentially two different interpretations in the literature, and
it is not always clear which is meant. Both are correct, but one of them turns out
to be unfair, and both are unfeasible for long histories and ad-hoc transactions.

Second, the result outsources the responsibility of ensuring the integrity
preservation of a single transaction T to all preceding and concurrent trans-
actions: If any of them doesn’t make sure to preserve integrity on their part,
then no guarantees for T are made. Thus, the result is not robust and in fact
inapplicable if integrity violations are caused by preceding or concurrent transac-
tions. That intolerance is unrealistic, since most information systems in practice
tend to suffer from some (mostly slight) amount of inconsistency, while behaving
reasonably well. As it stands, the result is unable to predict such behavior.

In section 2, we formally revisit standard notions and results of concurrency
and integrity. In section 3, we propose solutions for the two problems identified
above. In section 4, we address related work. In section 5, we conclude. We
assume a basic familiarity with concurrency [2] and integrity [18].
? Both authors are supported by ERDF and the Spanish grants TIN2009-14460-C03

and TIN2010-17193



2 Revisiting Concurrency and Integrity

In 2.1 and 2.2, we synthesize notions and formalizations traditionally used in the
literature on transaction concurrency and data integrity. In 2.3, we recapitulate
the mentioned result about the integrity preservation by concurrent transactions.

2.1 Concurrency
Drawing from [8, 2, 17], we introduce, in 2.1.1 - 2.1.3, our notions of ‘resource’
(a.k.a. ‘data item’), ‘fixed-time’ and ‘dynamic’ database state, ‘action’ (a.k.a.
‘operation’), ‘transaction’, ‘history’ (a.k.a. ‘schedule’) and ‘serializability’. Our
concurrency model does not recur on physical data items nor on fixed-time states,
but on truth values of relational tuples in dynamic states of information systems.

2.1.1 Resources, States, Transactions

Throughout, we assume that a well-defined schema of the database that un-
derlies a considered information system is always tacitly given. Also, we assume
a universal language L by which the contents of the relational tables and the
integrity constraints of a schema are described.

A resource (sometimes also called ‘data item’) is a unit of storable information
accessed by transactions. As in [17], the only resources considered in this paper
are the elements of the Herbrand base of L, i.e. all facts expressible in L.

A state of an information system is a mapping from the set of all resources
to {true, false}. A state is partial if the mapping is partial. For a state S and a
resource r, we say that the value of r is known in S if it is known to be either
true or false in S, for which we also write S(r) = true or, resp., S(r) = false.
Otherwise, r is said to be unknown in S.

In [2], “the values of the data items at any one time comprise the state”.
We call such states fixed-time states (‘dynamic’ states are defined in 2.1.2). For
convenience, we sometimes identify a fixed-time state with the point of time at
which it is fixed. States are changed over time by actions.

An action is an atomic operation on precisely one resource, except begin and
end, as defined below: begin acts on no resource, end may act on many resources.

Each action takes place at precisely one point of system time, which we
assume to be an unbounded, linear sequence of discrete time points.

A transaction is an atomically executed, finite set of actions. (We may speak
elliptically of a transaction T when in fact we mean an execution of T .) Each
transaction T consists of precisely one begin, precisely one end of the form commit
or abort, and a finite set of accesses, each of the form read(r) or write(r), where
r is a resource. The begin (end) of T is earlier (resp., later) than each access of
T . The commit of T means that the last write to each resource written by T is
confirmed. The abort of T means that all writes of T are undone. Two actions
are said to be conflictive if both access the same resource and at least one of
them is a write. Conflictive actions in T are never executed at the same time.

Distinguished fixed-time states are the states at the time a transaction T
begins and, resp., ends, which we denote by Sb

T and, resp., Se
T .



To read a resource r means to query if r is true or false of a given state.
So, queries correspond to transactions that read the resources needed to return
answers. To write r means to either insert or delete r, i.e., effect a state change
such that r becomes true or, resp., false. For actions read(r) and write(r) of a
transaction T , we also say that T accesses (reads or, resp., writes) r.

For a transaction T , let CT denote the set of transactions that are concurrent
with T , i.e., that execute at least one action in the interval between the begin
and the end of T . In particular, T ∈ CT .

Transactions that abort are supposed to leave the database unchanged. Thus,
they cannot cause a violation of integrity. So, for each transaction, we can assume
that it does not abort unless its commitment would violate integrity. Other
aborts, due to hardware failure, wrong input, deadlock, etc., are not considered.

2.1.2 Histories, I/O States

Informally, a history is a possibly concurrent execution of transactions, i.e., ac-
tions of several transactions may be executed at the same or interleaved points
of time. Formally, a history H of a set of transactions T is a partial order of
the union of all actions of all T ∈T, such that, for each T ∈T and each pair of
actions (A,A′) in T such that A is before A′ in T , A also is before A′ in H, and
conflicting actions in H are never executed at the same time. Two actions in H
conflict if they access the same resource r and at least one of them writes r.

We may say ‘T in H’ if H is a history of a set of transactions T and T ∈T.
For each T in H, we assume that also each T ′ ∈CT is in H, since, otherwise,
scheduling may not be able to take all possible conflicts into account. Thus,
histories may be arbitrarily long, particularly in systems with 24/7 services that
may always be busy. Distinguished fixed-time states at which no access takes
place are the states at the time of the earliest begin and the latest end in H,
denoted by Sb

H and, resp., Se
H . Se

H is also called the final state of H.
For a resource r and a point of time t, the committed value of r at t in H

is defined as the value of r as committed most recently by some T in H. Thus,
for the commit time tc of T , tc ≤ t holds, and no transaction in H other than T
commits r at any time in the interval [tc, t].

There are dynamic states that are not necessarily fixed-time, e.g., ‘states seen
by transactions’ [8], or ‘global states’ [9, 4]. Dynamic states consist of values of
resources committed at different but related points of time in some history H.

For example, committed states, defined by the committed value of each re-
source at some time t in H, are dynamic. In general, the committed state at
time t is different from the fixed-time state at t.

The dynamic states defined next, collectively called I/O states, are partial,
since transactions usually ‘see’ (access) only part of the database. In 2.1.3, we
use I/O states for characterizing serializability, and in 3.1 for stating precisely
which state transition is meant when we discuss the integrity preservation of T .

For a transaction T and a resource r, the value of r in the input state Si
T of

T is the committed value of r immediately before T accesses r first. The value



of r in the output state So
T of T is the value of r immediately after T accessed r

last. If a resource is not accessed by T , its values in Si
T and So

T remain unknown.
Clearly, Si

T =Sb
T and So

T =Se
T if T is executed in isolation. I/O states are

dynamic, since they may not exist at any fixed point of time. In particular, Si
T

and So
T may be different from Sb

T or, resp., Se
T .

For instance, a resource may be committed after the begin of T but before
T accesses it first. Or, a resource, after having been accessed last by a read
operation of T , may be written by some T ′ in CT before T ends. Also, Si

T and
So

T are not necessarily identical to any committed state at any point of time.
For example, consider distinct resources r, r′ and a history H of transactions

T0 , T1 , T2 which begin at a time, then T0 inserts r and r′ at a time and
commits, then T1 reads r, then T2 deletes r and r′ at a time and commits, then
T1 reads r′ and commits. Clearly, r is true and r′ is false in Si

T1 =So
T1 , which

is not a committed state at any time of H. Yet, in general, Si
T and So

T are the
first and, resp., the last state ‘seen by’ T .

I/O states facilitate the modeling of long histories, e.g., for 24/7 applications,
where the initial or terminal committed states at the time of the begin or the
end of histories may be forgotten or out of sight, respectively. Also the modeling
of histories with relaxed isolation requirements is easier with I/O states, since
they do not necessarily coincide with committed states.

2.1.3 Serializability

The serializability of a historyH (usually taken care of transparently by a module
called scheduler) prevents anomalies (lost updates, dirty reads, unrepeatable
reads) that may be caused by concurrent transactions in H [2].

A history H is serial if, for each pair of distinct transactions T, T ′ in H,
the begin of T is before or after each action of T ′, i.e., transactions do not
interleave. Intuitively, a serializable history H “has the same effect as some
serial execution” of H, where the “effects of a history are the values produced
by the Write operations of unaborted transactions”, thus preventing that actions
of concurrent transactions would “interfere, thereby leading to an inconsistent”
state [2]. Anomalies are not the only possible cause of integrity violation. Thus,
serializability helps to avoid some, but not all possible integrity violations.

There are several definitions of serializability in the literature [21]. The fol-
lowing one generalizes view serializability [2], but still ensures that, for each
serializable history H, the same effects are obtained by some serial execution of
H. A history H is called serializable if the output state of each transaction in
H is the same as in some serial history H ′ of the transactions in H such that
Sb

H′ =Sb
H . For example, the history of T0 , T1 , T2 in 2.1.2 is not serializable.

In practice, less permissive but more easily computable definitions of seri-
alizability are used. Locking, time stamping or other transaction management
measures may be used for implementing various forms of serializability [8, 2].



2.2 Integrity

In 2.2.1 - 2.2.2, we revisit the notions of ‘update’, ‘integrity constraint’ and ‘case’.
The latter is fundamental for inconsistency-tolerant integrity preservation by
concurrent transactions, as addressed in 3.2.2. Inconsistency tolerance guaran-
tees that all constraints that are satisfied before a transaction remain satisfied
afterward, even if some constraints are violated before.

2.2.1 Updates, Constraints, Cases

Integrity is endangered whenever an update U to be committed changes a state
S to an updated state, which we denote by SU .

An update of a state S is a bipartite set (Del, Ins) of resources such that the
deletes in Del and the inserts in Ins are disjoint. SU is defined by mapping each
delete in Del to false, each insert in Ins to true, and the value of each other
resource is as in S. The writeset WT of a transaction T is the set of all writes
w in T of the form delete(r) or insert(r) such that any other write of r in T is
earlier than w. Let UT denote the update corresponding to WT .

An integrity constraint I (in short, constraint) is a sentence in LS which
states a condition that is expected to hold in each I/O state. W.l.o.g., we assume
that each constraint is represented in prenex form, i.e., all quantifiers precede
all predicates and connectors. That includes constraints in denial form [14] and
prenex normal form [19]. An integrity theory is a set of integrity constraints.

A ∀-quantified variable in a constraint is called global if its quantifier is not
preceded by any ∃ quantifier. For a substitution ζ of the global variables of
a constraint I, a constraint of the form Iζ is called a case of I. Clearly, each
constraint subsumes each of its cases, and each constraint is a case of itself.

If a constraint I is violated by some transaction, then often only a single case
of I is violated, while all other cases of I remain satisfied. As we shall see in
3.2, cases are very useful for obtaining an inconsistency-tolerant generalization
of the results in 3.1 and 3.2. It does not insist on the total integrity satisfaction
of all constraints in all committed states, as opposed to traditional results.

2.2.2 Integrity Satisfaction, Violation and Preservation

For an integrity theory IC , a state S satisfies IC if each constraint I in IC
is satisfied in S. Let S(I) = sat denote that S satisfies I, and S(I) = vio that S
violates I. Further, let S(IC ) = sat denote that S satisfies IC , and S(IC ) = vio
that S violates IC . Common synonyms for ‘integrity satisfaction’ and ‘violation’
are ‘consistency’ and, resp., ‘inconsistency’. There are several non-equivalent
definitions of integrity satisfaction and violation in the literature. A natural one,
which we adopt, is to logically evaluate each constraint according to the truth
values of resources in S. Thus, S(I) = sat (S(I) = vio) if I evaluates to true (resp.,
false) in D, and S(IC ) = sat if S(I) = sat for each I ∈ IC , else S(IC ) = vio.

For a constraint I, a transaction T is said to preserve I in isolation if, for
each state S such that S(I) = sat , also SUT (I) = sat holds. For an integrity theory



IC , T is said to preserve IC in isolation if T preserves each constraint in IC
in isolation. The phrase ‘in isolation’ can be omitted whenever it is understood.
We may also say that T preserves integrity when I or IC is understood.

2.3 A Well-known Result

As already indicated, a well-known result of concurrency theory seems to pro-
vide an immediate solution to the problem stated in the introduction. We cite
this result from [2]: “If each transaction preserves consistency, then every serial
execution of transactions preserves consistency. This follows from the fact that
each transaction leaves the information system in a consistent state for the next
transaction. Since every serializable execution has the same effect as some serial
execution, serializable executions preserve consistency too.” In other words: if
each of several transactions preserves integrity in isolation, then integrity is pre-
served also when these transactions are executed concurrently in a serializable
history. Let us represent this by the following schematic rule:

isolated integrity + serializability ⇒ concurrent integrity (*)

3 Improving the Predictions of (*)

We are going to assess the shortcomings of (*) as mentioned in section 1 and
improve its predictions. In 3.1, we observe that the more common of two diver-
gent interpretations of (*) unfairly ignores the committed states of transactions
whose commit is not the last one in a given history. In 3.2, we argue that both
interpretations of (*) are questionable for long histories and ad-hoc transactions.
We then state refinements of (*) that are applicable for long histories, ad-hoc
transactions, and extant integrity violations.

3.1 Divergent Interpretations

For a serializable history H the transactions of which preserve integrity in iso-
lation, there are two valid interpretations of the conclusion of (*). One is that
integrity is satisfied in Se

H if it is satisfied in Sb
H . We call that final-state integrity

(many authors speak of ‘final state consistency’, e.g., [16]). The other interpreta-
tion is that, for each transaction T in H, the transition from Si

T to So
T preserves

integrity. A premise of both is that Sb
H satisfies integrity. However, note that this

premise may not be applicable in long histories, the beginning or end of which
may be unknown or out of sight.

Final-state integrity has been investigated, e.g., in [20, 15, 12]. That interpre-
tation unfairly ignores output states of transactions that commit before the last
commit of H. The final-state interpretation makes no integrity guarantees for
such states, although they should be trustable for applications that ‘see’ them.

The second meaning of (*), as identified above, is what we are after in this
paper. But, which state transition is meant by asking whether a transaction T



preserves or violates integrity when executed concurrently? It cannot be the tran-
sition between Sb

T and Se
T , since each fixed-time state may be inconsistent, due

to possible intermediate integrity violations by concurrent transactions. Rather,
T transfers its input state Si

T to its output state So
T . But, can it be said that the

transition between partial states Si
T , So

T preserves or violates integrity? Indeed,
it can, if the values of all resources to be read for determining if integrity is
preserved or violated are known. That, however, we can simply assume, since
each of these resources would need to be read by, and thus known to T if T
would have to cater by itself for preserving integrity in isolation. Hence, we can
re-state both interpretations of (*) as follows.

Theorem 1. Let IC be an integrity theory, H a serializable history such
that Sb

H(IC ) = sat , and T a transaction in H. Further, let each transaction in
H preserve IC in isolation. Then, the following holds.
a) Se

H(IC ) = sat , i.e., integrity is satisfied in the final state of H.
b) So

T (IC ) = sat , i.e., integrity is satisfied in the output state of T . �

Clearly, theorem 1a) corresponds to the first, 1b) to the second of the men-
tioned interpretations of (*). Note that the premises of theorem 1 also entail
that each committed state at any time in H satisfies integrity, by the same ar-
gument as cited in 2.3 from [2]. Similarly, the premises of theorem 1 entail that
also Si

T satisfies integrity, since, for each resource r accessed by T , Si
T (r) is the

committed value of r at the time it is accessed first by T .

3.2 Robust Integrity Guarantees for Concurrent Transactions

The preconditions of Theorem 1 are quite strong. They demand that IC be
totally satisfied from the beginning of the history, and that all transactions make
sure that all of IC remains satisfied. However, for obtaining desirable consistency
guarantees for T , much less needs to be required.

In 3.2, Theorem 2 shows that it is not necessary, as in Theorem 1, to require
integrity guarantees from any transaction that commits before T begins nor
from any transaction that is concurrent with T . In 3.2.2, Theorem 3 improves
Theorem 2 by abandoning the unnecessarily strict requirement that integrity
be satisfied without exception at the beginning of T . Theorem 3 states that all
cases of constraints in IC that are satisfied in the input state of T will remain
satisfied in its output state if T preserves integrity if it were executed in isolation.
Again, note that no such requirement is made for any transaction that precedes
T or is concurrent with it. Thus, Theorem 3 is an unprecedented result about
inconsistency-tolerant integrity preservation through concurrent transactions.

3.2.1 Independence of Preceding and Concurrent Transactions

Theorem 1 requires that integrity be satisfied in the initial state Sb
H of H.

However, for a long history H, Sb
H may be out of reach, i.e., the values and hence



the integrity status of Sb
H may be unknown. Moreover, 1b) requires that each

transaction in H preserves integrity in isolation. That is scary, particularly in
multi-user databases where different agents may issue transactions independently
of each other. Hence, the guarantees of integrity preservation made for T in 1b)
are betting on something that may be beyond their control. In fact, having to
trust on the integrity preservation of preceding or concurrent transactions issued
by other, possibly unknown agents is unacceptable.

Hence, is is desirable to relax the related premises of theorem 1, as done in
the following result. Its validity is justified by the argument in [2] as cited in 2.3.
It also applies to long histories in 24/7 systems. Moreover, it is independent of
the preservation of integrity in isolation by transactions other than T in H.

Theorem 2. Let IC be an integrity theory, H a serializable history, and T a
transaction in H such that Si

T (IC ) = sat and T preserves IC in isolation. Then,
So

T (IC ) = sat . �

The essential differences between theorems 1b) and 2 are as follows. The
premise in theorem 1 that Sb

H(IC ) = sat is replaced by the premise in theorem 2
that Si

T (IC ) = sat . Thus, the initial state of H, which may be out of reach, does
no longer have to be considered. Further, the premise in theorem 1 that each
transaction in H preserves IC in isolation is abandoned in theorem 2. It is
needed in theorem 1 in order to ensure that integrity remains satisfied from the
beginning to the end of H. Theorem 2 predicts that integrity remains satisfied
from the input to the output state of an arbitrary transaction T in H, and
therefore does not need the abandoned premise. The conclusions are the same,
but in theorem 1b), the conclusion holds for each transaction in H, in theorem 2
just for T . Thus, theorem 2 only considers the state transition effected by T .
It does not depend on the integrity satisfaction in states at any time before T
begins, nor on the integrity preservation by any other transaction.

3.2.2 Inconsistency-tolerant Integrity Preservation

The premise Si
T (IC ) = sat of theorem 2 effectively requires that each case in

IC be satisfied in Si
T . However, the prediction of a successful integrity preserva-

tion by T should not depend on cases that are irrelevant to UT . Such cases may
be violated by transactions that precede or are concurrent with T . More gener-
ally, it is desirable to tolerate any extant violations, even of relevant cases (e.g.,
of ‘soft’ constraints). The following result relaxes the overly exigent premise
Si

T (IC ) = sat . Theorem 3 focuses on cases that are satisfied in Si
T , without

requiring that all of them be satisfied, as opposed to theorem 2.

Theorem 3. Let IC be an integrity theory, H a serializable history and T a
transaction in H that preserves integrity in isolation. Then, for each case C in
IC such that Si

T (C) = sat , it follows that So
T (C) = sat .

Proof. The set of cases such that Si
T (C) = sat is an integrity theory that is

satisfied in Si
T . Hence, theorem 3 follows from theorem 2. �



Theorem 3 is an inconsistency-tolerant result, in that it makes predictions
of integrity preservation by a concurrently executed transaction T , while ad-
mitting integrity violations in Si

T and So
T , even of relevant cases. In contrast

to theorem 1b), already theorem 2 is inconsistency-tolerant, in a sense: as long
as Si

T (IC ) = sat holds, any integrity violation in any state of H before Si
T is

immaterial. Theorem 3 goes beyond the inconsistency tolerance of theorem 2
since the former also tolerates any amount of extant violations of constraints in
Si

T .

4 Related work

In early work [11, 7, 13, 8, 1, 10], a distinction is made between integrity viola-
tions caused either by anomalies of concurrency or semantic errors. In [7, 13],
concurrency is not dealt with any further. In [11, 8, 1, 10], integrity is not looked
at in detail. Also in later related work, either concurrency or integrity is largely
passed by, except papers that address final-state integrity (cf. 3.1), and [3, 17].

In [17], it is described how to automatically augment concurrent write trans-
actions with additional read actions for simplified integrity checking, and with
locks to protect those actions, so that integrity preservation can be guaranteed
for serializable executions. However, neither long histories nor ad-hoc transac-
tions are not considered in [17].

The author of [3] observes that integrity checks are read-only actions without
effect on other operations, possibly except abortions due to integrity violation.
Some scheduling optimizations made possible by the unobtrusive nature of read
actions for integrity checking are discussed in [3].

In none of the cited papers, inconsistency tolerance is an issue.

5 Conclusion

We have defined states ‘seen by’ concurrent transactions as dynamic partial
states called I/O states. They typically contain unknown values than may vi-
olate integrity. Thus, an inconsistency-tolerant approach is needed. Based on
I/O states, we have scrutinized, restated and generalized the classic result that
integrity preserved in isolation is sufficient for preserving integrity concurrently.

The classic result is always stated informally, while our versions are more
formal and lucid. Our versions also are more practical because they allow for
ad-hoc transactions, long histories and the toleration of extant inconsistency.

We have only considered flat transactions. Yet, it should be interesting to
study the preservation of integrity when there are read-only subtransactions.
That has been already done in [6], but without much attention to concurrency.
Alternatively, a concurrent, history-wide or perpetual built-in transaction could
be conceived, for checking if user transactions preserve integrity. We intend to
study these issues in future work. Also, we intend to take recovery issues into ac-
count, which are important for distributed systems but have not been addressed
in this paper.



References

1. R. Bayer. Integrity, Concurrency, and Recovery in Databases. Proc. 1st ECI,
LNCS vol. 44, 79-106. Springer, 1976.

2. P. Bernstein, V. Hadzilacos, N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

3. S. Böttcher. Improving the Concurrency of Integrity Checks and Write Operations.
Proc. 3rd ICDT, LNCS vol. 470, 259-273. Springer, 1990.

4. M. Chandy, L. Lamport. Distributed Snapshots: Determining Global States of
Distributed Systems. ACM TOCS 3(1):63-75, 1985.

5. H. Decker, D. Martinenghi. Inconsistency-tolerant Integrity Checking. To appear
in Transactions of Knowledge and Data Engineering. Abstract and preprints at
http://www.computer.org/portal/web/csdl/doi/10.1109/TKDE.2010.87.

6. A. Doucet, S. Gançarski, C. León, M. Rukoz: Checking Integrity Constraints in
Multidatabase Systems with Nested Transactions. Proc. 9th CoopIS, LNCS vol.
2171, 316-328. Springer, 2001.

7. K. Eswaran, D. Chamberlin. Functional Specification of a Subsystem for Data Base
Integrity. Proc. 1st VLDB, 48-68. ACM Press, 1975.

8. K. Eswaran, J. Gray, R. Lorie, I. Traiger. The Notions of Consistency and Predicate
Locks in a Database System. CACM 19(11):624-633, 1976.

9. M. Fischer, N. Griffeth, N. Lynch. Global States of a Distributed System.
IEEETrans. SoftwareEng. 8(3):198-202, 1982.

10. G. Gardarin. Integrity, Consistency, Concurrency, Reliability in Distributed Data-
base Management Systems. In C. Delobel, W. Litwin (eds), Distributed Databases,
335-351. North-Holland, 1980.

11. J. Gray, R. Lorie, G. Putzolu. Granularity of Locks in a Shared Data Base. Proc.
1st VLDB, 428-451. ACM Press, 1975.

12. P. Grefen. Combining Theory and Practice in Integrity Control: A Declarative
Approach to the Specification of a Transaction Modification Subsystem. Proc. 19th
VLDB, 581-591. Morgan Kaufmann, 1993.

13. M. Hammer, D. McLeod. Semantic Integrity in a Relational Data Base System.
Proc. 1st VLDB, 25-47. ACM Press, 1975.

14. R. Kowalski. Logic for Problem Solving. North-Holland, 1979.
15. L. Lilien, B. Bhargava. A Scheme for Batch Verification of Integrity Assertions in

a Database System. IEEE Trans. SoftwareEng. 10(6):664-680, 1984.
16. B. Lindsay. Jim Gray at IBM – The Transaction Processing Revolution. Sigmod

Record 37(2):38-40, 2008.
17. D. Martinenghi, H. Christiansen. Transaction Management with Integrity Check-

ing. Proc. 16th DEXA, Springer LNCS vol. 3588, 606-615. Springer, 2005.
18. D. Martinenghi, H. Christiansen, H. Decker. Integrity checking and maintenance

in relational and deductive databases and beyond. In Z. Ma (ed), Intelligent
Databases: Technologies and Applications, 238-285. Idea Group, 2006.

19. J.-M. Nicolas. Logic for improving integrity checking in relational data bases. Acta
Informatica 18:227-253, 1982.

20. A. Silberschatz, Z. Kedem. Consistency in Hierarchical Database Systems. JACM
27(1):72-80, 1980.

21. K. Vidyasankar. Serializability. In L. Liu, T. Özu (eds), Encyclopedia of Database
Systems, 2626-2632. Springer, 2009.


