
Transaction Abort Rate Reduction with

Prioritized Atomic Multicast Protocols
Emili Miedes and Francesc D. Muñoz-Escóı

Instituto Tecnoĺogico de Inforḿatica
Universitat Polit̀ecnica de Val̀encia

Valencia, SPAIN

{emiedes,fmunyoz}@iti.upv.es

Technical Report ITI-SIDI-2012/008

E
m

ili
M

ie
de

se
ta

l.:
T
ra

n
sa

ct
io

n
A

b
o

rt
R

a
te

R
e

d
u

ct
io

n
w

ith
P

ri
o

ri
tiz

e
d

A
to

m
ic

M
u

lti
ca

st
P

ro
to

co
ls

IT
I-

S
ID

I-
20

12
/0

08

Transaction Abort Rate Reduction with Prioritized Atomic
Multicast Protocols

Emili Miedes and Francesc D. Muñoz-Escóı

Instituto Tecnoĺogico de Inforḿatica
Universitat Polit̀ecnica de Val̀encia

Valencia, SPAIN

Technical Report ITI-SIDI-2012/008

e-mail:{emiedes,fmunyoz}@iti.upv.es

July 5, 2012

Abstract
Prioritized atomic multicast is a variant of the well-known atomic multicast problem that consists

in delivering messages according to the total order guarantee while ensuring that the priorities of the
messages are considered, this is, messages with higher priorities are delivered first. That service can be
used in multiple applications. This paper shows that prioritized atomic multicastprotocols may reduce
the transaction abort rates in applications that use a replicated database system. Such reduction depends
on the message sending rate.

1 Introduction

An atomic multicastmessage delivery protocol, also known astotal order protocol is a basic group com-
munication building block that can be used to design and build complex distributed applications. Such a
protocol enables an application to send messages to a set of nodes such that they are delivered in the same
order by each node. Atomic multicast has been studied for more than thirty years, during which a large
amount of results has been produced [2, 3]. Some of these services offer an additional feature that enables
users to prioritize the delivery of certain messages over others [15, 14, 13].

Our research group has also produced some results [8, 10, 9, 11, 7] related to prioritized atomic multi-
cast, that are briefly described in Section 2. Specifically, in [10] an experimental study shows the effective-
ness of theprioritization techniquesproposed in [8], reducing the abort rates of transactions being served
by a replicated database system whose schema had different integrity constraints. To this end, our system
prioritized the delivery of writesets belonging to transactions that do not violate such constraints. In this
paper a complementary experimental study is performed to analyze the impact that the sending rate has on
thebehaviorof the prioritization techniques.

The rest of the paper is structured as follows. Section 2 reviews our previous work regarding prioriti-
zation. Section 3 describes the system model being assumed.Section 4 presents the experimental study
that has been performed to analyze the impact the sending rate has in the evaluation of the application
constraints. The paper is concluded in Section 5.

2 Prioritized Atomic Multicast

Starting from the review of total order protocols given in [3], several ways totransforma regular atomic
multicast protocol into aprioritized one were identified in [8]. This generated a basic set ofprioritization
techniques.

1

An analysis of the effectiveness of these techniques was given in [10]. That paper shows that a priori-
tized atomic multicast protocol may reduce the overall transaction abort rate when the underlying database
manages integrity constraints. To this end, a proper assignment of the priorities of the messages that prop-
agate the transaction writesets can minimize the number of transactions that violate those constraints.

A second experimental study was presented in [9], assessinghow expensivethese techniques are. To
this end, different regular total order protocols and theircorresponding prioritized versions were compared,
measuring the overhead imposed by these techniques in termsof processor time and main memory. The
results showed that prioritization techniques do not impose significant overheads.

Finally, a switching infrastructure was designed [11] and evaluated [7], allowing the dynamic (i.e.,
at run-time) exchange of total-order multicast protocols (either prioritized or not). Thus, an application
may choose at any time which is the most appropriate protocolto be used according to the current system
state (amount of concurrent senders, sending rate, target delivery time, ...). The study also proved that the
switching mechanism does not block nor slow down the flow of messages delivered to the application.

3 System Model

The system considered is composed of a set of physical nodes.In each node, a process is run. Processes
communicate through message passing by means of afair lossy channel(i.e., a channel that may lose
some messages, but not all the messages; moreover, it does not produce new spurious messages, does not
duplicate messages, and does not change their contents).

Each node has a multilayer structure. The user level is represented by a distributed client application
that uses the services offered by a group communication system (GCS), that is composed of one or more
group communication protocols (GCP). The GCP providing atomic multicast is placed on top of a reliable
message transport.

The system is partially synchronous [4]. Although several definitions exist on partial synchrony, it
is considered that on the one hand, processes run on different physical nodes and the drift between two
different processors is not known. On the other hand, the time needed to transmit a message from one node
to another is bounded but the bound is not known. In practice,the system does not need more synchrony
than that offered by a conventional network which offers a reasonably bounded message delivery time.

Processes can fail due to several reasons (for instance, hardware failures, software bugs or human
misoperation). Processes are also subject to network failures that keep them from sending or receiving
messages. Network partitions may also occur. Nevertheless, since this work focuses on prioritization
techniques, these issues will not be addressed here since prioritization is unrelated to fault managing. An
implementation of these techniques may rely on some mechanisms (like failure detectors, membership
services, message stability criteria, etc.) regularly used by the GCS in order to deal with failures.

4 Experimental Study

This section presents the experimental work that has been done in order to analyze the impact the send-
ing rate has on the evaluation of the application constraints. First, the testbed, the parameters and the
methodology are described. Then, the results are explained.

4.1 Testbed

The study uses a test application that relies on the servicesof a total order protocol which uses a reliable
transport layer that was implemented on top of the JBoss Netty 3.2.4 networking library [5]. Netty is
a library that offers asynchronous event-driven abstractions for using I/O resources. Netty allowed us
to build a reliable, stream oriented, TCP-like message transport layer used by the group communication
protocols to unicast and broadcast messages.

The experiments have been conducted in a system of four nodeswith an Intel Pentium D 925 processor
at 3.0 GHz and 2 GB of RAM, running Debian GNU/Linux 4.0 and SunJDK 1.5.0. The nodes are con-

2

nected by means of a 22-port 100/1000Mbps DLINK DGS-11224T switch that keeps the nodes isolated
from any other node, so no other network traffic can influence the results.

4.2 Test Application

The BalanceTest2 test application being used for these tests is very similar to theBalanceTest
application developed in [10]. It simulates a system that keeps track of the overall amount of money being
processed by all investment brokers of a stock trade enterprise. Each broker runs its own instance of the
application, operating on the stock exchange on behalf of the stock owners and a potentially large number
of investors.

When a broker performs some operation, the application attempts to apply the requested updates to the
global balance. If the operation implies the purchase of shares, the application checks whether it can be
performed, considering the price of the purchase and the current global balance. The application rejects an
operation when the price of the purchase exceeds the global balance.

As there are several brokers working at various sites buyingand selling shares concurrently, the global
balance is incessantly updated. In order to ensure that the current value of the global balance is consistent
among all nodes of the application, a total order protocol isneeded. It is used by all nodes to multicast the
updates so that all brokers see the same sequence of operations and apply the same sequence of updates to
the global balance. That way, consistency among all nodes ateach moment is achieved.

Each node creates and broadcasts a number of messages, each one representing a stock trading op-
eration that may update the current balance. Each update carries an integer value. Positive and negative
values represent selling and buying operations of stock trading, respectively. The values range from -1500
to 1000. The actual value assigned to each message is generated at random.

All messages are multicast to all nodes using a total order protocol, so all messages are delivered by
all nodes in the same order. Nodes apply messages in their delivery order. To apply a message means to
update the local copy of the global balance, as kept by each node.

Each message carries a second integer value which represents its priority. In real-life stock trading,
these priorities are determined by considering a large number of factors, such as the market situation,
recent evolutions of shares, some long-term trends, risk analyses, expected benefits, etc. To simplify the
test process, the priority of each operation is uniquely determined by its type (purchase or sale), as follows.
Given the valuev of an operation, its priorityp is computed asp = 1000 − v. Thus, a sale update of the
global balance with a value of 1000 obtains the priority value 0, and a purchase update with a value of -
1500 obtains priority 2500. Since priority management in the modified total order protocols is implemented
according to alower value = higher priorityrule, the priority of the first update is higher than that of the
second one. So, positive updates (from sales) are prioritized over negative updates (from purchases).

This system implemented an integrity constraint for discarding updates that would overdraw the bal-
ance. For each negative update request, the presumptive newbalance is computed. If it is greater or equal to
zero, then the update is applied. Otherwise, the update is discarded. Thus, the global balance is prevented
from ever being in the red.

4.3 Test Methodology

The expected behavior of aBalanceTest2 execution is different for the conventional and the prioritized
protocol versions. For the former, the nodes apply approximately 2/5 of positive (sale) updates and 3/5 of
negative (purchase) updates. For the latter (prioritized)version, positive updates (i.e., sales transactions)
are prioritized, as already stated. This means that the balance is more likely to increase than to decrease,
thus less purchase transactions will be discarded.

To test the proposed prioritization techniques, differentprotocols are compared. For each protocol, the
sending rate at which each node broadcasts messages is varied, as discussed in Section 4.4. For each case,
BalanceTest2 is executed, recording the number of updates each node discarded. Then, the percentage
of messages that a node has discarded is computed.

For obtaining reliable results, each execution ofBalanceTest2 has been repeated a statistically
relevant number of times; i.e., until the standard deviation was lower than 1.5% of the mean.

3

4.4 Parameters

This section describes the values of the test parameters. First, a group offixedparameters is presented,
whose values are the same for all tests, and then a group ofvariableparameters.

EachBalanceTest2 instance is run in a physical node. Each instance creates a sequence of mes-
sages, as described above, and sends them by a rate that is constant during all the test. Each instance is
configured to receive 10000 messages. Each message is taggedwith a priority value ranging between -1500
and 1000, as explained above. The initial balance value is set to 0.

The variable parameters are the protocol type and the sending rate.
Three non-prioritized total order protocols and a prioritized version for each have been compared. The

UB protocol is an implementation of the UB sequencer-based total order algorithm proposed by [6]. UB
stands forUnicast-Broadcast. TheTRprotocol implements a token ring-based algorithm, inspired in to the
ones of [12] and [1]. Finally, theCH protocol is an implementation of the causal history algorithm from
[3]. The corresponding prioritized versions areUB PRIO, TR PRIOandCH PRIO.

These tests have been executed using different sending rates: 40, 60, 80, 120 and 140 messages sent
per second and per node.

4.5 Results

For each set of executions of a test with a given protocol and sending rate, a mean percentage of discarded
messages and the standard deviationof those percentagesare collected.

Themean percentagesare shown in Figure 1 and depicted in Figure 2 while thestandard deviation of
the percentagesis shown in Figure 3.

UB UB PRIO TR TR PRIO CH CH PRIO
40 25.93 25.80 26.21 26.45 26.41 26.07
60 25.78 25.34 26.06 25.89 25.67 25.30
80 25.72 24.93 25.94 25.73 25.89 25.15
120 25.56 24.65 25.73 24.90 25.87 25.17
140 25.85 24.28 25.61 24.60 25.95 24.56

Figure 1: Percentages of discarded messages (means)

4.6 Discussion

The results presented in Figures 1, 2 and 3 show that the sending rate has an impact on the evaluation of
the integrity constraints defined in the test application.

At a glance, it can be seen that the percentage of discarded messages decreases as the sending rate
increases. When the sending rate is low, all the protocols cantotal order the messages very quickly. For
instance, inUB andUB PRIO, the incoming messages are received by the sequencer and sequenced im-
mediately. This means thatUB PRIOhas no chance to reorder the incoming messages according to their
priorities. A similar situation happens inTR PRIO andCH PRIO. As the sending rate increases, more
and more messages are queued in theincomingdata structures and the prioritized protocols have a higher
chance to reorder messages. This means that positive updatemessages have the chance to advance other
negative update messages and therefore, the shared balancehas a higher chance to have a value able to
accept such negative updates when they are finally delivered.

5 Conclusion

In distributed systems that use replicated databases whereintegrity constraints are defined, prioritized
atomic multicast protocols may be used in orderto reduce the transaction abort rate. The experimen-
tal study performed in [10] showed that this goal is feasible.

4

 24

 24.5

 25

 25.5

 26

 26.5

 40 60 80 100 120 140

P
er

ce
nt

ag
e

of
 d

is
ca

rd
ed

 m
es

sa
ge

s

Sending rate (msg/s and node)

UB
UB_PRIO

TR
TR_PRIO

CH
CH_PRIO

Figure 2: Percentages of discarded messages (means)

UB UB PRIO TR TR PRIO CH CH PRIO
40 0.23 0.36 0.36 0.19 0.39 0.39
60 0.22 0.28 0.21 0.35 0.13 0.21
80 0.06 0.24 0.25 0.21 0.21 0.09
120 0.10 0.30 0.11 0.21 0.22 0.16
140 0.22 0.21 0.13 0.17 0.32 0.32

Figure 3: Percentages of discarded messages (standard deviations)

The reordering achieved by these prioritization protocolsstrongly depends on the overall length of the
message queue being used by the prioritizing component of such protocols. That length directly depends
on the message sending rate being supported. The results presented in this paper have shown that an
improvement of 5% is achievable (abort rate values of 0.258 vs 0.245) at 560 msg/sec when the non-
prioritized and prioritized variants are compared. Note that prioritization does not introduce any advantage
at low sending rates (i.e., with global values below 40 msg/sec) and that this 5% improvement is a direct
consequence of the higher sending rates and their effects onthe reordering queue length.

At low sending rates other complementary approaches are needed in order to guarantee a minimal
length in the reordering queue being used by the prioritizing component of the atomic multicast protocol.
One option is to temporarily block message broadcasting until the sending queue is large enough (in the
privilege-based or sequencer-based multicast protocols)or to temporarily block delivery in the receiving
queue (in the causal-history protocols), but such approaches will increase the message propagation and
delivery time being perceived by the application users.

References

[1] Yair Amir, Claudiu Danilov, and Jonathan Robert Stanton. A low latency, loss tolerant architecture
and protocol for wide area group communication. InIntnl. Conf. on Depend. Syst. and Netw. (DSN),

5

pages 327–336, Washington, DC, USA, 2000. IEEE-CS.

[2] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a com-
prehensive study.ACM Comput. Surv., 33(4):427–469, 2001.

[3] Xavier Défago, Andŕe Schiper, and Ṕeter Urb́an. Total order broadcast and multicast algorithms:
Taxonomy and survey.ACM Comput. Surv., 36(4):372–421, 2004.

[4] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On theminimal synchronism needed for dis-
tributed consensus.J. ACM, 34(1):77–97, January 1987.

[5] JBoss. JBoss Netty, 2012. http://www.jboss.org/netty.

[6] M. Frans Kaashoek and Andrew S. Tanenbaum. An evaluationof the Amoeba group communication
system. InIntnl. Conf. on Distrib. Comput. Syst. (ICDCS), pages 436–448, Washington, DC, USA,
1996. IEEE-CS.

[7] Emili Miedes. Prioritized Atomic Multicast Protocols. PhD thesis, Departamento de Sistemas In-
formáticos y Computación, Universitat Polit̀ecnica de Val̀encia, 2012.

[8] Emili Miedes and Francesc D. Muñoz-Escóı. Managing Priorities in Atomic Multicast Protocols. In
Intnl. Conf. on Avail., Reliab. and Security (ARES), pages 514–519, Barcelona, Spain, March 2008.

[9] Emili Miedes and Francesc D. Muñoz-Escóı. On the cost of prioritized atomic multicast protocols.
In Intnl. Symp. on Distrib. Obj., Middleware and Appl. (DOA), volume 5870 ofLect. Notes Comput.
Sc., pages 585–599. Springer, Vilamoura, Portugal, November 2009.

[10] Emili Miedes, Francesc D. Mũnoz-Escóı, and Hendrik Decker. Reducing Transaction Abort Rates
with Prioritized Atomic Multicast Protocols. InIntnl. Euro. Conf. on Paral. and Distrib. Comput.
(Euro-Par), volume 5168 ofLect. Notes Comput. Sc., pages 394–403. Springer, Las Palmas de Gran
Canaria, Spain, August 2008.

[11] Emili Miedes and Francesc D. Muñoz-Escóı. Dynamic switching of total-order broadcast protocols.
In Intnl. Conf. on Paral. and Distrib. Proces. Tech. and Appl. (PDPTA), pages 457–463, Las Vegas,
Nevada, USA, July 2010. CSREA Press.

[12] Louise E. Moser, P. Michael Melliar-Smith, Deborah A. Agarwal, R.K. Budhia, and C.A. Lingley-
Papadopoulos. Totem: a fault-tolerant multicast group communication system.Commun. ACM,
39(4):54–63, April 1996.

[13] Akihito Nakamura and Makoto Takizawa. Priority-basedtotal and semi-total ordering broadcast
protocols. InIntnl. Conf. on Distrib. Comput. Syst. (ICDCS), pages 178–185, Yokohama, Japan, June
1992.

[14] Luı́s Rodrigues, Paulo Verı́ssimo, and Antonio Casimiro. Priority-based totally ordered multicast. In
Wshop. on Alg. and Arch. for Real-Time Control (AARTC), Ostend, Belgium, May 1995.

[15] Alan Tully and Santosh K. Shrivastava. Preventing state divergence in replicated distributed programs.
In Intnl. Symp. on Reliab. Distrib. Syst. (SRDS), pages 104–113, Huntsville, Alabama, USA, oct 1990.

6

