Enhancing the Availability of Networked Database
Services by Replication and Consistency Maintenance *

Hendrik Decker, Francesc Mufioz, Luis Irin, Antonio Calero, Francisco Castro,
Javier Esparza, Jordi Bataller, Pablo Galdamez and Josep Bernabéu

Instituto Tecnolbgico de Informatica, Universitat Politécnica de Valencia
{hendrik,fmunyoz,lirun,acalero,fcastro,jesparza,bataller,pgaldam,josep } @iti.upv.es

Abstract

We describe a middleware platform for maintaining the
consistency of replicated data called COPla (Common Ob-
ject Platform). The purpose of replication is to enhance the
availability of data and services in distributed database net-
works. That is orthogonal to recovery strategies of backed-
up snapshots, logs and other measures to alleviate database
downtimes. A range of different consistency modes ensures
the correctnes of replicated data.

1. Introduction

Availability of data and services is strategically critical
for an increasing number of business processes. Tradi-
tionally, ensuring availability has meant to take measures
for avoiding negative ramifications of database downtimes.
That is, downtimes are tentatively absorbed by high invest-
ments in additional hardware, and attempted to be marginal-
ized by sophisticated strategies of backups and recovery.

With the advent of the internet and its role as a backbone
of networked databases, an orthogonal way of enhancing
the availability of data has become feasible, viz. by repli-
cating data in several network nodes. However, the draw-
back of replication is a potential overhead for maintaining
the consistency of replicated data.

In this paper, we show how to reconcile the conflicting
goals of enhancing the availability of services by replica-
tion of data, on one hand, and maintaining their consistency,
on the other. We are going to describe the architecture of
COPIla [6], with an emphasis on its support for replication
and consistency. Various protocols which can be plugged
into COPla have been described in [11, 10, 7].Devoid of a
closer look at consistency protocols, an overview of COPla

*This work has been partialy supported by the EU grant 1ST-1999-
20997 and the Spanish grant T1C99-0280-C02-01.

has been given in [8, 12]. The first main contribution of this
paper consists in a synopsis of features hitherto described
only as isolated aspects, in the cited references. The second
is the presentation of significantly improved performance
results over those reported in [7].

In a network of distributed databases, service applica-
tions may start multiple database sessions. Each service
or even each session may use different consistency modes,
according to the particular needs of a given service. Such
networks are usful for enterprises with several branch of-
fices or chains of stores, such as banks, hypermarkets, etc.
While some services may use on-site generated data in lo-
cal branches, others may also use information generated
in other branches and offices. However, the availability,
timeliness and reliability of answers to queried data may
be severely hampered and network traffic may be exasper-
atingly congested, since transmission channels, bandwidth,
powerful harware etc may be a scarce resource. Particu-
larly for web services in wide area or mobile networks of
databases, the web may be very busy, and services may have
to cope with network partitions caused by downtimes of lo-
cal nodes, broken links to networked neighbors and the like.

To avoid such downsides, networked databases are in
need of effective means to warrant a sufficient degree of
availability. This paper discusses a platform conceived to
enhance the availability of networked data and services.
Somehow analogous to a flexible routing of data transmis-
sions through networks where not all nodes are always up
and running, our basic idea to ensure high availability is to
replicate data across the network while maintaining a suffi-
cient level of their consistency. Besides boosting availabil-
ity by increasing redundancy, another effect of replicating
data on distributed sites is that “remote” accesses can be ac-
complished locally, thereby further improving accessibility
and availability.

COPIla ensures the consistency of transactions involving
repicas. Solutions vary, depending on the kind of update



CORBA
interfaces

propagation used: eager or lazy. COPIla supports differ-
ent consistency protocols. Its API allows to deliberately
switch from one consistency protocol to another, as needed.
Moreover, each protocol supported by COPla may be run in
any of three different consistency modes. Each session can
change dynamically its consistency mode, thereby modify-
ing the conflict handling rules for acceses to data, replicas
of which are possibly accessed concurrently by other se-
sions, in the same or other database nodes. Thus, appropri-
ate consistency guarantees can be chosen for satisfying the
individual needs of each service.

Section 2 describes the structure and the functionality
of COPla. Section 3 describes COPIla’s consistency man-
agement principles. Section 4 compares our approach, as
related to eager replication protocols, with other systems.
Section 5 summarizes the paper.

2. The COPla Architecture

The COPIla architecture is structured by three layers
which are interfaced via CORBA, so that each can be placed
in a different node. Hence, a multitude of simultaneous ser-
vices (running on different nodes) is enabled to access the
same database replica. All updates applied to these replica
are propagated to other database replicas using COPla’s
replication management components. The three layers, as
depicted in figure 1, from bottom to top, are:

/

COPLA Programmer Library

COPLA Local
Manager Consistency Manager

Uniform Data Store

Figure 1. COPIla architecture.

e Uniform Data Store (UDS). This layer manages all
persistent data. It interfaces with a relational DBMS,
where the persistent objects of the given service and
the metadata of the consistency protocol are stored.
UDS isolates the upper layers from the actual storage
system. Thus, the use of different brands of RDBMSs
is supported. The schema definition of the databases
uses GODL, a simplified version of the ODMG ODL
language [3].

e COPla Manager. This layer is the core of COPIla. It
manages database sessions (which may include multi-
ple sequential transactions, working in different con-
sistency modes) and controls the set of database repli-
cas comprised by the network. It also has some caches
to improve the efficiency of database accesses. More-
over, it includes a local consistency manager, for han-
dling several different consistency protocols. The sup-
ported protocols share some common characteristics.
In general, all of the communication between the net-
worked databases is controled by the local consistency
managers.

e COPla Programmer Library. This is the layer used by
applications to access system services. Applications,
COPIa manager and/or the UDS need not be installed
on the same node; each only needs to have the library
layer on their respective nodes. This layer also pro-
vides cache support and multithreading optimizations
for improving the overall system performance.

3. Consistency M anagement

In 3.1 and 3.2, we describe general principles of COPla’s
consistency management. They are common to all consis-
tency protocols which can be plugged into COPla. (Var-
ious eager and lazy protocols developed for our platform
have been described in [11, 10, 7].)3.3 reports new perfor-
mance measurement results for a replication protocol which
attempts eagerly to restore consistency, details of which are
described in [7].

3.1. Roles of Networ k Nodes

Given a session that tries to commit, the nodes involved
in its execution may have two different roles:

e Active node. The node where the COPla Manager that
has directly served the session’s execution is placed.

e Synchronous nodes. All other nodes that have a COPla
Manager. In these nodes, the session updates will be
eventually received, if such updates exist. Note that
read-only sessions do not generate any database up-
dates. Hence, these sessions do not have any syn-
chronous node.

Moreover, in a given session, multiple objects may have
been accessed. Before committing a session, some checks
have to be done to ensure that the accessed objects’ states
were up-to-date. One of the nodes receives a distinguished
role in these checks, and the others will accept its decisions.



Consequently, for each object, there exists its owner
node. That is the node where the object was created; it is
the manager for the access confirmation requests sent by
the active nodes at commit time. The management of these
access confirmation requests is similar to lock management,
but at commit time. To this end, the owner node compares
two object versions, the one sent in the request (which is
the object version accessed by the requesting session), and
the latest object version that exists in the database. If they
are not equal, the request is denied and the session will be
aborted because it has accessed an outdated object version.
On the other hand, if they are equal and there is no other
granted request in a conflicting mode (a conflict exists if
one of the requests comes from a session that has modified
the object), a positive reply is sent to that active node. An
active node can commit a session if all access confirmation
requests that it has sent have been replied positively.

3.2. Consistency Modes

A session can be considered as a sequence of “transac-
tions” done in the same database connection. Each of this
“transactions” can be done in one of the following consis-
tency modes:

e Plain consistency. This mode does not allow any write
access on objects. It guarantees that all read accesses
in this mode follow a causal order. On the other hand,
this mode imposes no restriction on the currentness of
the objects being read. Thus, they may be outdated.

e Checkout consistency. This mode is similar to the tra-
ditional sequential consistency, although it does not
guarantee isolation. Thus, if several sessions have read
a given object, one of these sessions is allowed to pro-
mote its access mode to “writing”. However, if two of
these sessions have promoted their access modes from
reading to writing, one of them will be aborted.

e Transaction consistency. In this mode, the usual trans-
action guarantees are enforced: atomicity, sequential
consistency, isolation and durability.

A session always starts in plain mode. If the guarantees
provided in this mode are not sufficient for the given ser-
vice, it can promote its consistency mode to checkout or
transaction. In these two modes, all accesses are temporar-
ily stored until an explicit call to the commit() or rollback()
operations is done (with the usual meaning of such opera-
tions). Once one of these operations have been done, the
session returns automatically to plain mode. Thus, the pro-
grammer is able to choose the consistency mode of each
session of a given service, and this consistency mode can
be changed as needed while a session is running.

3.3. Performance M easurements

The COPIla architecture allows for an object-oriented
view of a given database (i.e., collection of data objects),
which is physically mapped to the replicated DBMS where
the data are actually stored. Replication and consistency
maintenance entail some additional burden on performance.

We have taken some measurements of these extra costs,
for the eager FB consistency protocol. In particular, we
have considered two types of transactions, with only two
objects. The first one just reads the data objects, whilst the
second one reads both objects and updates one of them (at
random). The tests have used networks composed by one,
two and four nodes. A singular node has been assigned to be
the owner of both objects in all tests. In all test cases, only
one session has been created in each node, and all transac-
tions of that session have been executed sequentially. Com-
plete sequentialization of transactions is the worst possible
case, since the multi-threaded support and the caches are
not used in that case.

120

T
—+— '100 % reads (JDBC)'
---%--- "100 % reads (COPLA)’'
---%--- 80 % reads (COPLA)'
@ '50 % reads (COPLA)’

100 B

Time (s)

60 | B

40 | L 4

20 o E

0 H
100 500 1000 2000
Number of sessions

Figure 2. Elapsed times in a network with only
1 node.

Figure 2 shows the additional costs introduced by
COPIla. We compare the time required to execute a given
number of transactions in a system consisting of a single
node. So, the consistency protocol is not used here, but all
COPIa layers are actually used to map the object accesses
in the service layer to the accesses needed in the relational
database. Hence, this scenario is not contrived, but serves
best to measure the overhead introduced by the COPIla ap-
proach. As will become apparent, the overhead is propor-
tionally reduced when the number of nodes increases.

Four lines are shown. The lowest one corresponds to the
times needed when read-only transactions use directly the



140 T T
—+— "1 node’
---%--- "2 nodes, 1 executing, owner’
---%-- '2 nodes, 1 executing, not owner'
B-- '2 nodes, 2 executing’

120 F
100 | A4

80 |

Time (s)

60 |

40 +

20

&

L L
100 500 1000 2000
Number of sessions

Figure 3. Elapsed times in different network
configurations.

JDBC support; i.e., without COPla. The other three corre-
spond to a load of read-only transactions, another with 80%
of read-only transactions and the last one with 50% of read-
only transactions, all of them using the COPIa services. In
this worst-case scenario, the read-only COPIa transactions
have a cost 10 times higher than the JDBC read-only trans-
actions. However, we have to consider that currently, JDBC
does not provide any replication support nor an interface
easily usable in object-oriented programming (at least when
it is compared to the interfaces provided by an ODMG-
compliant platform such as COPIa).

Figure 3 compares the results obtained from different
system configurations with a mix of 80% read-only and
20% update transactions. We consider five different con-
figurations. The first one uses only one node. All the others
use a system with two nodes. In the second and third con-
figurations, only one of the two nodes executes all the trans-
actions, so the updates have to be transmitted to the passive
node. The results vary, depending on the ownership of the
objects. If all transactions have been executed by the owner
node, the differences with the one-node configuration are
minimal. However, if the transactions have been executed
by the not-owner node, they require almost twice the time of
the previous case, due to the access permission requesting
and granting messages.

The last configuration correspond to a two-node system
where both nodes execute transactions. In this case, the load
is balanced between them and better performance can be
obtained by COPla. Additionally, the overall time is lower
than that of the one-node system.

It can be observed that the scalability of the FB proto-
col is well scalable (the system productivity is increased in

172% when two nodes are used in front to a single node
system). Second and third lines also show that the overhead

of ”"non-ownership” with the FB protocol is below 30% in
the evaluated environment.

We have taken other measurements with a 4-node net-
work. When only one node executes the transactions and
propagates the updates to the other ones, the measured times
are equal to the 2-node network described above. This is the
expected result, since the updates are broadcast, and its cost
does not depend on the number of targets. On the other
hand, when all the nodes directly execute transactions, the
overall cost is reduced to approximately half of the time
measured in the 2-node network, when both nodes have ex-
ecuted their sessions. This result is also reasonable, since
the use of multiple nodes allows a better balancing of the
system load.

4. Related Work

Current work in consistency protocols for replicated
databases can be found using either eager [1, 9, 13] or lazy
protocols [2, 4, 11]. Each has its pros and cons, as de-
scribed in [5]. Eager protocols usually hamper the update
performance and increase transaction response times but,
on the positive side, they can yield serializable execution
of multiple transactions without requiring too much effort.
On the other hand, lazy protocols may answer read requests
by stale data versions (or at least they require extra work to
avoid that), but they improve transaction response times and
allow disconnected operation.

COPIla is a platform for both eager and lazy consistency
protocols, but we focus on eager update propagation, in this
section. In [13], a good classification of eager protocols
is presented, according to three parameters: server archi-
tecture (primary copy vs. update everywhere), server in-
teraction (constant vs. linear) and transaction termination
(voting vs. non-voting). Only two of the eight alternatives
resulting from combining the three parameters seem to lead
to a good balance of scalability and efficiency: those based
on “update everywhere” and “constant interaction”. This
is mainly due to the load distribution achievable with the
“update everywhere” approach, and the low communication
costs result from a “constant interaction”.

The FB protocol complies with these two parameters. It
uses “update everywhere” (instead of “primary copy”), be-
cause each transaction is done initially at the node where
it was initiated, independent of the accessed objects. It
also uses “constant interaction”, since the updates are only
broadcast at transaction termination, once the object version
checking has been done. Due to this version checking on the
object owners’ nodes, the FB protocol must be classified as
“voting termination”. Although “non-voting termination”
approaches require less message rounds, they either need
atomic reliable broadcasts, with total order delivery, if the



updates are done at commit time, or all nodes need to exe-
cute completely all transactions, even those that finally will
be aborted (if the broadcasts are done when the transactions
start). Thus, at first sight, a “voting termination” approach
seems better.

However, our design differs a bit from the guidelines pro-
vided in [13] for the “voting termination” approach. Control
of the transaction termination is based in our case on object
versioning. Hence, the votes consist only in checking the
accessed object versions, verifying that they have been the
latest ones. We do not need a total order broadcast nor a
2PC to find out if a transaction is allowed to commit or not.
Indeed, in the best case, we only need a single round of re-
quests and answers to do the voting, and this round does not
use a total order. Thus, our solution requires lower costs
than those referenced as examples in [13].

5. Conclusions

Orthogonal to traditional approaches for enhancing
database availability, the COPIa architecture caters for the
availability of data and services by supporting the consis-
tency maintenance of replications over a multitude of net-
work nodes. Within COPla, a range of different consis-
tency protocols are provided. Depending on the needs of
a given variety of application services, COPla users may
choose from the set of available consistency protocols the
one which fits best, in each particular case. Moreover,
COPIa supports three different consistency modes for each
of its consistency protocols, which can be chosen at will for
each transaction.

In this paper, we have described one of several consis-
tency protocols that are available in the current version of
our system. It is based on eager update propagation, but
does not need a total order broadcast communication nor
multiple update rounds. Hence, it minimizes the commu-
nication needs of such kind of protocols, thus reducing the
usually long transaction completion time, which otherwise
is one of the main drawbacks of eager protocols.

References

[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi.
Exploiting atomic broadcast in replicated databases.
LNCS, 1300:496-503, 1997.

[2] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri,
and A. Silberschatz. Update propagation protocols for
replicated databases. SIGMOD Record (ACM Special
Interest on Data Management ), 28(2):97-108, 1999.

[3] R.G.G. Cattell, D.K. Barry, M. Berler, J. Eastman,
D. Jordan, C. Russell, O. Schadow, T. Stanienda, and
F. Velez, editors. The Object Data Standard: ODMG

3.0. Morgan Kaufmann Publishers, January 2000. 300
pgs., ISBN 1-55860647-5.

[4] F. Ferrandina, T. Meyer, and R. Zicari. Implementing
Lazy Database Updates for an Object Database Sys-
tem. In Proceedings of the Twentieth International
Conference on Very Large Databases, pages 261-272,
Santiago, Chile, 1994.

[5] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proc. of
the 1996 ACM SIGMOD International Conference
on Management of Data, pages 173-182, Montreal,
Canada, 1996.

[6] Instituto Tecnol ogico de Inform“atica. GlobData web
site. Accessible in URL: http://globdata.iti.es, 2002.

[7] Luis Irun, Francesc Mufioz, Hendrik Decker, and
Josep M. Bernab "eu-Aub “an. Copla: A platform for ea-
ger and lazy replication in networked databases. In 5th
Int. Conf. Enterprise Information Systems (ICEIS’03),
volume 1, pages 273-278, April 2003.

[8] J.Esparza, A.Calero, J.Bataller, F.Muoz, H.Decker,
and J.Bernab "eu. Copla - a middleware for distributed
databases. In 3rd Asian Workshop on Programming
Languages and Systems (APLAS *02), pages 102-113,
2002.

[9] B. Kemme and G. Alonso. A suite of database repli-
cation protocols based on group communication prim-
itives. In International Conference on Distributed
Computing Systems, pages 156-163, 1998.

[10] Francesc Mufioz, Luis Ir“un, Pablo Gald amez, Jos’e

Bernab "eu, Jordi Bataller, and Mari-Carmen Bafiuls.
Flexible management of consistency and availability
of networked data replications. Flexible Query An-
swering Systems (FQAS ’02), 2522:289-300, October
2002.

[11] FD. Mufioz-Esco™, L. Ir“un-Briz, P. Gald amez, J.M.

Bernab "eu-Aub 7an, J. Bataller, and M.C. Bafiuls. Glob-
Data: Consistency protocols for replicated databases.
In Proc. of the IEEE-YUFORIC’2001, pages 97-104,
Valencia, Spain, November 2001.

[12] P. Vicente and L. Rodrigues. An indulgent uniform

total order algorithm with optimistic delivery. In
21st IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’02), pages 92-101, oct 2002.

[13] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme,

and G. Alonso. Database replication techniques: A
three parameter classification. In Proc. of the 19th
IEEE Symposium on Reliable Distributed Systems
(SRDS’00), pages 206—217, October 2000.



