
DeDiSys Lite: An Environment for Evaluating Replication Protocols in
Partitionable Distributed Object Systems∗

Stefan Beyer, Alexander Sánchez, Francesc D. Muñoz-Escoı́ and Pablo Galdámez
Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia

Spain
{stefan, asanchez, fmunyoz, pgaldamez}@iti.upv.es

Abstract

Distributed object systems for partitionable systems
present a challenge, in that there is a trade-off between
availability and consistency. Changes in one partition are
not visible in another partition. Therefore, if strong consis-
tency is required, certain operations cannot be permitted.
This reduces availability. In the DeDiSys project we aim at
allowing this trade-off between consistency and availability
to be configurable.

The DeDiSys distributed object system relies heavily on
replication protocols that allow high-availability, whilst en-
suring a level of consistency that is required by a particular
application. We have developed DeDiSys Lite, a prototype
of the DeDiSys system, which provides a platform to imple-
ment and evaluate these replication protocols.

Infrastructure components are provided in a minimal im-
plementation. Configuration files allow system parameters,
such as the degree of replication or the nesting of object
invocations, to be modified, without having to adapt appli-
cation code.

We use DeDiSys Lite as both a simulation environment
for the development of new replication protocols and as a
basis for the continuous development of the DeDiSys sys-
tem. Some results obtained using the platform to optimise a
new replication protocol are presented in this paper.

1 Introduction

Distributed systems, especially those deployed on a wide
area network, are vulnerable to network failure. Network

∗This work has been funded by the European Community under the
FP6 IST project DeDiSys (Dependable Distributed Systems, contract num-
ber 004152).

link failures can cause such systems to partition. Replica-
tion can be used as a means to limit the reduction of avail-
ability that occurs in a partitioned distributed system. How-
ever, replicas can diverge, as replica synchronisation is not
always possible in a partitioned system. For applications
which require strong consistency, this divergence of replica
states might be unacceptable. In such applications certain
operations must not be permitted during partitioning, which
in turn reduces availability. Therefore, there is a trade-off
between consistency and availability in partitionable dis-
tributed systems.

In the DeDiSys distributed object system we allow this
trade-off to be configured. That is, we allow data consis-
tency to be temporarily relaxed, according to rules specified
by the application. We base these rules on data integrity
constraints [13].

In this paper we introduce DeDiSys Lite, a simpli-
fied prototype implementation of the DeDiSys architec-
ture. DeDiSys Lite provides a platform for implement-
ing and evaluating different replication protocols. Light-
weight architecture components allow objects with a sim-
ple read/write interface to invoke each other. The architec-
ture components are configured through configuration files.
These files allow system parameters, such as the location
and number of replicas of a specific object and the nesting
of object invocations to be specified easily.

The main contribution of this work is a simplified par-
titionable environment that serves as a test bed for imple-
menting and evaluating replication protocols. The design of
the architecture facilitates the implementation of new pro-
tocols. Furthermore, we demonstrate the simplicity with
which the environment can be configured, in order to allow
flexible protocol evaluation. Finally, we show how DeDiSys
Lite has been used to optimise a new replication protocol [2]
that has been designed for the DeDiSys project.

1



The remainder of this paper is organised as follows: Sec-
tion 2 introduces the DeDiSys project. Section 3 com-
pares DeDiSys to related work. The proposed architec-
ture of DeDiSys Lite, the prototype implementation of the
DeDiSys system, is introduced in section 4, whereas sec-
tion 5 explains how the architecture can be used to imple-
ment and evaluate replication protocols. In section 6 we
demonstrate, how we have started to evaluate a new replica-
tion protocol and provide some first results. The concept of
using the architecture for the implementation of replication
protocols is widened to other system components in section
7 and in section 8 we outline our plans for future uses of
DeDiSys Lite, before concluding in section 9.

2 The DeDiSys Approach

DeDiSys is aimed at partitionable environments. Dis-
tributed objects are located on a known set of server nodes,
which are connected by a wide area network. In contrast
to other systems, we support nested invocations. That is,
methods of one object might invoke methods of other ob-
jects in the same transactional context.

A partially synchronous system model is used. In this
model clocks are not synchronised, but message time can be
bound. As a failure model, the “pause-crash model” [4] is
used for node failures, and the “link failure model” [12] for
communication services. As we cannot distinguish between
a failed node and an isolated node until recovery time, every
failure is treated as partitioning.

Objects are replicated, in order to improve availability.
Replication is partial. That is, an object does not have to
be replicated on every node. This has the advantage of hav-
ing to maintain consistency between fewer replicas, which
in turn should reduce communication costs. On the other
hand, there is a risk of not having access to any replica of
an object during network partitioning in partial replication.
This risk can be reduced by placing replicas carefully, tak-
ing into account network links that are more likely to fail.

We employ a relaxed passive replication model. In pas-
sive replication [3] [7] requests are only processed by one
primary copy. Updates are then propagated to the sec-
ondary copies. However, we relax this for read-only opera-
tions. Read-only operations can be served by any secondary
copy. The passive model lends itself to a system in which
consistency is to be configured, as it allows variations in the
way updates are propagated. If synchronous update propa-
gation is used, a primary copy must propagate any updates
immediately; that is, before the result of the operation that
has caused the update is returned to the client. In asyn-
chronous update propagation the result is returned and the
propagation of state changes performed some time later.

In DeDiSys consistency is based on integrity constraints.
Each constraint is associated with an operation and defined

over parts of the state of one or more objects. The system
is said to be fully constraint consistent, if only changes to
objects caused by operations whose constraints have been
met are accepted. During partitioning the primary copy of
an object might not be available for constraint evaluation
and available secondary copies might be stale.

We allow consistency to be temporarily relaxed for cer-
tain constraints. This is achieved by a classification of in-
tegrity constraints into three categories:

• Critical constraints always have to be evaluated on
up-to-date replicas. Write operations which are cov-
ered by a critical constraint are only permitted, if all
replicas used for constraint evaluation are known to be
up-to-date.

• Regular constraints can be evaluated on possibly
stale copies. They are re-evaluated at reconciliation
time. If a constraint is not met at reconciliation time a
consistency conflict has occurred. Consistency con-
flicts caused by a violated regular constraint are re-
moved automatically.

• Relaxed constraints can also be evaluated on stale
copies. They also have to be re-evaluated at reconcilia-
tion time. However, dealing with consistency conflicts
is left to the application.

The DeDiSys approach allows a variety of replication
and reconciliation protocols to be used. DeDiSys Lite
serves as a convenient test bed for developing and evalu-
ating these protocols.

3 Related Work

The trade-off between consistency and availability has
been investigated in the context of other distributed sys-
tems. These systems generally require the application pro-
grammer to specify the required consistency or the required
availability.

The authors of [14] use consistency units (conits) to
specify the bounds on allowed inconsistency. A conit is a
set of three values representing “numerical error”, “order
error” and “staleness”. Numerical error defines a weight
of writes on a conit that can be applied to all replicas, be-
fore update propagation has to occur. Order error defines
the number of outstanding write operations that are subject
to re-ordering on a single conit. Finally, staleness defines
the time update propagation can be delayed. Conits are as-
sociated to elements of a replicated data store, which can
range from a simple file-system to a persistent object sys-
tem. Operations on replicas are restricted to primitive read
and write operations. The system does not support dynamic
objects with nested invocations. Furthermore, the system
does not deal with partitioning.

2



In CoRe [6] the principle of specifying consistency is ex-
tended to allow the programmer to define consistency using
a larger set of parameters. A set of concerns is identified
and arranged in a hierarchy. To each of these concerns a
variety of possible parameters are attached. CoRe forces
the application programmer to be aware of these concerns
and adjust a large set of parameters. Furthermore, the sys-
tem only focuses on data objects; that is, objects that do not
cause invocations to other objects.

AQua [5] approaches the trade-off from the other direc-
tion by allowing availability requirements to be specified. In
AQua “quality objects” are used to specify quality of service
requirements. In this case, the quality objects are used to
describe availability constraints. A contract defines the re-
quired availability, whereas “system condition objects” are
used to monitor the current availability in the system. The
system uses a general object model, in which any object
may act as a client and invoke operations in other objects.
AQua considers crash failures, value faults and time faults,
but does not consider partitioning.

None of the distributed systems described above consid-
ers constraint consistency.

4 The DeDiSys Lite Architecture

4.1 Overview

DeDiSys Lite is a Java prototype implementation of the
DeDiSys system. The prototype models a distributed object
system in a simplified way. Objects do not implement real
code, but provide an interface that allows to simulate read
and write invocations. Nested operations are supported by
specifying the nesting in a configuration file.

Figure 1. System Overview

Figure 1 shows an overview of the system components
that are present on each node.

As can be seen, the application consists of a number of
objects, which use the following system components to in-
voke each other:

• Object Support (OS) This component is an invoca-
tion service. It exchanges invocation request and result
messages between nodes.

• Consistency Manager (CM) The CM simulates a
component that is invoked to evaluate data integrity
constraints.

• Transaction Manager (TM) Transactions are simu-
lated by the TM component. The nested transaction
model [10] is used, although no real commit protocol
is implemented.

• Replication Manager (RM) The RM provides a map-
ping between object identifiers and the implementa-
tions of the objects they refer to, in the form of primary
and secondary replicas.

• Replication Protocol (RP) This component allows the
implementation of different replication and reconcilia-
tion protocols.

• Group Services The group services consist of a mem-
bership service (MS) and a group communication ser-
vice (GC). The MS keeps track of connected nodes. It
provides a view of the nodes in the current partition.
The GC provides reliable group multicast. It is mainly
used to propagate updates to secondary replicas. It can
be configured to provide different delivery guarantees,
depending on the requirements of the replication pro-
tocol. The replication model employed in the DeDiSys
approach requires FIFO reliable multicast.

4.2 Objects

Objects in DeDiSys Lite provide a read operation and a
write operation. The state of an object is an integer field. A
write operation increments this state field. Furthermore, a
getState() method and a setState() method allow
the replication protocol to capture an object’s state, send it
over a network and install it in another replica of the same
object.

Having such simple objects has the advantage that during
experiments object access times should remain short and
constant. This allows measurements to focus on the per-
formance of the distributed algorithms of the system, rather
than being “diluted” by the execution times of code in indi-
vidual object implementations.

Nested invocations are simulated in the object support
component described below. It is possible to define which

3



other objects should be invoked during an object’s invoca-
tion.

4.3 Object Support

Objects use the OS component to invoke each other. The
OS is basically a simple invocation service. It provides rou-
tines to invoke read and write operations of other objects
and to direct incoming read and write messages to the corre-
sponding local object implementations. The OS is a multi-
threaded component. For each invocation a new thread is
started which waits for the invocation result to be received.
As objects do not implement any real code, a configuration
file in the OS is used to specify the required nesting of ob-
ject invocations. The format of the configuration file allows
to vary the ratio of read and write operations easily. The
following listing is an example of such a configuration file:

nodes = 2

o2.w = 2
o2.w.oper1 = o3.w
o2.w.oper2 = o5.r

The nodes directive specifies the number of nodes in the
system. The next line signifies that a write operation on ob-
ject o2 causes two nested write operations. The next two
lines specify these nested write operations as a write opera-
tion on object o3 and a read operation on object o5.

The final DeDiSys system will be implemented in three
different middleware systems. Hence, the invocation func-
tionality of the OS will be implemented in CORBA, En-
terprise Java Beans or .NET, depending on the particular
implementation.

4.4 Consistency Manager

The CM is used to simulate constraint evaluation. No
real constraints are supported, but it is possible to spec-
ify objects covered by a constraint. Such a simulated con-
straint is associated with a constraint type (critical, regular
or relaxed) and a set of rules that define how the constraint
should evaluate in consecutive evaluation requests.

The following example of a CM configuration file
demonstrates how constraint evaluation can be defined:

c1.priority = critical
c1.type = pre-condition
c1.objects = o1, o2 ,o3
c1.true = 3
c1.false = 4
c1.number_ratio = 3
c1.percent = 0.4

The constraint c1 is a critical constraint. Furthermore, it
is a pre-condition. That is, the constraint has to be met be-
fore the object can be written to. c1 covers the objects o1,
o2 and o3. It has to be evaluated before the invocation
of a write operation on any of these three objects. In the
DeDiSys approach constraints are associated with individ-
ual object methods, rather than whole sets of objects, but
for the implementation and evaluation of replication proto-
cols, associating constraints with sets of objects simplifies
the configuration files and therefore allows experiments to
be carried out more efficiently.

The final four lines of the above configuration file define
the way the constraint evaluates in consecutive evaluations.
First, a constraint evaluates as many times successfully as
specified in the true field. Next, the constraint evaluation
fails as many times as specified in the false field. Finally,
the number ratio field defines the number of times the
constraint should evaluate according to a success ratio spec-
ified in the percent field. The succession of evaluation
results is then re-started. That is, the last four lines of the
configuration file provide an iteration of constraint evalua-
tion results. This way of specifying the results of simulated
constraint evaluation provides a large range of possible con-
figurations in a very simple format. By setting, for instance,
the true and false fields to 0 and the percent field to
0.5, a purely random constraint evaluation can be achieved.

4.5 Transaction Manager

The TM simulates nested transactions. It has an inter-
face that provides create, abort and commit primi-
tives. Rollback is fully implemented. When a transaction
is aborted, modified object states are reset to the state at the
beginning of the transaction. However, no commit proto-
col is implemented. When a transaction commits, the data-
structures related to that transaction are removed, but no
voting or locking protocol is executed. Thus we provide
the atomicity and durability properties of a transaction, but
not isolation and consistency. However, due to the nature of
DeDiSys Lite operations and the concurrency control em-
bedded in the object support, these two missing properties
can be assumed to be provided by the system.

In order to simulate different abortion rates the TM can
be configured through a configuration file similar to that of
the consistency manager. The following is an example of
such a TM configuration file:

commit = 3
abort = 4
number_ratio = 3
percent = 0.4

As in constraint evaluation the file defines the sequence in
which a simulated commit protocol should lead to trans-
action being committed or aborted. In the above example

4



the first three commit attempts succeed. This is followed
by four commit failures. Finally, the next three commit at-
tempts succeed with a success ratio of 40%. This sequence
is then repeated.

4.6 Replication Manager

The RM provides a mapping between object ids and
replicas. It maintains lists of the locations of the primary
and secondary copies of each object. An interface is pro-
vided that allows the OS to discover the primary copy of
an object. An additional interface visible to the replica-
tion protocol allows all secondary copies to be discovered
for update propagation. Furthermore, the role of a replica
can be changed. Optimistic replication protocols can use
this feature of the RM to promote secondary copies to tem-
porary primary copies, when the real primary copy is not
available.

The RM is configured through a configuration file of the
following format:

nodes = 3
objs = 2

o1.backups = 0
o1.primary = #proc1#host1

o2.backups = 2
o2.primary = #proc2#host2
o2.b1 = #proc3#host3
o2.b2 = #proc1#host1

The configuration file is the same on all nodes. The first two
lines indicate the total number of nodes and objects in the
system. The statement o1.backups = 0 indicates that
object o1 is not replicated. The next line provides the node
name on which the single copy is located. Note, that the
node name is made up of a process name and a host name.
One of the simplifications of DeDiSys Lite is that a pro-
cess is equivalent to a node. That is, each process hosts all
the system components. This simplification allows various
nodes to be simulated on a single machine. This enables the
testing of new replication protocols without having to de-
ploy them on a real network. Object o2 has two secondary
copies in addition to the primary copy. The location of these
replicas is specified in the last two lines. At system startup
all the replicas are automatically deployed. This allows the
degree of replication and location of replication to be mod-
ified easily between experiments, without having to change
any application code.

In addition to replica creation through the configuration
file the RM interface allows the replication protocol to add
or remove replicas. This allows protocols to dynamically
modify the location and number of replica. A protocol,

might for instance monitor access patterns and create a lo-
cal replica on nodes from which an object is frequently ac-
cessed.

The RM uses the group services described below to keep
track of which replicas on which nodes are reachable.

4.7 Replication Protocol

The RP component is the place where different repli-
cation protocols can be plugged in easily. Different up-
date propagation and reconciliation policies can be imple-
mented. The configuration files of the above components
can be modified, in order to simulate different system be-
haviour. This allows to measure the performance and avail-
ability of replication protocols in different scenarios. De-
fault behaviour of some common interface functions is im-
plemented in a ReplicationProtocol class, which
can be extended. Section 5 describes in detail how new
replication protocols can be implemented easily.

4.8 Group Services

The membership service provides a common view of
nodes that are believed to be reachable within the local par-
tition. It notifies the RP and the RM of membership view
changes. It also interacts closely with the group communi-
cation service described below. The group communication
service provides reliable group multicast primitives with
configurable delivery guarantees. Replication protocols can
use these primitives to synchronise replicas.

We currently use Spread [1] for group services, as it pro-
vides the extended virtual synchrony model [9]. This model
simplifies the reconciliation process of potential replication
protocols, as nodes are aware which views have been in-
stalled in re-joining partitions.

5 Implementing and Evaluating Replication
Protocols

5.1 Overview

The main purpose of DeDiSys Lite is to easily imple-
ment and evaluate new replication protocols. In order to im-
plement a new replication protocol for DeDiSys Lite, pro-
tocol writers should extend the ReplicationProtocol
class. Default implementations of common protocol meth-
ods are provided. For example, a simple update propagator
is already implemented. If a protocol wishes to change the
way object updates are propagated to secondary copies, it
can simply overwrite a method. The timing of update prop-
agation can be determined by the point in the execution of

5



the protocol at which the method is called. Possible alter-
natives are for example after each invocation, at the end of
a transaction or at some later point.

Every protocol needs to implement a certain interface.
There are two entry points for the object support. The
method preWrite() is called by the OS before each in-
vocation and the method postWrite() after each invoca-
tion. Furthermore, a constructor that takes a reference to the
local object support, replication manager, consistency man-
ager and group communication components is required. A
handleMessage() method has to be implemented. The
OS, which is responsible for receiving incoming messages
passes all messages of type REPMSG to this method. A
default implementation in the ReplicationProtocol
super-class handles messages that contain replica state up-
dates. Finally, a reconcile() method is required so that
the OS can inform the RP of membership messages that in-
dicate the re-joining of unreachable nodes.

Replication protocols will typically distinguish three
system modes. In normal mode all nodes are reachable
and the replication protocol just has to propagate updates to
secondary copies. When a node fails or the system is parti-
tioned, degraded mode is entered. In this mode, the repli-
cation protocol will have to keep track of updates that might
be missed by replicas on unreachable nodes. When parti-
tions are re-merged or a crashed node re-joins the system,
missed updates must be propagated and possible conflicts
removed in a reconciliation phase. In each of these three
modes a variety of policies can be implemented. The choice
of policies affects the overall time and space efficiency and
the availability of the system. Replication protocols can dis-
tinguish between the three system modes by registering a
view change handler with the membership service.

5.2 Example Protocols

We are currently in the process of evaluating two proto-
cols with different policies. We are planning to gain detailed
measurements on the availability these protocols provide in
the DeDiSys system and application model. The results will
be compared with a theoretical study we have performed
[2].

5.2.1 The Primary Partition Protocol

In the primary partition protocol [11] only a majority parti-
tion is allowed to proceed in the case of failure. A majority
partition is a partition that contains at least one more than
half the nodes in the system. Updates to objects in other
partitions are not allowed. In the case that no partition has
a majority of nodes, the whole system is prevented from
accepting update operations.

5.2.2 The Primary per Partition Protocol

The primary per partition protocol (P4) [2] is a protocol
we have developed for the DeDiSys system and application
model. The P4 allows objects in all partitions to be updated.
If a primary copy is not available a secondary copy is cho-
sen and promoted to a temporary primary copy. Conflicts
can be dealt with automatically or can be left to the applica-
tion.

The protocol should provide higher availability than the
primary partition protocol in the type of applications at
which DeDiSys is aimed. The higher availability has been
demonstrated mathematically in our theoretical study men-
tioned above. Probability based availability models have
been used to compare the two models within the parameters
of an example application. However, there are many repli-
cation policy variations, which are difficult to model, that
can have a big impact on the performance or on the avail-
ability. For instance, propagating updates at the end of a
transaction, instead of at the end of every invocation, could
theoretically have a performance impact. DeDiSys Lite al-
lows us to compare these two policies easily.

The P4 has been implemented for DeDiSys Lite and we
have obtained some preliminary performance results, that
will allow us to fine tune the protocol. These results are
presented in the following section.

6 Preliminary Experiments

6.1 Experimental Setup

In order to optimise the P4 protocol we have run two
simple performance experiments. These experiments do not
represent a complete evaluation of the P4 protocol. They
merely serve as a demonstration of the power of DeDiSys
Lite as an evaluation tool. All tests were run on a cluster
of four nodes. Each node contained a Pentium 4 2.8 GHz
CPU and 1GByte of RAM. The nodes were interconnected
through a 1 GBit/s Ethernet network. DeDiSys Lite was ex-
ecuted in Sun’s Java Virtual Machine version 1.5 on Linux
with kernel version 2.4.22. One of the nodes acted as a
client, whereas the other three nodes acted as servers, host-
ing 10 objects which were replicated on each host.

6.2 Overhead of Degraded Mode

The first experiment was designed to measure the extra
cost of the degraded mode of the P4 protocol. In degraded
mode, the constraint evaluation process is more compli-
cated. It has to be established whether accessible replicas of
objects participating in a constraint might be stale. If there
are stale copies and the constraint is critical the operation is

6



normal mode write (ms) 827
degraded mode write (ms) 998
normal mode read (ms) 844
degraded mode read (ms) 917

Table 1. Overhead of degraded mode

rejected. If the constraint is not critical it is marked for re-
evaluation at reconciliation time. The operation is allowed
to proceed and the object is marked as revocable. If the
primary copy of the object is not available, a secondary is
chosen as a temporary primary. This choice is broadcasted
to all reachable nodes. Furthermore, the object version of
the object being written to is incremented. If an operation
tries to write to an object that is covered by a critical con-
straint that also contains a revocable object, the operation
is rejected. This is done, in order to avoid violating critical
constraints retrospectively at reconciliation time, when an
operation might be undone.

Three hundred object write invocations and three hun-
dred read operations were performed in normal mode. All
objects were covered by constraints, but these constraints
were configured to be always met. The average time for a
single write and read invocation was calculated. The ex-
periment was then repeated, in degraded mode. To enter
degraded mode, one of the nodes was forced to crash.

Table 1 shows the results of this experiment. As can be
seen write invocations were on average 171ms slower in de-
graded mode. Thus, degraded mode adds an overhead of
about 20% for write operations. For read operations the dif-
ference was only 73ms, thus the overhead is only about 8%.

6.3 Update Propagation

The next experiment was designed to investigate whether
delaying the propagation of replica updates until the end of
the transaction could be a worthwhile performance optimi-
sation. Updates are currently propagated after each individ-
ual invocations, even if various objects on the same node
are updated in a nested invocation. In this special case up-
dates could be propagated in less messages, if the propaga-
tion was delayed until the end of the transaction. However,
these fewer messages might have to be sent to more nodes,
as object replicas might not be distributed uniformly.

We measured the overhead of multiple update operations
in the ideal case for this optimisation, where all updated ob-
jects reside on the same node. To this end, we have repeated
the first experiment for write invocations only. The level of
nesting was increased in consecutive runs of the experiment.
All nested invocations were local invocations on the server
node that received the initial invocation.

Table 2 lists the average write times of the whole nested

level of nesting 0 1 2 3 4 5
write time (ms) 827 976 981 976 1029 1031

Table 2. Nesting of write operations

invocation at the various levels of nesting1. The results are
surprising, in that the invocation times only show a slight
tendency to increase with increasing nesting. This indicates
that the main cost in our system is the initial remote invo-
cation and that the repeated update propagation message in
this simple case is not very expensive.

Therefore, according to this experiment, it seems doubt-
ful that delaying update propagation until the end of the
transaction significantly improves the performance. How-
ever, we plan to investigate this issue further, as more elab-
orate experiments are needed to confirm the cost of up-
date propagation when more nodes and objects are involved
and a larger number of concurrent invocations from various
clients occur.

7 Evaluation of Other System Components

Although DeDiSys Lite is aimed at evaluating replica-
tion protocols, it also serves as an expandable prototype for
the implementation of the DeDiSys middleware. The sys-
tem can be used to evaluate other system components. Each
of the simulated components described in section 4 can be
replaced by a real implementation.

The system can be used to run experiments with different
algorithms for each component. For example a full transac-
tion manager could be added to the system. By replacing
the commit protocol different policies could be evaluated.

8 Future Work

We are currently using DeDiSys Lite to further fine tune
and improve our P4 replication protocol and design and im-
plement other replication protocols.

Furthermore, we are planing to evaluate the P4 by com-
paring it with existing protocols. As mentioned above, we
have already performed an analytical study comparing the
protocol to the primary partition approach. DeDiSys Lite
will be used to verify this study. To this end we will simulate
more elaborate application scenarios taken from DeDiSys
target applications, such as the Distributed Telecommuni-
cation Management System (DTMS). The DTMS monitors
and controls a distributed voice communication system used
in air traffic control. It is is provided as an application
scenario by one of the industrial partners of the DeDiSys

1Note, that the nested local invocations are included in these measure-
ments.

7



project. The DTMS has already been used to extract typi-
cal system parameters. In a typycal DTMS scenario objects
are hosted on no more than 100 hosts and each object has
no more than ten replicas. Each integrity constraint involves
on average three objects and a maximum of 10% of the con-
straints are critical. We plan to use the same parameters in
our DeDiSys Lite simulation, in order to verify the results
of the analytical study. In addition we hope to use these
parameters to compare the DeDiSys approach to Fault Tol-
erant Corba with the primary partition model.

In order to simplify protocol evaluation an additional
component, a Performance Monitor, is to be introduced.
The purpose of this configurable component is to measure
various performance and availability metrics automatically.

DeDiSys Lite also serves as a basis for the implementa-
tion of the DeDiSys middleware. By replacing simulated
components with real implementations we are hoping to
be able to thoroughly test and evaluate the majority of the
DeDiSys components.

Finally, we hope to use results and insights obtained
from this work in partitionable environments in the MADIS
project [8]. MADIS is a middleware system primarily
aimed at database replication.

9 Conclusion

We have presented DeDiSys Lite, a simplified prototype
implementation of the DeDiSys distributed object system.
DeDiSys Lite serves as a simulation environment for evalu-
ating replication protocols in partitionable distributed object
systems. The design of the environment and the flexibility
of the configuration files, allows efficient modification of
system parameters which might affect the replication proto-
cols. An introduction to two of the replication protocols we
are evaluating with the use of DeDiSys Lite has been given.

We have also provided a short introduction to the
DeDiSys approach of trading consistency for availability,
and compared it to related work. The implementation of the
full DeDiSys system is work in progress and DeDiSys Lite
is used as a basis for its implementation.

References

[1] Y. Amir, C. Danilov, and J. R. Stanton. A low latency, loss
tolerant architecture and protocol for wide area group com-
munication. In DSN ’00: Proceedings of the 2000 Inter-
national Conference on Dependable Systems and Networks
(formerly FTCS-30 and DCCA-8), pages 327–336, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[2] S. Beyer, M. Bañuls, P. Galdámez, and F. D. Muñoz-Escoı́.
Increasing availability in a replicated partionable distributed
object system. Technical Report ITI-ITE-05/10, Instituto
Tecnológico de Informática, 2005.

[3] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.
The primary-backup approach, pages 199–216. ACM Press,
Addison-Wesley, 1993.

[4] F. Cristian. Understanding fault-tolerant distributed systems.
Commun. ACM, 34(2):56–78, 1991.

[5] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. H.
Sanders, D. E. Bakken, M. E. Berman, D. A. Karr, and R. E.
Schantz. Aqua: An adaptive architecture that provides de-
pendable distributed objects. In SRDS ’98: Proceedings of
the The 17th IEEE Symposium on Reliable Distributed Sys-
tems, page 245, 1998.

[6] C. Ferdean and M. Makpangou. A generic and flexible
model for replica consistency management. In ICDCIT,
pages 204–209, 2004.

[7] R. Guerraoui and A. Schiper. Software-based replication for
fault tolerance. Computer, 30(4):68–74, 1997.

[8] L. Irún-Briz, H. Decker, R. de Juan-Marı́n, F. Castro-
Company, J. E. Armendáriz, and F. D. Muñoz-Escoı́.
MADIS: A Slim Middleware for Database Replication. In
11th International Euro-Par Conference, pages 349–359,
2005.

[9] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agar-
wal. Extended virtual synchrony. In The 14th IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS), pages 56–65, 1994.

[10] E. B. Moss. Nested transactions: an approach to reliable
distributed computing. PhD thesis, Massachusetts Institute
of Technology, 1981.

[11] A. Ricciardi, A. Schiper, and K. Birman. Understanding
partitions and the ”non partition” assumption. In IEEE Proc
Fourth Workshop on Future Trends of Distributed Systems,
1993.

[12] F. B. Schneider. What good are models and what models
are good? In Distributed Systems, chapter 2, pages 17–26.
ACM Press, Addison-Wesley, 2nd edition, 1993.

[13] J. Warmer and A. Kleppe. OCL: The constraint language of
the UML. Journal of Object-Oriented Programming, May
1999.

[14] H. Yu and A. Vahdat. Design and evaluation of a conit-based
continuous consistency model for replicated services. ACM
Trans. Comput. Syst., 20(3):239–282, 2002.

8


