CLOB: Communication Support for Efficient Replicated Database Recovery

F. Castro-Company J. Esparza-Peidro

M. 1. Ruiz-Fuertes

*

L. Irdn-Briz H. Decker

F. D. Muiioz-Escoi
Instituto Tecnolégico de Informética
Universidad Politécnica de Valencia
46022 Valencia, SPAIN
{fcastro,jesparza,miruifue,lirun,hendrik,fmunyoz} @iti.upv.es

Abstract

Replication protocols using an eager update propaga-
tion strategy commonly need a reliable broadcast service;
i.e., a broadcast primitive with atomic delivery and, in some
cases, also with total order. This communication service
provides some appropriate features for the recovery tasks,
although in some cases this will lead to partial blocking
of the replica taken as the source in the updating process.
CLOB is a framework for reliable broadcast protocols that
log the missed update messages in case of failure, being
able to automatically resend these updates when the faulty
destinations recover. This behaviour is easily configurable
and allows an efficient recovery mechanism in case of short-
term failures, which can be combined with other version-
based recovery protocols in order to manage long-term out-
ages.

1. Introduction

Atomic broadcast protocols [7] have been widely used
to provide communication support for database replica-
tion protocols based on the eager update propagation tech-
nique [6]. They lead to efficient solutions for guarantee-
ing one-copy serializability, because the transaction com-
mit phase can be done without requiring a distributed vot-
ing phase [15], and with constant interaction; i.e., the write-
sets of each transaction may be propagated at commit time,
but they do not need to be transmitted before. As a result,
the communication costs can be highly reduced with these
techniques, at least when no failures arise.

When some replicas of the database have failed, the re-
maining active ones have to maintain some additional data
in order to allow their future recovery. According to [12],

% This work has been partially supported by the Spanish MCYT grant
TIC2003-09420-C02-01.

one possible solution consists in the use of virtual syn-
chrony [2], needing a state transfer during the view change
of the replica group; i.e., in the interval that starts when the
faulty replica requests its re-inclusion in the group and that
finishes when it is considered a valid destination for new
broadcasts. However, the support traditionally given in sys-
tems with virtual synchrony has needed a complete state
transfer in this recovery phase. This principle cannot be eas-
ily migrated to the database field, since a complete database
transfer needs too much effort, both in time and bandwidth
terms. As a result, several database replication protocols
log all missed updates during the failure period, in order
to transmit them during the recovery phase (e.g., [10, 14]).

Log-based (synonymously, “missed-udpate”) propaga-
tion is the best solution for short-term failures, but there are
better approaches when the failure period is long. Again,
in [12] several version-based solutions are described. Their
aim is to reduce the amount of information to be logged and
transferred. To do so, if a data item has been updated several
times whilst a replica was faulty, only its latest version will
be transferred. Thus, the active replicas need to log only the
identifiers of the items being updated, and their current ver-
sions, but not their actual state. This minimizes the amount
of log storage needed by this kind of solutions. On the other
hand, this leads to lock in read mode —in the source replica—
all data items to be propagated to the recovering replica,
needing also additional time to read these items’ states and
to build the appropriate update message with them. How-
ever, this lock requirement can be removed in a DBMS
with multi-version concurrency control, like PostgreSQL,
and the extra time needed for reading the items’ states is
perfectly balanced with the smaller amount of data being
transferred.

CLOB (Configurable LOgging for Broadcast protocols)
is a framework for reliable broadcast protocols that are used
as a basis for database replication protocols. Its aim is to
manage the logging of missed messages in the broadcast
protocol core, providing thus automatical recovery in short-

term failures, but discarding the log and notifying accord-
ingly the database replication protocol modules in case of
long-term outages. This kind of support can be easily com-
bined with version-based recovery protocols. To this end,
once a failure is detected the database replication protocol
must follow its traditional version-based management for
recovery purposes, but it will be discarded if the replica is
able to rejoin the system soon. In this case, CLOB automat-
ically propagates the missed update messages to the recov-
ering replica, which receives and applies them avoiding any
additional waiting time both in the source and destination
replicas. On the other hand, if the outage period exceeds
a given threshold, the reliable broadcast service will notify
the replication protocol about that, discarding the message
logs maintained by CLOB and delegating the recovery man-
agement to the upper-layer components.

This framework is thoroughly described in the follow-
ing sections. To this end, the rest of the paper is structured
as follows. Section 2 describes the system model. Section
3 shows the overall architecture where CLOB may be in-
cluded. Later, section 4 gives the main characteristics that
CLOB introduces in the broadcast protocols pluggable in
this framework. Section 5 provides some performance re-
sults. Finally, section 6 presents some related work and sec-
tion 7 concludes the paper.

2. System Model

Database replicas are placed each one in a different node
of a partially synchronous distributed system, where clocks
are not synchronised but message transmission time can be
bounded. The database is fully replicated in each node, i.e.,
each replica has a complete copy of the whole database.

A group membership service is assumed. The set of pos-
sible system nodes is known in advance, and a primary par-
tition model is used in case of network partitions; i.e., only
the active subgroup with a majority of the preconfigured
nodes, if any, is allowed to continue in case of a network
partition. This characteristic will prevent communication
when the system is started, until at least a majority of the
system nodes are able to exchange messages among them.
Thus, the needs for message logging are reduced in these
initial phases. Moreover, the consistency of the database is
trivially ensured in case of network partitions, since only
the primary subgroup is able to continue, and it will be the
only one who creates the log of missed updates, resending
it when the subgroups are joined.

A partial-amnesia crash failure model [4] is assumed for
processes, whilst links may produce omission failures. This
failure model is more realistic than the crash or fail-stop
failure models [7], where a node is assumed to stop once
it has failed, forcing to recover with another node identifier
and without any previous state. A strict adoption of such

models implies a complete database transfer in each recov-
ery and that action will be too costly.

The typical user of the CLOB support is a database repli-
cation system. Such a system has to use a constant interac-
tion [15] approach in order to propagate its updates among
replicas; i.e., the replica that has initially processed a given
transaction propagates its updates to the rest of replicas only
once. A linear interaction policy (i.e., one that propagates
the updates each time the transaction updates the database,
instead of grouping them in order to multicast a unique
message) needs additional parameters to decide when the
logged messages can be removed.

Note that in the linear interaction case all messages have
to be logged, even if all the nodes are active, removing them
when the transactions associated to them have been com-
pleted (either committing or aborting). When a node fails,
all the transactions already started in the other nodes have
to be tagged, and their currently logged messages have to
be maintained in the log in order to provide a complete se-
quence of messages for each transaction needed in the re-
covery process of such a faulty node. The algorithm de-
scribed in this paper does not consider this case, and the log
only maintains the missed updates. However, this does not
work in a linear interaction system, because all the trans-
actions are propagated to all replicas when they start, and
in the faulty replica, all initiated transactions are removed
from the system when it restarts, aborting them. As a result,
with the scheme outlined in the following sections, CLOB
only sends the missed updates, and part of them correspond
to some transactions that have been aborted due to the fail-
ure. For these transactions, we need to send all their mes-
sages, including also those that were sent to the faulty node
immediately before its failure. These extensions are not de-
scribed in this paper, but have to be applied if we use a sys-
tem based on linear interaction.

3. Architecture Overview

The CLOB support needs to be on top of a membership
service and below the database replication protocol, which
is the main user of the CLOB services, as it is shown in
figure 1. The membership service needs to use an unreli-
able transport; for instance, one based on UDP. Each time
the system membership changes, either due to a node join,
a node failure or a network partition, its notifications have
to be delivered to both the CLOB broadcast protocol and to
the database replication protocol placed on top of it, and in
such order.

These four layers can be easily integrated in a more
ellaborated architecture, as the one used in GlobData [9],
where all these components build up the COPLA manager,
placed on top of the database management layer called UDS
[1]. Another sample could be the RIDBC middleware [5]. In

Database Replication Protocol

CLOB (with reliable broadcast protocol

Membership Service

Unreliable Transport

Figure 1. CLOB architecture.

this latter case, these layers have been integrated as a JDBC-
compliant driver with database replication support which
runs on top of the native JDBC driver for the DBMS be-
ing used.

On top of the database replication protocol several addi-
tional layers could be placed. For instance, one representing
the client applications that use the database. Additionally,
each node will be able to access a local database replica.
This is done using a common DBMS API to be called by
the database replication protocol.

4. CLOB Description

A broadcast protocol needs to comply with these require-
ments in order to be included in the CLOB layer:

e Logging of missed messages.
e Logging of received messages.

e Configurable removal of missed messages.

Let us see in the following sections why these require-
ments are needed.

4.1. Logging of Missed Messages

If a system node is placed in a non-partitioned group, or
in a subgroup with a majority of the preconfigured nodes
it will log all the messages it delivers if at least one of the
preconfigured nodes has failed. These logged messages will
be sent to the unavailable nodes when they rejoin the sys-
tem, and will be automatically removed when all the con-
figured nodes were available and once they would have re-
ceived such messages.

The broadcast protocol being used has to be at least
a reliable one with FIFO order [7], as the one used in
the FOB database replication protocol [13]. In such cases,
the database replication protocol requires some additional
mechanisms to decide which transactions can be commit-
ted. For instance, in the FOB case a voting phase is needed.
On the other hand, when an atomic causal broadcast proto-
col [7] the database replication protocol may not need such

a voting phase [14]. However, our basic log-based recov-
ery support will be identical in both cases.

In order to achieve an easy management, the log is di-
vided in several segments. Each segment stores all messages
that were sent and delivered between two consecutive view
change events, and it has a header that includes this infor-
mation:

e A segment ID composed by the identifier of the new
group view being installed.

e A header core with the identifiers of all the nodes that
were faulty when the segment started.

Thus, when a node rejoins the system, the following al-
gorithm is used to find and transmit the appropriate se-
quence of messages it has missed:

1. The history of log segments is scanned until the old-
est segment which has the recovering node ID in its
header core is located.

2. As aresult, all the active nodes know which messages
are needed by the recovering node —all messages in the
sequence of log segments that starts in the one located
in the previous step— and these messages are packed in
a recover message and transmitted using point-to-point
communication to such recovering node.

To this end, a given criterion is used by the pre-
viously available nodes in order to decide which one
of them will act as source of the data transfer. For in-
stance, the node with greatest identifier lower than the
recovering one.

3. Once this message transfer has concluded, the recov-
ering node will broadcast an acknowledgement mes-
sage.

4. Once the previously active nodes receive this acknowl-
edgement message, they start to remove the recovering
node ID from the headers of all log segments transmit-
ted to it.

5. If in the previous step the headers of some log seg-
ments become empty, such segments are removed from
the log.

The previous algorithm allows an easy finding of the set
of messages to be transmitted, and it also provides a sim-
ple log removal criterion in its last step. Unfortunately, it is
not fault-tolerant: what does it happen when one of the pre-
viously active nodes fails in or before step 3?7 At a glance,
its log headers will not be updated, so its log of sent mes-
sages will not be accurate and becomes useless once it re-
covers.

Thus, the following extensions are needed to deal with
failures in this recovery algorithm:

e The log of sent messages is filtered in a recovering
node before it requests to be accepted again in the sys-
tem; i.e., before its membership monitor sends its first
message to the rest of system nodes.

In this filtering process, the header cores are re-
moved in all the log segments maintained by the re-
covering node.

e Step 2 of the previous algorithm does not consist in the
transmission of only the sequence of messages missed
by the recovering node, but also of the headers of all
the older log segments (initially not intended for the re-
covering node) where its node ID did not appear, if any.
Note that we only need to transmit the headers, since
the message logs themselves are already in the logs of
the recovering node, and have been filtered in the step
described above.

These additional headers are packed separately
and placed in another field of the recover mes-
sage. They will allow that the recovered node could
play a source role in future recoveries of other cur-
rently faulty nodes.

e Note that the previous item leads to include in step
2 all the segment headers. As a result, the step 4 is
also locally run in the recovering node, filtering thus
all the received segment headers which contained its
own node ID.

e It is also worth noting that if any of the headers of
the recovering node remains empty once the transmit-
ted headers of the recover message have been applied,
such empty headers are removed and their associated
log segments, too.

The latest item in the previous list avoids some problems
in case of failure during the recovery process. For instance,
let us assume that a node A is active in a given system view,
with its log segments correctly maintained. Then, a node B
rejoins the system, producing a view change event. As a re-
sult, all the log segments missed by B have to be transmitted
to it. When B is terminating its recovery process, it broad-
casts an acknowledgement message to all system nodes. If
B were the unique member of some of the segment headers,
these headers and their associated log segments would have
been removed from the log once this acknowledgement was
received. But, let us assume that A failed when it decided to
remove such segments, but without updating their headers
nor starting such removal. When A finally recovers, none
of these segments nor their headers will be transmitted to
A, and it has to remove them from the log. So, this sam-
ple justifies that all filtered and cleaned headers that have
not been retransmitted in the recover message must be re-
moved from the log.

4.2. Logging of Received Messages

All the messages broadcast and received by the system
nodes are locally logged in their destination nodes until the
target application —in our case, the database replication pro-
tocol that applies the received messages in its local database
replica— is able to acknowledge that these messages have
been processed. If the node fails before the target applica-
tion has processed such message, when the node recovers
the same message is locally delivered again, without need-
ing any communication with its sender.

Note also that in the log described in section 4.1, CLOB
also logs those messages sent and delivered —indeed, if
some node is faulty and both logs are maintained, both of
them share their messages; i.e., messages are not stored
twice—, but the rationale of both logs is different. The missed
log stores all messages delivered by each node in a view
where at least one of the preconfigured system nodes is un-
available. This is needed to build up the source of messages
to be transmitted to those unavailable replicas when they re-
cover. On the other hand, the receiving log always stores
all delivered messages, independently of the current set of
available nodes, and its function consists in guaranteeing
that all delivered messages have been finally processed.

The aim of this second log is to avoid message losses.
Note that in a system based on virtual synchrony, once a
node failure is detected a view change event is started and
completed. Thus, all system nodes may know which was
the last message delivered in the faulty node. However, de-
livery of a message does not always imply its processing,
since the node may have failed before such a processing
was completed. Traditionally this has not been a problem
in systems that use virtual synchrony, since in the recovery
protocol the complete state of the replicated object is trans-
ferred to the recovering replica. So, there is no problem in
such cases with missed messages. These assumptions are
not valid in our CLOB support, since it tries to minimize
the amount of information being transferred in the recov-
ery process.

Thus, CLOB tries to send to the recovering replica only
those messages that such replica was not able to deliver.
So, if a message was delivered in a replica immediately be-
fore its failure, some mechanism is needed to guarantee that
such message is finally processed. To this end, a message is
logged in its destination nodes as soon as it is received and
tagged as deliverable, once the broadcast protocol decides
on that. This latter step depends on the broadcast protocol
being used.

Messages are discarded from this log as soon as the des-
tination component acknowledges their processing. In order
to do so, the CLOB broadcast protocols need an additional
operation for their users that initiates the message removal
from the log. These protocols need to associate an identi-

fier to each message they have delivered, and this identifier
is the one needed to request the removal of such message
once it has been processed.

Note also that a node may fail once it has processed a
message, but before it has requested its removal. In our tar-
get scenario this can be a problem, since this may lead to
processing the same message twice. To prevent this, the
database replication protocol has to ensure that it knows
which has been the history of updates already applied.
Thus, this database replication protocol needs to add a table
(named DELIV _TABLE) to the database schema where the
identifier of the latest applied update message is recorded
each time an update is applied. To ensure that failures
do not corrupt such information, both the update resulting
from a writeset processing and the increment of the DE-
LIV_TABLE contents are made in the same transaction, en-
suring the atomicity of these changes. Additionally, the up-
date on DELIV_TABLE will be made in the latest step be-
fore requesting the transaction commit. This ensures that the
associated database lock will be held a minimal time, reduc-
ing thus the probability that a transaction becomes blocked
in its access to DELIV_TABLE. Using this support, when a
database replica is being recovered its local CLOB module
will redeliver all messages that were not removed from the
receiving log, and the database replication protocol will pro-
cess all messages in this set whose identifiers were greater
than the one recorded in the DELIV_TABLE.

4.3. Configurable Removal of Missed Messages

A simple recovery mechanism can be implemented com-
bining the support given by the missed and receiving logs.
Indeed, no special recovery protocol is needed to manage
such replica recoveries, but only a minimal extension of the
database consistency protocol in order to deal correctly with
message ID updating in the DELIV_TABLE as described
above.

This recovery mechanism —i.e., a log-based recovery
one—is not optimal for all failure scenarios, as already stated
in section 1. If a node remains failed during a long period
of time, there are other version-based recovery mechanisms
that may reduce a lot the amount of information to be trans-
mitted, shortening thus the recovery time, since the num-
ber of required updates in the recovering database replica is
minimized.

As a result of this, the automatic recovery process out-
lined in previous sections is highly recommended for short-
term outages, but it is not adequate for long-term ones. On
the other hand, CLOB is responsible for the log-based re-
covery strategy, whilst a version-based one can only be sup-
ported by the database replication protocol placed on top of
CLOB. Both solutions can be easily combined, using the

log-based solution for short-term failures and the version-
based solution for medium- or long-term ones.

Thus, CLOB uses a configurable parameter that selects
which recovery strategy has to be used depending on the
size of the sending log that the available nodes maintain
whilst some of the database replicas remain crashed or in-
accessible. This parameter may have the following values:

e -1: Version-based recovery is not possible. The send-
ing logs have to be always in use, independently of
their size. This value will be used by those database
replication protocols that are not based on item ver-
sioning, as [5, 10].

e 0: Log-based recovery is disabled. The sending logs
will not be used. This will only happen if the broadcast
protocol being used does not comply with the CLOB
requirements described in section 4. However, the re-
ceiving log management will still be active with this
configuration.

e Positive values: These values express the affordable
size of the sending log, in KB. Whilst the sending
log remains smaller than such size, log-based recov-
ery will be automatically used. Once such size is ex-
ceeded for a given faulty node, such node will be re-
moved from the header cores of the sending log and
it will be forced to recover using a version-based ap-
proach managed by the database replication protocol
itself. Note that in these cases, version-based recovery
has to be started as soon as a replica fails, but it will
not be used if such replica recovers soon.

Let us see what happens when positive values are used,
since in such situations both recovery techniques have to be
prepared in parallel, but only one of them is finally applied
depending on the size of the sending log. So, we have two
cases:

¢ Sending log smaller than the configured size. In this
case the log-based recovery solution will be automati-
cally applied. Once the recovery is completed, all repli-
cas have to notify (using a CLEAR_STATE notifica-
tion or message) their upper layer, stating that the re-
covery has been completed. When the database repli-
cation protocol receives such notification, it removes
all the information kept for the recovered replica in its
version-based recovery algorithm.

In practice, this CLEAR_STATE notification is
transferred to the upper layer once the step 4 has
been completed in the algorithm described in sec-
tion 4.1; i.e., no additional broadcast is needed, since
the CLEAR_STATE notification is locally propa-
gated —the broadcast was already done to complete the
acknowledgement of step 3.

e Sending log greater than the configured size. When
the log stored for a given node (say Ny) is greater
than the configured maximum size, a VERSION_RE-
COVERY notification is internally propagated to the
database consistency protocol, since the log has the
same size in all replicas and all of them notice that
its size is greater than the configured value. Once such
a message has been transferred to the upper layer, the
identifier of the node N is removed from all the log
segment headers where it was stored. If any of such
headers is emptied in this filtering process, such seg-
ment is removed from the log.

The VERSION_RECOVERY message implies that
the database consistency protocol has to manage the
recovery, without any help from the logging mecha-
nism of the broadcast protocol.

As a result, in both cases an additional local notifica-
tion is needed to synchronise the adoption of the appropri-
ate recovery technique, guaranteeing that the same decision
is taken in all replicas. This is a minimal cost, since no ad-
ditional broadcast has been needed to complete this step.

5. Performance Results

In order to check the performance gains that may intro-
duce the CLOB algorithm, we have simulated its use as a
supporting tool for the FOBr [3] version-based recovery
protocol. In these tests, a database with 6000 objects and
four replicas has been used. The nodes are set in a cluster
with a high-speed interconnection network, so communica-
tion latency is negligible.

The tests correspond to the best case environment for
FOBr; i.e., one where the transactions executed during the
failure period have accessed multiple times the same ob-
jects. In such a case, FOBr only needs to transfer the lat-
est state version of these objects, whilst a log-based solu-
tion still has to transfer all the logged messages.

During the time a node remains failed, a sequence of
transactions accessing objects in a set of 15 objects is re-
peated multiple times. As a result, each accessed object has
been updated multiple times and it needs to be transferred
only once using FOBTr.

Figure 2 shows three different configurations of the
CLOB support for the FOBr algorithm, depending on the
size of the parameter discussed in section 4.3. This param-
eter takes the following values in our tests:

e -1: It is shown as CLOB(-1) in the figure, and it cor-
responds to the log-based recovery solution. Remem-
ber that this value prevents the use of the version-based
protocol.

e 0: This value does not use the log-based recovery, us-
ing only the log to ensure the delivery of the received

messages. The recovery tasks are completed using only
the version-based protocol.

e 100K: When the log size exceeds 100KB, the version-
based recovery algorithm is used, otherwise the log-
based solution is taken. In this test, this corresponds to
approximately 12 missed transactions.

Note that this value does not provide optimal re-
sults in this example, but it is difficult to find out in
advance the optimal value for this parameter. This op-
timal value depends on the application access pattern.
In this test we can see that such optimal value corre-
sponds to the size of the log when the updates of 8
missed transactions have to be transferred, but we have
used a fixed access pattern for all transactions and this
will not happen in a real environment.

Thus, in figure 2, the set of accessed objects corresponds
only to 15 in each one of the active nodes. As a result, in
CLOB(0) (i.e., the version-based configuration) each of the
source nodes need only to transfer the state of these 15 ob-
jects. As we can see, the CLOB(-1) (i.e., the log-based con-
figuration) solution is still better than CLOB(0) if a low
number of transactions has been executed whilst the recov-
ering node was faulty.

—— cLOB 100K) recovery '
45 | ---<--- CLOB({-1) recovery .
—-%--- CLOB(0) recovery

Time (s)
nN
(6]
T
1

1 1
50 100 200
Number of missed transactions

Figure 2. Recovery time of three CLOB con-
figurations.

The CLOB(100K) configuration provides the same val-
ues than the CLOB(-1) one if the size of the log does not
arrive to 100KB. This has been the optimal value when
less than 8 transactions have updated the database objects.
Once the log size exceeds this 100K threshold, the recov-
ery times provided by CLOB(100K) are similar to those of
the CLOB(0) configuration for this sample.

As we can see, CLOB cannot always guarantee the op-
timal results, but its overall performance is good if a cor-
rect threshold configuration is made. Take also into ac-
count, that the tests shown in figure 2 are specially tailored
to the version-based recovery algorithm. Other access pat-
terns will provide different behaviours for the lob-based and
version-based recoveries, and this may produce a longer ini-
tial interval where the log-based solution is better than the
version-based one. In such cases, the value of the CLOB
threshold has less significance than in the sample shown in
this test.

We can design another test more appropriate to the
CLOB behaviour. For instance, we may use a sequence of
four different transactions, accessing each one of them to
15 different objects; i.e., the set of accessed objects is four
times greater than in the previous test. Its cost for a log-
based recovery algorithm will be identical to the one shown
above, but the time needed to recover using a version-based
algorithm is four times greater than in the previous case.The
results of this second test, without modifying the CLOB
threshold are shown in figure 3. In this case, CLOB has pro-
duced an optimal recovery time in the interval that includes
1 to 12 missed transactions, but used the version-based ap-
proach when more than 12 transactions have been missed. It
does not use the optimal approach for the interval between
12 and 22 missed transactions, but again this depends on the
correct configuration of the threshold.

—— cLOB 100K) recovery '
45 | ---<--- CLOB({-1) recovery .
—-%--- CLOB(0) recovery

Time (s)

1 1
50 100 200
Number of missed transactions

Figure 3. Recovery time of three CLOB con-
figurations (2nd test).

In spite of all the problems outlined above to find out the
optimal threshold, we have shown that the overall results of
these two samples are better than those obtained using only
one of the traditional recovery approaches (version-based or
log-based).

6. Related Work

Usually, the best recovery protocols for replicated
databases have been based on a logging technique
[10, 11, 12, 14], but this implies that the amount of infor-
mation to be transmitted may be high in long-term out-
ages. On the other hand, log-based solutions do not need to
lock in read mode the database to transfer the database state
in the source replica, and this ensures that the source repli-
cas will not block during the state transfer of the recovery
process.

In version-based replication protocols [3, 8, 12, 13] only
those data items that have been changed during the fail-
ure period are transferred to the recovering replica, reduc-
ing thus the amount of information to be transmitted. This
is the best technique in long-term outages.

Our CLOB approach allows an easy transition between
both techniques. Moreover, it automatises the logging tasks,
freeing the database replication algorithm from these con-
cerns. Currently, there are no systems with complete sup-
port for both recovering approaches. The work described
in [12] studied both of them, but it finally proposes as the
best approach one based on log-based transfers with lazy
propagation in several phases. This may ensure, as the solu-
tion presented in [10], a minimal blocking time in the non-
recovering replicas, but such a characteristic is also achiev-
able in CLOB. Moreover, CLOB ensures a minimal effort
in the database replication protocol in order to achieve this,
at least when the log-based case is used.

7. Conclusions

The framework described in this paper allows an easy
combination of automatic log-based and protocol-specific
version-based recovery techniques. Such a combina-
tion provides a recovery solution with good overall per-
formance, but requiring some additional storage space
that has to maintain both the log of missed messages and
the version-based information needed to complete the re-
covery. However, version-based information is only a lit-
tle percentage of the usual log-based one, as it can be seen
in several examples [8, 3], and this extra space require-
ment can be balanced with the performance gains.

References

[1] J. E. Armendariz, J. J. Astrain, A. Cérdoba, J. R. Gonzilez
de Mendivil, E. Martinez, and J. Bataller. A persistent stor-
ing service for use by consistency protocols. In IASTED In-
ternational Conference on Applied Informatics, pages 1-0,
Innsbruck, Austria, Feb. 2002.

[2] K. Birman and R. van Renesse, editors. Reliable Distributed
Computing with the Isis Toolkit. IEEE-CS Press, Los Alami-
tos, CA, USA, 1994.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

(15]

F. Castro-Company, L. Irin-Briz, F. Garcfa-Neiva, and F. D.
Mufioz-Escoi. FOBr: A version-based recovery protocol for
replicated databases. In Proc. of the 13th Euromicro Confer-
ence on Parallel, Distributed and Network-Based Process-
ing, Lugano, Switzerland, Feb. 2005. IEEE-CS Press.

F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56-78, Feb. 1991.

J. Esparza-Peidro, F. D. Muiioz-Escoi, L. Irtin-Briz, and J. M.
Bernabéu-Aubin. RIDBC: A simple database replication en-
gine. In 6¢h International Conference on Enterprise Informa-
tion Systems, pages 587-590, Porto, Portugal, Apr. 2004.

J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dan-
gers of replication and a solution. In Proc. of the 1996 ACM
SIGMOD International Conference on Management of Data,
pages 173-182, Canada, 1996.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and re-
lated problems. In S. Mullender, editor, Distributed Systems,
chapter 5, pages 97-145. ACM Press, 2nd edition, 1993.
ISBN 0-201-62427-3.

L. Irin-Briz, F Castro-Company, F. Garcia-Neiva,
A. Calero-Monteagudo, and F. D. Mufioz-Escoi. Lazy
recovery in a hybrid database replication protocol. In
Proc. of XII Jornadas de Concurrencia y Sistemas Dis-
tribuidos, Las Navas del Marqués, Avila, Spain, June
2004.

L. Irin-Briz, E. D. Muifoz-Escoi, H. Decker, and J. M.
Bernabéu-Aubdn. COPLA: A platform for eager and lazy
replication in networked databases. Proc. of the 5th Interna-
tional Conference on Enterprise Information Systems, pages
189-206, Apr. 2003.

R. Jiménez-Peris, M. Patifio-Martinez, and G. Alonso. Non-
intrusive, parallel recovery of replicated data. In Proc. of 21st
Symposium on Reliable Distributed Systems, pages 150-159,
Osaka Univ., Suita, Japan, Oct. 2002. IEEE-CS Press.

B. Kemme. Database Replication for Clusters of Worksta-
tions. PhD thesis, Swiss Federal Institute of Technology
Zurich, 2000. 155 pgs.

B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfig-
uration in replicated databases based on group communica-
tion. In Proc. of the IEEE Int. Conf. on Dependable Sys-
tems and Networks, pages 117-130, Goteborg, Sweden, July
2001.

F. Muioz-Escoi, L. Irin-Briz, P. Galddmez, J. Bernabéu-
Aubidn, J. Bataller, and M. Bafiuls. GlobData: Consistency
protocols for replicated databases. In Proc. of the IEEE-
YUFORIC’2001, pages 97-104, Valencia, Spain, Nov. 2001.
L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vi-
cente. Strong replication in the GlobData middleware. In
Proc. of Workshop on Dependable Middleware-Based Sys-
tems (in DSN 2002), pages G96-G104, Washington D.C.,
USA, 2002.

M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
G. Alonso. Database replication techniques: A three param-
eter classification. In Proc. of the 19th IEEE Symposium
on Reliable Distributed Systems (SRDS’00), pages 206-217,
Oct. 2000.

