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Abstract

The CAP theorem states that only two of these properties can be simultaneously guaranteed in a
distributed service: (i) consistency, (ii) availability, and (iii) network partition tolerance. The correctness
of this theorem has been proven assuming that “consistency” refers to atomic consistency. However,
multiple memory consistency models exist and atomic consistency is in one of the edges of that spectrum:
the strongest one. Many distributed services deployed in cloud platforms should be highly available
and scalable. Network partitions may arise in those deployments and should be tolerated. One way
of dealing with CAP constraints consists in relaxing consistency. Therefore, it is interesting to explore
which is the set of consistency models that cannot be supported in an available and partition-tolerant
service. Other weaker consistency models could be maintained when scalable services are deployed in
partitionable systems. According to our results, part of this consistency borderline is set between the
cache (unsupported) and causal+ (supported) models.

Keywords: Inter-replica consistency, CAP theorem, Service availability, Network partition.

1 Introduction
Scalable distributed services try to maintain their service continuity in all situations. When they are geo-
replicated (i.e., spread across multiple data centers) a trade-off exists among three properties: replica con-
sistency (C), service availability (A) and network partition-tolerance (P). Only two of those three properties
can be simultaneously guaranteed. Such trade-off had been suggested long time ago [11] (Davidson et al.,
1985), thoroughly explained in [15] (Fox and Brewer, 1999) and proved in [16] (Gilbert and Lynch, 2002).
However, the compromise between strongly consistent actions, availability and tolerance to network par-
titions was already implicit in [20] (Johnson and Thomas, 1975) and justified by Birman and Friedman in
[7] (1996).

Service availability and network partition tolerance are dichotomies. They are either respected or not.
Service availability means that every client request that reaches a service instance should be answered in
a reasonable time. A service is partition-tolerant if once a network partition arises, dividing the service
instances in two (or more) disjoint sets unable to communicate with each other, all those disjoint sets may
go on. On the other hand, service replica consistency admits a gradation of consistency levels. In spite of
this, when we simply refer to “consistency” we understand that it means atomic consistency [23]; i.e., that
all instances are able to maintain the same values for each variable at the same time, providing a behavior
equivalent to that of a single copy. Therefore, it is not surprising that Gilbert and Lynch assumed that kind
of consistency in their proof of the CAP theorem [16].
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With the advent of cloud computing, it is easy to develop and deploy highly scalable distributed services
[26]. Those applications usually provide world-wide services: they are deployed in multiple data centers
and this implies that network partition tolerance is a must for those services. Once partition tolerance is
assumed, those services regularly prioritize availability when they should deal with the constraints of the
CAP theorem. As a result, consistency is the regular property being sacrificed. However, that sacrifice
should not be complete. Brewer [8] explains that network partitions are rare, even for world-wide geo-
replicated services. If services demand partition tolerance and availability, their consistency may be still
quite strong most of the time, relaxing it when any network partition arises.

Therefore, it seems interesting to explore which levels of consistency are strong enough to be directly
implied by the CAP constraints; i.e., those models are not supported when the network becomes parti-
tioned. We call those models CAP-strong. Two questions arise in this scope: (1) Does CAP affect only to
atomic consistency or are there any other “CAP-strong” models? (2) If there were any other models, where
could we set the border between CAP-strong and CAP-relaxed models (i.e., those that may be supported
while both availability and network partition tolerance are guaranteed)? Let us explain the answer to these
questions in the following sections, proving the correctness of these responses in the appendix.

2 System Model
We assume a partially synchronous distributed system where processes may fail by crashing. These pro-
cesses run in multiple computers. Scalable distributed services may be deployed in that system. Those
distributed services consist of multiple elements. Some of those elements may be replicated in order to
improve their performance or their availability. In those cases, part of their state is replicated using a
replication protocol and respecting some replica consistency model.

The interconnecting network might fail generating a temporary network partition. In a partitioned net-
work multiple disjoint network components exist [9]; i.e., processes located in different components cannot
communicate with each other. However, processes in the same component intercommunicate without prob-
lems.

3 Finding a Consistency Borderline
The first question from the introduction was already answered in [7], since the proof given by Birman and
Friedman did not rely on atomic consistency. Instead of this, they proved the following result: in a parti-
tioned network “no set of processes that implement a service in a responsive way can execute strongly non
commutative actions concurrently”. The term “in a responsive way” is a synonym for “available”. On the
other hand, “strongly non commutative actions” refers in that paper to a serial execution of a set of actions.
This is the main requirement: considering all replicated variables managed by a set of servers, all replicas
should agree on a given sequence of actions. Moreover, such sequence of actions, when restricted to a given
process, should be consistent with the local execution of that process. Those are the two conditions that
define sequential consistency [22]. Therefore, considering [7] there are at least two different CAP-strong
models: atomic and sequential.

Birman and Friedman [7] gave another hint related to CAP: one way to relax consistency in order to
maintain availability in partitioned systems is to rely on commutative actions. Commutative actions allow
temporary divergences among isolated components. Once the network partition disappears and connec-
tivity is resumed, those actions must be applied in all other components to reach convergence. But this
was not a new result; that fact was already explained in the first papers proposing replication protocols
for systems that could become partitioned, as [13], or that tried to improve their performance combining
commutativity with a multi-master approach and relaxing the total order of their updates. The latter was
already suggested by Alsberg and Day (1976) in pages 568-569 of [3].

Commutative actions still provide the key to answer our second question. In order to break the CAP
constraints we need some kinds of actions or consistency that admit continuity even when not all processes
in that system can be reached. If there were any consistency models allowing such behavior, they would be
CAP-relaxed. A hint to answer this question was provided by Attiya and Friedman in [4]. They identified
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“fast” consistency models: those that may complete both read and write actions faster than the network
delay; i.e., without contacting other processes. This means that the updates caused by a write action will be
known by the other replicas once the write has already returned control to its invoker. Intuitively, all non-
fast models (e.g., atomic, sequential, and some interpretations of the processor model) are strong enough
to be qualified as CAP-strong. However, cache consistency is fast (since there is at least one algorithm that
supports that model in a fast way [19]) and it cannot be maintained in two disjoint network components
providing a global cache-consistent image. So, fast models are a good step in the right direction, although
a weaker condition is still needed for characterizing CAP-relaxed models.

What we need is a condition that does not demand per-action convergence. It should admit that every
process goes on even when the network is partitioned. These models may be implemented with lazy
write propagation and they should provide a global image that complies with their consistency model even
when the network is partitioned. This additional requirement on consistency conditions may be named
“partitionable” and is defined as follows:

Definition 1. A consistency model is partitionable when its consistency requirements are still met when
writes being generated by processes may take an arbitrary long time to be propagated to (a subset of) the
other system processes.

Note that such an “arbitrary long time” is caused by network partitions. It will become shorter once
the network partition is repaired and all processes that belong to that system recover their connectivity.

If we centre our discussion in data-centric consistency models, Steinke and Nutt [30] state a few con-
sistency properties that are able to specify the regular models of this kind. Those properties are formally
specified in Appendix A.1 and they can be summarized as follows:

GPO (Global Process Order). There is a global agreement on the order of writes at each processor.
Writes from different processors may be freely interleaved by each reader.

GDO (Global Data Order). There is global agreement on the order of writes on each variable.

GWO (Global Write-read-write Order). There is a global agreement on the order of potentially causal-
related writes; i.e., write A globally precedes write B when the value written in A had been read by
process p before it wrote B.

GAO (Global Anti Order). There is a global agreement on the order of any two writes when a process
can prove that it read one before the other.

Steinke and Nutt [30] prove that: (1) GPO defines FIFO (or PRAM) [24] consistency, (2) GDO defines
cache [17] consistency, (3) GPO+GDO define a model slightly stronger than processor [17] consistency,
(4) GPO+GWO define causal [1] consistency, (5) GAO is stronger than GDO, and (6) GPO+GWO+GAO
define sequential [22] consistency.

Considering those facts, let us analyze which consistency properties are “fast” and “partitionable” (for-
mal justifications are given in Appendix A.2):

• GPO is fast and partitionable. It is based on the actions executed locally by each processor. When
those actions are writes, readers should see them in the order followed by their writer. No consensus
is needed: the order is set by each writer independently on the others. Moreover, there is no bound
on the time to propagate those writes to other processes. This prevents read actions from waiting for
messages from other processes. Those actions may be locally served without any problem.

Additionally, when a GPO-based system is partitioned, each disjoint component is able to go on
globally complying with all GPO constraints, since the writes generated by different processes may
be freely interleaved by readers. So, a reader may drop or delay for very long the updates generated
by processes placed in unreachable components.

• GWO is also fast and partitionable. If a process starts a write action, it does not need to wait for any
previous write propagation. Writes may be concurrent. Only previous writes that have been read by
the writer precede the current write A. In propagation-based consistency protocols, those preceding
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writes to other variables can be included in the propagation message for A. This prevents both read
and write actions from waiting for messages from other processes. Therefore, GWO is fast.

When a network partition arises, all writes applied in disjoint components can be considered concur-
rent according to the causal order that inspires the GWO property. Thus, receivers of those writes
may interleave them as they prefer. Therefore, the global image being provided still complies with
the GWO requirements and GWO is partitionable.

• GDO is fast but not partitionable. GDO defines a total order on the values written to each variable.
Setting a total order demands agreement among all per-variable writers. Although this is hard to
implement without synchronous communication in both readers and writers, some algorithms exist
that avoid that communication synchrony; e.g. [19].

In the algorithm from Jiménez et al. [19] all processes are arranged in a logical ring and a circular
turn is followed to pass the write-broadcast privilege. Read and write actions return immediately their
results and their control, respectively, but written values are not propagated yet. Instead, they are put
in an output writeset. If two or more write actions are applied on the same variable, only the last
one is maintained in that set. At a given moment, only one process S in the system has the broadcast
privilege. S takes its output writeset and broadcasts it to all other processes, clearing it then. When
that message is received, each other process R applies those writes onto R’s variables, unless any of
its local writes has been applied to the same variable. In that case, the locally written value will be
placed afterwards in the global order: since that local write had already returned control to the writer
and that value could have already been read, it does not make sense to accept the incoming past value.
The reception of that writeset propagation message implicitly yields the broadcast privilege to the
next process. With this, a global order of writes onto each variable is maintained and the algorithm
is still fast for both reads and writes. The main contribution of such algorithm is that it maintains
per-variable write-order global agreement relying on deferred write propagation.

On the other hand, when a network partition arises, if the different disjoint components freely go on,
there will not be any way of mixing their updates in a single global order. Because of this, GDO is
not partitionable.

• GAO is not fast. Let us argue on this. GAO imposes an order on every pair of write actions. Once
any of the processes in the system has seen the effects of a pair of writes in a given order, all the
remaining processes are compelled to observe the same order for those two writes. Let us assume
that we have two concurrent writes made by two different processes on two different variables. For
instance, at time t1, process p1 has applied action a. Action a consists in writing value 3 on variable
x. At time t2 > t1, but before the effects of action a are known by process p2, p2 applies action b.
Action b consists in writing value 2 on variable y. If the consistency model being assumed were fast,
both writes would return control to their respective writers before any write propagation message is
sent to other processes. This means that p1 accepts value 3 for variable x before accepting value 2
for y; i.e., in p1 those events are ordered as a < b. Concurrently, p2 accepts value 2 for variable y
before accepting value 3 for variable x; i.e., in p2 those events are ordered as b < a. Those two read
actions on the value written by the other process violate the GAO condition. Therefore, GAO is not
fast.

Thus, algorithms like the cache variant from [19] (that allow both write and read fast actions) cannot
be used for implementing GAO. Moreover, since GAO is not fast, it cannot be partitionable.

This implies that GPO+GDO (Steinke’s processor consistency) and GPO+GAO+GWO (sequential)
cannot be partitionable, since they are based on non-partitionable properties (GDO, GAO). With this, we
answer the second question from the introduction. There are several other CAP-strong models. Besides
atomic and sequential, processor (GPO+GDO) and cache (GDO) are also CAP-strong. GAO is also CAP-
strong, although it does not correspond to any of the traditional data-centric consistency models. On the
other hand, FIFO (GPO) and causal (GPO+GWO) are examples of CAP-relaxed models.

As a corollary, we define precisely what a CAP-strong consistency model is:

Property 1. A consistency model is CAP-strong when there is a global agreement on the order of writes
on each variable.
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The justification of that statement relies on the fact that Property 1 uses the definition of GDO [30].
This means that every reader process is able to see the same sequence of values on each variable. Therefore,
Property 1 is equivalent to the following statement: A consistency model is CAP-strong when it complies
with the GDO consistency property. This also means that: A consistency model is CAP-relaxed when it
does not comply with the GDO consistency property. We have shown that all models based on GDO are
CAP-strong.

4 Reformulating CAP
The original proofs of the CAP theorem were given in [16]. They assumed atomic consistency for the “C”
property of CAP. As explained in the previous section, a wider set of consistency models can be assumed.
Therefore, we propose the following theorem:

Theorem 1. It is impossible in the partially synchronous model to implement a read / write data object
that guarantees the following properties:

• Availability

• A global agreement on the order of writes to each variable1

in all executions.

Proof. We prove this by contradiction. Let us assume a system with at least two available processes p1 and
p2 that are managing a single replicated variable x with a global agreement on the order of writes. They
have applied a sequence of writes α onto x until there are communication problems and those processes
become placed in two disjoint components {C1, C2}. Since the system is still available, both processes
accept client requests and apply the corresponding writes onto x. Because of this, p1 (located in C1)
applies a new (non-empty) sequence of writes β onto x while p2 (located in C2) applies a different (non-
empty) sequence of writes γ to x. Since those components are isolated, none of the write propagations
attempted by the underlying consistency algorithm can reach the other component. Therefore, p1 observes
the α · β sequence of writes onto x while p2 observes the α · γ sequence. Since β 6= γ, this contradicts the
requirement of a global agreement on the order of writes to each variable.

5 Consequences
Theorem 1 extends the set of consistency models where the CAP constraints apply. Instead of being only
atomic consistency, several other models (linearizable, sequential, processor and cache) also participate
in the trade-off among consistency, availability and network partition tolerance. Eventual consistency has
been proposed as a means to break the CAP trade-off [32]. At a glance, eventual consistency seems to
be a very weak consistency model. However, it is not a regular consistency model but a liveness property
associated to data convergence. Indeed, the CAP-relaxed models identified in Section 3 are weaker than
eventual consistency, since they are not convergent per se.

CAP-relaxed models are a good basis to manage scalable partition-tolerant services when partitions
arise, since causal is the strongest model whose consistency can be guaranteed in a partitionable environ-
ment. This is a direct corollary of the CAP consistency borderline studied in Section 3, since the model
that can be obtained combining the GPO and GWO properties is the causal one (GPO+GWO). This fact
has been used in recent geo-replicated services proposals [2, 6, 5] in order to minimize the need of coordi-
nation among replicas, thus enhancing service scalability. Additionally, multiple old research works in the
area of scalable and partitionable services had based their implementations on causal consistency with lazy
propagation [13, 21]. Therefore, our paper provides a proof of correctness for what has been intuitively
used in the last 30 years.

1This second required property is equivalent to “GDO compliance” or “Cache consistency”, while the original proofs given by
Gilbert and Lynch [16] required “Atomic consistency”.
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Mahajan et al. (2011) [25] also proved that causal consistency may be supported in a partitionable
system, considering a different basis. However, they did not explore which consistency models define the
CAP-strong set of models nor which is the most relaxed CAP-strong model in order to settle a borderline
between CAP-strong and CAP-relaxed models. Note that cache and causal consistencies are not compa-
rable, since there are causal executions that are not cache, and there are also cache executions that are not
causal. So, stating that causal is the stronger model to be implemented in a partitionable environment does
not imply that the most relaxed model that cannot be implemented is the cache one.

Once connectivity is recovered in a system where a network partition had happened, some strategies
are needed to reach data convergence. FIFO and causal consistencies, being the models to use while the
network remains partitioned, provide a basis to reach eventual consistency. Again, our identified consis-
tency borderline is useful for justifying that some convergence proposals, like the causal+ one [2], have
taken the most appropriate basis to this end.

Both FIFO and causal consistencies are interconnectable [14] and easily scalable [12]. An intercon-
nectable consistency model is one that may be implemented using a different replication protocol in each
system subgroup, providing a basis to reach a global system image that still complies with that consistency
model. To this end, an interconnection protocol is needed. Cholvi et al. [10] have shown that causal and
FIFO consistencies may be interconnected using FIFO update propagation. Therefore, in both cases, when
a partition is healed, the updates applied in each subset may be easily merged following a FIFO propagation
principle in order to recover a global causal or FIFO consistency. If stronger semantics are needed, some
convergence strategies should be used in order to provide eventual consistency with either a causal or FIFO
basis.

Data-centric consistency models were defined assuming a distributed shared memory (DSM) system.
They assume that process actions are raw reads and writes to variables. CAP was specified for distributed
services that use replicated data elements. Those services usually provide an interface to their clients with
higher-level methods. Each one of those methods may include a long sequence of memory accesses instead
of a single read or write. So, apparently, some translation is needed from the traditional DSM semantics
to that of replicated objects with long operations. Fortunately, the CAP-relaxed models to be used in
partition-tolerant and available services maintain their guarantees in isolated executions; i.e., when each
process is temporarily isolated from the others. This means that the data updates being generated when an
object method is executed can be transferred lazily once such execution is completed. So, these consistency
models implicitly support the regular update spreading mechanisms used in state-propagation replication
protocols2. Therefore, the DSM to object replication translation does not need any action in CAP-relaxed
models. All CAP-strong models do not have this advantageous property. This is a direct corollary from
Theorem 1.

6 Conclusions
We have delved into the CAP specification and studied which classical consistency models are directly
affected by the CAP theorem. This study has shown that besides atomic consistency there are other models
(e.g., sequential, processor, cache,...) that cannot be ensured in available and partition-tolerant distributed
services, being cache consistency the most relaxed of those models. Therefore, the strongest consistency
to be supported by those services in case of network partitions is the causal one. Besides, causal consis-
tency may be complemented with state convergence mechanisms in order to ensure stronger semantics in
a partitionable system.

Causal consistency provides useful semantics that allow the development of distributed applications;
i.e., it is not a too relaxed model. However, if performance is still critical while a network partition occurs,
FIFO consistency may be also considered for achieving those maximal throughput levels.

2There are three main types of replication protocols depending on how state updates are managed: (i) invalidation (convenient
when the read/write ratio is low), (ii) state propagation (convenient when the read/write ratio is large), and (iii) operation propagation
(used in state-machine replication [29], when the processing effort required by each operation is low). Most implementations of
services with moderate consistency requirements [13, 18, 20, 21, 27, 28, 31] have a high read/write ratio and use state-propagation
protocols.
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[14] Antonio Fernández, Ernesto Jiménez, and Vicent Cholvi. On the interconnection of causal memory
systems. In 19th Annual ACM Symp on Princ of Distrib Comput (PODC), pages 163–170, Portland,
Oregon, USA, July 2000.

[15] Armando Fox and Eric A. Brewer. Harvest, yield and scalable tolerant systems. In 7th Workshop on
Hot Topics in Operating Systems (HotOS), pages 174–178, Rio Rico, Arizona, USA, March 1999.

[16] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[17] James R. Goodman. Cache consistency and sequential consistency. Technical report, Number 61,
IEEE Scalable Coherent Interface Working Group, March 1989.

7



[18] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers of replication and a
solution. In ACM SIGMOD International Conference on Management of Data (SIGMOD), pages
173–182, Montreal, Quebec, Canada, 1996.
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A.1 Specification of Consistency Properties
To begin with, some definitions are needed.

Definition A.1 (Execution). An execution is a set of processes P , a set of replicated variables V , a set of
actions A, and two partial orders on A: process order (<PO) and writes-to order (7→).

Definition A.2 (Memory action). A memory action is a 4-tuple (ac,i,x,v) where ac ∈ A is r for a read and
w for a write, i ∈ P is the process submitting that action, x ∈ V is the variable to which the operation
is applied, and v is a valid value for variable x. In this context, a read means only that a write made by
any other process is received and applied to the copy of x being maintained by process i. The following
functions are also defined:

action((ac,i,x,v))=ac
process((ac,i,x,v))=i
variable((ac,i,x,v))=x

value((ac,i,x,v))=v

Definition A.3 (Local order). Local order for a process i, <i, is a relation such that:
(∀aj ,ak∈(∗,i,∗,∗)aj < ak ⊕ ak < aj) ∧ (∀x∈V,a∈(∗,i,∗,∗)(w, ε, x,⊥) <i a)

where ε is a special symbol that does not denote any process and⊥ is a special value that cannot by written
by any process. With this, (w, ε, x ⊥) is the initial write of x.

Definition A.4 (Process order). Process order, <PO, is the order in which actions are submitted by each
process, i.e.,

<PO≡ ∪i∈P <i

Definition A.5 (Writes-to order). Writes-to order, 7→, defines which write is read by each read, i.e.,
∀a∈(r,∗,∗,∗)∃i∈P (w, i, variable(a), value(a)) 7→ a

Definition A.6 (Data order). Two actions are ordered by data order, a1 <DO a2, iff variable(a1) =
variable(a2) and either

1. a1 <PO a2, or

2. a1 7→ a2, or

3. ∃a∈(r,∗,∗,∗)variable(a) = variable(a1) ∧ value(a) 6= value(a1) ∧ a1 <PO a ∧ a2 7→ a, or

4. There exists an operation a, such that a1 <DO a <DO a2.

Definition A.7 (Write-read-write order). Two actions are ordered by write-read-write order, a1 <WO a2,
iff there exists a read r such that a1 7→ r <PO a2.

Definition A.8 (Serial order). A serial order,<SO, is a minimal set of edges that enforces that ∀w,r∈A such
that w and r are to the same variable and do not have the same value either w <SO w′ 7→ r or r <SO w.

Definition A.9 (Anti-order). Given a serial order, <SO, ∀w1,w2∈Aw1 <AO w2 iff ∃r1, r2 ∈ A such that:

1. w1 7→ r1 <PO r2 <DO w2, or

2. w1 7→ r1 <PO r2 <SO w2, or

3. w1 7→ r1 <SO w2, or

4. w1 <PO r1 <DO w2, or

5. w1 <PO r1 <SO w2.

Definition A.10 (Serial view). A serial view is a total order on a subset of the actions in an execution that
represents one process’ view of the order in which those actions took place in memory. In a serial view,
each read must read from its most recent write to the same variable.
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Taking these definitions as a base, we may specify the four consistency properties as follows:

Definition A.11 (GPO). An execution follows global process order (GPO) iff
∀i∈P∃SerialV iew(<PO| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Definition A.12 (GDO). An execution follows global data order (GDO) iff
∀i∈P∃SerialV iew(<i ∪ <DO| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Definition A.13 (GWO). An execution follows global write-read-write order (GWO) iff
∀i∈P∃SerialV iew(<i ∪ <WO| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Definition A.14 (GAO). An execution follows global anti-order (GAO) iff ∃ <SO such that
∀i∈P∃SerialV iew(<i ∪ <SO ∪ <AO(<SO)| (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

A.2 Justification of Which Properties Are Partitionable
Let us justify whether GPO, GDO, GWO and GAO are partitionable or not.

Lemma A.1. GPO is partitionable.

Proof. We prove this by contradiction. Let us assume that GPO is not partitionable. This means that when
a network partition occurs, two processes pi, pj ∈ P that reside in different network components C1, C2

generate local executions whose global view does not comply with the requirements of GPO. In those
executions one of those two processes, let assume pi, has seen a1 = (r, i, x, v1) <i a2 = (r, i, y, v2) while
in pj the events that originated those reads have happened in the reverse order b2 = (w, j, y, v2) <j b1 =
(w, j, x, v1).

Let us assume that the network partition happened at time t1 and that such partition is healed at time
t2 > t1. Let us analyze when those four events may have happened:

• All events happened before t1. This is impossible, since before being partitioned this system com-
plied with GPO and this implies that if a1 <i a2 then b1 <j b2, according to Definition A.11.

• All events happened after t1 and before t2. If pi and pj are in different network components this
is impossible, since the network partition avoids that the writes from pj reach pi. Because of this,
the local execution in pi still complies with GPO on what it refers to the writes from pj , since both
processes complied with GPO before t1. So, we reach again a contradiction.

• Events b2 and b1 had happened after t1 and before t2 and events a1 and a2 have happened after t2.
This is, again, impossible. Once the network partition is healed and communication between C1

and C2 is resumed, the consistency protocol being used for ensuring GPO propagates the updates
generated in events b2 and b1 in FIFO order to all other network components. This means that pi
receives those updates in order a2 <i a1. So, we reach a contradiction.

• Any other combinations may be subsumed in the previous cases or clearly break Definition A.10.

This proves the lemma.

Lemma A.2. GDO is not partitionable.

Proof. The proof given in Theorem 1 also proves this lemma.

Lemma A.3. GWO is partitionable.

Proof. We prove this by contradiction. Let us assume that GWO is not partitionable. This means that when
a network partition arises two processes pi, pj ∈ P that reside in different network components C1, C2

generate local executions whose global view does not comply with the requirements of GWO. In those
local executions one of those two processes, let assume pi, has seen a1 = (r, i, x, v1) <i a2 = (r, i, y, v2)
while in pj the events that originated those reads have happened in the reverse order b2 = (w, k, y, v2) 7→
br = (r, j, y, v2) <j b1 = (w, j, x, v1).

Let us assume that the network partition happened at time t1 and that such partition is healed at time
t2 > t1. Let us analyze when those four events (a1, a2, b2, b1) may have happened:
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• All events happened before t1. Before being partitioned this system complied with GWO. This
implies that if a1 <i a2 then b1 7→ br′ <k b2, according to Definitions A.13 and A.7, contradicting
the assumption.

• All events happened after t1 and before t2. If pi and pj are in different network components this is
impossible, since the network partition avoids that the writes from pj reach pi. Because of this, the
local execution in pi is a GWO-compliant prefix on what it refers to the writes from pj , since both
processes complied with GWO before t1. Process pi has not seen any of those writes in a sequence
that violates the <WO order (nor in any other, actually). So, we reach again a contradiction.

• Events b2 and b1 had happened after t1 and before t2 and events a1 and a2 have happened after t2.
This is, again, impossible. Once the network partition is healed and communication between C1

and C2 is resumed, the consistency protocol being used for ensuring GWO propagates the updates
generated in events b2 and b1 in causal order to all other network components. This means that pi
receives those updates in order a2 <i a1. So, we reach a contradiction.

• Any other combinations may be subsumed in the previous cases or clearly break Definition A.10.

This proves the lemma.

Lemma A.4. GAO is not partitionable.

Proof. This is derived from the fact that GAO is a stronger property than GDO. This means that all GAO
executions comply with the GDO requirements. Since no GDO execution is partitionable, then no GAO
execution will be.
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