
Implementing Replication Protocols in the MADIS Architecture*

J.E. Armendáriz, J.R. Juárez, F.D. Muñoz-Escoí,
J.R. González de Mendívil, J.R. Garitagoitia L. Irún-Briz

Dpto. Matemática e Informática Instituto Tecnológico de Informática

Universidad Pública de Navarra Universidad Politécnica de Valencia

Campus de Arrosadía s/n Camino de Vera s/n

31006 Pamplona 46022 Valencia

{enrique.armendariz,jr.juarez,itziar.unzueta,joserra}@unavarra.es, {fmunyoz,lirun}@iti.upv.es

Abstract

Database replication is a way to increase system
performance and fault-tolerance of a given system.
The price to pay is the effort needed to guarantee
data consistency which it is not an easy task. In
this paper, we introduce a description of two one-
copy-serializable eager update everywhere replica-
tion protocol. The preliminary results of their im-
plementation in the MADIS middleware architec-
ture is also presented. The advantage of these re-
plication protocols is that they do not need to re-
implement features that are provided by the underl-
ying database. The first one does not rely on strong
group communication primitives; distributed dead-
lock is avoided by a deadlock prevention schema
based on transaction priorities (whose information
is totally local at each node). The second one ma-
nages replica consistency by the total order messa-
ge delivery featured by group communication sys-
tems.

1. Introduction

O2PL [4] was one of the first concurrency control
algorithms specially designed for replicated databa-
ses. It showed several advantages when compared
with other general concurrency control approaches
(such as distributed 2PL, basic timestamp ordering,
wound-wait, or distributed certification):

*Supported by the Spanish Government under research grant
TIC2003-09420-C02 and Generalitat Valenciana grant Gru-
pos05/067.

• As many of them, it does not need to propaga-
te readsets in order to detect concurrency con-
flicts. Read locks are only locally managed,
using the support provided by the underlying
DBMS.

• It only needs constant interaction [10], dela-
ying all remote write-lock requests until com-
mit time, being thus an optimistic variation of
the distributed 2PL approach. This ensures a
faster transaction completion time than those
protocols based on linear interaction.

• Its use of locks, although optimistic, guaran-
tees a lower abortion rate than that of the
timestamp-based approaches [4].

The principles of O2PL have been used in many
modern database replication protocols [7, 8, 9] ba-
sed on total order broadcast [1], removing thus the
need of using the 2PC protocol in order to termina-
te the transactions, and improving in this way the
protocol outlined in [4].

We propose two new replication protocols di-
rectly based on the O2PL concurrency control dis-
cussed above, and implemented in a middleware ca-
lled MADIS [6]. A middleware-based implemen-
tation has to necessarily add some collection and
management tasks that reduce the performance of
the resulting system, at least when compared to one
built into the DBMS core [7]. On the other hand,
the resulting system will be easily portable to other
DBMS’s.

In both protocols we have eliminated the need of
lock management at the middleware layer. To this



end, we rely on the local concurrency control, ad-
ding some triggers that will be raised each time a
transaction is blocked due to a lock request. Addi-
tionally, deadlocks are also prevented in these pro-
tocols (this was one of the main problems in the ori-
ginal O2PL algorithm) using priorities: each time
a transaction completes one of the phases that will
be described later, its priority is increased; in case
of conflicts, the transaction with highest priority is
completed, and the other is rolled back.

Our first protocol needs only a uniform reliable
broadcast, but requires two communication phases
in order to commit a transaction, propagating the
updates and requesting the locks in the first round
of the first phase. It is also able to manage unilateral
aborts; i.e., those raised in a given replica due to
some error in such a transaction.

The second protocol replaces the first communi-
cation phase with one total order broadcast, sim-
plifying thus the replication protocol. However, it is
not able to manage unilateral aborts. Both protocols
will be compared in Section 4, providing some in-
teresting figures about in what conditions each one
provides the best results.

The rest of the paper is organized as follows.
Section 2 introduces the system model. Replication
protocols are described in Section 3. Section 4 pre-
sents some preliminary experimental results on the
MADIS architecture. Finally, conclusions end the
paper.

2. System model

The distributed system considered in this paper
is composed of N sites. Each site contains a copy
of the database (fully replicated). Sites communi-
cate with each other by message exchange using
a group communication system [1]. We assume
a group communication system providing reliable
channels among nodes, featuring the next group
communication primitives: basic and total order
multicast. This group communication system inclu-
des the membership service with the virtual synch-
rony property [1].

Since the objective of the system is a middleware
architecture providing database replication, clients
access database by means of SQL statements th-
rough a client application with no modifications,
using a standard interface like JDBC. These appli-

cations access the data repository via transactions,
through the middleware layer where replication is
managed. A transaction defines a partially ordered
set of read and write operations [3]. Two or mo-
re transactions may concurrently access the same
data item and may provoke a conflict among tran-
sactions provided that at least one of the conflicting
transactions issues a write operation. Clients access
the system through their closest site to perform tran-
sactions. Each transaction identifier includes the in-
formation about the node where it was originally
created (node(t)). It allows the different replication
protocol instances to know if a given transaction is
a local or a remote one. All operations over logi-
cal objects are firstly performed over the physical
copy of that object on this site; afterwards, when
the user wishes to commit, only all write operations
are propagated to the rest of sites. We follow a read-
one-write-all (ROWA) policy, hence we assume no
failures.

Each site includes a database management sys-
tem (DBMS) storing a physical copy of the repli-
cated database. We assume that the DBMS ensu-
res ACID properties of local transactions; transac-
tions are ANSI serializable [2]. The DBMS gives
standard actions such as: beginning a transaction;
submitting an operation; and, finishing a transac-
tion (either commit or abort). We have added a set
of functions which are not provided by DBMSs but
may easily be programmed as database procedures
or functions so as to know the object written by a
given transaction and the set of conflicts between
a write set and current active transactions at a gi-
ven site (i.e. t′ ∈ getConflicts(WS(t)) ⇐⇒
(WS(t′) ∪ RS(t′)) ∩ WS(t) 6= ∅). As a final
remark, we also assume that after the successful
completion of a submitted operation by a transac-
tion, it can be committed at any time. In other
words a transaction may be aborted by the DBMS
only when it is performing a submitted operation
(submit(t, op)).

3. Description of the protocols

We propose two different replication protocols:
the first one is based in the two phase commit [3]
atomic commitment protocol and the other one is
based in group communication primitives [7].

The first replication protocol, called BULLY, is



an adaptation of the Optimistic 2PL protocol pro-
posed by Carey et al. in [4]. The second replica-
tion protocol, called TORPE, is an adaptation of the
SER-D algorithm proposed by Kemme et al. in [7].
Both have been slightly modified and adapted to our
middleware architecture. Thus, in the former we ha-
ve not implemented any kind of locks at the midd-
leware layer, and in the latter protocol we permit
write operations on the local copy of objects being
modified (i.e. we do not have deferred write opera-
tions). We are very interested in the comparison of
both since BULLY supports unilateral aborts whilst
TORPE does not need to wait for the updates to be
applied at the remainder sites, more precisely, to the
slowest one. Both replication protocols behave in a
similar way, except for update propagation to the
rest of available sites. Hence, we will firstly explain
the common part of both protocols and afterwards
we will introduce the differences.

Each time a client issues a transaction (local tran-
saction), all its operations (i.e. all reads and wri-
tes) are locally performed on a single node called
the transaction master site. The remainder sites en-
ter in the context of this transaction when the user
wants to commit. All write operations are grouped
and sent to the rest of available sites, at this mo-
ment is when the two protocols differ, since the for-
mer uses the basic service and the latter employs a
total order. Updates are applied in the rest of sites
in the context of another local transaction (remote
transaction) on the given local database where the
message is delivered.

In Figure 1 and 2, a formal description of the
signature and steps for a site i for the BULLY
and TORPE algorithms are respectively introduced.
Each action is subscripted by the node at which it is
executed. Transactions created at node i (local tran-
sactions at i) follow a sequence, for both protocols,
initiated by createi(t) and followed by multiple
begin_operationi(t, op), end_operationi(t, op)
pairs actions in a normal behavior. However, the
local_aborti(t) action is possible if the underlying
database cannot guarantee serializability or by an
internal deadlock resolution. Each active transac-
tion at node i (statusi(t) = active) is committable
by the DBi at any time. The begin_commiti(t)
action sends the write-set and update statements of
a transaction t to every site and this is the place whe-
re both protocols differ.

3.1. BULLY replication protocol

Write operations are multicast to the rest of sites
using the basic service. Once the remote transaction
is finished it sends a message saying it is ready to
commit the given transaction. When the reception
of ready messages is finished, that is, all nodes ha-
ve answered to the transaction master site, it multi-
casts a message saying that the transaction has been
committed.

BULLY relies for conflict detection on the me-
chanism implemented in the underlying DBMS
which guarantees local ANSI serialization [2]. This
assumption is not enough to prevent distributed
deadlock cycles formation [3]. We have avoided this
problem using a deadlock prevention schema ba-
sed on priorities, rather than the usage of total or-
der broadcast primitives as in [7]. A global prio-
rity value for each transaction, based on the tran-
saction state and a unique value, taking into ac-
count the transaction information (timestamp, ob-
jects read, written, etc.) along with its site identifier,
is defined (t.priority).

The key action of the BULLY protocol is the
receive_remotei(m) action of Figure 1. Once the
remote message is received at node i, the protocol
action finds out in the local copy of the database
the set of transactions conflicting with the received
write set (WS). The remote updates, for that WS,
will only be applied if there is not a conflictive tran-
saction at node i having a higher priority than the
received one. If there exists a conflictive transac-
tion at i with higher priority, the remote message
is ignored and sends a remote abort to the transac-
tion master site. Finally, if the remote transaction is
the one with the highest priority among all at i then
every conflictive transaction is aborted and the tran-
saction updates are submitted for their execution to
the underlying DBMS. The finalization of the remo-
te transaction (end_operationi(t, op)), upon suc-
cessful completion of DBi.submit(t,WS), is in
charge of sending the ready message to the transac-
tion master site. Once all ready messages are collec-
ted from all available sites the transaction master si-
te commits (end_commiti(t, m)) and multicasts a
commit message to all available nodes. The recep-
tion of this message commits the transaction at the
remainder sites (receive_commiti(t)).

In case of a remote update failure while being



Signature:
{∀ i ∈ N, t ∈ T, m ∈ M, op ∈ OP :createi(t), begin_operationi(t, op), end_operationi(t, op), begin_commiti(t),

end_commiti(t, m), local_aborti(t), receive_remotei(t, m), receive_readyi(t, m), receive_commiti(t, m),

receive_aborti(t, m), receive_rem_aborti(t, m), discardi(t, m)}.
States:
∀ i ∈ N ∧ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre_commit, aborted, committed},

initially (node(t) = i⇒ statusi(t) = start) ∧ (node(t) 6= i⇒ statusi(t) = idle).
∀ i ∈ N ∧ ∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N: channeli ⊆ {m: m ∈M}, initially channeli = ∅.
∀ i ∈ N:Vi ∈ {〈id, availableNodes〉: id ∈ Z ∧ availableNodes ⊆ N}, initiallyVi = 〈0, N〉.

Transitions:
createi(t) // node(t) = i //
pre≡statusi(t) = start.
eff≡DBi.begin(t);

statusi(t)← active.

begin_operationi(t, op) // node(t) = i //
pre≡statusi(t) = active.
eff≡DBi.submit(t, op).

statusi(t)← blocked.

end_operationi(t, op)
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff≡ statusi(t)← active;

if node(t) 6= i then
sendRUnicast(〈ready, t, i〉) to node(t);
statusi(t)← pre_commit.

begin_commiti(t) // node(t) = i //
pre≡statusi(t) = active.
eff≡ statusi(t)← pre_commit;

participantsi(t)← Vi.availableNodes \ {i};
sendRMulticast(〈remote, t, DBi.WS(t)〉,

participantsi(t)).

end_commiti(t, m) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre_commit ∧ participantsi(t) = {source}∧

m = 〈ready, t, source〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

participantsi(t)← participantsi(t) \ {source};
sendRMulticast(〈commit, t〉,
Vi.availableNodes \ {i});

DBi.commit(t);
statusi(t)← committed.

receive_readyi(t, m) // t ∈ T ∧ node(t) = i //
pre≡statusi(t) = pre_commit ∧ ‖participantsi(t)‖ > 1∧

m = 〈ready, t, source〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

participantsi(t)← participantsi(t) \ {source}.

local_aborti(t)
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff≡ statusi(t)← aborted;

DBi.abort(t);
if node(t) 6= i then

sendRUnicast(〈rem_abort, t〉) to node(t).

receive_commiti(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡statusi(t) = pre_commit ∧m = 〈commit, t〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

DBi.commit(t); statusi(t)← committed.

receive_remotei(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡statusi(t) 6= aborted∧

m = 〈remote, t, WS〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

conflictSet← DBi.getConflicts(WS);
if ∃ t′ ∈ conflictSet:¬(higher_priority(t, t′)) then

statusi(t)← aborted;
sendRUnicast(〈rem_abort, t〉) to node(t)

else // The delivered remote transaction
// has the highest priority or no conflicts

∀ t′ ∈ conflictSet:

DBi.abort(t′);
if statusi(t

′) = pre_commit ∧ node(t′) = i then
sendRMulticast(〈abort, t′〉,
Vi.availableNodes \ {i});

statusi(t
′)← aborted;

DBi.begin(t);
DBi.submit(t, WS);
statusi(t)← blocked.

receive_aborti(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡statusi(t) 6= aborted ∧m = 〈abort, t〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

DBi.abort(t); statusi(t)← aborted.

receive_rem_aborti(t, m) // t ∈ T ∧ node(t) = i //
pre≡statusi(t) 6= aborted ∧m = 〈rem_abort, t〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

sendRMulticast(〈abort, t〉,Vi.availableNodes \ {i});
DBi.abort(t); statusi(t)← aborted.

discardi(t, m) // t ∈ T //
pre≡statusi(t) = aborted ∧m ∈ channeli .
eff≡ receivei(m). // Remove m from channel

higher_priority(t, t′) ≡ node(t) = j 6= i∧
statusi(t) = delivered ∧ (a ∨ b ∨ c)

(a) node(t′) = i ∧ statusi(t
′) ∈ {active, blocked}

(b) node(t′) = i ∧ statusi(t
′) = pre_commit∧

t.priority > t′.priority

(c) node(t′) = k ∧ k 6= j ∧ k 6= i ∧ statusi(t
′) = blocked∧

t.priority > t′.priority

Figure 1: State transition system for the BULLY replication protocol.

applied in the DBMS, the local_aborti(t) action
is responsible for sending the remote abort to the
transaction master site. Once the updates have been
finally applied the transaction waits for the commit

message from its master site. One can note that
the remote transaction is in the pre_commit sta-
te and it is committable from the DBMS point of
view, since its status remains active. As a conclu-



Signature:
{∀ i ∈ N, t ∈ T, m ∈ M, op ∈ OP : createi(t), begin_operationi(t, op), end_operationi(t, op),

begin_commiti(t), end_commiti(t, m), local_aborti(t), receive_remotei(t, m), receive_commiti(t, m),
receive_aborti(t, m), discardi(t, m), commit_remotei(t)}.

States:
∀ i ∈ N ∧ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre_commit, committable, committed, aborted},

initially (node(t) = i⇒ statusi(t) = start) ∧ (node(t) 6= i⇒ statusi(t) = idle).
∀ i ∈ N: channeli ⊆ {m: m ∈M}, initially channeli = ∅.
∀ i ∈ N ∧ t ∈ T : committablei(t) ⊆ T , initially committablei = ∅.
∀ i ∈ N:Vi ∈ {〈id, availableNodes〉: id ∈ Z ∧ availableNodes ⊆ N}, initiallyVi = 〈0, N〉.

Transitions:

createi(t) // node(t) = i //
pre≡statusi(t) = start.
eff≡DBi.begin(t);

statusi(t)← active.

begin_operationi(t, op) // node(t) = i //
pre≡statusi(t) = active.
eff≡DBi.submit(t, op);

statusi(t)← blocked.

end_operationi(t, op)
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff≡ if node(t) = i then statusi(t)← active

else statusi(t)← pre_commit.

begin_commiti(t) // node(t) = i //
pre≡statusi(t) = active.
eff≡ statusi(t)← pre_commit;

sendTORMulticast(〈remote, DBi.WS(t), t〉,
Vi.availableNodes).

end_commiti(t, m) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre_commit∧

m = 〈remote, WS, t〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

DBi.commit(t);
statusi(t)← committed.
sendRMulticast(〈commit, t〉,
Vi.availableNodes \ {i}).

local_aborti(t)

pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff≡ statusi(t)← aborted;

DBi.abort(t).

discardi(t, m) // t ∈ T //
pre≡statusi(t) = aborted∧

m = 〈∗, t, ∗〉 ∈ channeli .
eff≡ receivei(m). // Remove m from channel

receive_commiti(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡m = 〈commit, t〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

committablei ← committablei ∪ {t}.

receive_remotei(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡statusi(t) 6= aborted∧

m = 〈remote, WS, t〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

conflictSet← DBi.getConflicts(WS);
∀ t′ ∈ conflictSet:

if node(t′) = i then
DBi.abort(t);
if statusi(t) = pre_commit then

sendRMulticast(〈abort, t〉,
Vi.availableNodes \ {i});

statusi(t)← aborted;
DBi.begin(t);
DBi.submit(t, WS);
statusi(t)← blocked.

receive_aborti(t, m) // t ∈ T ∧ node(t) 6= i //
pre≡m = 〈abort, t〉 ∈ channeli .
eff≡ receivei(m); // Remove m from channel

if statusi(t) 6= aborted then
DBi.abort(t); statusi(t)← aborted.

commit_remotei(t) // node(t) 6= i //
pre≡statusi(t) = pre_commit ∧ t ∈ committablei .
eff≡ committablei ← committablei \ {t};

DBi.commit(t); statusi(t)← committed.

Figure 2: State transition system for the Total Order Replication Protocol Enhanced (TORPE), where updates are propagated
using the total order semantics provided by the group communication system primitives.

ding remark, we will highlight that a delivered re-
mote transaction has never a higher priority than ot-
her conflictive remote transaction at node i in the
pre_commit state; this fact is needed to guarantee
the transaction execution atomicity.

3.2. TORPE Replication Protocol

Write operations are multicast to the rest of si-
tes using the total order service. If the message is

delivered at the transaction master site, and it has
not been aborted yet, commits in the local data-
base (end_commiti(t, m)) and multicasts a com-
mit message to the rest of sites using the basic ser-
vice. The other case is when the message is deli-
vered at the rest of sites (receive_remotei(m)),
this transaction aborts all local active conflicting
transactions (those that are still in their acquisi-
tion phase and those that have sent their write ope-



rations but have not been yet delivered). After-
wards, the write operations are submitted to the
database. On successful completion of the opera-
tion (end_operationi(t, op)) it switches its state
to pre_commit and waits for the commit message
from its respective transaction master site.

Remote transactions are committed once their
commit message has been received. However, these
commit messages may come before the total order
retrieval of the remote update; therefore, we need a
data structure (committablei) to store the commit
of a given remote transaction that, probably, it has
not been yet received.

Again, the TORPE replication protocol takes no
responsibility for conflict detection as this task is
managed by the underlying DBMS, which ensures
serializability. Distributed deadlock is prevented by
the total order of updates delivery, but, in the other
hand, we have that remote updates can not be abor-
ted by the database internals (unilateral aborts) and
is limited by the total order delivery latency.

4. Experimental results on MADIS

We are currently ending the implementation of
MADIS and implementing our replication protocols
on the MADIS architecture [6]. The results presen-
ted here are preliminary ones and merely points out
the comparison between those protocols in a midd-
leware architecture. The results have been measuren
in 100 Mbps LAN composed by four computers po-
ner aquí los datos de las maquinas: procesador,
sistema operativo y RAM. We use PostgreSQL 7.4
as the underlying DBMS and Spread 3.17.3 as the
group communication system for the TORPE proto-
col along with UDP multicast for the BULLY pro-
tocol (we are assuming no site failure).

The database is composed by 25 tables with 100
registers each one. The experimental results consist
of executing a non-conflicting transaction compo-
sed of one update operation varying the number of
clients. The first experiment consists of executing
for a range of clients supporting different workloads
both replication protocols. Figure 3 shows the re-
sults for the BULLY and the TORPE protocols res-
pectively. Results obtained in these figures determi-
ne the performance of both protocols with the same
load of transactions. We may conclude, as expec-
ted, that TORPE behaves better than BULLY (even

Figure 3: Performance Analysis: Response time with 1
operation per transaction in a MADIS architecture varying
the number of transactions per second and the number of
nodes.

though we have latencies of 40 ms with Spread),
due to the fact that BULLY has to wait for the ap-
plication of updates at all nodes and the reception
of the respective ready messages. TORPE has only
to wait for the total order delivery of the remote

message.

The second experiment is directly related to the
scalability of the replication protocols [5]. We per-
form a proof varying the number of sites 2, 4 and
8 respectively. The number of clients range from 1
to 16 and the load remains constant to 6 TPS. We
performed 200 transactions per client. Results in-
troduced in Figure 4 show that TORPE behaves fi-
ne for a few number of clients and nodes but its re-
sults are comparable to those obtained by BULLY
with a higher number of clients and sites. BULLY
grows linearly with the number of nodes and TOR-
PE grows exponentially.

Txerra repasa esta parte que tú la controlas
más. En la figura de escalabilidad cambia nodos
por nodes. Entérate, o Paco, los datos de las má-
quinas como he puesto arriba



Figure 4: Scalability Analysis: Response time with 1 ope-
ration per transaction in a MADIS architecture varying the
number of nodes.

5. Conclusions

We have introduced two eager update everywhe-
re replication protocols for the MADIS middleware
architecture [6], that ensures 1-copy-serializability,
although we have not formally proof this assertion,
provided that the underlying DBMS ensures seriali-
zability.

The first one is based on the two phase com-
mit protocol (BULLY), whose replication strategy
consists of setting transaction priorities, and the ot-
her one (TORPE) ensures database replication by
means of total order delivery guarantees provided
by a group communication system. The novelty of
these replication protocols is that no extra database
explicit operations must be re-implemented at the
middleware layer (such as implementing a lock ta-
ble or so). The main goal is to maintain data concu-
rrency relying on the DBMS itself, and data repli-
cation is managed by the protocols described in this
paper.

Experimental results presented in this paper must
be carefully taken into account, since we are in a
preliminary stage of the implementation of both: the

middleware architecture and the replication proto-
cols (in fact, we got latencies around 40 ms using
Spread inside a LAN). We are currently performing
several code optimizations of in our architecture.
Nevertheless, these results compare for the first ti-
me, up to our knowledge, the O2PL with group
communication based protocols.

As it can be derived from the figures showing the
experimental results, the TORPE protocol has a mo-
re accurate performance (even with the Spread pe-
nalty) than the BULLY protocol. This is something
that we expected since the two phase commit must
wait for all updates to be performed at the rest of
nodes in order to commit a transaction. However,
the TORPE replication protocol does not scale so
well, although its performance is still comparable
to BULLY.

References

[1] A. Bartoli. Implementing a replicated service
with group communication service. Journal of
Systems Architecture: The EUROMICRO Jour-
nal, 50(8): 493-519, Elsevier North-Holland,
August 2004.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI
SQL isolation levels. In Proc. of the 1995 ACM
SIGMOD Int’l Conf. on Management of Data,
pages 1–10, San José, USA, May 1995.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Databa-
se Systems. Addison-Wesley, USA, 1987.

[4] M.J. Carey, and M. Livny. Conflict detec-
tion tradeoffs for replicated data. ACM Trans.
on Database Sys., 16(4):703–746, December
1991.

[5] J. Gray, P. Helland, P. O’Neil, and D. Shasha,
The dangers of replication and a solution. In
Proc. of the ACM SIGMOD Int. Conf. on Mana-
gement of Data, pages 173–182, Montreal, Ca-
nada, June 1996.

[6] L. Irún-Briz, H. Decker, R. de Juan-Marín,
F. Castro-Company, J.E. Armendáriz, and F.D.
Muñoz-Escoí. MADIS: A slim middleware for



database replication. In Proc. of the 2005 Int’l
Euro-Par Conference. Accepted.

[7] B. Kemme, and G. Alonso. A new approach
to developing and implementing eager database
replication protocols. ACM Trans. on Database
Sys., 25(3):333–379, September 2000.

[8] L. Rodrigues, H. Miranda, R. Almeida, J. Mar-
tins, and P. Vicente. Strong replication in
the globdata middleware. In Proc. Workshop
on Dependable Middleware-Based Sys. (Supp.
Vol. of the 2002 DSN Conference), Washington
D.C., USA, pages G96–G104, June 2002.

[9] M. Wiesmann, F. Pedone and A. Schiper. A
Systematic Classification of Replicated Databa-
se Protocols based on Atomic Broadcast. In
Proc. of the 3rd Europeean Research Semi-
nar on Advances in Distributed Systems (ER-
SADS’99), Madeira Island, Portugal, 1999.

[10] M. Wiesmann, F. Pedone, A. Schiper, B. Kem-
me, and G. Alonso. Understanding replication
in databases and distributed systems. In Proc.
of the 20th Int’l Conf. on Distributed Compu-
ting Systems (ICDCS), pages 464–474, Taipei,
Taiwan, April 2000. IEEE-CS Press.


