Revisiting Hot Passive Replication*

Rubén de Juan-Marin, Hendrik Decker and Francesc D. Munoz-Escoi
Instituto Tecnolégico de Informatica, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain
{rjuan, hendrik, fmunyoz}@iti.upv.es

Abstract

Passive replication has been extensively studied in the
literature. However, there is no comprehensive study yet
with regard to its degree of communication synchrony.
Therefore, we propose a new, detailed classification of hot
passive replication protocols, including a survey of the fault
tolerance and performance of each class.

1 Introduction

Distributed replication is a means to increase the
availability and dependability of computing systems.
Active and passive replication can be distinguished
[9]. For the passive (a.k.a. primary-backup) class [5],
two main variants, cold and warm replication, are usu-
ally considered [24]. The cold passive approach does
not require that any secondary or backup replicas were
running processes. Instead, each request processed
by the primary replica is checkpointed to secondary
storage and all received messages are logged. In case
of a primary failure, the logged information is recov-
ered and used to restart a new primary. This ensures
fault tolerance, but recovery typically takes long. The
warm passive approach requires that all state updates
generated by the primary are periodically propagated
to the secondary replicas. Thus, the latter necessar-
ily were running at failure time, so that recovery is
faster. As a special case of the warm approach which
merits further attention, hot passive replication propa-
gates the state updates at the end of (and into) each
update request. (Specifically for OLTP systems with
two servers, another classification of primary-backup
techniques is suggested in [14], which however does
not easily generalize beyond its own framework.)

*This work has been partially supported by the Spanish grants
TIC2003-09420-C02, TIN2006-14738-C02 and the EU project FP6-
IST-004152 (DeDiSys).

The cold and warm variants have been carefully de-
scribed and analyzed elsewhere (e.g., [10, 11, 12, 22])
and have also been considered in some standard spec-
ifications, for instance in FT-CORBA [12, 20, 22]. How-
ever, some initial formal studies of the passive model
which analyzed the blocking time and the replication
degree could not wholeheartedly recommend any of
the two variants [5]. Thus, it comes as no surprise
that other studies, though not related to CORBA, have
only considered hot passive replication when com-
paring passive and active replication [1, 15]. Cold
(and sometimes also warm) replication typically uses
a rollback-recovery technique that necessitates a par-
tial rollback of the client state in order to reissue the re-
quests lost by a passively replicated server [10]. With
hot replication, such problems are largely avoided.

Communication between servers may have a no-
table impact on the performance and behavior of hot
passive replication. With that in mind, several classes
of such systems can be distinguished as possible re-
finements of the “hot” approach. That precisely is
the concern of this paper. Additionally, we also an-
alyze the performance and failure handling of each
identified subclass. Although active replication typ-
ically is the best solution when high availability is re-
quired, our results show that some refinements of the
hot passive approach are not as slow as previously at-
tributed to warm passive replication in general. Thus,
we conclude that, in future, some of the hot passive
subclasses identified in this paper could be considered
when comparing or choosing between different repli-
cation alternatives of active or passive kind.

The rest of the paper is structured as follows. Sec-
tion 2 outlines the system model. Section 3 defines
passive replication. Section 4 addresses some commu-
nication issues as needed in the remainder. Section
5 identifies several subclasses of hot passive replica-
tion and analyzes their fault-tolerance, while section
6 studies their performance. Section 7 presents some
related work. Section 8 concludes the paper.



2 System Model

We consider that all data are fully replicated in each
network node. Interconnection channels are assumed
reliable and with FIFO behavior (e.g., using TCP). In
the following sections, different kinds of networks,
varying in mean and extreme values of bandwidth
and latency, will be considered. Moreover, we sup-
pose that processes fail by crashing. We do not con-
sider any kind of arbitrary (i.e., Byzantine) failures.

We assume the sequential consistency model [17].
In that model ...”the result of any execution is the same as
if the operations of all the processors were executed in some
sequential order, and the operations of each individual pro-
cessor appear in this sequence in the order specified by its
program”. When such model is applied to a passively
replicated process, all replicas should see the same se-
quence of updates, and this has also been assumed in
the papers outlined in the previous section.

3 Principles of Hot Passive Replication

In replicated systems based on the hot passive ap-
proach, one server is selected as primary, while all oth-
ers are backups. In this schema, clients send requests
only to the primary, from where update propagation
messages (upm, from now on) emanate, to all alive
backups, once it has processed the request and before
it sends an answer to the client. When the primary
fails, one of the backups is promoted to the primary
role. This approach abides by the following rules:

e R1. The primary role can only be owned by one
replica at any time.

e R2. Only client requests received by the primary
are processed.

e R3. The primary propagates updates to alive
backups before answering the client request.

Additionally, a valid passive replication system [15]
should ensure that no client request is lost in case of
primary failure nor processed twice once a new pri-
mary replica is selected.

4 Communication

In the active replication model, a common require-
ment is that some group communication system (GCS,
for short) needs to be used. To ensure consistency,
that model needs total order delivery of requests sent
by concurrent clients. Additionally, if easy recovery

is asked for, the GCS needs to provide virtual syn-
chrony [3, 7] (or view-synchronous multicast according
to [15]) since it ensures that all replicas have delivered
the same sequence of messages before any replica fails
or any replica is added. According to [7], the most re-
laxed property related to multicast delivery that pro-
vides virtual synchrony is same view delivery; i.e., that
all destinations of each multicast deliver each message
when they belong to the same view (a view change
arises when one process fails or rejoins the group).

At first sight, a GCS does not seem to be needed
for passive replication. The most relaxed multicast
primitive in a GCS is a reliable multicast ensuring
that all alive destinations are able to deliver the mul-
ticast messages, which for passive replication should
be complemented by FIFO delivery. Note that FIFO
delivery is complex only in case of multiple senders,
but that does not pose any problem for passive repli-
cation. Multicast is used for update propagation and
is always initiated by a single (the primary) replica. In
that case, FIFO is trivially ensured by message num-
bering. Moreover, reliable delivery can be ensured us-
ing retries even if channels are non-reliable.

But, on second thought, the question "What with
virtual synchrony?” arises. Should it be ensured? Ac-
cording to [15], it is indispensable for passive replica-
tion. Let us assume that no GCS is being used and that
the requirements described in section 3 are respected,
i.e., no client request is lost nor processed twice. Then,
when the primary fails (a failure dectector [6] is as-
sumed), the following steps should be executed:

1. A coordinator replica is chosen deterministically,
e.g., the one with the lowest identifier.

2. Each alive replica sends the number of its last re-
ceived upm to the coordinator.

3. The coordinator determines the maximum upm
seen by any replica. If some replicas Ry, ..., Ry
have lost any upm, the coordinator requests from
one of the replicas having all upms (e.g., itself) to
send the missed messages to the R;.

4. Concurrently, all replicas have been able to con-
sent on a new primary replica (e.g., the coordi-
nator) and then, they send an acknowledgment
message to that primary.

5. Once all acknowledgments have been received,
the new primary is able to process new incoming
requests.

The algorithm just sketched is functionally equiva-
lent to the flush protocol described in [4] for ensuring



virtual synchrony, since it ensures that all messages
multicast (and received by at least one replica) be-
fore the old primary crashed, will be delivered by all
backup replicas before the new primary is able to start
its service. Thus, a communication system (or a sim-
ple protocol) providing virtual synchrony is needed;
the one outlined above is sufficient for that.

Note that, if the last upm sent by the crashed pri-
mary did not arrive to any backup replica, no problem
arises. The client did not receive its associated reply
and it will retry such request using the new primary.

In order to avoid that a request is processed twice
(firstly by the failed primary and later by the new one,
if the reply was lost), requests are numbered and their
results can be included in the upms and retained by
the secondary replicas until needed. Some garbage
collection technique should be added for discarding
such retained results; some solutions to this problem
have already been discussed elsewhere [19] and could
be adapted to this setting.

Backup replicas should send an acknowledgment
message (ack, for short) to the primary in order to en-
sure consistency among replicas and also determine
the blocking time of a passive service, as stated in [5].
That paper characterizes blocking time as the worst-case
elapsed time between the receipt of a request and the sending
of the associated response in a run that contains no failures.

In order to study that blocking time, we should an-
alyze when the ack messages are sent. Note, how-
ever, that in some systems, hot passive replication
does not require any ack message, which results in a
non-blocking (or asynchronous, or lazy) variant. Figure
1.a shows an example.

Some authors have analyzed different kinds of
message-driven communication in terms of such ack
messages, and defined blocking (or synchronous or ea-
ger) techniques. For instance, [23] distinguishes the
following degrees of synchronicity and blocking;:

e reception. In this case, a backup sends the ack as
soon as it receives the upm.

o delivery (figure 1.b). Here, the ack is sent by each
backup once it has delivered the upm. In our
case, assuming that there is only one sender (the
primary) and its message numbering procedure
is able to ensure FIFO, there is no need to dis-
tinguish between reception and delivery. Other
kinds of multicast primitives need such a differ-
entiation, since additional message rounds are
needed between message receipt and message
delivery. So, in subsequent sections, only deliv-
ery is studied.

o processing (figure 1.c). This is the highest blocking
level, in which the backup sends its ack only after
it has processed the upm.

Client Client
Request
Primary a Response

replica

upm @)
Backup 1 multicast
Backup 2 H I_
Client
R
Primary esponse
replica
ack (b)
Backup 1 multicast
Backup 2
Client Client
Request Response
Primary P
replica
upm ()
Backup 1 multicast
Backup 2

- - - Client Process —@~ Msg Reception
p .
— Server Process =) Msg Delivery -I:I- rocessing

Figure 1. Blocking levels.

A possible optimization could be to block the pri-
mary until the first ack from a secondary arrives to
it, instead of waiting for all the acks. Then, accord-
ing to the preceding discussion, ack messages might
be sent on delivery or on processing, i.e., two new
hot passive subclasses are obtained by this optimiza-
tion. However, even with reliable channels, this opti-
mization causes some problems. To begin with, if the
network does not allow any low-level broadcast (e.g.,
in a WAN where IP-multicast is not possible), client
requests may be lost. For instance, assume the pri-
mary has some internal synchronization problem and
yet has sent a point-to-point request message to only
a single secondary. Suppose the latter replies immedi-
ately and the primary gets its ack before it can send the
next point-to-point upm to the next secondary. Upon
receiving the ack, the primary replies to the client. If



then, both the primary and the updated secondary
fail, the request is lost, because neither any new pri-
mary nor the rest of its backups will know anything
about that request, since their states have not been up-
dated accordingly. Even though this is very unlikely
to occur, it might happen (think of Murphy’s law) and
should be prevented. The regular way to avoid it is to
wait for all acks.

So, this optimization based on a first answer is only
possible if uniform delivery [16] is ensured. Uniform
delivery means that if a multicast message has been
delivered by any destination process (correct or not),
all destination processes will be able to deliver that
message. To ensure this, some extra message rounds
are needed in order to guarantee the correct receipt
of a given message prior to its delivery. This is ex-
tremely costly since it tends to require two more mes-
sage rounds for all multicast messages, even when no
failures arise. Figure 2 shows the behavior of this op-
timization.

Client Client

Request Response
Primary
replica
upm
Backup 1 multicast
Backup 2

- - - Client Process —@~— Msg Reception .
— Server Process —y¢ Msg Delivery -I:I- Processing

Figure 2. Blocking on first ack (on-delivery).

5 Classifying Hot Passive Replication

Table 1 shows a complete array of subclasses of
hot passive replication, starting with the safest ap-
proach and terminating with the most relaxed one.
With each of them, a higher degree of consistency than
with warm passive replication can be achieved. But,
as seen in section 4, not all of them can always ensure
fault tolerance and fast recovery. Each subclass will be
discussed subsequently, with special attention to their
fault tolerance capabilities and their use in commercial
or laboratory systems.

5.1 BP-AA

This subclass has been in the focus of many theoret-
ical studies of the passive replication model [5, 15, 1]

Blocking on processing - all answers BP-AA
Blocking on processing - first answer BP-FA

Blocking on delivery - all answers BD-AA
Blocking on delivery - first answer BD-FA
Non-blocking NB

Table 1. Hot passive subclasses.

and in some research systems (e.g., [26]). Here, the
primary is not able to reply to its client until all sec-
ondary replicas have acknowledged the application of
the upms associated to that client request. Thus, this
subclass entails the longest blocking time, while en-
suring the consistency of all replicas. So, this is the
safest option.

If the primary crash-fails, the client does not receive
any reply and thus will take note of the crash sooner
or later. Thus, it can resend its request to the new pri-
mary. If the previous primary was able to send any
of its upm messages and a virtual synchronous mul-
ticast was used (as recommended above), all service
replicas will share the same state, and the new pri-
mary can answer that request without needing to re-
execute it. Recall that the upm messages should in-
clude a copy of the reply that the primary plans to
send back to the client. On the other hand, if the pre-
vious primary did not send any upm message (e.g., it
might have crashed before the local service of that re-
quest was terminated), none of the surviving replicas
will know anything about such client request, so the
new primary should execute it from scratch.

5.2 BP-FA

As already indicated in section 4, there is an op-
timization of the previous subclass that might pro-
duce better results in a WAN environment where the
backup acks and their preceding upm messages might
take an undetermined, possibly long time. However,
we have seen that this solution necessitates uniform
upm delivery in order to guarantee that all backup
replicas have seen the same sequence of upm messages
and will finally have the same state. Without uniform
upm delivery, this subclass is not able to overcome the
simultaneous failure of primary and first answering
backup nodes, since the delivery of the last upm by
other backup replicas cannot be guaranteed. This sit-
uation has already been discussed in more detail in
section 4.

In spite of this, a good solution for WAN environ-
ments is the “first-answer” approach of the three-tier
replication scheme in [1]: positioned on a middle tier,



several tightly connected replicas enable a fast and
bounded execution of all consensus protocols needed
to guarantee message stability and uniform delivery.
Once all replicas in the middle tier have consented, the
request messages are propagated to the end-tier repli-
cas, and the middle-tier replies to the client once the
first end-tier answer is received. If part of the middle
tier crashes during request processing, the remaining
replicas are able to appropriately handle the rest of the
request. For instance, if a failed replica has not ter-
minated the multicast to the end-tier replicas, the re-
maining middle-tier replicas can take over and finish
it.

The three-tier replication scheme does not exactly
correspond to passive replication, but is easily ad-
justable to it. To do that, each replica node in a WAN
can be implemented by a site composed of several in-
dependent nodes. If such a site represents the pri-
mary, its local nodes must share all decisions related to
message multicast, but without sharing the passively
replicated state. So, if the primary fails, its local com-
panion nodes will be able to terminate the upm mul-
ticast to the backup replicas, ensuring thus its uni-
form delivery. Even if one of the backups fails, e.g.,
the one providing the first answer, the remaining ones
would see the same sequence of upm messages. Such
“middle-tier” companions (so called since they corre-
spond to the middle tier of [1]), can for example be re-
alized by any physically close computing device with
sufficient memory.

The adjustment discussed in the previous para-
graph becomes effective by taking the following steps:
(1) The current primary should send to its “middle-
tier” companions a copy of the upm to be multicast to
the backup replicas. A uniform multicast should be
used for this, the costs of which are negligible because
the physically close companions are supposed to be
connected by a LAN. (2) Once this local multicast is
completed, it proceeds with the regular upm multicast
to the backup replicas. (3) After that, it reliably sends
a final message to its “middle-tier” companions in or-
der to discard a last upm message.

Note that this last step could be executed con-
currently with any other task. In case the primary
crashes, one of its companions (now referred to as
comp-sender) checks if there was any upm message that
completed step (1) but did not arrive to step (3). If
so, such message is multicast again by the comp-sender,
and the backups should wait until such message is de-
livered. Since the primary has failed, and since the
comp-sender is not one of its backups, a substitute
backup must be appointed. If no upm multicast was
interrupted by the primary crash, the comp-sender can

simply multicast an empty message to all backups in
order to allow them to continue.

Another argument in favor of the “first-answer”
approach is the discussion of active replication in [15].
Only the first answer is needed for active replication,
since client processes are assumed to use an atomic
multicast for propagating the requests to the replicas.
Atomic multicast ensures atomicity [15]: “if replica | de-
livers m in view X, then every correct replica of X also
delivers m”. Now, note that atomicity in this sense is
equivalent to uniform delivery (cf. last paragraph of
section 4). Thus, we effectively are requiring the same
as [15] for a first-answer solution.

5.3 BD-AA

The second relaxation of the subclass presented in
section 5.1 is to block only until the upm messages
have been delivered. Indeed, this also guarantees that
their associated backups will be able to apply such
updates. The single event that might avoid such ap-
plication would be the crash of the backups, but for
completely avoiding the success of a given client re-
quest, all replicas would have to crash. If at least one
backup is able to continue after all acks have reached
the primary, as required for BP-AA, that backup will
be promoted to primary if all other replicas crash and
will hold the same state as the old primary as soon as
it has sent its last answer to its clients.

This relaxation provides an important performance
advantage in systems with frequent, time-consuming
update operations, such as replicated databases. In-
deed, this is the usual protocol schema for all
databases with a primary copy node as a master
replica using eager update propagation, according to
[13]. For instance, although the protocols described
in [21] are significantly more complex than the BD-
AA subclass, they coincide with the characteristics of
BD-AA whenever transactions do not require multiple
conflict classes, i.e., in many practical cases.

5.4 BD-FA

This fourth subclass needs the same node-to-site
translation as suggested in section 5.2 for ensuring
uniform multicast delivery, thus allowing that the pri-
mary replies as soon as it receives the first backup ack.
Now, when this solution is applied to the blocking on
delivery approach, instead of the blocking on processing
approach, the result still complies with the hot pas-
sive model requirements since both BP-AA and BD-
AA subclasses taken as the basis were correct.



5.5 NB

Protocols in the non-blocking subclass are not able
to guarantee that any secondary replica has applied
the most recent updates served by the primary. For
instance, the primary might send its reply to the client
and it might fail immediately, i.e., before sending the
first upm to any backup replica. Thus, some client
requests might get lost. Despite this, non-blocking
is common for data replication in systems offered by
commercial vendors as witnessed by many white pa-
pers (e.g., [18]), since they consider state consistency
more important than losing some requests.

So, this approach shares some of the problems dis-
cussed in the introduction regarding cold and warm
passive replication. Its performance (i.e., blocking
time) is the best among all subclasses discussed in
here, but the entailed problems are not affordable by
many applications. Thus, we shall not consider this
subclass in our performance study since it does not
comply with the requirements stated in section 3.

6 Performance Study

We have compared the performance of the four ac-
ceptable subclasses identified in the previous section
by simulation. More precisely, 50000 requests have
been used to test each subclass, assuming a single-
threaded primary replica and a variable number of
backup replicas (ranging from 1 to 10, although nor-
mally only 1 or 2 are used [26] and it is hard to find
more than 5). The primary service time has been mod-
eled by an exponential distribution with a mean value
of 25 ms.

Two kinds of updates have been considered and
performed in the backup replicas: one with a mean
value of 1 ms (short update) and another with a mean
of 15 ms (long updates, as is typical in replicated ob-
jects with a lot of state, like databases). Both updates
have also been modeled using an exponential dis-
tribution. Additionally, two network configurations
have been used. The first one supposes a LAN envi-
ronment whose latency has been modeled as a normal
distribution with a mean of 0.5 ms and a deviation of
0.08 ms. The second one assumes a WAN environ-
ment with a mean latency of 5 ms and a deviation of
1ms (also modeled as a normal distribution).

As a result of this setup, four different configura-
tions have been analyzed. The results are described
in the sequel. Note that all subclasses based on the
first answer principle have needed two additional mes-
sage rounds to ensure uniform delivery. In both kinds
of networks, such additional messages use a LAN-

typical latency, according to the issues discussed in
section 5.2.

29

——BD-FA —=-BD-AA
28,5 T[] =—BP-FA —<BP-AA

Service time (ms)

Number of backup replicas

Figure 3. LAN results with short updates.

39

38,5 1T mwm wwom
38 —-| ——BP-FA —<BPAA

37,5

(ms)

ime
w
N

36,5

W
[o)]
|

35,5

Service t
w
[6)]

34,5 -
34
33,5 T T T T

Number of backup replicas
Figure 4. WAN results with short updates.

As expected, BP-AA yields the worst results in gen-
eral, depending a lot on the performance of individual
replicas. A single slow replica compromises the per-
formance of BP-AA, and this leads to a big increase of
the request service time when the number of backup
replicas grows (see figures 3 through 6).

The same technique (BP-FA) proposed and mea-
sured in [1] for the active model in its three-tier repli-
cation architecture yields better results than BP-AA in
our simulation. Additionally, it proportionally gets
better the more backup replicas exist, and it does not
depend on the configuration being tested, i.e., not on
the network type nor on the length of the update op-
erations applied in the backup replicas.

The second optimization proposed above (i.e., to
block until delivery instead of blocking until pro-
cessed) yields slightly better results than blocking on



processing, and this highly depends on the update ap-
plication time consumption in the backup replicas, but
also on the used network type. Using a LAN (see fig-
ures 3 and 5), the BD-FA provides higher service times
than BD-AA, since BD-FA requires uniform delivery
and this additional cost cannot be counterbalanced.
And in such configurations, BD-FA and BD-AA yield
results quite close to those of BP-FA.

70 4
65 1|~ oren omn
60
5 55
50 A
45 4
40 4
35 -

30 1 S

25 ——

ms)

Service time

Number of backup replicas

Figure 5. LAN results with long updates.

78 -
73 Ton Tem
68 -
63 -
58
53 -
48
43 o

38 - -
R e —— ‘ ‘ —

1 3 5 7 9

Number of backup replicas

Service time (ms)

Figure 6. WAN results with long updates.

For WANSs, the two BD-based subclasses feature
similar performance trends as the BP-based ones, as
shown in figures 4 and 6. Thus, BD-FA yields the best
results, which get better when the number of backup
replicas grows. On the other hand, since BD-AA
scales worse than BP-FA, the BD-AA service time be-
comes longer than the one provided by BP-FA if many
backup replicas are considered (3 in case of short up-
dates in these examples, and 10 for long updates).

The performance results show that the three new

hot passive subclasses discussed above might im-
prove the typical hot passive performance in various
distributed settings.

7 Related Work

Some related work has already been addressed
above, since each of the discussed subclasses has ei-
ther been considered already in other papers or can
be easily derived from them. To our knowledge, no
other work has jointly studied and compared the ba-
sic characteristics and the performance of all of these
hot passive subclasses. Many, however, have distin-
guished and studied the cold, warm and hot classes
of passive replication [11, 22, 24].

An issue not discussed in this paper that deserves
further attention is recovery, i.e., algorithms to recover
the state of a failed replica once it has been restarted.
The regular solution consists in transferring the full
state to such recovering replica, but this is not a smart
solution when the replicated state is very big, as in
a database. A recent paper [8] studies in detail the
problems associated to the most generic transactional
replication configuration: active replication with linear
interaction [25]. Linear interaction implies that the re-
sults of each operation are transferred to backup repli-
cas, as in the hot passive model. Our hot passive sub-
classes avoid the on-going transactions consistency
problem as discussed in [8], because they have only
one node that can process client requests at any time,
even if interaction is linear. Other problems can be
solved in our configurations as proposed in [8].

In the DeDiSys project [2], the use of the hot passive
model has been generalized to partitionable environ-
ments. In such context, more than one primary may
exist (indeed, one per partition), and this partially vi-
olates the requirements stated in section 3, but the as-
sociated problems have been solved by special recon-
ciliation protocols. Thus, an extension of our hot pas-
sive classification is needed for properly dealing with
partitionable systems, which will require some work.
More precisely, a more relaxed definition of the pas-
sive model is needed for such scenarios.

8 Conclusion

We have revisited common classifications of the
passive (or primary-backup) replication model, distin-
guishing cold and warm replication. Existing defini-
tions of the passive model appear to restrict a lot the
acceptability of passive replication variants, in partic-
ular those in the hot passive subclass. We have pro-
posed two optimizations of some typical hot passive



replication deployments. The first one permits the
backups to return control to the primary already upon
delivery of the update message, instead of returning
it only after completion of the update. The second
one consists in waiting only for the first backup ac-
knowledgment. We have simulated both approaches.
The obtained results show that both optimizations im-
prove typical deployments of hot passive replication
in various distributed settings.

References

[1] R. Baldoni, C. Marchetti, and A. Virgillito. Impact of
WAN channel behavior in end-to-end latency of repli-
cation protocols. In 6th European Dependable Computing
Conference, Coimbra, Portugal, Oct. 2006.

[2] S.Beyer, M.-C. Bafiuls, P. Galddmez, J. Osrael, and F. D.
Muiioz-Escoi. Increasing availability in a replicated
partitionable distributed object system. In ISPA, pages
682-695, Dec. 2006.

[3] K.Birman and T. Joseph. Exploiting virtual synchrony
in distributed systems. In 11th ACM Symposium on Op-
erating Systems Principles, pages 123-138, New York,
NY, USA, 1987. ACM Press.

[4] K. P. Birman, A. Schiper, and P. Stephenson.
Lightweigt causal and atomic group multicast. ACM
Trans. Comput. Syst., 9(3):272-314, 1991.

[5] N. Budhiraja, K. Marzullo, F. B. Schneider, and
S. Toueg. The primary-backup approach. In S. J.
Mullender, editor, Distributed Systems, chapter 8, pages
199-216. ACM Press, 2nd edition, 1993.

[6] T. D. Chandra and S. Toueg. Unreliable failure detec-
tors for reliable distributed systems. J. ACM, 43(2):225-
267, 1996.

[7] G.V.Chockler, I. Keidar, and R. Vitenberg. Group com-
munication specifications: A comprehensive study.
ACM Computing Surveys, 4(33):1-43, 2001.

[8] R.de Juan-Marin, L. Irtin-Briz, and F. D. Mufioz-Escoi.
Recovery strategies for linear replication. In ISPA,
pages 710-723, Dec. 2006.

[9] X. Defago, A. Schiper, and N. Sergent. Semi-passive
replication. In Symposium on Reliable Distributed Sys-
tems, pages 43-50, 1998.

[10] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols
in message-passing systems. ACM Comput. Surv.,
34(3):375-408, 2002.

[11] S. Garg, Y. Huang, C. M. R. Kintala, K. S. Trivedi, and
S. Yajnik. Performance and reliability evaluation of
passive replication schemes in application level fault
tolerance. In FTCS, pages 322-329, 1999.

[12] A. S. Gokhale, B. Natarajan, D. C. Schmidt, and J. K.
Cross. Towards real-time fault-tolerant CORBA mid-
dleware. Cluster Computing, 7(4):331-346, 2004.

[13] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dan-
gers of replication and a solution. In ACM SIGMOD
Intnl. Conf. on Management of Data, pages 173-182, 1996.

[14] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, San Mateo, CA,
USA, 1993.

[15] R. Guerraoui and A. Schiper. Software-based replica-
tion for fault tolerance. IEEE Computer, 30(4):68-74,
1997.

[16] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts
and related problems. In S. Mullender, editor, Dis-
tributed Systems, chapter 5, pages 97-145. ACM Press,
2nd edition, 1993.

[17] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Trans. Computers, 28(9):690-691, 1979.

[18] C. Mikkelsen and R. R. Schulman. Ensuring data
integrity with asynchronous replication. HITACHI
Data Systems white paper, July 2005. Downloadable:
http://www.hds.com/pdf/wp_200_data_integrity_asynch-
_rep.pdf.

[19] E D. Mufioz-Escoi, P. Galdamez, and J. M. Bernabéu-
Auban. ROI: An invocation mechanism for replicated
objects. In 17th IEEE Symposium on Reliable Distributed
Systems, pages 29-35, West Lafayette, IN, USA, Oct.
1998.

[20] OMG. CORBA 3.0.3, Common Object Request Bro-
ker Architecture (Core Specification), 2004-03-01, Mar.
2004.

[21] M. Patifio-Martinez, R. Jiménez-Peris, B. Kemme, and
G. Alonso. Scalable replication in database clusters. In
DISC, pages 315-329, 2000.

[22] D. Szentivanyi and S. Nadjm-Tehrani. Building and
evaluating a fault-tolerant CORBA infrastructure. In
Workshop on Dependable Middleware-Based Systems (in
DSN), 2002.

[23] A.S. Tanenbaum and M. van Steen. Distributed Sys-
tems: Principles and Paradigms. Prentice Hall, 2002.

[24] A.]. Wellings and A. Burns. Programming replicated
systems in Ada 95. The Computer Journal, 39(5):361-373,
1996.

[25] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
G. Alonso. Database replication techniques: A three
parameter classification. In 19th IEEE Symposium on
Reliable Distributed Systems, pages 206-217, Oct. 2000.

[26] X. Zhang, D. Zagorodnov, M. A. Hiltunen,
K. Marzullo, and R. D. Schlichting. Fault-tolerant
grid services using primary-backup: feasibility and
performance. In CLUSTER, pages 105-114, 2004.



