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Abstract

Middleware-based data replication is a way to increase avail-
ability, fault tolerance and performance of networked information
systems without modifying the underlying DBMS core code. How-
ever, if such middleware is not properly conceived, it will intro-
duce an overhead leading to poor response times. In this paper
we study the progression of solutions for problems typically en-
tailed by replication, which led to the use of middleware for avoid-
ing inconveniencies associated with earlier approaches. We sur-
vey several existing and projected architectures —designed by our
research groups— in terms of availability, consistency and fault tol-
erance.

1 Introduction

Data replication serves to increase the availability and
fault tolerance of networked information systems while pro-
tecting against downtimes due to site failures. Transaction
workload can be distributed among several interconnected
servers in a well-balanced manner such that, whenever a
site fails, its current workload can be seamlessly redirected
to a network node that is still alive. Redirection of work
may either be executed according to a predetermined net-
work pattern or be decided upon dynamically, depending
on various runtime parameters. However, the consistency
of replicated data must be taken care of, i.e., updates must
be propagated in a timely manner to all nodes. The exact
meaning of “timeliness”” may strongly depend on the appli-
cation, user profile, network load, etc.

In this paper we study the progression of our replication
middleware projects from the viewpoints of users, applica-
tions, protocols and databases. For users and applications,
replication must be transparent, i.e., neither users nor appli-
cations need to change their behavior when moving from a
centralized to a distributed architecture, since their system
interface is supposed to remain the same, while availability,
performance and fault tolerance are supposed to improve.

With regard to the protocols for replication, messaging
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and recovery, their implementation tends to be intertwined
with tasks for transaction processing, concurrency handling
and component coordination, which may easily drag down
their efficiency. Hence, we are going to keep an eye on
techniques for implementing protocols that allow them to
focus on optimizing their own tasks without being unduly
distracted by issues that are in fact alien to them. Moreover,
the adequateness of choosing and adapting protocols and
replication strategies to the diverse needs of different users,
applications and network parameters is of our concern as
well.

With regard to databases, it will be interesting to see
to which extent built-in DBMS functionality can be used
for supporting replication data management, and to which
extent this may inhibit a targeted independence from the
particularities of underlying database systems, or introduce
undesirable redundancies beyond the multiplicity of copied
data induced by replication.

The remainder is organized as follows. Section 2 surveys
solutions for realizing replication that historically precede
the middleware approach. Section 3 recapitulates the pros
and cons of the main targets and results of the COPLA mid-
dleware, the main characteristics of which, beyond replica-
tion, is its object orientation. Section 4 reports on improve-
ments brought about by the MADIS project, which aban-
doned object orientation in favor of standard JDBC interfac-
ing to SQL databases. Section 5 outlines further advances
of replication middleware with regard to higher availabil-
ity, efficiency and adaptability, as envisaged in an upcoming
project. Section 6 concludes.

2 Historical Background

Traditionally, database replication has been achieved by
modifying the core code of the database management sys-
tem (DBMS hereafter), asin [5, 6, 12, 15, 16, 17, 24]. Essen-
tially, their modifications consist in maintaining an efficient
access to the transaction log of modifications and adding a
group communication support module, such as in Postgres-
R [15] and Postgres-R(SI) [24]. This approach sports good



performance, since only a minimal overhead is introduced.
However, it is not easily portable, hardly interoperable in
networks of systems based on the products of different ven-
dors, and difficult to maintain even for releases of new ver-
sions from the same brand.

In [5], all operations were propagated to all sites, which
meant to run a considerable danger of distributed deadlocks.
A natural improvement of this way of implementing consis-
tent replication is the ROWAA (Read One Write All Avail-
able) approach, where operations are firstly performed ex-
clusively on a single node and then, only the updates are
propagated; no additional communication messages need
to be transmitted over the network. This is realized, e.g.,
in [6], with Optimistic 2PL, a new kind of two-phase lock
mechanism which distinguishes between local and remote
transactions in order to anticipate and avoid possible dead-
lock situations. Nevertheless, as Optimistic 2PL propagates
updates without any kind of ordering, this approach is still
quite likely to run into distributed deadlocks.

To overcome this, some effort was invested in developing
Group Communication Systems (GCS) [11, 8] that provide
certain message ordering guarantees as well as mechanisms
for detecting potentially crashed sites. The strongest deliv-
ery guarantee is the total order multicast, where messages
are delivered to all nodes in the same order, thus avoiding
distributed deadlocks altogether. This idea was adopted by
the Postgres-R project [15, 16]. However, imposing a total
order to all transactions is not necessarily the most effective
way to avoid deadlocks, since a total order delivery may re-
quire several communication rounds [9], and indeed, non-
conflicting transactions do not need to be delivered in total
order.

Several improvements have been investigated to over-
come the latency of total order delivery approaches. For
instance, with optimistic atomic broadcast as described
in [23, 17], messages are delivered as they are received,
making possible a fast remote writeset application, although
waiting for the final ordered message delivery in order to
commit the transaction. Thus, only those remote transac-
tions whose writeset did not follow the total order are rolled
back, reapplying them in the correct order. In the generic
broadcast presented in [1, 21], only the messages which be-
long to a conflicting class must be delivered in total order
while the rest may be delivered without any ordering. More-
over, other communication techniques have been used, e.g.
the epidemic algorithms discused in [12].

The strongest correctness criterion for database replica-
tion is the 1-Copy-Serializability property [5]. It provides
for a transparent serial execution of a transaction over a sin-
gle virtual data unit although there are possibly many phys-
ical copies that are distributed over different sites. This cor-
rectness property is adequate when the underlying DBMS
provides serializable histories, but most databases on the

market only provide Snapshot Isolation (SI) [4]. There-
fore, new correctness criteria have been introduced, such as
Generalized Snapshot Isolation (GSI) [10] and 1-Copy-SI
(1CSI) [18] that define what can be considered as an accept-
able SI level in a replicated environment.

As opposed to DBMS core code modification, a fun-
damentally different approach to implement replication is
to deploy a middleware as an intermediate layer between
clients and the DBMS, so that DBMS idiosynchrasies are
hidden from both users and applications [18, 7, 14, 13, 20].
The major purpose of the middleware is to cater for replica-
tion consistency. For that, it has turned out to be helpful to
extend the original underlying database schema definition
using standard SQL features such as table creation, triggers,
stored procedures, etc. [13] in order to maintain metadata
needed for replication. Such extensions are supported by
the middleware and can be derived automatically, i.e. with-
out intervention from schema designers or users. Another
approach, described in [20], uses conflict classes to define
transactions issued by users, e.g. purchasing a book. For
each purchase order, the system exactly knows the items to
be bought, and the client who performs the update. Hence,
record-level conflict classes can be implemented and each
one of them has a master site. Transaction execution for all
algorithms is roughly as follows. The client submits a trans-
action t to any site, as the replication system is transparent
to him. This site immediately forwards the message to all
sites. All sites append ¢ to the queues of the basic conflict
classes t accesses. Only the master executes the transac-
tion whenever it is the first in all queues. It executes both
read and write operations on the local database. Then, it
multicasts the updates performed by ¢ to the remote sites.
Remote sites only apply these updates instead of reexecut-
ing the entire transaction. In order for the middleware to
send and apply writesets, it is assumed that the underlying
DBMS provides two services: one to obtain the writeset of
a transaction and another one to apply the writeset (for in-
stance, in PostgreSQL it is the clog). Besides, these DBMS’s
facilities are used also in [18].

Thus, the middleware approach does not need to mod-
ify any piece of DBMS core code. The mentioned schema
extensions enable a delegation of data management work
to built-in DBMS functionality, so that the implementation
of protocols can focus on their main purpose of replica
management, without being overburdened by concurrency
and transaction management. This has been described in
more detail in [13]. In summary, the middleware approach
sketched above introduces some overhead of creating and
maintaining additional meta data tables, which amounts to
a certain performance penalty, but it permits to get rid of
dependencies on underlying DBMS peculiarities.



3 Database
Oriented

Replication, Truly Object-

The middleware architecture COPLA was developed
around the turn of last century (cf. [14]). It was fully object-
oriented: regardless of the underlying database, users and
applications had a unique, transparent object-oriented view
of, and access to, the stored data, and object state persis-
tence was provided by the transaction and concurrency han-
dling modules. COPLA provides several options of proto-
cols (cf., e.g., [19, 22]), each of which trades off the con-
flicting goals of high availability and replication consistency
in a different manner. Hence, each installation of COPLA
for a given application could be configured according to the
specific availability and consistency needs of that applica-
tion, by opting for an appropriate protocol.

Unfortunately, the replication protocols had to re-
implement several standard transaction and concurrency
management features, such as lock management or a ver-
sion system. A further development penalty was that appli-
cations had to be (re-)implemented on top of COPLA using
the proprietary object definition language GODL [2]. Ob-
jects were fetched in the context of a transaction by way
of a proprietary object query language GOQL [2]. Another
unfortunate consequence of object orientation was that, for
an underlying relational database, an object-relational map-
ping had to be accomplished, which entailed a significant
performance penalty.

Client applications could access stored data by way
of transactions using three different levels of consistency:
plain, no consistency at all; checkout, with guarantees sim-
ilar to the CVS tool for source-code management; and, se-
rializable, with the same meaning than the corresponding
transaction isolation level. One of the contributions of this
project was that some of its replication protocols [19] were
able to manage all these consistency levels simultaneously.
Thus, no additional support was required for dealing with
concurrent transactions that use different consistency lev-
els, either initiated by one or many applications. None of
the recent publications in this area has suggested a solu-
tion of this kind, and it simplifies a lot the effort needed for
concurrency management when multiple isolation or con-
sistency levels must be used. Without this, if an application
uses subsets of transactions that need different consistency
(or isolation) levels, it is compelled to use the stricter level
in order to guarantee correct execution results, and this may
lead to some abortions of those transactions that were de-
signed to use a relaxed level, and that would have commit-
ted if it had been available.

Finally, the COPLA system was also used as a testbed
for developing total-order broadcast protocols with uniform
and optimistic delivery in WAN environments. The replica-
tion protocols described in [22] use a broadcast of this kind

[23] and provided a good basis for replica management in
WAN:S.

4 A JDBC-Based Middleware

The middleware MADIS [13] is a follow-up to COPLA.
Instead of object orientation, it provides a straightforward
JDBC interface, so that applications do not need to be
adapted or re-implemented. Replica consistency control is
implemented very concisely by a schema extension which
exclusively uses built-in functionality of the underlying
DBMS. All of this reduces the penalties of development and
performance mentioned in Section 3 significantly. On the
other hand, the overhead introduced by creating and manag-
ing schema extensions for administering meta data for repli-
cation management, concurrency control and failure recov-
ery turns out to be reasonably small. A performance com-
parison of COPLA and MADIS has been already presented
in [13] and it showed that MADIS is between 4 and 20 times
faster than COPLA, depending on the load and operations
being considered.
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Figure 1. Automated conflict detection im-
provements

Another contribution of this middleware is the support
for detecting conflicts among transactions that has been im-
plemented in its plugs into the DBMS. To this end we use
a thread that periodically scans the system catalog table
that provides information on transactions currently blocked
due to the lock management. This system catalog table is
present in multiple DBMSs such as PostgreSQL, MySQL,
Microsoft SQL Server, etc. Our mechanism allows the
assignment of priorities to transactions, and automatically
aborts a locker transaction if it has lower priority than the



blocked one. Since many replication protocols based on to-
tal order broadcasts abort local transactions if they collide
with remote writesets when they have to be applied, this
technique might simplify the transaction management at the
middleware level. In [3] we have thoroughly described this
technique, providing some measurements that show its per-
formance improvements.

As an example, Fig. 1 shows how the mean transaction
completion time has been improved when our conflict de-
tection technique has been applied to the SI-Rep protocol
described in [18], with a load that provided a 5% of write-
set collisions among concurrent transactions. To this end,
we show two implementations of this protocol. The first
one, named SIR in the figure, uses an optimized conflict de-
tection at the middleware layer that only needs to compare
two integer values per writeset (the value of an integer pri-
mary key and the length of the writeset), and the second one
(SIR-BD) uses our technique. As shown in the figure, our
approach reduces the response time of those transactions
that finally must be aborted (since it is able to abort them as
soon as possible), and this even provides an improvement
on the response time of committed transactions since the
overall load is also reduced.

S Future Trends in Database Replication
Middlewares

Future developments to follow up on MADIS are envis-
aged to make replication support more dynamic. Dynamic
support may evolve along two orthogonal but complemen-
tary dimensions. One is to support replication not only for
static networks with fixed numbers of nodes, but also for
more dynamic networks, where the network topology is not
necessarily known in advance, or may vary from session
to session, and also during a session. The other is to en-
able a higher flexibility of choosing, plugging in and swap-
ping protocols in order to optimally adapt the replication
management and recovery strategies to the different instal-
lations, but also different concurrent applications and users
with different profiles, or different situations as determined
by the number of alive and broken nodes, the current net-
work traffic, data channel capacity, transmission rates, de-
vice properties, billing modalities, etc.

From the point of view of network designers and users,
network dynamics may behave intentionally or unintention-
ally. Intentional changes may be scheduled (e.g., open-
ing and closing hours of businesses, time intervals of elec-
tronic conferences) or ad-hoc (e.g., casual user log-ons and
log-offs). An intermediate and often hybrid kind of partly
scheduled, partly ad-hoc dynamics in information system
networks needs to be catered for in P2P and Grid networks,
due to the strong autonomy of network nodes which may
enter and leave sessions in a more or less planned manner.

Unintentional changes may be accidental (e.g., crashes
of sites or links due to software or hardware failures) or
malicious (e.g., crashes due to security breaches). Clearly,
the handling of intentional changes can be expected to be
much easier than unintentional ones, since the effects and
consequences of the former can be anticipated much bet-
ter. On the other hand, it generally does not matter much,
from the point of view of maintaining high availability and
consistency, whether unintentional events which change the
network are caused accidentally or maliciously, since the
moment in which they occur cannot be predicted with suf-
ficient precision. This distinction only makes sense for se-
curity protocols, which however are out of the scope of this
paper. Yet, making a difference between “common” and
“byzantine” failures (both of unintentional kind, but skew
to distinguishing accidental and malicious failures) can be
helpful, mainly for recovery protocols.

For each case of network dynamics as classified above,
specific protocols for replication consistency and error re-
covery are planned to be developed in the upcoming project
CONFIA. The idea is to configure and reconfigure the mid-
dleware such that the often conflicting requirements of
availability, timeliness, performance and consistency can be
optimized, by choosing, plugging in and swapping dynami-
cally those protocols that fit best the dynamically changing
requirements of different users, applications and network
properties.

Usually, at most just a single manner of replication, a
fixed consistency maintenance scheme and a uniform pol-
icy for availability and failover management is supported in
networked information systems. A more flexibly adaptable
replication architecture with a sufficiently large repertoire
of different protocols is therefore desirable, which is the
goal of CONFIA. Several such protocols, although within
a narrower scope of diversity, have already been developed
for the MADIS and COPLA platforms. COPLA was capable
of providing support for different strategies and protocols
of replication and fault tolerance, and was configurable for
plugging in different protocols, but only off-line. MADIS
went much further, by providing on-line support for proto-
col swapping, but not for simultaneously running applica-
tions nor for different needs and profiles of collaborating
or concurrent users or programmed agents. This flexibility
will be achieved by a simultaneous maintenance of meta-
data for all repertoire protocols, such that each of them can
be plugged in seamlessly at any moment while the network
is in operation.

6 Conclusion

We have studied a progression of replication architec-
tures for enhancing the availability, fault tolerance and per-
formance of network-based information systems. We have



done so from the viewpoints of users, applications, proto-

cols and databases.

We have noticed that each different

viewpoint corresponds to a dimension of its own by which
the design, choice and dynamic exchange of adequate repli-
cation strategies may be guided.
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