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Abstract

Current cloud platforms are based on two mainstream models: Infcaste as a Service (laaS) and
Platform as a Service (PaaS). Both approaches entail strengths akigesses that we collect and present
in this paper and we conclude the need to devise a new approach, bagegbical models, to overcome
the imposed limitations. This model driven approach is introduced andlglidgscribed, highlighting
the importance of a comprehensive scalable modeling language aadeuing new research lines for
designing self-manageable cloud platforms.

1 Introduction

Current cloud platforms are based on two mainstream motiglsistructure as a Service (laaS) and Plat-
form as a Service (PaaS) [23], [10], [17] . Both approacheailestrengths and weaknesses that we will
try to collect and present in the following paragraphs.

The laaS model [2] is aimed at professionals with system aidtnation skills since the provider does
typically supply a set of services for managing virtual maek and virtual networks. Defining machine
settings, operating system configurations and networkitathre is the users’ responsibility, and requires
expertise in all these domains. Deploying an applicatiothis scenario is not an easy task either, since
each application component must be distributed to the comachine, installed and started, and the whole
process must be correctly orchestrated to have the oveplication properly working. Furthermore,
managing application scaling usually involves develogiame additional software to measure and detect
heavy traffic conditions and scaling out some key applicatmmponents. Lately some cloud offers include
tools for automatically detecting these conditions andirsga@ut without user intervention.

On the other hand, the PaaS model [11], [3] hides all the abw@ioned complexities and provides
a consistent high level software platform for developinglable applications. The intricate details of con-
figuring the underlying layers, connecting components ardemand scaling are automatically managed
by the platform and covered by a collection of APIs which jdevhigh level constructs to assist in the
application development. This approach typically impasepecific programming language, and usually a
new application model must be followed, forcing the develdp organize the application components in
certain way. Consequently legacy systems are difficult graté to the new platform, since re-engineering
processes are required. Moreover, this model typicallyses on the development of new management
applications, resulting useless in systems-orientedisokiwhere the different components are intercon-
nected network servers, as in a corporate network.

Therefore, no approach is suitable for every case, and eahas its specific shortcomings. laaS is
adequate for legacy systems or system-oriented applicsaimvided that the user has deep understanding



of systems administration and assuming some semi-autdreesding procedures. Conversely, PaaS is ap-
propriate for new business applications tailored for aipaldr programming platform where all scalability
aspects and much of the application configuration is auticaiit carried out by the platform.

To summarize, laaS is more open and versatile, in exchamgefia management effort, while PaaS
is more closed and limited, but it automates nearly any daspfethe platform, letting the developer to
focus on the real application development, which will bexrcably bound to the platform on which it was
developed.

In this paper we try to conciliate both worlds, promising titain the same versatility and platform
independence as laasS solutions, and reaching automatiels lery similar to the PaaS counterparts. To
this end, we devise a new approach that merges the best thistics of both solutions, and assists the
developer with graphical models, inspired by the Model Bni\Engineering (MDE) principle. Besides
helping in the specification steps, our methodology will bledo automatize application deployment and
to build scalable self-administering (i.e., autonomouymgligations.

The rest of the paper is organized as follows: section 2 ptesmr model driven approach and intro-
duces an overview of the overall methodology. Section 3udises a key element in this methodology, the
language used for modeling scalable applications. Wedistesof its most important characteristics and
we show a preview of a platform-independent language whiaki meet such characteristics. Section 4
suggests some issues which should be solved in order to ciséesiguage in a concrete environment. Sec-
tion 5 outlines the most important features that a platfanousd provide in order to support the presented
methodology. Finally, conclusions of this work are presdrit section 6.

2 Modéd Driven Approach

As it is known, a software product can become a very compleatare, so much so that thousands of
developers may be involved in the construction of a singtegbype. To address such a hard job we need
very powerful tools and well defined procedures. The So#viargineering discipline [9] emerged to give
solution to these problems. It defines a set of best praciicdspecifies a concrete sequence of steps that
any application development process should go throughderaio guarantee a minimum quality level.
This process can be roughly broken into the conceptuatizgthase and the implementation phase. The
first stage involves modeling any aspect of the applicatiociuding static and dynamic characteristics,
so that the designer can define with great detail the entipdicagion in advance, before initiating the
implementation tasks. To this end the designer needs agstnmleling language, capable of capturing
any software property. Most of the times, the chosen langigthe Object Management Group’s Unified
Modeling Language (UML) [22], [6].

Nowadays any serious software project begins with a roleggtirements specification and a complete
collection of models describing in detail the structure &etiavior of the software. The latest software
development methodologies take advantage of this apprtecéhg as input the software models and trying
to automatize the next part of the process, that is to saysaftevare construction. This methodology
is coined as Model Driven Engineering [13], [20] and the @bjglanagement Group’s Model Driven
Architecture (MDA) [18], [15] is one of the best known initikges in this field. In MDA the designer defines
a Platform Independent Model (PIM) by using UML, which déses the architecture and functionality
of the software, including action semantics. This modelasbound to any specific platform, rather it
describes in an abstract way all aspects of the modeled a&twi hen the PIM is translated into one or
more Platform Specific Models (PSMs), which are models tedyéo specific technological platforms.
PSMs are finally translated into executable code. Trawslatbetween models are considered as model
transformations, and a language called Query, Views, Toamsitions (QVT) [19] is provided for defining
such mappings.

Working with abstract models has a number of advantagesn¢tlels allow engineers to reason about
the relevant application properties, ignoring minor dstasually linked to specific platforms, (2) they
increase productivity, since developers work with higteldanguages and concepts they are comfortable
with, avoiding low level and error-prone details, and mgkéasy communication between engineers, and
(3) they provide platform-independence, portability anass-platform interoperability, due to the abstract
nature of the model, which avoids any binding with a particglatform, and increases the lifespan of the



solution.

Our aim is to follow the presented model driven approach &sighing and deploying scalable archi-
tectures on a cloud platform. The user captures every aspéut application architecture in the model,
specially the scalability features. The platform is resole for everything else, including distribution,
deployment, execution, monitorizing, on-demand scaléig, The application just works. In this sense,
the application model is some sort of executable specificatiTo the best of our knowledge, today no
cloud platform requires the specification of an abstractehodorder to deploy a complete solution, or at
least not in the sense we are proposing in this paper.

In Figure 1 we illustrate this methodology. The softwarehétect defines the application model along
with the application bits. Both elements may be packagedsngne bundle that will be called executable
model. The executable model is then injected into the platfoThe platform analyzes the model and
creates a plan for deploying the different parts of the a@gfitbn on the appropriate physical machines,
according to the application properties described in theehoThis plan introduces several advantages:
(1) application deployment can be fully automatized, (2)plan is able to devise a components monitoring
scheme, making possible a fast reaction of the platformaautdé application components when different
events occur (workload variations, component failures), @nd (3) either the plan or the model may hold
different rules that allow the implementation of self-mged components.
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Figure 1: Model driven methodology.

3 Scalable Component Language

The key component of the methodology advocated in this dectins the language used to model the
scalable application. To keep the language platform-ieddpnt it should not focus on intracomponent
details, rather it should be positioned at the architetiaxel, being able to define abstract components
and connections between those components. Furthermeidaniuage must be expressive enough to catch
all the scalability properties related with the applicattmmponents. The minimum and maximum number
of instances of one component, or the circumstances undehvle component gets replicated are some
examples of scalability features.

Therefore we must find a modeling language which meets theeatm@ntioned requirements. Litera-
ture searches have only given a fairly good result whichdbomatches our expectations. It is the UML
component and deployment diagram defined by OMG, which taitge definition of an application at the
architectural level. This model is comprehensive enoughlédining abstract components and connections
between components, but unfortunately the resulting diagrdo not collect characteristics related with
scalability. Trying to capture these properties in the nmhdglarduous and confusing, since the language
was not designed for that purpose.

For example, in a component diagram there is no way to spétifya component may replicate in
n instances, or that the set of instances may grow or shrittkiméome limits and under certain circum-
stances. Also, connecting scalable components, whicmébhre may expand in many instances, can not



be solved with simple interface connections. Rather, cempbnnection elements should be considered,
such as load balancers, proxies, etc.

For the above reasons, we believe that a new modeling laeguagt be designed. The language
must be rich enough to describe the individual componentmnygfdistributed application, as well as its
connections. Regarding scalability, the language mustigeeca means for defining when, where and how
many replications of each component may take place. Alsolaifiguage must supply tools for accurately
specifying different types of connections between comptseconsidering the multi-valued nature of
such relationships in scalable architectures. Anothelrtgaechieve is to design a language which software
architects feel comfortable with.

To attain the discussed objectives the most suitable apprio&olves taking features from a widely
spread modeling language - with similar purposes - and r@dgfsome of its graphical components and
introducing some new ones. We are currently working on tHaitien of such a modeling language,
though some extra work is needed to have a precise spedificati

In Figure 2 we present a diagram written with such hypothéticodeling language, and we present
some of the challenges the language will need to face to gyogesign scalable architectures. The dia-
gram closely resembles the UML component and deploymegtatia, facilitating its understanding and
reducing the learning curve required by software archéte€he example depicts an elaborated business
application, which is composed of four connected companensimple HTTP front end which forwards
requests to the next component, a web application implantetiie application GUI, a business applica-
tion containing the application logic and a back end SQL laada server. Each component may expose a
public interface, represented by the familiar ball symbol.
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HTTPR HTTP RPC o SQL saL
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Figure 2: Application model example.

The first three components are scalable, that is, there magJeal instances at runtime. It is repre-
sented by a multiple box. The minimum and maximum number sthimces of each component is defined
at the bottom right corner. For example, at execution time @nmore instances of the web application
may be concurrently running.

In a real environment, each component runs within a conesateution environment, which provides
some facilities and imposes some requirements to the eredemanponent. The execution environment is
represented by a 3D box which surrounds the component. lex@du@ple, the web application component
must run inside a web application server, whereas the basaggplication requires an application server to
successfully run.

Each component can define scalability properties, whiclerd®s how the component instance set
should grow and shrink at runtime. This feature is specifiesidie a< scalabilitys>> compartment in the
component. In the example, the web application componentldipe replicated when the average proces-
sor consumption of all its instances reaches the 90%. Similahen the average processor utilization of
all instances reaches the 30%, some instances should beydest

Each component requires specific resources, such as ppoeegsmemory, to successfully run. This
aspect is defined inside &resources> compartment in the component. In the example, the business
application component requires a 2GHz processor and 4GBaof memory to run.

Finally, components must be able to connect, in such a waptieacomponent consumes the interfaces
published by other components. Connections do not entgipasblem in 1 to 1 runtime scenarios, that
is to say, when one instance of a component connects to arsitigge instance of a second component.
Troubles arise when considering contexts with multi-vdl@eennections, in other words, when one or



more instances of a component connect to one or more instari@nother component. In such cases,
we consider two types of connections: anonymous connectod named connections. The first type of
connection, represented by a socket-like connector, asaieection between the front end and the web
application components in the example, does forward reguesm the client to either of the different
server instances, without knowing the real identity of thual replying server. This type of connection
could be easily implemented by a load balancer element.rin tunamed connection, represented by an
arrow, like the connection between the web application #edbusiness application components in the
example, describes a connection where the client knowkseaberver instance identities at all times, being
able to choose the most appropriate instance to serve ilgses)

4 Cloud Operational Details

A language which looks like the one introduced in the presigaction seems sufficient to define any
scalable architecture with a reasonable detail level. Wewedt needs some additional declarations in
order to be executable by a concrete cloud platform. Desgrithese features in the modeling language
would probably bind the language to the specific platfornunéing those features. That is why we present
these operational features in a different section. In theviing paragraphs we discuss some of the most
important issues which should be considered in order todarabstract model into an executable model
inside a particular platform. It is not an exhaustive enuatien, but the reader will get an idea about the
extensions needed to that end.

The proposed modeling language allows to describe comp®ren execution environments in an
abstract fashion, explicitly avoiding dependencies onrecoete platform. Determining the components
abstraction level, as well as the relationship between ocompts and execution environments depends on
the modeled system type and is the architect’s resportgiblor example, in a corporate network model,
a component may be a web server running within a particularasing system, whereas in a business
web application, a component may be a website running wihieb server which in turn runs inside a
particular operating system. Therefore, the same elerti@entyeb server, may be considered a component
or execution environment depending on the context. Thisbility, though desirable at the modeling
level, introduces confusion and an extra degree of freedem dgifficult to manage at the operational
level. Therefore, each particular cloud platform shoulfirdea fixed set of commonly accepted execution
environments within which the application components éldeployed, installed and executed.

On the other hand, the proposed model defines the applicadimposition but it does not define its
behavior. The behavior is provided by the actual applicakis, which are typically broken down into
several pieces, each one implementing a particular conmparfi¢he overall system. Each component bits
may be provided as a package or as a set of URLs from which thelduits could be automatically down-
loaded and assembled. If URLs are supplied, the platforndgmevide automatic application upgrades
when URL content updates are detected. Furthermore, if Uititenits are properly packaged and the
platform provides some means of automatically installieg/isoftware, then the deployment, installation
and upgrade of applications could be fully automatized leylatform.

The combination of the application model and the softwate (@r URLS) could be packaged inside
a bundle which makes application distribution easy. If thadie contains the software bits it will take
up much space. However, if it does only contain URLSs, the fileld take just some kilobytes. This last
approach, together with the automatic deployment, irstath and upgrade facilities mentioned before
could revolutionize today’s system administration arealldwing this line of thought installing a new
full-fledged corporate network could be as simple as dowtifgafrom some place a properly configured
bundle file and feed the platform with it, getting in returncalable, high available and fully functional
corporate network with all the corporate servers autoraliyicleployed and ready to accept new requests.
The platform will automatically download the required sadte, distribute it among several machines and
install it on each of these machines. Then it will start theraill application and will make it available to
the outside world. If any update is detected in the origindLs, the platform will automatically undertake
the upgrade process, constantly maintaining an up-tosystem.

Yet another aspect to consider is the application comp&nkiat-cycle. The platform must publish
a stable and robust life-cycle which will be enforced fortalk deployed components. The platform will



typically notify the components about life-cycle changgssbnding events. To that end, the components
will have to publish a specific interface, so that the platfonay convey the appropriate information at all
times. In order to avoid specific platform dependenciesh snierface should be defined in some neutral
manner, using open and standard protocols, such as HTTPloseveices. These events will be sent to
the particular instances of each component at runtime. ample, when a new instance of a component
gets created, the platform should send an event to the ré&st aistances, since they may need to perform
some particular operations in order to accommodate the nstarice. Similar considerations should be
taken when an old instance gets destroyed or fails, or wreeaghlication must be updated, etc.

To conclude this section, we would like to suggest that inesaawses the platform will have to pro-
vide special components to fill some gaps left by the scalaloléeling language. These components will
not be standard application components, but part of théoptatinstead, even though they could be made
available as standard components. We will support thisgheish an example. As presented above, the
scalable modeling language provides a way to define the res®that each component needs for its suc-
cessful execution. One of these resources should be tregston this way, when a component instance
gets created it receives the specified amount of storagbaplyp mounted as a local partition or similar.
This storage may be used by the instance at will while it issactWhen the instance is destroyed, the
associated storage should also be destroyed, along witeghef allocated instance’s resources. With this
approach, data could not persist across different systaougrns, or be shared by all the instances of
the same component. To solve this type of shortcomings,|&tpm should provide special components
which offer the required functionality. In the storage gake special component could be modeled either
as a stand-alone component which provides shared andtpatsitorage to a set of client components, or
as a special feature of the platform which should be spedifjedsing some sort of platform-dependent
notation. Notice that the persistent storage can not bedecl as an out-of-the-box property in the pro-
posed abstract modeling language, since depending onaltferph this feature will be provided with a
different system implementation, with diverse commurige protocols and special properties regarding
scalability, fault tolerance, efficiency and other aspects

5 TheCloud Platform

So far, we have explained our model driven approach, settiegnodel as the cornerstone of the whole
process. Needless to say, such an executable model woutdaket sense without a full-fledged platform
which supports the exposed methodology. Our approach disvahighly automated platform, capable of
managing all the details of running scalable applicatioithaut requiring any user intervention. Modern
platforms should go one step beyond though, and implementahcept of autonomic computing [14],
[16], which aims to obtain self-managed systems. In theofdglg paragraphs we present some of the
features a model driven platform should implement.

First and foremost, the platform will cover a real dataceénether the datacenter is homogeneous or
heterogeneous, or if it must comply with certain networlhészture or not is not relevant to this discussion
and does only have to do with the platform versatility andliggpility. The datacenter may be specified
by using a particular computer network diagram, like Ciatike diagrams, which have become the de
facto standard for describing network topologies. On tireiohand, the datacenter physical infrastructure
may also be dynamically discovered [7], [12], relieving gwaministrator of the burden of providing such
information and ensuring up-to-date data, though someimacies may arise. This autodiscovery facility
is extremely useful when new machines are added to the pook Bo specific configuration protocols are
required.

Secondly, the platform should understand perfectly théabta modeling language, as well as the
required extensions used for defining the scalable apjitaroperties. Once the application model has
been submitted, the platform automatically analyzes iscsitre, properties and requirements and tries
to conciliate them with the physical infrastructure. Thi®gess will typically result in a deployment
plan for distributing the different elements of the apgiica to the physical machines. Then most of
the elements of the application will be virtualized and sfenred to the planned locations. The devised
plan must be dynamic, since the datacenter infrastructonelitons may change in the course of the
application execution. For example, a machine may fail dua power supply crash, or most of the



datacenter machines may be busy because of occasional te@ands coming from other applications
running in the same cloud. Furthermore, when the concrethimes for deploying the application must be
chosen, the deployment plan should take into account higttediity, energy consumption and workload
prediction issues, in addition to the application spec#iguirements.

Regarding high availability [8], if a component must be iegied, the different instances will tend to
be transferred to machines located in different fault doiah fault domain includes all the machines and
devices which are likely to fail at the same time, maybe bsedhey belong to the same computer rack,
or because they are powered by the same power line, or bettaysare located inside the same network
segment. Also, the platform will take the required meastwemnsure no single point of failure exists on
the actual application layout, and if a component fails, ilt undertake all the needed actions to recover
the failed component and restart it transparently.

Also, while deploying the different components of the apgion, the platform should try to do its
best on power consumption savings [5], [4], taking into actaot only single machines consumptions,
but network devices and cooling systems consumption as Welthat end, when a component must be
transferred to a new machine, busy machines will typica#lychosen first, since they are already working
and consuming power and running a new component on them veoulslime less power than switching
on a new machine. Other similar measures should be implendéot the sake of saving energy.

Finally, predicting workload behavior [1] [21] could sidicantly improve the performance and re-
sponse time of the deployed applications, helping to alooesources in advance and reducing the delay
inherent in the distribution and launching of new elements.

6 Conclusions

In this paper we have introduced a new methodology for désigrioud platforms, due to the difficulties
found in current approaches. This methodology follows tredeh driven paradigm, where the whole
process starts with a user-defined application model wisiéhjécted into the platform. To that end, we
list the most important features that such a language shwad, and we present a preview of a familiar
modeling language which meets all requirements for modedicalable architectures. We are actively
working on the formal definition of such language and we wilka the results available in the short term.

Our approach requires a platform capable of automaticalhdhling almost every aspect of both the
underlying infrastructure and the applications deployedt.oWe collect our thinkings about all the char-
acteristics that a cloud platform should take into consitlen in order to support our fully automatized
model driven vision.
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