
IMPLEMENTING DATABASE REPLICATION PROTOCOLS BASED ON
O2PL IN A MIDDLEWARE ARCHITECTURE

J.E. Armendáriz, J.R. Juárez, J.R. Garitagoitia, J.R. González de Mendı́vil
Dpto. de Matemática e Informática

Universidad Pública de Navarra
Campus Arrosadı́a s/n, 31006 Pamplona, Spain

email: {enrique.armendariz, jr.juarez, joserra, mendivil}@unavarra.es

F.D.Muñoz-Escoı́
Instituo Tecnológico de Informática
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain
email: fmunyoz@iti.upv.es

ABSTRACT
Database replication is a way to increase system perfor-
mance and fault-tolerance of a given system. The price
to pay is the effort needed to guarantee data consistency,
and this is not an easy task. In this paper, we introduce
a description of two 1-Copy-Serializable (1CS) [1] ea-
ger update everywhere replication protocols. The prelim-
inary results of their implementation in the MADIS mid-
dleware architecture [2] are also presented. The advantage
of these replication protocols is that they do not need to
re-implement features that are provided by the underlying
database. The first one does not rely on strong group com-
munication primitives [3]; distributed deadlock is avoided
by a deadlock prevention schema based on transaction pri-
orities (whose information is totally local at each node).
The second one manages replica consistency by the total
order message delivery featured by Group Communication
Systems (GCSs) [3].

KEY WORDS
Database replication, middleware, group communication
systems, ROWAA, eager, two-phase commit.

1 Introduction

O2PL [4] was one of the first concurrency control algo-
rithms specially designed for replicated databases. O2PL
showed several advantages when compared with other gen-
eral concurrency control approaches (such as distributed
2PL, basic timestamp ordering, wound-wait, or distributed
certification): (a) As many of them, it does not need to
propagate readsets in order to detect concurrency conflicts.
Read locks are only locally managed, using the support
provided by the underlying DBMS. (b) It only needs con-
stant interaction [5], delaying all remote write-lock re-
quests until commit time, being thus an optimistic varia-
tion of the distributed 2PL approach. This ensures a faster
transaction completion time than those protocols based on
linear interaction. (c) Its use of locks, although optimistic,
guarantees a lower abortion rate than that of the timestamp-
based approaches [4].

The principles of O2PL have been used in many mod-
ern database replication protocols [6, 7, 8] based on total or-
der broadcast [3], removing thus the need of using the 2PC

protocol in order to terminate the transactions, and improv-
ing in this way the protocol outlined in [4].

We propose two new replication protocols directly
based on the ideas discussed above, and implemented in
a middleware called MADIS [2]. These protocols are for-
mally presented as state transition systems [1]. They do
not follow the replication policy established in [9]. A
middleware-based implementation has to necessarily add
some collection and management tasks that reduce the per-
formance of the resulting system, at least when compared
to one built into the DBMS core [6]. On the other hand, the
resulting system will be easily portable to other DBMSs.
In both protocols we have eliminated the need of lock man-
agement at the middleware layer. To this end, we rely on
the local concurrency control, adding some triggers that
will be raised each time a transaction is blocked due to a
lock request. Additionally, deadlocks are also prevented
in these protocols (this was one of the main problems in
the original O2PL algorithm) either by using priorities, the
first one, or by the total order delivery guarantees of the
GCS [3].

Our first protocol needs only a uniform reliable broad-
cast, but requires two communication phases in order to
commit a transaction, since all its operations are firstly ex-
ecuted at a given site. The first phase comprises: update
propagation, priority check among current active transac-
tions at the rest of sites, and applying the updates on the lo-
cal DBMS. Once this process is finished at each remainder
site, it sends a message saying it is ready to commit. The
second phase starts when all sites are ready to commit. The
site where the transaction was originated multicasts a com-
mit message to the rest of sites (the same may be applied for
an aborted transaction). Therefore, it is also able to manage
unilateral aborts; i.e., those raised in a given replica due to
some error in such transaction execution.

The second protocol replaces the first communication
phase with one total order broadcast, thus it simplifies the
replication protocol. Since if the site where the transaction
was executed sees this message as the first one to be ap-
plied, it sends a commit message, otherwise, it multicasts
an abort message. However, it is not able to manage unilat-
eral aborts. Both protocols will be compared in Section 4,
providing some interesting figures about in what conditions
each one provides the best results.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the system model. Replication protocols
are formally described in Section 3. Section 4 presents
some preliminary experimental results on the MADIS ar-
chitecture. Finally, conclusions end the paper.

2 System model

The distributed system considered in this paper is com-
posed of N sites. Each site contains a copy of the database
(fully replicated). Sites communicate with each other by
message exchange using a GCS [3]. We assume a GCS
providing reliable channels among nodes, featuring the
next group communication primitives: basic and total or-
der multicast. This GCS includes the membership service
with the virtual synchrony property [3].

Since the objective of the system is a middleware
architecture providing database replication, clients access
database by means of SQL statements through a client ap-
plication with no modifications, using a standard interface
like JDBC. These applications access the data repository
via transactions, through the middleware layer where repli-
cation is managed. A transaction defines a partially ordered
set of read and write operations [10]. Two or more transac-
tions may concurrently access the same data item and may
provoke a conflict among transactions provided that at least
one of the conflicting transactions issues a write operation.
Clients access the system through their closest site to per-
form transactions. Each transaction identifier includes the
information about the node where it was originally created
(node(t)). It allows the different replication protocol in-
stances to know if a given transaction is a local or a remote
one. Client applications access the system through their
closest site to perform transactions following a JDBC style.
When the application wishes to commit, only all write op-
erations are propagated to the rest of sites. We follow a
read-one-write-all (ROWA) policy.

Each site includes a database management system
(DBMS) storing a physical copy of the replicated database.
We assume that the DBMS ensures ACID properties of
local transactions; transactions are serializable as in [11].
The DBMS gives standard actions such as: beginning a
transaction; submitting an operation; and, finishing a trans-
action (either commit or abort). We have added a set
of functions which are not provided by DBMSs but may
easily be programmed as database procedures or func-
tions so as to know the object written by a given trans-
action and the set of conflicting transactions between a
write set and current active transactions at a given site (i.e.
t′ ∈ getConflicts(WS(t)) ⇐⇒ (WS(t′) ∪ RS(t′)) ∩
WS(t) 6= ∅). As a final remark, we also assume that af-
ter the successful completion of a submitted operation by a
transaction, it can be committed at any time. In other words
a transaction may be aborted by the DBMS only when it is
performing a submitted operation (submit(t, op)).

3 Description of the protocols

We propose two different replication protocols: the first
one is based in the Two Phase Commit (2PC) [10] atomic
commitment protocol and the other one is based in group
communication primitives [6]. Both protocols need a re-
covery subprotocol that is not described in this paper, but
that has been already designed. These recovery subproto-
cols are based on the one described in [12] for BULLY, and
on that described in [13] for TORPE.

The first replication protocol is an adaptation of the
Optimistic 2PL protocol proposed by Carey et al. in [4],
where all lock management has been avoided at the middle-
ware level. This algorithm is called BULLY due to the fact
that updates performed at remote nodes rollback all con-
flictive active (neither committed nor aborted) transactions
whose priority is lower than its own. The second replica-
tion protocol, called Total Order Replication Protocol with
Enhancements (TORPE), is an adaptation of the SER-D al-
gorithm proposed by Kemme et al. in [6], where write op-
erations are not deferred until the total order delivery of the
message containing the updates. Both have been adapted to
our MADIS middleware architecture [2]. We are very inter-
ested in the comparison of both since BULLY supports uni-
lateral aborts whilst TORPE does not need to wait for the
updates to be applied at the remainder sites, more precisely,
to the slowest one. Both replication protocols behave in a
similar way, except for update propagation to the rest of
available sites. Hence, we will firstly explain the common
part of both protocols and afterwards we will introduce the
differences.

Each time a client issues a transaction (local transac-
tion), all its operations (i.e. all reads and writes) are locally
performed on a single node called the transaction master
site. The remainder sites enter in the context of this trans-
action when the user wants to commit. All write operations
are grouped and sent to the rest of available sites, at this
moment is when the two protocols differ, since the former
uses the basic service and the latter employs a total order.
Updates are applied in the rest of sites in the context of
another local transaction (remote transaction) on the given
local database where the message is delivered.

In Figure 1 and 2, BULLY and TORPE are shown
as state transition systems [1], introducing their respective
steps and actions for a site i. Each action is subscripted by
the node at which it is executed. Transactions created at
node i (local transactions at i) follow a sequence, for both
protocols, initiated by createi(t) and followed by multiple
begin operationi(t, op), end operationi(t, op) pairs ac-
tions in a normal behavior. However, the local aborti(t)
action is possible if the underlying database cannot guar-
antee serializability [11] or by an internal deadlock reso-
lution. Each active transaction at node i (statusi(t) =
active) is committable by the DBi at any time. The
begin commiti(t) action sends the write-set and update
statements of a transaction t to every site and this is the
place where both protocols differ.

States:
∀ i ∈ N ∧ t ∈ T : statusi(t) ∈ {idle, delivered, start, active, blocked, pre commit, aborted, committed},

initially (node(t) = i ⇒ statusi(t) = start) ∧ (node(t) 6= i ⇒ statusi(t) = idle).
∀ i ∈ N, ∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z ∧ availableNodes ⊆ N}, initially Vi = 〈0, N〉.

Transitions:

createi(t) // node(t) = i //
pre≡statusi(t) = start.
eff≡DBi.begin(t); statusi(t) ← active.

begin operationi(t, op) // node(t) = i //
pre≡statusi(t) = active.
eff≡DBi.submit(t, op); statusi(t) ← blocked.

end operationi(t, op)
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff≡ statusi(t) ← active;

if node(t) 6= i then
sendRUnicast(〈ready, t, i〉) to node(t);
statusi(t) ← pre commit.

begin commiti(t) // node(t) = i //
pre≡statusi(t) = active.
eff≡ statusi(t) ← pre commit;

participantsi(t) ← Vi.availableNodes \ {i};
sendRMulticast(〈remote, t, DBi.WS(t)〉,

participantsi(t)).

end commiti(t) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = ∅.
eff≡DBi.commit(t); statusi(t) ← committed;

sendRMulticast(〈commit, t〉,
Vi.availableNodes \ {i}).

receive readyi(t, m) // t ∈ T ∧ node(t) = i //
pre≡statusi(t) = pre commit ∧ participantsi(t) 6= ∅∧

m = 〈ready, t, source〉 ∈ channeli.
eff≡ receivei(m); // Remove m from channel

participantsi(t) ← participantsi(t) \ {source}.

local aborti(t)
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff≡ statusi(t) ← aborted; DBi.abort(t);

if node(t) 6= i then
sendRUnicast(〈rem abort, t〉) to node(t).

discardi(t, m) // t ∈ T //
pre≡statusi(t) = aborted ∧m ∈ channeli.
eff≡ receivei(m).

receive commiti(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡statusi(t) = pre commit∧

m = 〈commit, t〉 ∈ channeli.
eff≡ receivei(m); DBi.commit(t);

statusi(t) ← committed.

receive remotei(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡statusi(t) 6= idle∧

m = 〈remote, t, WS〉 ∈ channeli.
eff≡ receivei(m); statusi(t) ← delivered;

conflictSet ← DBi.getconflictSet(WS);
if ∃t′ ∈ conflictSet : ¬(higher priority(t, t′)) then

statusi(t) ← aborted;
sendRUnicast(〈rem abort, t〉) to node(t)

else // The delivered remote has the highest priority
∀ t′ ∈ conflictSet :

DBi.abort(t′);
if statusi(t

′) = pre commit ∧ node(t′) = i then
sendRMulticast(〈abort, t′〉,
Vi.availableNodes \ {i});

statusi(t
′) ← aborted;

DBi.begin(t); DBi.submit(t, WS);
statusi(t) ← blocked.

receive aborti(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡statusi(t) /∈ {aborted, committed}

∧m = 〈abort, t〉 ∈ channeli.
eff≡ receivei(m); DBi.abort(t); statusi(t) ← aborted.

receive rem aborti(t, m) // node(t) = i //
pre≡statusi(t) 6= aborted∧

m = 〈rem abort, t〉 ∈ channeli.
eff≡ receivei(m); DBi.abort(t); statusi(t) ← aborted;

sendRMulticast(〈abort, t〉,
Vi.availableNodes \ {i}).

ç
¦ function higher priority(t, t′) ≡ node(t) = j 6= i∧

statusi(t) = delivered ∧ (a ∨ b ∨ c)
(a) node(t′) = i ∧ statusi(t

′) ∈ {active, blocked}
(b) node(t′) = i ∧ statusi(t

′) = pre commit∧
t.priority > t′.priority

(c) node(t′) = k ∧ k 6= j ∧ k 6= i ∧ statusi(t
′) =

blocked ∧ t.priority > t′.priority

Figure 1. State transition system for the BULLY protocol.

3.1 BULLY replication protocol

Write operations are multicast to the rest of sites using the
basic service. Once the remote transaction is finished it
sends a message saying it is ready to commit the given
transaction. When the reception of ready messages is fin-
ished, that is, all nodes have answered to the transaction
master site, it multicasts a message saying that the trans-
action has been committed. BULLY relies for conflict
detection on the mechanism implemented in the underly-
ing DBMS which guarantees local serialization as stated
in [11]. This is not enough to prevent distributed deadlock
cycles formation [10]. We have avoided this problem using
a deadlock prevention schema based on priorities, rather
than the usage of total order broadcast primitives as in [6].
A global priority value for each transaction, based on the
transaction state and a unique value, taking into account the
transaction information (timestamp, objects read, written,

etc.) along with its site identifier, is defined (t.priority).
The key action of the BULLY protocol is the

receive remotei(m) action of Figure 1. Once the remote
message is received at node i, the protocol action finds out
in the local copy of the database the set of transactions con-
flicting with the received write set (WS). The remote up-
dates, for that WS, will only be applied if there is not a
conflictive transaction at node i having a higher priority
than the received one. If there exists a conflictive transac-
tion at i with higher priority, the remote message is ignored
and sends a remote abort to the transaction master site.

Finally, if the remote transaction is the one with the
highest priority among all at i then every conflictive trans-
action is aborted and the transaction updates are submit-
ted for their execution to the underlying DBMS. The final-
ization of the remote transaction (end operationi(t, op)),
upon successful completion of DBi.submit(t,WS), is
in charge of sending the ready message to the trans-

States:
∀ i ∈ N ∧ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, committable, committed, aborted},

initially (node(t) = i ⇒ statusi(t) = start) ∧ (node(t) 6= i ⇒ statusi(t) = idle).
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N, ∀ t ∈ T : committablei(t) ⊆ T , initially committablei(t) = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z ∧ availableNodes ⊆ N}, initially Vi = 〈0, N〉.

Transitions:

createi(t) // node(t) = i //
pre≡statusi(t) = start.
eff≡DBi.begin(t);

statusi(t) ← active.

begin operationi(t, op) // node(t) = i //
pre≡statusi(t) = active.
eff≡DBi.submit(t, op);

statusi(t) ← blocked.

end operationi(t, op)
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff≡ if node(t) = i then statusi(t) ← active

else statusi(t) ← pre commit.

begin commiti(t) // node(t) = i //
pre≡statusi(t) = active.
eff≡ statusi(t) ← pre commit;

sendTORMulticast(〈remote, DBi.WS(t), t〉,
Vi.availableNodes).

end commiti(t, m) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre commit∧

m = 〈remote, WS, t〉 ∈ channeli.
eff≡ receivei(m); // Remove m from channel

DBi.commit(t);
statusi(t) ← committed.
sendRMulticast(〈commit, t〉,
Vi.availableNodes \ {i}).

local aborti(t)
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff≡ statusi(t) ← aborted;

DBi.abort(t).

discardi(t, m) // t ∈ T //
pre≡statusi(t) = aborted ∧ m = 〈∗, t, ∗〉 ∈ channeli.
eff≡ receivei(m). // Remove m from channel

receive commiti(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡m = 〈commit, t〉 ∈ channeli.
eff≡ receivei(m); // Remove m from channel

committablei ← committablei ∪ {t}.

receive remotei(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡statusi(t) 6= aborted∧

m = 〈remote, WS, t〉 ∈ channeli.
eff≡ receivei(m); // Remove m from channel

conflicts ← DBi.getConflicts(WS);
∀ t′ ∈ conflicts :

if node(t′) = i then
DBi.abort(t′);
if statusi(t

′) = pre commit then
sendRMulticast(〈abort, t′〉,
Vi.availableNodes \ {i});

statusi(t
′) ← aborted;

DBi.begin(t);
DBi.submit(t, WS); statusi(t) ← blocked.

receive aborti(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡m = 〈abort, t〉 ∈ channeli.
eff≡ receivei(m); // Remove m from channel

if statusi(t) 6= aborted then
DBi.abort(t); statusi(t) ← aborted.

commit remotei(t) // node(t) 6= i //
pre≡statusi(t) = pre commit ∧ t ∈ committablei.
eff≡ committablei ← committablei \ {t};

DBi.commit(t); statusi(t) ← committed.

Figure 2. State transition system for the TORPE protocol.

action master site. Once all ready messages are col-
lected from all available sites the transaction master
site commits (end commiti(t)) and multicasts a commit
message to all available nodes. The reception of this
message commits the transaction at the remainder sites
(receive commiti(t,m)). In case of a remote update fail-
ure while being applied in the DBMS, the remote abort
message is sent by the local aborti(t) action to the mas-
ter site. Once the updates have been finally applied the
transaction waits for the commit message from its mas-
ter site. One can note that the remote transaction is in the
pre commit state and it is committable from the DBMS
point of view, since its status remains active. As a con-
cluding remark, we will highlight that a delivered remote
transaction has never a higher priority than other conflic-
tive remote transactions at node i in the pre commit state;
this fact is needed to guarantee the transaction execution
atomicity.

3.2 TORPE Replication Protocol

Write operations are multicast to the rest of sites using
the total order service. If the message is delivered at the

transaction master site, and it has not been aborted yet, it
commits in the local database (end commiti(t,m)) and
multicasts a commit message to the rest of sites using
the basic service. The other case is when the message is
delivered at the rest of sites (receive remotei(m)), this
transaction aborts all local active conflicting transactions
(those that are still in their acquisition phase and those
that have sent their write operations but have not been
yet delivered). Afterwards, the write operations are sub-
mitted to the database. On successful completion of the
operation (end operationi(t, op)) it switches its state to
pre commit and waits for the commit message from its
respective transaction master site.

Remote transactions are committed once their com-
mit message has been received. However, these commit
messages may come before the total order retrieval of
the remote update; therefore, we need a data structure
(committablei) to store the commit of a given remote
transaction that, probably, it has not been yet received.

Again, the TORPE replication protocol takes no re-
sponsibility for conflict detection as this task is managed by
the underlying DBMS, which ensures serializability. Dis-
tributed deadlock is prevented by the total order of updates

delivery, but, on the other hand, we have that remote up-
dates can not be aborted by the database internals (unilat-
eral aborts) and is limited by the total order delivery la-
tency.

4 Experimental results on MADIS

We are currently ending the implementation of MADIS
while implementing our replication protocols on the
MADIS architecture [2]. The results presented here are
preliminary ones and merely point out the comparison be-
tween these protocols in a middleware architecture.

These results have been performed in two different
environments, since the first one has not enough worksta-
tions to execute the second test. We firstly use a cluster
of 4 workstations with full duplex Gigabit Ethernet (Man-
drake 10.0, Pentium III 800MHz, 768MB main memory,
40GB SCSI disk) and secondly a cluster of 8 workstations
with full duplex Fast Ethernet (Fedora Core 1, Pentium
IV 2.8GHz, 1GB main memory, 80GB IDE disk). In all
our tests, we use PostgreSQL 7.4 as the underlying DBMS
(www.postgresql.org) and it provides serialization isolation
level [11]. However, according to [11] the PostgreSQL is
only Snapshot Isolation (SI), if its suggested classification
is taken into account. Besides this refinement, it also adds
new isolation levels: SI, cursor stability, etc. This DBMS
ensures SI. Therefore, in the context of database replica-
tion, our replication protocols provide generalized SI [14].
Spread 3.17.3 (www.spread.org) is in charge of the group
communication for the TORPE protocol along with TCP
sockets for the BULLY protocol (failure-free assumption).

Figure 3. Performance Analysis: Response time with four
operations per transaction in a system with four sites.

The database is composed by 25 tables with 100 records
each one. The experimental results consist of executing
non-conflicting transactions composed of a number of up-
date operations varying the number of clients.

In the first experiment, transactions averaging 4 up-
dates are executed by a range of clients supporting differ-
ent workloads using both replication protocols. Figure 3
shows the results for the BULLY and the TORPE protocols
respectively. Results obtained in these figures determine
the performance of both protocols with the same load of
transactions. As shown in the figures, we may conclude, as
expected, that TORPE behaves better than BULLY, due to
the fact that BULLY has to wait for the application of up-
dates at all nodes and the reception of the respective ready
messages. TORPE has only to wait for the total order deliv-
ery of the remote message and is not affected by the remote
nodes overhead.

The second experiment is directly related to the scal-
ability of the replication protocols [9]. We perform a proof
varying the number of sites from 2 to 8. The number of
clients are distributed throughout the nodes ranging from 1
to 16 and the load introduced into the system remains con-
stant to 8 TPS. We performed 500 transactions averaging
4 update operations each per client. Results introduced in
Figure 4 show that TORPE behaves fine for a few number
of clients and nodes but its results are comparable to those
obtained by BULLY with a higher number of clients and
sites. This is due to the fact that the latency of total order
delivery grows with the number of nodes, as it takes more
time to agree on the delivery order. BULLY grows linearly
with the number of nodes and TORPE grows much faster.

Figure 4. Scalability Analysis: Response time with four
operations per transaction.

5 Conclusions

We have introduced two eager update everywhere replica-
tion protocols for the MADIS middleware architecture [2],
that ensures 1CS, although we have not formally proven
this assertion, provided that the underlying DBMS ensures
serializability.

The first one is based on O2PL with a 2PC proto-
col (BULLY), whose replication strategy consists of set-
ting transaction priorities, and the other one (TORPE) en-
sures database replication by means of total order deliv-
ery guarantees provided by a group communication system.
The novelty of these replication protocols is that no extra
database explicit operations must be re-implemented at the
middleware layer (such as implementing a lock manage-
ment or so). The main goal is to maintain data concurrency
relying on the DBMS itself, and data replication is man-
aged by the protocols described in this paper.

Experimental results presented here must be consid-
ered with caution, since we are in a preliminary stage of
the system implementation (middleware architecture and
replication protocols). We are currently performing several
code optimizations in our architecture. Nevertheless, these
results compare for the first time, up to our knowledge, the
O2PL with GCS based protocols.

As it can be derived from the figures showing the
experimental results, the TORPE protocol has a more ac-
curate performance than the BULLY protocol. This is
something that we expected since the 2PC must wait for
all updates to be performed at the rest of nodes in or-
der to commit a transaction. However, the TORPE repli-
cation protocol does not scale so well, although its per-
formance is still comparable to BULLY. The preliminary
results shown in this paper are for non-conflictive trans-
actions. In the future, we plan to use ordinary TPC-W
(http://www.tpc.org) benchmarks, since they com-
bine read operations with update operations, and a non-
negligible conflict rate.

Besides, the BULLY protocol may be enhanced if we
assume that no unilateral aborts do occur. Under this as-
sumption, we may send the ready message before the op-
eration submission to the underlying DBMS. Therefore, we
do not have to wait for performing the update operation
on the DBMS before sending the ready message. Finally,
as we have said before, we have not described a recovery
protocol for these replication protocols. A recovery proto-
col for the BULLY may be based on the ideas introduced
in [12]; respectively, a recovery protocol approach for the
TORPE protocol would be based on [13].

Acknowledgments

This work has been supported by the Spanish Government
under research grant TIC2003-09420-C02.

References

[1] A. Udaya Shankar, An introduction to assertional rea-
soning for concurrent systems, ACM Comput. Surv.,
25(3), 1993, 225–262.

[2] L. Irún-Briz, H. Decker, R. de Juan-Marı́n, F. Castro-
Company, J.E. Armendáriz, and F.D. Muñoz-Escoı́,
Madis: A slim middleware for database replication,
Euro-Par, 2005, Lecture Notes in Computer Science.

[3] G. Chockler, I. Keidar, and R. Vitenberg, Group com-
munication specifications: a comprehensive study,
ACM Comput. Surv., 33(4), 2001, 427–469.

[4] M.J. Carey and M. Livny, Conflict detection trade-
offs for replicated data, ACM Trans. Database Syst.,
16(4), 1991, 703–746.

[5] F. Pedone, M. Wiesmann, A. Schiper, B. Kemme, and
G. Alonso, Understanding replication in databases
and distributed systems, ICDCS, 2000, 464–474.

[6] B. Kemme and G. Alonso, A new approach to de-
veloping and implementing eager database replication
protocols, ACM Trans. Database Syst., 25(3), 2000,
333–379.

[7] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and
M. Wiesmann, Using optimistic atomic broadcast in
transaction processing systems, IEEE Trans. Knowl.
Data Eng., 15(4), 2003, 1018–1032.

[8] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme,
and G. Alonso, Improving the scalability of fault-
tolerant database clusters, ICDCS, 2002, 477–484.

[9] J. Gray, P. Helland, P.E. O’Neil, and D. Shasha, The
dangers of replication and a solution, SIGMOD Con-
ference, 1996, 173–182, ACM Press.

[10] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Con-
currency Control and Recovery in Database Systems
(Addison Wesley, 1987).

[11] H. Berenson, P.A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P.E. O’Neil, A critique of ANSI SQL iso-
lation levels,SIGMOD Conference, 1995, 1–10.

[12] J.E. Armendáriz, J.R. González de Mendı́vil, and F.D.
Muñoz-Escoı́, A lock-based algorithm for concur-
rency control and recovery in a middleware replica-
tion software architecture, HICSS, 2005, 291.

[13] R. Jiménez-Peris, M. Patiño-Martı́nez, and
G. Alonso, Non-intrusive, parallel recovery of
replicated data, SRDS, 2002, 150–159.

[14] S. Elnikety, F. Pedone, and W. Zwaenopoel, Database
replication using generalized snapshot isolation,
SRDS, 2005, IEEE Computer Society.

