BUSINESS RULES FOR REPLICATED ENTERPRISE DATA

Hendrik Decker and Francesc Mufioz-Escoi
Instituto Tecnologico de Informatica, CiudadPolitécnica de la Innovacion
Universidad Politécnica de Valencia, Campus de Vera 8G, 46071 Valencia, Spain

ABSTRACT

Business rules are essential for the IT alignment of enterprises. Their enforcement may conflict with the commit
guarantees of replication protocols. Business rule enforcement may also falter due to integrity violations caused by
concurrent transactions. To avoid this, we propose an inconsistency-tolerant extension of replication architectures for
data-centric enterprise applications that supports business rules expressed by database integrity constraints.
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1 INTRODUCTION

Data replication boosts the availability, reliability and fault tolerance of business-critical applications
(Wiesman et al, 2005; Armendariz et al, 2007). Business rules, also known as integrity constraints, improve
the quality of business data and processes (Date, 2000; Doorn et al, 2002; Ross, 2003; Ramakrishnan et al,
2006). Thus, a combination of replication and business rules promises a considerable synergy effect.

This paper deals with three problems that impede a combination of replication and business rules. First,
replication protocols may conflict with an atomicity-preserving evaluation of integrity constraints. We call
this the replication-integrity conflict. The second and third problems are two common tacit assumptions for
integrity checking. One is that integrity can be efficiently checked only if the state before the update totally
satisfies all constraints without exception. We call this assumption the fotal integrity premise. The other is
that, for guaranteeing integrity preservation by concurrent transactions, each transaction is supposed to
preserve integrity when executed in isolation. We call this assumption the isolated integrity premise. In
section 2, we characterize the replication-integrity conflict and the premises of total and isolated integrity. In
section 3, we propose extensions of protocols for avoiding replication-integrity conflicts. In section 4, we
show that inconsistency-tolerant integrity checking serves to waive the total integrity premise and to relax the
isolated integrity premise. We use conventional terminology and notations (Ramakrishnan et al, 2003).

2 PROBLEMS

2.1 The replication-integrity conflict

Most DBMSs offer two modes of integrity checking: immediate or deferred. In immediate mode, each action
in a transaction 7 is immediately checked for integrity preservation. 7' continues if integrity remains satisfied,
else T aborts. In deferred mode, integrity is checked only after 7 has requested its commit. That request then
is complied with if and only if the integrity check has detected no violation.

Each transaction atomically maps the before-state, in which the transaction is issued, to an affer-state,
obtained by executing all actions of the transaction (Gray,1981). Clearly, integrity checking in immediate
mode destroys atomicity. Of course, some specific applications may want to have exactly the effects of
immediate checking. But, since we are interested in reliable results of integrity checking in the general case,
we do not consider the immediate mode of integrity checking any further.

Existing replication protocols do not take care for integrity checking. In replicated multi-master databases,
concurrent transactions may start and execute in different nodes, and proceed without problem until they



request commitment. (If, for some reason, a transaction 7 needs to abort, transaction handling can be
assumed to undo all uncommitted changes caused by 7, so as if they never have happened.) Upon receipt of
the commit request of a transaction 7, the replication protocol validates 7" and guarantees its commit if there
is no read-write or write-write conflict among concurrent transactions.

Now, an integrity conflict may arise if constraints are checked in deferred mode, after successful conflict
validation by the replication protocol. Thus, an integrity violation may be diagnosed that remained unnoticed
by the replication protocol. So, a transaction that has already committed may have to be undone later, by
some compensating transaction. That, however, severely compromises durability, i.e., one of the basic
properties required from committed transactions (Gray, 1981).

Example 1

Let 1=« proj(x,y), proj(x,z), y # z be a primary key constraint, represented in denial form, on the first
column of relation proj: the first column be the project identifier and the second a vector of project attributes.
Further, in relation emp, the first column be the employee's name and the second a project to which s/he is
assigned. The foreign key constraint /' = Vx, y 3 z (emp(x,y) — proj(y,z)) on the second column of emp
references the primary key of proj. Further, let T = {insert emp(Fred, p), delete proj(p, )} be a transaction
that assigns Fred to project p and deletes the record of p. Clearly, T violates I'. But the validation of 7 by the
replication protocol will not notice that. Thus, 7’ may commit before its integrity violation is noticed. O

In section 3, we analyze popular classes of replication protocols and propose modifications thereof such that
replication-integrity conflicts as in example 1 are avoided.

2.2 The total integrity premise

Integrity checking can be prohibitively costly, unless some simplification mechanisms are used (Christiansen
et al, 2006). That can be illustrated as follows.

Example 2

Let the constraints / and /' be as in example 1. Further, let a transaction consists of inserting emp(Fred, p).
Most integrity checking methods M ignore I’ because it does not constrain the relation emp. Rather, they only
evaluate the case 3 z emp(Fred, p) — proj(p, z)) of I, or rather its simplification 3z proj(p, z), since
emp(Fred, p) becomes true by the transaction. If, e.g., (p, e) is a row in proj, M sanctions the insertion. If
there is no tuple matching (p, z) in proj, then M signals a violation of integrity. O

The correctness proofs of methods for simplification-based integrity checking in the literature all rely on the
premise that integrity always be totally satisfied, before updates are admitted and checked for preserving
consistency. That is the fotal integrity premise. In practice, however, it is rather the exception than the rule
that this premise is fulfilled. In particular for applications such as legacy data maintenance, data warehousing,
data federation, 24/7 services and also in distributed and replicated databases, a certain amount of extant
integrity violations has to be lived with, at least temporarily.

Working around or repairing such inconsistencies on the spot may unduly disturb running operations.
Repairing may also be out of reach because inconsistencies are hidden and overlooked. Hence, the total
integrity premise, traditionally assumed unanimously, does not approve the correctness of integrity checking
in practice, if it is performed in the presence of extant consistency violations. Fortunately, that premise can
be waived without incurring any cost and without losing its essential guarantees, as shown in section 4.

2.3 The isolated integrity premise

Integrity preservation has been thematized in the literature on transaction processing since its beginnings.
We cite (Eswaran et al, 1976): “it is assumed that each transaction, when executed alone, transforms a
consistent state into a consistent state; that is, transactions preserve consistency”. This is what we have
called the isolated integrity premise. (Recall that the execution of a transaction T is isolated when the state
transition effected by T is as if having been executed alone, without concurrent transactions.) From that
premise, the well-known result is inferred that then, also all sequentializable schedules of concurrent



transactions preserve 'consistency', i.e., integrity. However, similar to the total integrity premise, the isolated
integrity premise seems to be illusionary, particularly for distributed multi-user databases. In fact, it is hard to
believe than any human or programmed client who issues a transaction 7 would ever bet on a consistency-
preserving outcome of 7 by blindly trusting that all other clients have taken the same care as herself for
making sure that their transactions preserve integrity in isolation. Yet, in practice, most clients are confident
about the integrity of the outcome of their transactions, although there is no theory to justify their optimism.
Such a justification is given in section 4.

3 EXTENDING REPLICATION WITH INTEGRITY

In 3.1, we identify the replication-integrity conflict for the classes of Certification-Based Replication (CBR)
and Weak Voting Replication (WVR) protocols. In 3.2, we propose an extension to relieve that conflict.

3.1 Replication protocols

Replication protocols use a total order broadcast mechanism (Chockler et al, 2001) for update propagation
and replica coordination. According to (Wiesmann et al, 2005), CBR and WVR are the most interesting
classes of such protocols. Other classes in (Wiesmann et al, 2005) are unproblematic for integrity
management, since they require no coordination between replica. Thus, integrity checking can fully rely on
the support of the local DBMS, just like in a non-replicated architecture. Unfortunately, CBR and WVR give
rise to several problems with regard to integrity constraints. To analyze these, let us take a closer look at the
protocol procedures. Both CBR and WVR process each transaction 7 as follows.

Each transaction 7 is executed by a single delegate replica. When T requests its commit in the delegate, the
writeset of 7' (with CBR also its readset) is broadcast to all replicas. On remote delivery, T is checked for
concurrency conflicts. If there is a conflict, T is aborted. Else, all replicas record 7 as a to-be-committed
transaction, for checking conflicts with incoming transactions, and the client is notified of 7T's success. In
WVR protocols (but not for CBR), the delegate then broadcasts a commit message for committing 7 in all
replicas. Then, T attempts to commit in each replica by applying its writeset. If that is impeded (e.g., due to a
yet unresolved deadlock in which T is involved), then writeset application is re-attempted until it succeeds.

Each protocol is supposed to commit transactions only if they are free of concurrency conflicts. However,
deferred integrity checking, done after the protocol has ended, may lead to constraint violation and abortion
behind schedule. Worse, a transaction 7 that has been prematurely assumed to be committable may cause
other, valid transactions whose data were delivered after 7 to abort due to I's assumed commit. To avoid
that, WVR and CBR protocols need to be modified. For WVR, we discuss such a modification in 3.2. For
CBR, similar modifications are studied in (Mufoz et al, 2008).

3.2 Extending wvr protocols

The schematic WVR protocol in Figure 1 may be implemented either as a middleware component or as a
direct extension of the DBMS core. Anyway, we assume that the DBMS is able to support the isolation level
for which the replication protocol has been conceived. Thus, the replication protocol may focus on its native
purpose of ensuring replica consistency, and leave local concurrency control to the DBMS.

In Figure 1, let T be a transaction, R the set of alive replicas, re a replica, rd the delegate replica where the
protocol is executed, ¢l the client process, DB the local DBMS interface accessed by the protocol, wset(T) the
writeset of T, and rsef(T) the readset of T.

A WVR protocol consists of the steps in the pseudo-code of Figure 1. It is structured by three event-driven
blocks. In block I (lines 1-3), T is executed locally; its writeset is broadcast upon the event that T is requested
to be committed. Blocks II (lines 4-9) and III (lines 10-13) describe what is executed in all replicas. In the
former, action is taken upon arrival of the writeset,and T's status is broadcast after validation. In the latter,
action is taken upon arrival of the status message, resulting in commit or abort.



The validate(.) function checks for read-write or write-write conflicts between T and any other local
transaction that has not yet reached its corresponding step 6. Such conflicting local transactions are aborted.
Conversely, validate(T) returns abort if T conflicts with any transaction that has not yet requested commit
but has already passed step 6. Note that the DB.commit(.) operation results are ignored in the WVR protocol,
since it is blindly assumed to be always successful.

1: ExecuteT. 1. ExecuteT.
2: OnT commit request: 2: OnT commit request:
3: TO-breast(R, <wsef(T), rd>) 3 TO-brcast(R, <wsel(T), rd>)
4: Upon <wsef(T), re> reception: 4: Upon <wsel(T), re> reception:
5: if (re = rd) then 5 if (re = rd) then
6: status_T := validate(T) 6: status_T := validate(T)
. 6a: if status_ T = commit then
6b: status_T := DB.commit(T)
. 6cC: else DB.abort(T)
7 R-brcast(R, status_T) 7: R-brcast(R, status_T)
8: send(cl, status_T) 8: send(cl, status_T)
9: DB.apply(wsef(T)) 9: else DB.apply(wsel(T))
10: Upon status_T reception: 10: Upon status_T reception:
. 10a:  if(re #rd) then
11: if (status_T = commit) then 11: if (status_T = commit) then
12: DB.commit(T) 12: DB.commil(T)
13: else DB.abort(T) 13: else DB.abort(T)

Figure 1: Weak Voting Protocol, Standard and Extended Version

Deferred constraints checking, which takes place after steps 12 or 13, is done by the DBMS. The DBMS is
assumed to issue an exception event and possibly an error report in case of integrity violation. Such
exceptions and error messages then will cause the undoing of already committed transactions, which
drastically breaches the durability requirement of the ACID principles for transaction handling.

On the right hand side, a simple but effective extension of WVR protocols is displayed. It intercepts and
soundly handles exception events due to integrity violations. The extension deals with the possibility that
DB.commit(.) requests can fail due to integrity violation, upon which an abort value is returned. Else, a
commit value is returned, corresponding to a successful commit. Also notice that the intercepted exceptions
do not reach the user-level application, unless the replication protocol decides so.

Lines 6a-6¢ check the protocol’s validation result. If successful, the result is assigned to status_T, yielding
an immediate commit of T in the delegate replica. In 6b, T's commit is attempted if no integrity violation has
been detected; otherwise, T is aborted. For other abort values corresponding, e.g., to deadlocks or timeouts,
the transaction will be reattempted by applying its writeset repeatedly. Thus, commitment of T is attempted
before reliably broadcasting the protocol decision. Hence, the delegate replica will know about any constraint
violation before commitment, and the replication protocol can react correctly by aborting the transaction in
all replicas. Clearly, this coordination of decisions taken by the protocol and the underlying DBMS avoids any
replication-integrity conflict. Line 10a lets the delegate replica skip the reception of the message that
communicates the termination decision for T, since the delegate replica already knows that decision.

Integrity maintenance comes at a price. Although the extensions in Figure 1 may seem to be minor, they do
have a measurable impact in transaction response time. In Figure 1, control was returned to the client before
the actual commit was requested. Thus, the transaction completion time was reduced. When integrity is
checked, such an optimization is not possible. For an experimental study with comparative measurements
and possible optimizations, see (Muifioz et al, 2008).

A potential recovery problem was ignored in (Mufloz et al, 2008): If the delegate replica of a to-be-
committed transaction T breaks down between steps 6b and 7, rd had committed the transaction while all
others are still waiting for its commit/abort message. Thus, some other replicas becomes the new delegate,
for broadcasting the commit message. If all alive replicas then have committed T in a given group view



(Chockler et al, 2001), but the broken one has committed it in a previous group view, recovery is
complicated. A typical recovery protocol would re-send T's updates as part of the recovery information. But
rd already had executed such updates locally, i.e., they should not be applied again. If rd already breaks in
step 6 or 6a, then the updates of T must be included in the recovery tasks. That can be achieved by always
transferring the updates and having each recovering replica check whether they had already been committed.

4 INCONSISTENCY TOLERANCE

For enterprise computing, the purpose of business rules is to state and enforce semantic integrity properties of
business data and processes. However, inconsistencies are unavoidable in practice. Rather than insisting that
all business rules must be totally satisfied at all times, it is necessary to tolerate unavoidable integrity
violations, sometimes. Whenever time permits, efforts may focus on reducing such inconsistencies. That is
the philosophy behind inconsistency-tolerant integrity checking, as revisited in 4.1. In 4.2, we outline a
generalization of the results in 4.1 to concurrent transactions in replicated databases.

Throughout the rest of the paper, let the symbols D, 7, IC, T, M stand for a database, an integrity constraint,
a set of integrity constraints, a transaction and, resp., an integrity checking method. We suppose that all
constraints are represented in prenex form, i.e., all quantifiers of variables appear leftmost. Thus includes the
two most common forms of representing integrity constraints: as denials or in prenex normal form. Each
method M can be conceived as mappings which takes triples (D, IC, T) as input and outputs either OK, which
sanctions T as integrity-preserving, or KO, which indicates that executing 7" would violate some constraint.
Further, let D”denote the database state obtained by applying the writeset of 7'to D.

4.1 Waiving the total integrity premise

In (Decker et al, 2000), it is shown that it is possible to waive to total integrity premise for most approaches
to integrity checking without any trade-off. Methods which continue to function well when this premise is
waived are called inconsistency-tolerant. The following example illustrates the idea.

Example 3

Let 7 and ' be as in example 2. For checking if inserting emp(Fred, p) preserves integrity, most integrity
checking methods M sanction this update if, e.g., (p, €) is a row in proj. Now, the positive outcome of this
integrity check is not disturbed if, apart from (p, e), also the tuple (p, f) is a row in proj. This may at first
seem irritating, since / is violated by two tuples about project p in proj. In fact, < proj(p, €), proj(p, f), e #f
indicates an integrity violation. However, this violation has not been caused by the insertion just checked. It
has been there before, and the assignment of Fred to p should not be rejected just because the data about p
are not consistent. After all, it may be part of Fred's new job to cleanse potentially inconsistent project data.
In general, each transaction that leaves all data that were consistent in the before-state consistent in the after-
state should not be rejected. And that is precisely what M"s output indicates: no instance of any constraint
that is satisfied in the before-state is violated by the transaction in the after-state. o

The concept of inconsistency-tolerant integrity checking in (Decker et al, 2006) is formalized as follows.

Definition (inconsistency tolerance)

a) A variable x is called a global variable in [ if x is V-quantified in / and 3 does not occur left of x.

b) A constraint /' obtained from / by a substitution of global variables in / is called a case of 1.

¢) Let satcas(D, IC) denote the set of all cases C of constraints in /C such that C is satisfied in D.

d) M is called inconsistency-tolerant if, for each triple (D, IC, T), and each C € satcas(D, IC), (*) holds:
M(D,IC, T)= OK & C issatisfied in DU (*)

In example 3, the global variables of I’ are x and y; all variables of / are global. As we have already seen, only
a simplification of the case 3 z (Fred, p) — proj(p, z) of I'is checked by most methods. All irrelevant cases,
e.g., the violated case « proj(p, ), proj(p, f), e #f of I, are ignored and thus tolerated.



It is easy to see that the above definition generalizes the traditional definition of sound and complete integrity
checking. The essential difference is that, traditionally, the total integrity premise is imposed, so that, for an
integrity checking method M to be correct, (*) is required for each / in /C, not just for the cases C that are
satisfied in the before-state. Thus, M does not worry about extant constraint violations.

In other words, a method M is inconsistency-tolerant if its output OK for a given transaction 7 guarantees that
all instances of constraints that are satisfied in the before-state of 7" will remain satisfied after 7" has been
committed and executed. However, each transaction that, on purpose or by happenstance, repairs some
inconsistent instance(s) of any constraint without introducing any new violation will be OK-ed too by M. This
means that, over time, the amount of integrity violations will decrease, as long as an inconsistency-tolerant
method is used for checking each transaction for integrity preservation.

Note that it follows by the definition above that each inconsistency-tolerant M outputs KO for any transaction
the execution of which would violate a hitherto satisfied instance of some constraint. It is then up to the agent
who has called M for checking integrity to react appropriately to the output KO. A conservative reaction is to
simply cancel and reject the transaction. A more constructive reaction could be to automatically modify the
transaction so that its execution preserves integrity (e.g., by cascading deletes), or to obtain such a
modification via a dialogue with the agent who has issued the transaction (e.g., by an ask-the-user facility). In
this paper, we do not deal with such options.

It has been shown in (Decker et al, 2006) that many (though not all) integrity checking methods are
inconsistency-tolerant. Interestingly, also the behavior of built-in deferred integrity constraint checking in
DBMSs on the market is inconsistency-tolerant. Hence, the cited results justify the use of such methods in
systems where extant violations have to be lived with. Replicated databases are an example of such systems.

4.2 Relaxing the isolated integrity premise

To say, as the isolated integrity premise does, that a transaction 7 "‘preserves integrity in isolation", means
the following: for a given set /C of integrity constraints and each state D of a given database schema, each
I e IC is satisfied in D" if I is satisfied in D.

For applying inconsistency-tolerant integrity checking not only to transactions executed in isolation, but also
to concurrent transaction in centralized, distributed or replicated systems, let us first restrict the isolated
integrity premise to a single but arbitrary integrity constraint /. That then guarantees that, for each state D
such that / is satisfied in D, and for each transaction 7 that preserves / in isolation, / will remain satisfied in
DTif T and all transactions that are concurrent with 7" are sequentializable and preserve / in isolation.

Since each case of each constraint is itself a constraint, it follows that the preceding result also holds for each
case C such that C is satisfied in D. Now, recall that the condition (*) of the definition of inconsistency
tolerance in 4.1 holds for each case of /C that is satisfied in D. So, we can conclude that each inconsistency-
tolerant method can be used for integrity checking also in replicated systems with concurrent transactions.
More precisely: for each state D of a database on which the set of integrity constraints /C is imposed, and for
each transaction 7 that preserves some case C of some constraint in /C in isolation, C will remain satisfied in
DT if all transactions before T or concurrent with 7 are sequentializable and also preserve C in isolation.

Note that this result does not mean that each case would have to be checked individually. On the contrary:
integrity checking can proceed as for centralized databases without concurrency, i.e., no built-in nor any
external routine that takes part in the integrity checking process needs to be modified. The result just says
that, if the method outputs OK, then everything that was satisfied in the before-state will remain satisfied in
the after-state, also for concurrent transactions in replicated databases.

The essential difference of this relaxation to the traditional result is the following. In the relaxed result,
isolated integrity preservation only is asked to hold for individual cases. Since integrity checking focuses on
cases that are relevant for the writeset of a given transaction 7, only these cases are guaranteed to remain
satisfied. All non-relevant cases of the same or any other constraints may possibly be violated by concurrent
or preceding transactions. Such violations are detected only if the responsible transactions are checked too. If
not, such violations are tolerated by an inconsistency-tolerant method which checks 7.



As nice as our relaxation of the isolated integrity premise may be, it still asks for an unrestricted isolation
level with regard to individual cases. Thus, we cannot expect this result to hold if the isolation level is
lowered. Since WVR does not compromise the ACID isolation level guarantees, there are no problems for
such protocols. However, for SI-based CBR protocols, more research is necessary in order to clarify which
consistency guarantees can be given when inconsistency-tolerant integrity checking methods are used.

S RELATED WORK

The literature on integrity checking in replicated database systems is very scant; solitary exceptions are few
and peripheral, e.g., (Su et al, 1987; Veiga, 2003; Okun et al, 2004; Adiba et al, 2007). None of these deals
with the problem of integrating the enforcement of business rules with replication protocols, except (Adiba et
al, 2007). That approach, however, lacks generality. It is confined to a limited class of business rules and a
lazy form of replication that is not adequate for online transaction processing. None of the cited work
questions any of the unrealistic premises that we have identified.

For concurrent transactions, the onus of business rules maintenance has, up to now, been on application
designers and users. However, that should give way to declarative specifications of automatically supported
integrity constraints, just the way they are supported already in centralized, non-distributed database systems.
Our approach attempts to be as declarative as possible. That is, business rules should be stated as declarative
integrity constraints in SQL, so that everything else can be delegated to the integrity checking module of the
DBMS. That module may be built-in or run on top of the DBMS core. In any case, the enforcement of
business rules should be as transparent to the user as concurrency, distribution and replication. As opposed to
that, established authors of concurrency theory require the near-impossible: that al/l transaction must be
programmed so as to guarantee integrity preservation in isolation (Gray, 1981). All related work we have
found in the literature adopt this stance unquestioned.

In (Oracle, 2006), a proprietary solution is proposed: ‘‘Making constraints immediate at the end of a
transaction is a way of checking whether COMMIT can succeed. You can avoid unexpected rollbacks by
setting constraints to IMMEDIATE as the last statement in a transaction. If any constraint fails the check, you
can then correct the error before committing the transaction.” However, the semantics of IMMEDIATE is not
well-defined. For instance, its meaning seems to be entirely speculative if there are access locks.

A non-proprietary automatism to re-program concurrent transactions such that unwanted conflicts at commit
time are avoided is proposed in (Martinenghi et al, 2006). As outlined above, we advocate a different
solution: the DBMS should determine autonomously (either by using a built-in procedure or some external
device) whether the transition from the before- to the after-state of each given transaction preserves integrity,
and react accordingly. In this paper, we have proposed ways to overcome some of the obstacles that hitherto
may have impeded researchers and developers to strive for such a solution.

CONCLUSION

Our goal is to make business rules, expressed as integrity constraints, feasible in replicated databases. We
have identified three obstacles that have hitherto prevented to reach that goal: the replication-integrity
conflict and the academical escapism to impose the premises of total and isolated integrity.

The replication-integrity conflict can be avoided by suitable modifications of protocols for supporting the
replication of databases. Rather than discussing particular solutions for individual protocols, we have
proposed a schematic way to modify the popular class of weak voting protocols. Similar modifications for
the class of certification-based protocols are described in (Mufioz et al, 2008). Despite their simplicity, these
modifications have turned out to be very effective in experimental tests (Mufioz et al, 2008).

For overcoming the traditional belief that integrity can be checked efficiently for given transactions only if
the before-state is totally satisfied, we have revisited the work in (Decker et al, 2006). There, it has been
shown that the total integrity premise can simply be waived without problems, for most (though not all)



integrity checking methods. Fortunately, the premise also is unnecessary for deferred integrity checking of
key constraints and other common built-in integrity constructs in DBMSs on the market.

We have seen that the advantages of making the total integrity premise obsolete even extend to relaxing the
isolated integrity premise. More precisely, the inconsistency-tolerant enforcement of business rules for
concurrent sequentializable transactions guarantees that no transaction can violate any instance of any
constraint that is satisfied in the before-state, if all transactions preserve the integrity of the same instance in
isolation. Thus, if any violation happens, then no transaction that has been successfully checked for integrity
preservation by an inconsistency-tolerant method can be held responsible for that. Perhaps the most
interesting aspect of this result is that it even holds in the presence of extant inconsistencies.

More research is needed for systems in which the isolation level of concurrent transactions is compromised.
In particular, it should be interesting to make precise which exactly are the before- and after-states of
concurrent, possibly non-sequentializable transactions, and which consistency guarantees can be made.
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