
A Hierarchical Proof for the One-Copy Equivalence of

a Replicated Database System with Crash Failures

J.R. Juárez-Rodrı́guez1, J.R. González de Mendı́vil1, I. Arrieta-Salinas1

J.E. Arméndariz-́Iñigo1, F.D. Muñoz-Escoı́2

1 Depto. de Ing. Matemática e Informática2 Inst. Tecnológico de Informática
Univ. Pública de Navarra Univ. Politécnica de Valencia
Campus de Arrosadı́a, s/n Camino de Vera, s/n
31006 Pamplona (Spain) 46022 Valencia (Spain)

{jr.juarez,mendivil,itziar.arrieta,enrique.armendariz}@unavarra.es, fmunyoz@iti.upv.es

Technical Report TR-ITI-SIDI-2010/006

J.
R

.J
u

ár
ez

-R
o

d
rı́

g
u

ez
et

al
.:A

H
ie

ra
rc

h
ic

a
lP

ro
o

ff
o

r
th

e
O

n
e

-C
o

p
y

E
q

u
iv

a
le

n
ce

o
f

a
R

e
p

li
ca

te
d

D
a

ta
b

a
se

S
ys

te
m

w
ith

C
ra

sh
Fa

ilu
re

s
T

R
-I

T
I-

S
ID

I-
2

0
1

0
/0

0
6

A Hierarchical Proof for the One-Copy Equivalence of a
Replicated Database System with Crash Failures

J.R. Juárez-Rodrı́guez1, J.R. González de Mendı́vil1, I. Arrieta-Salinas1

J.E. Arméndariz-́Iñigo1, F.D. Muñoz-Escoı́2

1 Depto. de Ing. Matemática e Informática2 Inst. Tecnológico de Informática
Univ. Pública de Navarra Univ. Politécnica de Valencia
Campus de Arrosadı́a, s/n Camino de Vera, s/n
31006 Pamplona (Spain) 46022 Valencia (Spain)

Technical Report TR-ITI-SIDI-2010/006

e-mail:{jr.juarez,mendivil,itziar.arrieta,enrique.armendariz}@unavarra.es,
fmunyoz@iti.upv.es

January 13, 2011

Abstract

Modern database replication protocols are based on thedeferred-update technique, i.e. each transac-
tion is initially executed in a single node (or delegate) andlater its updates are propagated and applied
in the rest of replicas. This introduces an asymmetric effort model, since the delegate replica has to ex-
ecute all transaction sentences, but other replicas may receive a pre-processed writeset that can be easily
applied. This model is able to boost both performance and scalability.

This paper thoroughly studies the deferred-update technique from a theoretical point of view. To this
end, the I/O automaton model is used, developing a hierarchical correctness proof. At each abstraction
level differerent properties are analysed and proved correct. To begin with, a new set of correctness
criteria to ensure one-copy equivalence is proposed. Moreover, failures are considered throughout all
abstraction levels, proving that failure management cannot be added a posteriori, as a patch to a protocol
that was proven correct in a system where failures were not considered.

Additionally, our assumed deferred-update replication protocols are general enough to include the
management of any isolation level and support integrity constraints in those levels where they make
sense. Up to our knowledge, this is the first paper able to provide a correctness framework for all the
replication protocols that encompass this variety of characteristics.

Acknowledgements

This work has been supported by EU FEDER and Spanish MICINN under research grant TIN2009-14460-
C03.

1 Introduction

The design and implementation of fault-tolerant applications in a distributed system is a complex endeav-
our. If those applications are built in a modular way, then their algorithms may be generated following
formal theoretical approaches and later proven correct with rigorous mechanisms. By making use of a
modular design, each element provides a well-defined interface, specifying the operations available to other

1

application modules. Moreover, the specification of the properties satisfied by the operations of a module
allows their usage by other application components regardless of how such operations are implemented.

The I/O automatonformal model [1] makes use of a modular approach in its strategy for distributed
algorithms, generatinghierarchical correctness proofs[2]. This hierarchy represents a series of system
(or algorithm) descriptions from different abstraction levels. The topmost layer corresponds to a precise
specification of the problem to be solved. Its next refinementprovides a first raw solution to that problem;
for instance, a centralized solution instead of the intended distributed one. Finally, the bottom layer imple-
ments an actual solution that takes into account all distribution and communication issues. The correctness
proof of a given layer is based on checking the properties of its upper layer, thus simplifying the proving
tasks. Additionally, the properties of a given layer are a guide for developing the lower layer. As a result,
this method is similar to deriving a solution through a series of refinements.

This paper presents a hierarchical correctness proof for a replication protocol based on thedeferred-
updatetechnique [3] for a crash-prone replicated database system.

In the last years, there have been many implementations of data replication protocols based on the
deferred-update technique, since (i) such protocols can beeasily implemented in a middleware over sep-
arate database management systems (DBMS), (ii) their performance is still good when compared to other
previous techniques [4].

In a database replication system with a deferred-update protocol, each transaction starts its execution
in a delegate site. All transaction operations are served by the database of its delegate site in a transparent
way; i.e., the protocol does not need to be aware of them. Whenthis sequence of operations is completed
and the transaction commit is requested, the protocol intercepts such last request and starts the replication
management. At this time, the protocol collects some information about that transaction. That information
comprises, among other items, the transaction writeset, which is the set of〈item id, value〉 pairs that
have been created, written or deleted by the transaction. The protocol manages this information, involving
all system sites. When the information is received at each site, a decision on the transaction’s fate must
be made: (i) in the delegate site, the protocol only needs to request a commit (or abort) operation to
the underlaying DBMS to complete the transaction; and (ii) in other sites, and only if the transaction
is accepted, the protocol should apply the writeset updates. In order to apply the writeset, a new light
instance of the transaction is created in those sites. Such light instances are known asremote transactions.

We assume apartially synchronousdistributed system and acrash[5] failure model1. Each system site
has a local DBMS and afull replicationmodel is followed; i.e., each database replica holds a full copy of
the database and all replicas share the same schema. Transactions may be started at any time and at any
site, and may read or write any item. Each DBMS guarantees theACID properties [6] for its transactions.
Transactions may be executed under any isolation level supported by the DBMSs. Thus, applications may
combine sets of transactions with different isolation levels. Moreover, databases admit the declaration of
integrity constraints (data invariants) that should be respected by all committed transactions.

Most replication protocols assume a single isolation leveland do not consider integrity constraints in
the databases, but we break this trend and provide support for the general case outlined in the previous
paragraph. Two other important issues constitute the base for this work: (i) failures have been considered
along the entire work, from its start at a high-level of abstraction to its end, where several implementation
details have been included; and (ii) we have followed a strict separation of concerns: the replication proto-
col does not repeat any managing task that could be delegatedto the underlying database or to additional
facilities that could be implemented as other middleware components.

This paper shows that, requiring the appropriate properties to each system component, the resulting pro-
tocol is extremely simple. It is similar to the one employed for actively replicating distributed processes [7]
usingatomic broadcast[8] as its communication support. The protocol does not store any information
about the items read or written by transactions, nor about the integrity constraints to be respected, and does
not repeat any of the tasks already executed by the underlying databases. It simply schedules the order in
which transactions should request their commitment (when local) or to be programmed as remote ones,
waiting for an answer from the underlying DBMS.

1The model assumes that the underlaying communication service keeps track of the active sites and detects crashes in a transparent
way.

2

1.1 Content of the Paper

Figure 1 shows the process that has been followed in the hierarchical correctness proof, from the most
abstract replicated database system to the implementationof the replication protocol. As stated before,
this approach is based on the I/O automaton model. In each step, the correctness proof of a given layer
consists of checking that the properties satisfied by the upper layer are also satisfied in that layer. Note that
each arrow in Figure 1 indicates that the properties of the lower module verify the properties of the upper
module.

The top of the hierarchical proof is the most abstract system, theRDBS. It consists of the composition
of an extended database moduleEDBn at each site of the distributed system (withn ∈ N , beingN the
set of system sites), along with a very abstract (non-distributed) deferred-update replication protocol called
DRP . EachEDBn module specifies a database that satisfies the ACID properties. In fact, this model
allows transactions to be executed under different isolation levels. Moreover, the database may define
integrity constraints.

The EDBn module is intended for making the replication process easier. To this end, it provides
the replication protocol with the necessary mechanisms to obtain information about each transaction that
is ready to commit. Such information is basically the writeset and some control information regarding
the isolation level of the transaction. In addition, theEDBn module includes some basic properties that
distinguish between local and remote transactions. The abstract protocol, represented by theDRP module,
simply specifies that the creation of a remote transactiont at oneEDBn derives from a local transaction
trying to commit at its delegate siteEDBsite(t), wheresite(t) is the delegate site of the transaction. Both
modules consider the possibility of crash failures at each site that would stop the execution at the crashed
site. This system has no obligation to be correct and serves as the basic system over which other conditions
must be imposed in order to guarantee its correctness.

The correctness of replicated database systems is traditionally subjected to the notion of one-copy
equivalence. The main idea is that every transaction in the replicated system behaves as if it had been
executed in a logical copy of the database maintaining its isolation level and respecting the integrity con-
straints in case it is committed. In order to define this logical behavior for transactions, the1CDB module
is defined as a reference for this equivalence notion. It defines a single copy database model, which should
be equivalent to theRDBS. However, the basic properties of theRDBS do not guarantee this at all.
Therefore, theRDBS requires some additional properties on its behaviors to findan equivalence relation
between its behaviors and the ones of the1CDB. As proved in this work, these properties are necessary
and sufficient conditions and hence they are considered as correctness criteria. As in any specification of
a distributed system these conditions are safety and liveness ones. These criteria require that: (C1 - local
transaction progress) every transaction that starts in its delegate site eventually gives a termination response
(committed or aborted) at some site of the system unless thatsite crashes; (C2 - uniform decision) if a trans-
action is committed (aborted) at one site, then it cannot be aborted (committed) at other sites; (C3 - uniform
prefix order consistency) for every two distinct sites, the sequence of committed update transactions at one
site is a prefix of the sequence of the committed update transactions at the other site or vice versa providing
that the writesets of remote and local transactions are the same; and (C4 - non-contradiction) if a remote
transactiont is committed, then it does not conflict with any of the transactions that were committed att’s
delegate replica between the beginning and commitment oft. Although these criteria are quite intuitive,
they have never been formalized or proved as valid correctness criteria for such a general model of data
replication based on deferred-update techniques. The uncertainty introduced by crash failures requires Cri-
terion C4, which has not been discussed before despite its importance. Thus, theRDBSCC is theRDBS
with Criteria C1 to C4. TheRDBSCC is one-copy equivalent to the1CDB, as proven in this paper.

The following step of the hierarchical proof tries to refine the initial EDBn andDRP modules in
order to compose a new system, calledRDBSA, which satisfies the aforementioned correctness criteria.
For this purpose, the task of guaranteeing such criteria hasto be distributed between theEDBn and the
DRP . Thus, the refinementsEDBA

n andDRPA include some new properties but still satisfy the ones of
theEDBn and theDRP . This entails that the behaviors ofRDBSA are still behaviors of theRDBS,
since they satisfy the same set of properties. The model should refrain from putting the replication protocol
in charge of tasks that could be handled directly by the database in a simpler and more efficient way. Thus,
in this work, we have tried to avoid including properties in theDRPA that could be easily implemented

3

by theEDBA
n . Basically, Criterion C1 is guaranteed by the collaboration of both modules; Criterion C3

is responsibility of theDRPA by requesting the commitment of local transactions or the application of
the remote transactions in the same prefix order among the sites; Criterion C4 is under the responsibility
of theEDBA

n ; and Criterion C2 is derived from the collaboration of both modules when executing the
transactions.

In the last step of the proof, we just provide a concrete implementation of theDRPA module, by means
of the composition of an I/O automatonRPn at each site and a group communication system module,
denoted byAB, that satisfies the atomic broadcast properties. The final replication protocol is very simple,
as it only propagates the information about each local transaction to the rest of sites by means of theAB
module. As the atomic broadcast primitive delivers messages in the same order at all sites, transactions are
applied at remote sites (or committed at delegate sites) following the same sequence at all sites.

RDBS

1CDB

DRP=

≡

System Components

x

x

П (EDB)n n

RDBScc

RDBS
A

RDBS
B x

=

=

)П (EDBn n
A

Hide n nΦ
 ((П RP) x AB)

DRP
A

)AП (EDBn n

Figure 1: Organization of the hierarchical correctness proof.

1.2 Paper Roadmap

The rest of this paper is organized as follows. Section 2 introduces the specification framework used
throughout this work. Section 3 explains the basic definitions for understanding single database systems. Sec-
tion 4 specifies the abstract replicated database system that represents the top of the hierarchical proof. Sec-
tion 5 formalizes the notion of one-copy equivalence. Section 6 is devoted to the necessary and sufficient
conditions conforming the correctness criteria that must be imposed in order to achieve one-copy equiv-
alence. In Section 7, some interesting aspects related to the correctness criteria are discussed. Section 8
includes a first refinement of the abstract replicated database system which satisfies the correctness criteria,
whereas Section 9 provides a more concrete implementation of the distributed replication protocol. Finally,
conclusions end the paper.

4

2 Specification Framework

This work describes a hierarchy of replicated database systems, whose properties are formalized by means
of the I/O automaton model[1] with the aim to prove their correctness using a rigorous strategy. This
model provides an intuitive and precise method for describing distributed systems and formulating accurate
assertions about how systems behave. The I/O automaton model has been widely used for modeling and
verifying distributed applications, such as concurrency control algorithms [9,10], distributed algorithms [2],
network protocols [11] and data managers [12], among others.

An I/O automaton generates executions, which are alternating sequences of states and actions. Execu-
tions are assumed to be sequential, that is, actions are atomic and no two actions of the same automaton can
occur simultaneously. Abehavioris the subsequence of input and output actions of an execution, and it is
independent of the internal state and actions of the automaton. Thus, an I/O automaton can be viewed as a
“black box”, characterized by a particular set of behaviorsaccording to the properties of its specifications.

In order to promote a modular design, the description of eachsystem component makes use of the
properties of the rest of components regardless of any particular implementation. Thus, each component is
described as an I/O automaton module. Each moduleM is specified by its external signaturesig(M) and
a set of behaviorsbehs(M) delimited by some specified safety and liveness properties.The bottom line of
such a modular design is that the internal behavior of a module remains invisible to the rest of modules,
whereas its external behavior is determined by the properties imposed on the module. The signature of a
moduleM , sig(M), consists of two different kinds of actions that allowM to communicate with other
modules: input actions (in(M)) and output actions (out(M)). Thus,sig(M) = (in(M), out(M)). The
set comprising all the possible actions of a moduleM is denoted byacts(M) = in(M) ∪ out(M).

Each behavior of a moduleM is a finite or infinite sequence of actions fromacts(M). The set of all
acceptable behaviors ofM is denoted bybehs(M). An infinite (finite) behaviorβ ∈ behs(M) is denoted
by β = π1 · π2...πm... (β = π1 · π2...πm) with πi ∈ acts(M). We say thatπi is in β if the i-th event in
β is πi, and thatπ is in β if there exists an indexk such thatπk = π andπk is in β. For any0 ≤ j ≤ |β|
(where|β| stands for the length ofβ), β(j) represents the finite prefix (denoted ’�’) of length j of β, i.e.,
β(j) � β, |β(j)| = j andend(β(j)) = πj . By its definition,β(0) = empty.

Let ϕ ⊆ acts(M), β|ϕ is the subsequence ofβ including only the actions ofϕ in β, i.e., β|ϕ =
πi1 · πi2 ...πik ... such thatπik is in β andπik ∈ ϕ. Note that we can use the original indexes of the actions
of β when working with actions ofβ|ϕ. Whenϕ = acts(M ′) for some moduleM ′, we can simply write
β|M ′.

In this paper, a replicated system is represented as the composition of a set of compatible modules [2].
A composition operation of several modulesMi whose signatures are compatible results in a moduleM
which has a signature composed by the set ofMi signatures (sig(M) = Πi∈Isig(Mi)) and a set of
behaviorsbehs(M) such that each behaviorβ ∈ behs(M) satisfies thatβ|Mi ∈ behs(Mi).

On the other hand, if a moduleM is a more detailed refinement of another moduleM ′, in order to
ensure thatM fulfills the requirements imposed onM ′, M must satisfyM ′ in the sense thatsig(M) =
sig(M ′) andbehs(M) ⊆ behs(M ′). Therefore, the properties satisfied byM ′ will also be satisfied byM .

In this work, some actions of the presented modules have bounded parameters, e.g.,t ∈ T with T
being the set of transactions, orn ∈ N with N being the set of sites of a distributed system. In the former
case, we consider a mapping function,trans : acts(M) → T ∪ {udef}, such thattrans(π) = t if and
only if action π hast as a parameter, ortrans(π) = udef otherwise. This mapping is also used for
defining the setacts(M, t) = {π : π ∈ acts(M) ∧ trans(π) = t}, as well as the sequence of transaction
identifiers of a prefixβ(j) such thattrans(β(j)) = trans(β(j − 1)) · trans(πj) for 0 ≤ j ≤ |β| (being
trans(β(j)) = empty whenj = 0).

Although some variables used in the formulation of the properties of the behaviors may be unbounded,
it is understood that they are universaly quantified in theirdomains for the scope of the entire formulas,
unless we explicitely specify them for a better comprehension.

5

3 A Database System Model

This Section presents the specification of a single databasesystem with no failures, by means of a module
denoted byDB. This module is used for introducing some basic definitions,notations and preliminary
facts related to single database systems, which are used throughout this work.

3.1 Database Transactions

A databaseconsists of a set of items that can be accessed by concurrent transactions. LetI be the set
of database items. The set of possible values for each itemx ∈ I is represented byVx. A transaction
t ∈ T (whereT stands for the set of all possible transaction identifiers) is a sequence of read and write
operations over the database items, starting with abegin operation (denoted byB(t)) and ending with a
commit or abort operation. Each operationop is actually arequest op/response op pair2. The response
of a commit operation corresponding to a transactiont is either acommitted or anaborted notification
(C(t) andA(t) respectively), whereas the response of anabort operation (i.e., a rollback request) always
reports anaborted notification.

If a transactiont completes a write operation on an itemx by setting its value tov (denoted by
W (t, x, v)) and is committed afterwards, a new version(x, v, t) is installed on the database3. Thus, a
version(x, v, t) relates an itemx ∈ I to the valuev ∈ Vx installed by a commited transactiont ∈ T . Let
V the set of all possible versions of the database. For each item x ∈ I, its initial version is the first version
installed by the first committed transaction creating it. The model assumes that several versions of the same
data item can be available in the database. Therefore, when atransactiont completes a read operation on
an itemx, it can get any version(x, v, t′) ∈ V previously installed byt′. This is denoted byR(t, (x, v, t′)).

A behavior of a set of concurrent transactions is usually represented by an interleaved sequence of
completed transaction operations with some defined restrictions that limit the set of valid behaviors in the
database [14,15]. Such a way of considering behaviors is captured in the following example:

Example 1. Given three transactions{t1, t2, t3}, a possible behavior is:

. β = B(t1)·W (t1, x, v1)·C(t1)·B(t2)·W (t2, x, v2)·B(t3)·R(t3, (x, v1, t1))·W (t3, y, v3)·C(t3)·C(t2)
That is,t1 writes a valuev1 onx, t2 writes a valuev2 onx andt3 reads the version(x, v1, t1) ofx installed
by t1 and writes the valuev3 ony.

Given a transactiont taking place in behaviorβ, the writesetwst(β) is characterized as the set of
versions whicht writes inβ. Similarly, thereadsetrst(β) represents the set of versions read byt in β.
For instance, the readsets and writesets of the transactions of Example 1 arerst1 (β) = rst2(β) = ∅,
rst3(β) = {(x, v1, t1)}, andwst1(β) = {(x, v1, t1)}, wst2(β) = {(x, v2, t2)}, wst3 (β) = {(y, v3, t3)}.

Let us note thatrst(β′) andwst(β′) change dynamically over the prefixesβ′ of β. For instance, if
we considerπ6 = B(t3) andπ9 = C(t3) in the behavior of Example 1,rst3(β(6)) = wst3 (β(6)) = ∅
whereasrst3(β(9)) = {(x, v1, t1)} andwst3(β(9)) = {(y, v3, t3)}.

A transactiont in β is said to be read-only if for allj ≥ 0 wst(β(j)) = ∅; otherwise, it is called an
update transaction.

The use of readsets and writesets removes the need to explicitly specify the individual read and write
operations of each transaction in a behavior, as shown in thefollowing example.

Example 2. Given the transactions{t1, t2, t3} of Example 1, the behavior of Example 1 now turns into:

. β = B(t1)·C(t1)·B(t2)·B(t3)·C(t3)·C(t2), whererst1(β) = ∅, rst2(β) = ∅, rst3(β) = {(x, v1, t1)},
wst1(β) = {(x, v1, t1)}, wst2(β) = {(x, v2, t2)} andwst3 (β) = {(y, v3, t3)}

It is worth noting thatβ is merely a syntactic sequence obtained from the setA = {B(t), C(t), A(t) :
t ∈ T } whose semantics (the effects of committed transactions) can only be known by providingwst(β)
andrst(β). In order to maintain a complete description without specifying the sequence of individual

2This notation has been used in other works, such as [12], where a data manager is so specified under the I/O Automaton Model.
3We assume that each transaction writes an item at most once. Therefore, each version of an item will correspond with the write

made by the transaction that installed it in the database. This avoids considering anomalies such as “intermediate reads” [13] thus
simplifying the model description.

6

read/write operations in a behavior, the existence of the following functions is assummed:ws : T ×A? →
V andrs : T ×A? → V . Thus, the description obtained for a behaviorβ is syntactically and semantically
complete thanks to these functions. As mentioned before, the readset and writeset of a transaction may vary
over the execution. However, there is some point of the execution at which these sets become meaningful
and never change again from then on. At that point, they completely define the versions that the transaction
has (or has tried to) read and write. The readset and writesetare defined in the following way:

rst(β(j))







= ∅ ⇔ j = 0
∈ 2V ⇔ (πj ∈ {C(t), A(t)}) ∧ j > 0
= rst(β(j − 1)) ⇔ otherwise

wst(β(j))







= ∅ ⇔ j = 0
∈ 2V ⇔ (πj ∈ {C(t), A(t)}) ∧ j > 0
= wst(β(j − 1)) ⇔ otherwise

This assumption does not impose any limitations on the model, since the properties that must be satis-
fied by correct behaviors are the ones that determine which writesets and readsets are valid. Some known
concepts such asview-equivalencecan be straightforwardly adapted to this representation. Two behaviors
β andβ′ are view-equivalent if and only if for eachπi = C(t) in β there existsπj = C(t) in β′ such
thatrst(β(i)) = rst(β

′(j)) andwst(β(i)) = wst(β
′(j)), i.e., both behaviors contain the same committed

transactions and these transactions have read and written the same versions.
Previous representations do not determine which is the information used for establishing whether a

transaction can be committed or not. This control information may be the readset or the writeset themselves,
it may be inferred from these sets (e.g. the items of the writeset) or it may even be related with the execution
behavior. To represent this information in a general way, let us define a functioninf : T ×A? → E , whose
contents will depend on the restrictions imposed to a particular execution. Therefore, the setE will be
defined according to the kind of information thatinf includes. Likerst(β) andwst(β), inft(β) is defined
at some point ofβ and from then on it does not change.

inft(β(j))







= ∅ ⇔ j = 0
∈ E ⇔ (πj ∈ {C(t), A(t)}) ∧ j > 0
= inft(β(j − 1)) ⇔ otherwise

The fact that most properties related to readsets, writesets and this last control information are associ-
ated with a concrete behavior allows us to omit the parameterβ in wst(β), rst(β) andinft(β) when it is
clear in the context.

The main reason for this alternative notation is that the aimof this work is to study replication protocols
based on the deferred-update technique, in which the interaction between the replication protocol and the
database at a site is performed at a specific point of the transaction execution, when the protocol can obtain
the writeset and the information required to decide on its outcome to apply changes at other sites. As a
consequence, the protocol does not need to track every individual operation performed by the transaction.
In fact, it should be possible to develop a database model from the same point of view in which this kind
of protocols observe the execution of transactions in the database system.

3.2 Single Database Module

The single database moduleDB is defined by its action signature and the set of its possible behaviors
in Figure 2. The set of transaction identifiers is denoted byT , whereas functionsws : T×behs(DB) → V ,
rs : T×behs(DB) → V andinf : T×behs(DB) → E determine the writeset, the readset and the control
information of each transactiont ∈ T in a behaviorβ ∈ behs(DB).

By means of actionB(t), theDB module notifies the event concerning the beginning of a new trans-
actiont. ActionsC(t) andA(t) represent the database’s final decision on the transaction effects.

Definition 3.1. (Well-formed Behaviors)A behaviorβ of behs(DB) is well-formed if for each transaction
t ∈ T the sequenceβ|acts(DB, t) is a prefix of one of the following sequences:B(t) ·C(t) or B(t) ·A(t).

7

• Signature:

in(DB) = ∅
out(DB) = {B(t), C(t), A(t) : t ∈ T }

• A setbehs(DB) of well-formed(Definition 3.1) andlegal (Definition 3.5)
behaviors.

Figure 2: Module DB

This definition ensures that after a transactiont begins, it can only be either committed or aborted, and
such actions can only appear at most once in a behavior.

The database specification is based on thecommitted stateconcept, also calledsnapshot. A database
snapshot provides a view of the installed versions of the database items existing at a certain time in a
behavior. In order to determine the versions that comprise the snapshot, the log of a behavior is defined as
the ordered sequence of the writesets of commited update transactions.

Definition 3.2. (Log ofDB) Letβ be a behavior ofDB. For each prefixβ(j) of β, with 0 ≤ j ≤ |β|, the
log ofβ(j) is defined as follows:

log(β(j)) =







empty ⇔ j = 0
log(β(j − 1)) · 〈wst〉 ⇔ (πj = C(t) ∧wst 6= ∅) ∧ j > 0
log(β(j − 1)) ⇔ otherwise

The log represents the set of versions that have been persistently installed on the database. This can be
seen as an abstraction that ensures data durability.

The latest version of an itemx for a finite prefixβ(j) is the version of that item installed by the latest
committed transaction which updated (or created) its valuein that prefix. Thislatest versionis used for
defining the concept of database snapshot in Definition 3.3.

Definition 3.3. (Database Snapshot)Letβ be a behavior ofDB. For each prefixβ(j) of β, with 0 ≤ j ≤
|β|, the snapshot ofβ(j) is defined asS(β(j)) =

⋃

x∈I lastV er(x, β(j))

wherelastV er(x, β(j)) =







{(x, v, t)} ⇔ ∃i : 0 < i ≤ j : (x, v, t) ∈ wst ∧ 〈wst〉=end(log(β(i)))∧
∀k : i < k < j : 〈wst′〉 ∈ end(log(β(k))) ⇒ (x, v′, t′) /∈ wst′

∅ otherwise

3.3 Legal Database Behaviors

A database management system must guarantee all the ACID properties [16] for each transaction: atom-
icity, consistency, isolation and durability. Considering that thelog(β) for a behaviorβ represents the
durability of the writesets of the committed update transactions, what remains to be defined is when a be-
havior satisfies the rest of the properties. In order to guarantee atomicity, the model establishes that aborted
transactions must never interfere with committed transactions, i.e., the operations of aborted transactions
are appropriately rolled back. The presented definitions satisfy atomicity.

Real database management systems admit the definition of a variety of isolation levels under which
transactions are executed. In addition, it is possible to specify a whole range of integrity constraints to
maintain data consistency. Instead of assuming a specific isolation level for each transaction, the presented
database model considers weak conditions from which a variety isolation levels can be derived (within the
limits of the proposed mathematical formulation). The definitions of predicatescompatible(), conflict()
andconsistent() allow us to achieve this degree of generality.

Definition 3.4. Letβ be a behavior ofDB, t′, t ∈ T be two transactions andi, j be two indexes ofβ such
that0 ≤ i < j ≤ |β|:

• compatible(t, i, β(j)) ⇒ rst ⊆ (
⋃

i≤k≤j S(β(k))) ∪ wst

• conflict(t′, t, i, β(j)) ≡ ∃k : i < k < j : πk = C(t′) ∧ P (inft′ , inft)

8

• consistent(t, β(j)) ≡ ∀z : Kz(S(β(j − 1)), wst) whereKz() is an integrity constraint defined in
the database.

Predicatecompatible(t, i, β(j)) shows that the versions that can belong torst must have been installed
on the database between indexesi andj of β or must be inwst. From its definition, if a transactiont reads
nothing (rst = ∅), thencompatible(t, i, β(j)) is always true.

On the other hand,conflict(t′, t, i, β(j)) determines the conditions that may happen in the context of
a transactiont between indexesi andj of β with regard to another transactiont′ that may be concurrently
committed in that context. If those conditions happen then the transactiont is unable to reach the com-
mitted status (see Definition 3.5 below). By its definition, if t′ is not committed betweeni andj, then it
will never conflict witht. Note that, in this case, the predicate becomes false. If this happens for every
transactiont′ ∈ T , then this entails thatt has been executed completely isolated from the rest of transac-
tions betweeni andj. Otherwise, the control information of the involved transactions,inft′ andinft, will
determine if their isolation level permits them to be concurrently committed, by means ofP (inft′ , inft)
in conflict(t′, t, i, β(j)).

Finally, consistent(t, β(j)) holds if and only if the writesetwst does not infringe any integrity con-
straint demanded by the database atj. Each constraint depends on the previous committed state (snapshot)
of the database and thewst to be installed. Trivially,consistent(t, β(j)) is always true for read-only
transactions (wst = ∅).

By making use of the aforementioned predicates, Definition 3.5 provides the obligations for every
committed transaction in alegal behavior.

Definition 3.5. (Legal Behavior)A behaviorβ of DB is legal, if for each transactiont ∈ T such that
πi = B(t) andπj = C(t) are inβ, the following conditions hold:

(a) compatible(t, i, β(j))

(b) ¬conflict(t′, t, i, β(j)), for all t′ ∈ T

(c) consistent(t, β(j))

Thus, Definition 3.5 establishes that if a transactiont is committed: (a) its readset is obtained from the
committed states seen within its context; (b) there is no other transactiont′ conflicting with t; and (c) all
the integrity constraints hold at the time the transaction is committed.

In order to better understand the proposed database model, the following two examples are provided.

Example 3. The aim of this example is to show how different isolation levels used in replicated systems
can be seen as particular cases of Definition 3.5 by imposing some restrictions on thecompatible() and
conflict() predicates. We focus on the simplest case ofP (inft′ , inft), in which its formulation only de-
pends on the items of the writesets and/or readsets of transactionst′ andt and the conflicts between trans-
actions are caused only by non-empty intersections of thesesets. In this case,inft′ ⊆ I andinft ⊆ I. Ta-
ble 1 presents the definition ofP (inft′ , inft) and the corresponding restrictions forcompatible(t, i, β(j))
for each isolation level.

The Serial level is the most restrictive one, as transactions conflict with any concurrent one that has
committed(P (inft′ , inft) ≡ true). In this case, a legal behavior consists of a succession of transactions
without interleaving among them. On the contrary, in Weak Read Committed there are no conflicts between
concurrent transactions(P (inft′ , inft) ≡ false). In this case, a legal behavior allows any interleaving
among transactions.

It is also possible to represent intermediate isolation levels, such as Snapshot Isolation or Dynamic-
Serializable. The former takes into account conflicts generated by update transactions that concurrently
try to write on the same data items:P (inft′ , inft) ≡ items(wst′) ∩ items(wst) 6= ∅. In contrast,
the latter considers conflicts between reads and writes:P (inft′ , inft) ≡ items(wst′) ∩ (items(wst) ∪
items(rst)) 6= ∅.

With regard to predicatecompatible(), all the definitions shown in Table 1 satisfy Definition 3.4, that is,
a transaction is able to read its own writes and reads from committed states, although each case may impose
additional restrictions to its general definition. Snapshot Isolation, Dynamic-Serializable and Serial allow
transactions to read from a single concrete snapshot, whereas Weak Read Committed allows values to be
read from any snapshot created during the transaction execution.

9

P (inft′ , inft) in
conflict(t′, t, i, β(j))

compatible(t, i, β(j))

Weak Read Committed [17] false rst ⊆
⋃

i≤k≤j
{S(β(k))} ∪ wst

Snapshot Isolation [18,19] items(wst′) ∩ items(wst) 6= ∅ rst ⊆ (S(β(i)) ∪ wst)

Dynamic-Serializable [18] items(wst′) ∩ (items(wst) ∪
items(rst)) 6= ∅

rst ⊆ (S(β(i)) ∪ wst)

Serial true rst ⊆ (S(β(i)) ∪ wst)

Table 1: Predicates depending on isolation levels

In the proposed database model, transactions inT may have the same isolation level or not. As a re-
sult, the database can behave in a heterogeneous way, due to transactions being executed under different
isolation levels. In spite of this, all committed transactions must satisfy Definition 3.5. It is worth not-
ing that Definition 3.5 limits the possible values of the readsets and writesets of committed transactions.
The following example displays a behavior with concurrent transactions executed under different isolation
levels.

Example 4. Let us consider four update transactions{t1, t2, t3, t4} such thatt1 is executed under Weak
Read Committed,t2 under Snapshot Isolation,t3 under Dynamic-Serializable, andt4 under Serial. As-
suming that transactions satisfy all the integrity constraints and they are compatible, one of the possible
behaviors could be, as shown in Figure 3:

. β = B(t1) ·B(t2) ·B(t3) · B(t4) · C(t2) · A(t4) · C(t3) · C(t1)

Transactiont1 is executed under Weak Read Committed, henceconflict(t′, t1, 1, β(8)) is false for any
transactiont′. As fort2, which is executed under Snapshot Isolation,conflict(t′, t2, 2, β(5)) is also false,
because there is no transactiont′ that commits betweenπ2 = B(t2) andπ5 = C(t2). Transactiont3,
which runs under Dynamic-Serializable, would makeconflict(t2, t3, 3, β(7)) true in caseitems(wst2) ∩
(items(wst3)∪items(rst3)) 6= ∅, sinceπ5 = C(t2). Therefore,t3 does not have any intersections with the
writeset oft2 becauseπ7 = C(t3). Finally, transactiont4 can never be committed, asconflict(t2, t4, 4,
β(6)) is true becauseπ5 = C(t2). When the execution ends, the log persistently contains allthe writesets
of the committed transactions, i.e.,log(β(8)) = 〈wst2 〉 · 〈wst3〉 · 〈wst1 〉. Let us note that each time a
transaction is committed, a new snapshot is obtained.

B(t)1
β

(READ COMMITTED)t1

(SNAPSHOT ISOLATION)t2

(DYNAMIC SERIALIZABLE)t3

(SERIAL)t4

B(t)2 B(t)3 B(t)4 C(t)2 A(t)4 C(t)3 C(t)1

1π 2ππ 3π 4π 5π 6π 7π 8π

Figure 3: Example of a behavior with transactions executed concurrently under different isolation levels.

3.4 Generalized Legal Behavior

The definition of a legal behavior (see Definition 3.5) can be generalized in a very simple way to make
it suitable for replicated settings. In a generalized legalbehavior, a transaction is allowed to perform

10

operations with stale information about the database versions, as if it had been started before the time it
actually did. This idea was originally introduced by [18] for the Snapshot Isolation level, under the name of
Generalized Snapshot Isolation (GSI). We extend this notion to make it valid under other isolation levels.

Definition 3.6. (Generalized Legal Behaviors)Letβ be a behavior ofbehs(DB). β is a generalized legal
behavior, if for each transactiont ∈ T such thatπi = B(t) andπj = C(t) are inβ, there exists0 ≤ s ≤ i
such that the following conditions hold:

(a) compatible(t, s, β(j))

(b) ¬conflict(t′, t, s, β(j)), for all t′ ∈ T

(c) consistent(t, β(j))

Trivially, Definition 3.6 includes Definition 3.5 as a particular case when for every transactions = i
holds. Moreover, ifβ is a generalized legal behavior, then there exists a legal behaviorβ′ such thatβ
is view equivalent toβ′. Basically, the legal behaviorβ′ is inductively built fromβ by moving action
πi = B(t) in β to the positionπs = B(t) of the transactiont wheni 6= s and adequately redefining the
indexes of the new obtained behavior.

Remark 3.1. All definitions introduced in this Section can be adapted forany other set of behaviors that
satisfy the well-formedness in the sense given in Definition3.1. These behaviors are obtained from a
signature that includesout(BD).

4 An Abstract Replicated Database System

This Section provides the specification of an abstract replicated database system, represented by a module
namedRDBS. The components of this module, as depicted in Figure 4, are areplication protocolDRP
and a group of extended databases calledEDBn, beingn the site identifier. The set of site identifiers
{1..N} is denoted byN . The system is crash-prone: sites may fail and stop their execution at any time. At
this level of abstraction, there are no assumptions on the number of sites that may crash. The database at
each siten executes transactions with independence from the rest of sites, leaving the replication protocol
in charge of coordinating them. In the following,T represents the set of transaction identifiers in the
RDBS.

RDBS

...crash1

B
 (

t)
1

re
a

d
y
 (

t)
1

A
 (

t)
1

C
 (

t)
1

a
p

p
ly

 (t)
1

c
o
m

m
it (t)

1

EDB1 EDBEDB2

DRP

N

Figure 4: Replicated Database System.

This paper focuses on replication protocols based on thedeferred-update technique[20]. In this ap-
proach, a transactiont performs all its operations on the database of the site whereit starts, calleddelegate
site. Transactions are said to belocal transactionsat their respective delegate sites, andremote transac-
tionsat the other sites. A transactiont about to be committed must be programmed on the databases of the
remote sites. To this end, the protocol receives some data from the local transactiont, takes control of it
and decides on the execution of the remote transactions oft at the rest of system sites. In the delegate site,
the protocol may just request the commit of the transaction.

In database replication, it is convenient to avoid duplicating work that can be easily performed by
databases. Several works [21–23] point out the convenienceof providing databases with extended features

11

to simplify their replication4. These features are modeled by theEDBn in an abstract way, regardless of
their implementation. In fact, theEDBn module can be interpreted as an extension of theDB module
at siten. Both modules are essentially similar, but theEDBn module presents some particular properties
that model its extended operation. In particular, theEDBn clearly distinguishes between local and remote
transactions, and handles the remote ones in a special way.

All the extended databases in the system have the same set of itemsI and the same set of valuesVx ∈ V
for each itemx ∈ I, as well as the same set of integrity constraints. Thus, theyall have the same set of
possible versionsV for the setT . Under these conditions, full database replication is assumed.

In the replicated system, a local transaction and all its associated remote transactions share the same
transaction identifier, although they are actually different transactions. This is possible because they are
executed in different sites. In order to distinguish between local and remote transactions of a particular site
n, there is a functionsite : T → N such thatsite(t) (the delegate site oft) is unique.

Assumption 4.1. (Unique Delegate Site)For every transaction t ∈ T , it holds that
site(t) = n ∧ site(t) = n′ ⇔ n = n′

There are no further assumptions restricting the way in which local transactions can appear in the
system; therefore, they may begin anytime at any site and read/write any item under any isolation level.

4.1 Extended Database System

Figure 5 describes the moduleEDBn for a siten ∈ N . This module is intended for replicated settings
and hence its specification is subject to its site identifier.Thus, functionswsn : T × behs(EDBn) → V ,
rsn : T × behs(EDBn) → V andinfn : T × behs(EDBn) → E now determine the writeset, the readset
and the control information of each transactiont ∈ T in a behaviorβ ∈ behs(EDBn). In the following,
let D be the set2V × E × (T ∪ {f0}).

• Signature:

in(EDBn)={crashn, commitn(t), applyn(t, data) : t ∈ T, data ∈ D}
out(EDBn) = {Bn(t), readyn(t, data), Cn(t), An(t) : t ∈ T, data ∈ D}

• A set of behaviorsbehs(EDBn) which satisfy Property 4.1, Property 4.2, Prop-
erty 4.3 and Property 4.4

Figure 5: ModuleEDBn

TheEDBn includes its owncrashn input action in its signature to model the failure of siten. The
following property indicates that after acrashn theEDBn stops its activity and no further output actions
are performed.

Property 4.1. (Execution Integrity)For every behaviorβ ∈ behs(EDBn), it holds thatπi ∈ out(EDBn)
⇒ ∀ k : k < i : πk 6= crashn.

TheEDBn notifies the beginning as well as the final outcome of a transaction t at siten ∈ N through
theBn(t), Cn(t) andAn(t) output actions.

After the beginning actionBn(t) of a local transactiont with site(t) = n, theEDBn can notify that
the transactiont has no pending work left (and therefore, it is waiting for itscommit) by means of action
readyn(t, data) wheredata ∈ D. This action has two goals: (i) it states the point of the behavior at which
the readset, writeset and control information of the transaction are defined; (ii) it allows to communicate
the data of the transaction to the replication protocol.

Thus, whenπj = readyn(t, data) happens in a behaviorβ, as in theDB module,rsnt (β(j)),ws
n
t (β(j))

andinfn
t (β(j)) become defined and never change again.

Action ready(t, data) permits to pass some information from the transaction to thereplication protocol
by means of thedata paramater, which provides the writeset of the local transaction (data.ws ∈ 2V) as

4In [24] several mechanisms for the writeset extraction of a local transaction are presented and in [22] some ones are presented
for remote transactions.

12

well as the control informationdata.inf ∈ E , whose contents will depend on the isolation level oft.
Besides,data can provide some extra information about the transaction,data.last ∈ T ∪{f0}, which will
be discussed later when presenting one of the refinements of this module in Section 8.

Therefore, whenπj = readyn(t, data) happens in a behaviorβ, it explicitly provides the writeset and
the information for the conflict evaluation of the transaction t at siten in that behavior; i.e.,data.ws =
wsnt (β(j)) anddata.inf = infn

t (β(j)).
The extended database controls local transactions when they are started, and by executingreadyn(t, data),

the control of a local transactiont is transferred to the replication protocol, so that it can decide whether
to commit it or not. The replication protocol requests the commit of the local transactiont via the input
actioncommitn(t) to persistently install its changes on theEDBn, if possible.

Property 4.2 defines the allowed behaviors of local transactions.

Property 4.2. (Local Transactions)Let β be a behavior ofEDBn. For any transactiont ∈ T such that
site(t) = n:

(1) The sequenceβ|acts(EDBn, t) is a prefix of one of the following sequences:

(a)Bn(t) · readyn(t, data) · commitn(t) · Cn(t) for somedata ∈ D
(b)Bn(t) · readyn(t, data) · commitn(t) · An(t) for somedata ∈ D
(c)Bn(t) · An(t)

(2) πj = readyn(t, data) ⇒ ∀k : k ≥ j : rsnt (β(k)) = rsnt (β(j)) ∧ wsnt (β(k)) = wsnt (β(j)) ∧
infn

t (β(k)) = infn
t (β(j))

(3) πj = readyn(t, data) ⇒ data.ws = wsnt (β(j)) ∧ data.inf = infn
t (β(j))

(4) πi = Bn(t) ∧ πj = readyn(t, data) ⇒ compatible(t, i, β(j))

The first part of Property 4.2 ensures that each action of a local transaction appears at most once in a
behaviorβ ∈ behs(EDBn) in the given order. The other parts of Property 4.2 provide some requirements
that are fulfilled whenπj = readyn(t, data) is an action taking place inβ ∈ behs(EDBn): the readset,
writeset and control information oft are defined when this action happens; data fromdata.ws anddata.inf
match up with the values of the corresponding sets at timej, that is,wsnt (β(j)) andinfn

t (β(j)); and the
readsetrsnt (β(j)) is compatible atj, i.e.,compatible(t, i, β(j)).

As far as remote transactions are concerned, the input action applyn(t, data) of theEDBn module is
used by the replication protocol to program a transactiont ∈ T with site(t) 6= n. Thedata ∈ D parameter
of actionapplyn(t, data) contains information related to transactiont at its delegate site,site(t). Basically,
it includes the writeset of the transactiondata.ws ∈ 2V and, depending on the isolation level,data.inf ∈
E . Besides,data provides some extra information about the transaction, such asdata.last ∈ T∪{f0}. The
EDBn is responsible for programming that remote transaction in the underlaying database, in a transparent
way to the replication protocol. TheEDBn, who is in charge of the transaction termination, may have
to abort other transactions to guarantee its successful ending. However, in order to be independent of
the replication protocol characteristics, any transaction can be aborted and hence a programmed remote
transaction is not guaranteed to be committed.

Property 4.3 establishes the permitted behaviors of remotetransactions. Again, this property states that
each action of a remote transaction appears at most once in a behaviorβ ∈ behs(EDBn) in the given
order.

Property 4.3. (Remote Transactions)Letβ be a behavior ofEDBn. For any transactiont ∈ T , such that
site(t) 6= n:

(1) The sequenceβ|acts(EDBn, t) is a prefix of one of the following sequences:

(a) applyn(t, data) · Bn(t) · Cn(t) for somedata ∈ D
(b) applyn(t, data) · Bn(t) · An(t) for somedata ∈ D

(2) πj = applyn(t, data) ⇒ data.ws = wsnt (β(j))∧data.inf = infn
t (β(j))∧∀k : k ≥ j : wsnt (β(k)) =

wsnt (β(j)) ∧ infn
t (β(k)) = infn

t (β(j)) ∧ rsnt (β(k)) = ∅

Whenπj = applyn(t, data) happens in a behaviorβ of theEDBn, the module knows the writeset of
the remote transactiont at siten; i.e.,wsnt (β(j)) = data.ws. The writeset is explicitly indicated in that

13

action. Thus, if the remote transaction is committed,data.ws is the writeset that must be installed in the
database. However, theEDBn enforces the remote transaction to read nothing, that is,rsnt = ∅ for remote
transactions. The remaining information indata, data.inf is used for checking theconflict() predicate
if it is required by the isolation level oft; i.e., infn

t (β(j)) = data.inf .
Note thatcommitn(t) andapplyn(t) are input actions of theEDBn, thus Property 4.2.1 and Prop-

erty 4.3.1 are well-formedness conditions for theEDBn.
Our purpose is to keep the notation from Definition 3.5 for thelegal behaviors of theEDBn by using

thecompatible(), conflict() andconsistent() as well as their respective properties (Definition 3.4). This
is possible by Remark 3.1, Property 4.2.1 and Property 4.3.1from which transaction well-formedness is
obtained. Property 4.4 states that the behaviors ofEDBn are legal behaviors.

Property 4.4. (Legal Behaviors)Every behaviorβ of behs(EDBn) is a legalbehavior. For each transac-
tion t ∈ T such thatπi = B(t) andπj = C(t) are inβ:

(a) compatible(t, i, β(j))

(b) ¬conflict(t′, t, i, β(j)), for all t′ ∈ T

(c) consistent(t, β(j))

Let us note that by Property 4.2.4compatible(t, i, k, β) holds whenπk = readyn(t, data) and if
πi = Bn(t) andπj = Cn(t) are inβ, then i < k < j holds by by Property 4.2.1. As the readset
never changes afterπk (see Property 4.2.2),rsnt (β(j)) = rsnt (β(k)) holds whenπj = C(t), and hence
compatible(t, i, β(j)) holds too.

This module only covers the properties needed to present andprove the sufficient and necessary condi-
tions required for the replicated database system to be one-copy equivalent. Later, in Section 8, a refinement
of the extended database is presented, including some additional properties to study the correctness of a
particular replication protocol.

4.2 Replication Protocol: Deferred-Update Technique

This Section presents the basic properties shared by the kind of protocols which are being dealt with in
this work, i.e., the ones based on the deferred-update technique. The abstract deferred-update replication
protocol is specified by the moduleDRP .

• Signature:

in(DRP) =
⋃

n∈N out(EDBn) ∪ {crashn : n ∈ N}
out(DRP) = {commitn(t), applyn(t, data) : t ∈ T, n ∈ N , data ∈

D}

• A set of behaviorsbehs(DRP) which satisfy Property 4.5

Figure 6: Module DRP

The signature ofDRP is presented in Figure 6 along with the set of possible behaviors. Its signature
must be compatible with the signature of eachEDBn, n ∈ N and, therefore, its inputs will be theEDBn

module outputs and vice versa. Thecrashn actions are also included as input actions in theDRP to model
the crash failure of each site.

Property 4.5. (Deferred-Update)For every behaviorβ ∈ behs(DRP), it holds that:

(1) πi ∈ {commitn(t), applyn(t, data) : t ∈ T, data ∈ D} ⇒ ∀k : k < i : πk 6= crashn (execution
integrity).

(2) πi = commitn(t) ⇒ ∃j : j < i : πj = readyn(t, data) ∧ ∀k : j < k < i : πk 6= commitn(t)

(3) πi = applyn(t, data) ⇒ ∀k : k < i : πk /∈ applyn(t, data
′) ∧ site(t) 6= n

(4) πi = applyn(t, data) ⇒ ∃ k : k < i : πk = readysite(t)(t, data) ∧ site(t) 6= n

14

The main properties which characterize the behaviors of thedeferred-update protocol can be easily
identified. Its behaviors must be consistent with the ones ofthe extended databases, i.e., outputs generated
by theDRP module must not break the execution integrity or the well-formedness of the inputs of the
EDBn module (Property 4.5(1-3)). Besides, deferred-update protocols can only apply a remote transaction
as long as the transaction was ready to commit at its respective delegate replica (Property 4.5.4), thus
avoiding the spontaneous creation of remote transactions in the system. Thedata in theapplyn(t, data)
action contains the same information as in thereadysite(t)(t, data) action.

Let us note that explicit abort requests have not been considered by the protocol, since they are not
necessary as long as theEDBn module manages the transactions in a correct way so that conflicting
transactions are aborted when others are committed. Furthermore, if explicit abort requests were allowed,
it would be possible to build a trivial protocol which would abort every transaction.

This module covers the general properties of a deferred-update replication protocol. It neither differen-
tiates between sites, nor considers any properties about how processes communicate among them. Later, a
series of successive refinements is provided in order to obtain the specification of a particular replication
protocol based on the primitives of a group communication system.

4.3 Module Composition

As Figure 7 shows (see also Figure 4), theRDBS module is the result of the module composition [2]
between the replication protocol and the group of extended databases, one at each site of the distributed
system:RDBS = DRP × (Πn∈N EDBn). The signature of theRDBS is well-defined, since the
collection of signatures of the component modules is compatible [2].

• Signature:

in(RDBS) = {crashn : n ∈ N}
out(RDBS) =

(
⋃

n∈N out(EDBn)
)

∪ out(DRP)

• A set of behaviorsbehs(RDBS) which satisfyβ|EDBn ∈ behs(EDBn) and
β|DRP ∈ behs(DRP).

Figure 7: Module RDBS

Each behaviorβ of theRDBS is composed by the actions that transactions generate at different sites.
Due to module composition [2], every behaviorβ of theRDBS has to comply with the behavior of each
EDBn module and theDRP module, i.e.,β|EDBn ∈ behs(EDBn) andβ|DRP ∈ behs(DRP).

The well-formedness properties of the modules are also guaranteed in the composition of both of them.
For instance, thanks to Property 4.5.2, Property 4.2.1 is satisfied. Similarly, Property 4.5.3 guarantees the
behavior specified in Property 4.3.1.

The only input actions of systemRDBS are the actions in{crashn : n ∈ N}. Throughout this work,
we assume that an actionπi = crashn can occur in a behaviorβ ∈ beh(RDBS) at most once. In this
way, and as a result of Property 4.1 and Property 4.5.1, once an actionπi = crashn happens in a behavior
there are no more actions of siten ∈ N , as formalized in the following Lemma:

Lemma 4.1. Letβ be a behavior of theRDBS. Then:πi = crashn ⇒ β|EDBn = β(i)|EDBn.

Behaviorβ|EDBn satisfies Property 4.1, Property 4.2, Property 4.3 and Property 4.4, andβ|DRP
satisfies Property 4.5. In some cases, we will just refer to the original properties of these modules, when
necessary, without referring to the module composition properties too.

In theRDBS, a transactiont ∈ T may span several sites. There is only one local transaction at site(t)
and, possibly, several remote transactions at the other sites. A remote transaction is directly related with its
local transaction by the following causal dependency amongtheir actions.

Theorem 4.1. Let β be a behavior of theRBDS. If πj ∈ {Cn(t), An(t)}, site(t) 6= n, is in β then
there are four unique actionsπi1 , πi2 , πi3 andπi4 in β, with i1 < i2 < i3 < i4 < j such that, for some
data ∈ D:

15

• πi1 = Bsite(t)(t) andπi2 = readysite(t)(t, data) are inβ|EDBsite(t), and

• πi3 = applyn(t, data) andπi4 = Bn(t) are inβ|EDBn

Proof. By the composition,β|EDBn ∈ behs(EDBn), β|DRP ∈ behs(DRP) andβ|EDBsite(t) ∈
behs(EDBsite(t)). By Property 4.1, Property 4.3.1 forβ|EDBn; by Property 4.5.4 forβ|DRP ; and
Property 4.1, Property 4.2.1 forβ|EDBsite(t), the Theorem holds.

As a result, the following corollaries hold.

Corollary 4.1. Letβ be a behavior ofRDBS, it holds that:

πi = Cn(t) ⇒ ∃r : r < i : πr = readysite(t)(t, data) ∧ ws
site(t)
t (β(r)|EDBsite(t)) =

end(log(β(i)|EDBn))

Proof. If πi = Cn(t) andn = site(t), the Corollary holds by Property 4.2.1, Property 4.2.2 and the
log definition (Definition 3.2). Ifπi = Cn(t) andn 6= site(t), then by Theorem 4.1 there existsπk =
applyn(t, data) andπr = readysite(t)(t, data) in β with r < k < i. By Property 4.2.3 and Property 4.2.2,

wsnt (β(k)|EDBn) = ws
site(t)
t (β(r)|EDBsite(t)). As πi = Cn(t), by the log definition (Definition 3.2)

the Corollary holds.

Thus, as remote transactions have the same writeset as the local transaction (i.e.,wsnt = ws
site(t)
t), if a

remote transactiont is committed atn, it will install the same writeset as the local transaction could install
atsite(t). Hence, all transactions with the same identifier, local andremote, provide the same data updates
at every replica.

Recall that we assumed that the delegate site oft, site(t) is unique in the replicated system by Assump-
tion 4.1. This implies that the first action of every transaction t ∈ T in the replicated system can be only
Bsite(t)(t), just as Corollary 4.2 states.

Corollary 4.2. Letβ be a behavior ofRDBS. For each transactiont ∈ T such thatπi = Bsite(t)(t), it is
satisfied thatBsite(t)(t) � β|acts(RDBS, t).

Proof. By Property 4.2.1 and Theorem 4.1 the Corollary holds.

The following remark allows us to ignore read-only transactions for the rest of the paper.

Remark 4.1. (Read-only transactions)If t′ is a read-only transaction atsite(t′) then it does not ap-
pear at thelog() of site(t′). Every possible remote transaction oft′ is an empty transaction by Property
4.3.2. Thus, it is not necessary to program a read-only remote transaction; and it is sufficient to pro-
gram it at itssite(t′) in a transparent way for the replication protocol. However,in order for a read-
only transaction to be purely a local transaction, it is mandatory that read-only transactionst′ satisfy

¬conflict(t′, t, i, β(j)|EDBsite(t′)) for anyt. Under this assumption, no control information,inf
site(t′)
t′

has to be sent to remote sites (this is a consequence of one of the correctness criteria for one-copy equiva-
lence in this paper). The global atomicity of the read-only transaction is trivially guaranteed by Property
4.2.1. In addition, every global conclusion obtained for the readsets of update transactions is applicable
to the readsets of read-only transactions. From now on, we consider that every transactiont ∈ T is an
update transaction.

In the following, we will apply Remark 4.2, which is derived from the previous results, to simplify the
notation and make the formal reasoning easier to follow.

Remark 4.2. (Notation convention)In a behaviorβ of the RDBS, a transactiont ∈ T has glob-
ally the following semantics:rst(β) =

⋃

n∈N rsnt (β|EDBn), wst(β) =
⋃

n∈N wsnt (β|EDBn) and
inft(β) =

⋃

n∈N infn
t (β|EDBn). By Property 4.2.2, Theorem 4.1 and Property 4.3.2:rst(β) =

rs
site(t)
t (β|EDBsite(t)), wst(β) = ws

site(t)
t (β|EDBsite(t)) and inft(β) = inf

site(t)
t (β|EDBsite(t)).

This is possible becausereadysite(t)(t, data) is unique inβ and defines the only possible semantics for
the transactiont, considering that remote transactions oft do not read anything. From this point onwards,
rst(β), wst(β) and inft(β) will be the readset, writeset and control information oft no matter if it is a

16

β

β|EDB

β|EDB1

2

t1 (local)

t1 (remote)

t2 (local)

t2 (remote)
1=site(t)1

2=site(t)2

B (t)1 1

B (t)2 2

ready (t)1 1

apply (t)2 1

commit (t)1 1

ready (t)2 2 B (t)2 1

apply (t)1 2

commit (t)2 2

C (t)1 1 C (t)1 2B (t)1 2

C (t)2 1 C (t)2 2

B (t)1 1 ready (t)1 1 commit (t)1 1 apply (t)1 2 C (t)2 1 C (t)1 2B (t)1 2B (t)2 2 apply (t)2 1 ready (t)2 2 B (t)2 1 commit (t)2 2 C (t)1 1 C (t)2 2

Figure 8: An example of a behavior of the RDBS module.

local or a remote transaction. Moreover, parameterβ can be ommitted when it is clear within the context.
This simplification is possible since these sets will be properly used in the proofs and they always userst
in a compatible() predicate in reference to thesite(t). In addition, we also omit thedata parameter in
readyn(t, data) andapplyn(t, data) actions unless strictly necessary. This is possible by the Theorem 4.1
and the fact that under the previous conventionwst = data.ws andinft = data.inf in both actions.

Finally, this Section concludes with an example of a behavior of theRDBS module that illustrates
how the module composition works.

Example 5. Figure 8 presents a behavior of theRDBS, β ∈ behs(RDBS), generated by two transac-
tions t1 and t2 both executed under the Dynamic-Serializable level at two replicas1 and2. Transaction
t1 is local at 1 and remote at2 and t2 is local at 2 and remote at1. β|EDB1 and β|EDB2 are the
sequences of actions executed at sites1 and2 respectively and they must be behaviors of eachEDBn by
the properties of the composition. Thus, ast1 is committed atβ|EDB2 betweenB2(t2) andC2(t2) andt2
is not aborted, thenitems(wst1) ∩ items(wst2) = ∅ anditems(wst1) ∩ items(rst2) = ∅ must hold to
satisfy Property 4.4.b and henceβ|EDB2 ∈ behs(EDB2), i.e., it is a legal behavior. The same happens at
EDB1 regarding local transactiont1 and remote transactiont2. Similarly,β|DRP ∈ behs(DRP) must
also hold and thus Property 4.5.4 must also hold inβ. This forcesapply2(t1) andapply1(t2) to appear at
their remote sites afterready1(t1) andready2(t2) at their local sites respectively.

TheRDBS is just the composition ofN ≥ 1 extended databases with a very abstract replication
protocol,(

∏

n∈N EDBn) ×DRP . In theRDBS there are not any other global properties for local and
remote transactions apart from the ones given in this Section. Then, any pattern is possible, e.g, although
a remote transaction is committed, its local transaction may be aborted or may not give any response by
the effect of a crash. Therefore, other global conditions are demanded to get acorrectreplicated database
system.

5 One-Copy Equivalence

TheRDBS is just the composition ofN ≥ 1 extended databases with a very abstract replication protocol,
(
∏

n∈N EDBn) × DRP . In theRDBS there are not any other global properties for local and remote
transactions apart from the ones given in the previous Section. Then, any pattern is possible, e.g, although
a remote transaction is committed, its local transaction may be aborted or may not give any response by
the effect of a crash. Therefore, other global conditions are demanded to get acorrectreplicated database
system.

In general, given a list of conditionsϕ, theRDBSϕ module is defined as:sig(RDBSϕ) = sig(RDBS)
andbehs(RDBSϕ) = {β : β ∈ behs(RDBS) andβ satisfies all the conditions inϕ}. Any RDBSϕ is
called a (refined) module of theRDBS, sincebehs(RDBSϕ) ⊆ behs(RDBS). Among all possible
RDBSϕ, we need to determine which of them are correct, in other words, we must find the conditions
imposed byϕ that make theRDBS module a correct system.

17

The correctness criterion commonly used to prove that a replicated database system works correctly
is the one-copy equivalence notion [14]. Its main idea sets that the transactions executed in the replicated
system must behave as if they were executed in a one logical copy of the database. This one-copy database
is again an abstract view for a givenRDBSϕ. Following this notion, a committed or aborted transactionis
also committed or aborted in the one-copy database, but if noresponse is produced for a transaction which
started in the replicated system because of a crash, then thesame happens in the one-copy database. In this
paper, the one-copy database attempts to provide an explanation for each transaction in a behavior of the
RDBSϕ. Thus, the one-copy equivalence considers that transactions commit, abort or otherwise give no
answer because the site has failed. This general one-copy equivalent model accurately reflects the actual
behavior of all transactions in the replicated system.

On the other hand, when designing a replicated database system, properties satisfied by the databases
and the replication protocol are engineered to obtain such equivalence. Designing a replicated system
considering failures with the minimum properties that are necessary and sufficient conditions to establish
one-copy equivalence would define the correctness criteriaof the system. This is one of the objectives
of our work, i.e., finding the necessary and sufficient conditionsϕ that must be fulfilled by the system
specified by theRDBSϕ in order to be one-copy equivalent.

5.1 The 1CDB Module

The1CDB module is defined in Figure 9. The1CDB bears some similarity to theDB module presented
in Section 3. Its signature is quite similar to theDB module except for thecrash action included in this
case as input action to consider the effect of failures. Thecrash action included in the1CDB is not
exactly the same as thecrashn action of theEDBn module (see Property 4.1, execution integrity). As
there areN replicas, in the1CDB there are at mostN chances to get the system down in the same way
as in theRDBS module. The1CDB module is the most abstract specification of a replicated database
system; therefore, it includes not only safety properties but also liveness properties in its behaviors. The
1CDB is used to prove that the behaviors of anRDBSϕ are somehowview-equivalentto the behaviors
of the 1CDB. As it was done in other previous modules,T is the set of transaction identifiers and the
functionsws : T × behs(1CDB) → V , rs : T × behs(1CDB) → V andinf : T × behs(1CDB) → E
determine the writeset, the readset and the control information of each transactiont ∈ T in a behavior
β ∈ behs(1CDB).

• Signature:

in(1CDB) = {crash}
out(1CDB) = {B(t), A(t), C(t) : t ∈ T }

• A set behs(1CDB) such that everyγ ∈ behs(1CDB) is a well-formed, N-
crash-stop, generalized legalandprogressivebehavior.

Figure 9: Module 1CDB

The set of the behaviorsγ are characterized by four properties, which are analyzed inthe following:

- γ is awell-formedbehavior; i.e.,γ|acts(1CDB, t) is a prefix sequence ofB(t) ·C(t) orB(t) ·A(t).
The transaction can only be committed or aborted after it begins, and this action only happens once
in γ.

- γ is anN-crash-stopbehavior. This simply states that afterN crashes inγ the1CDB module stops
producing any output: If|(γ|{crash})| = N andπj = crash is the lastcrash in γ, thenγ = γ(j).

- γ is ageneralized legalbehavior in the sense given by Definition 3.6.

- γ is aprogressivebehavior. Ifπi = B(t), then∃j : j > i : πj ∈ {C(t), A(t), crash}. Therefore,
a transactiont that begins but executes neitherC(t) nor A(t) indicates the occurrence of acrash
action.

18

Let us note that the last property forγ is a liveness property. Every formal specification requiressuch
kind of properties since a system in which nothing happens isalways safe. The fact that the1CDB module
considers generalized legal behaviors instead of legal behaviors is because in a replicated (asynchronous
distributed) setting, the updates of remote transactions may happen at different times in different sites.
Thus, a transaction that begins in a site may not see the most current versions of the database items in the
whole system, and the transaction may be committed locally by working with stale versions of those items.

5.2 One-copy Equivalence Definition

In anRDBSϕ module, a transactiont ∈ T may appear inβ ∈ behs(RDBSϕ) operating as either a local
transaction or a remote transaction. However, in the1CDB module each transactiont ∈ T can only appear
once without making reference to any site. Thus, it is necessary to relate the actions of a transactiont in
both modules and also their semantics, i.e., the readset, writeset and control information. Consequently, in
order to study the one-copy equivalence we have to define a relation between the behaviors of anRDBSϕ

and the1CDB.

Definition 5.1. (Legal Relation)LetRDBSϕ be a module ofRDBS. LetΓ be a relation inbehs(RDBSϕ)
×behs(1CDB). Γ is a legal relation if for eachβ ∈ behs(RDBSϕ) there exists at least aγ ∈
behs(1CDB) such that:

(1) rst(β) = rst(γ), wst(β) = wst(γ) andinft(β) = inft(γ)

(2) ∃n ∈ N : Bn(t) is in β ⇔ B(t) is in γ

(3) ∃n ∈ N : Cn(t) is in β ⇔ C(t) is in γ

(4) ∃n ∈ N : An(t) is in β ⇔ A(t) is in γ

(5) |(β|{crashn : n ∈ N})| = |(γ|{crash})|

To define the relation in a more general way, Definition 5.1 permits to choose arbitrarily the order of
the actions inγ regardless of the order established byβ for these actions. By its definition, the image of
β by the legal relationΓ , denotedΓ (β), satisfiesΓ (β) ⊆ behs(1CDB). Thus, each behavior inΓ (β)
must be well-formed, N-crash-stop, generalized legal and progressive (as the behaviors of1CDB were
defined) and contain all the transactions that were committed, aborted or did not provide any response in
each behavior.

Example 6. Regarding Example 5, shown in Figure 8, we can find several examples ofγ ∈ behs(1CDB)
satisfying Definition 5.1:

γ1 = B(t1) ·B(t2) · C(t1) · C(t2), γ2 = B(t2) ·B(t1) · C(t1) · C(t2),
γ3 = B(t1) ·B(t2) · C(t2) · C(t1), γ4 = B(t2) ·B(t1) · C(t2) · C(t1),
γ5 = B(t1) · C(t1) ·B(t2) · C(t2), γ6 = B(t2) · C(t2) ·B(t1) · C(t1)

However, as both transactions are executed under the Dynamic Serializable isolation level, if they also
hold thatitems(wst2) ∩items(rst1) 6= ∅, thenγ4 andγ5 are not behaviors of1CDB since in this case
they are not generalized legal behaviors (Definition 3.6).

This is a specific example for theβ presented in Example 5. A legal relation (Definition 5.1) requires
this to be possible for everyβ ∈ behs(RDBSϕ).

Therefore, since transactions inγ ∈ Γ (β) have the same readsetrst, writesetwst and inft as in
β, this legal relation can be somehow considered as an one-copy equivalence notion between a system
characterized bybehs(RDBSϕ) and the1CDB module. This allows us to define the one-copy equivalence
between anRDBSϕ module and the1CDB module.

Definition 5.2. (One-Copy Equivalence)Let RDBSϕ be a module ofRDBS. TheRDBSϕ module is
one-copy equivalent to the1CDB module if and only if there exists a legal relationΓ ⊆ behs(RDBSϕ)×
behs(1CDB).

19

6 Necessary and Sufficient Conditions for One-Copy Equivalence

After having explained the conditions that make anRDBSϕ module one-copy equivalent in the previous
Section, we will determine the set of propertiesϕ that have to be imposed on the behaviors of theRDBSϕ

module to provide one-copy equivalence. As it will be proven, the proposed properties are necessary and
sufficient to guarantee one-copy equivalence. For this reason, they are correctness criteria. In the following,
we present and explain these correctness criteria.

Criterion 1. (C1: Local Transaction Progress)For every behaviorβ ∈ behs(RDBS), the following holds:
πi = Bsite(t)(t) ⇒ ∃n : n ∈ N : ∃ k : k > i : πk ∈ {Cn(t), An(t), crashn}

Criterion C1 indicates that if a transaction begins its execution, then it will be committed or aborted
at least at one site, or some site will crash otherwise. This entails that if a transaction begins and does
not provide any output then there must have been at least one crash in the system. Note that, despite
ensuring some kind of progress of transactions in the replicated system, this criterion does not imply any
local progress of the transaction at its delegate replica.

Criterion 2. (C2: Uniform Decision)For every behaviorβ ∈ behs(RDBS), it holds that:

(1) πi = Cn(t) ⇒ ∀n′ : n′ ∈ N : ∀ k : πk 6= An′(t)

(2) πi = An(t) ⇒ ∀n′ : n′ ∈ N : ∀ k : πk 6= Cn′(t)

Criterion C2 considers committed and aborted transactionsseparately. C2.1 states that if a transaction
is committed at one site (either correct or faulty), it cannot be aborted at any site, even the former one.
Similarly C2.2 ensures that if a transaction is aborted at some site, then it cannot be committed at any site.
Thus, C2 guarantees that the decision on the outcome of a transaction has to be the same at every site which
has made a decision and that the transaction will not be both committed and aborted at different sites.

Criterion 3. (C3: Uniform Prefix Order Consistency)For every behaviorβ ∈ behs(RDBS), it holds that
log(β(j)|EDBn) � log(β(j)|EDBn′) or vice versa, for everyβ(j) � β.

Criterion C3 forces the system to build the same snapshots atall the databases. In fact, the same commit
ordering must be followed at all sites by all committed update transactions, not only by the conflicting
ones, i.e.,trans(β(j)|{Cn(t) : t ∈ T }) � trans(β(j)|{Cn′ (t) : t ∈ T }). Recall thattrans(β(j)) =
trans(β(j − 1)) · trans(πj) for 0 ≤ j ≤ |β|, wheretrans(π) = t if and only if π hast as a paramter (or
trans(π) = udef otherwise). Every remote transactiont will install, if possible, the same writesetwst as
the one defined for the local transaction (see Corollary 4.1). Note also that if a database fails, this criterion
ensures that the last installed snapshot is also a valid snapshot for the rest of the correct sites.

When it comes to considering crash failures, the previous criteria may not avoid some undesirable
behaviors of the replicated system. For example, if a transaction begins at its delegate site, notifies that it
is ready to commit and then the site fails, none of the previous criteria will prevent its changes from being
committed elsewhere by a remote transaction, even when the transaction, according to the previous criteria,
has been aborted locally by another conflicting transaction, if the site had not crashed and all transactions
had been committed in the same order at every replica. In other words, the behavior of a remote transaction
has to be equivalent to the one of its local transaction even if it has not been able to notify its termination
due to a crash. Criterion C4 avoids such potential undesirable behaviors.

To simplify the formulation of C4, we definelast(i, n, β) as the last transaction which has committed
in a siten before an actionπi in a behaviorβ ∈ behs(RDBS)5.

Definition 6.1. (Last Transaction)Letβ be a behavior ofRDBS. The last committed transaction ofβ at
a siten beforeπi is defined as follows:

last(i, n, β) =

{

tlast ⇔ ∃j : j < i : πj = Cn(tlast) ∧ ∀k : j < k < i : πk /∈ {Cn(t) : t ∈ T }
f0 otherwise

5In other parts of the paper, we also use this notation for behaviorsβ ∈ behs(EDBn), since the definition is also valid for such
behaviors.

20

By Definition 6.1, either there exists a transactiontlast which is the last committed one just before
actionπi in β, or there does not exist a previous committed transaction yet. In the latter case, in order to
simplify the notation, we assume that for alln ∈ N , if πj = Cn(f0) thenj = 0; i.e., a fictitious transaction
f0 has been committed at every site at the initial point.

Criterion 4. (C4: Non-Contradiction)For every behaviorβ ∈ behs(RDBS), the following holds:
πi = Bsite(t)(t) ∧ πj = Cn′(last(i, site(t), β)) ∧ πk = Cn′(t) ∧ n′ 6= site(t) ⇒
∀t′′ ∈ T : ¬conflict(t′′, t, j, β(k)|EDBn′).

C4 prevents transactions that conflict with a transactiont which was local at a siten from being com-
mitted at another siten′ between the last committed transaction atn whent began and the commit oft.
Therefore, crash uncertainty is avoided, as a transactiont from a crashed sitesite(t) would not be allowed
to be committed, if any other concurrent transactions that should be committed beforet conflict with it.

It is worth noting that Criterion C4 is only necessary when isolation levels may cause conflicts. Thus, if
all transactions were executed under the Weak Read Committed isolation level (see Table 1), Criterion C4
would not be necessary, as it would be trivially satisfied. However, we cannot ignore Criterion C4, as the
model does not assume a concrete isolation level.

Section 6.1 and Section 6.2 detail the proof that these criteria are necessary and sufficient conditions
for the proposed model.

6.1 Proof of Necessity

In order to study whether these criteria are necessary conditions to get the1CDB equivalent system, we
will prove that such equivalence is not possible when supposing that each of the criteria does not hold
separately. From Definition 5.2 anRDBSϕ is not one-copy equivalent to1CDB if there does not exist
a legal relationΓ , i.e., you can find at least oneβ ∈ behs(RDBSϕ) such that anyγ obtained using the
conditions of Definition 5.1 from any possible relation satisfiesγ /∈ behs(1CDB).

Theorem 6.1. LetRDBSϕ be a module ofRDBS. If Criterion C1 does not hold inbehs(RDBSϕ), then
RDBSϕ is not one-copy equivalent to1CDB.

Proof. By contradiction. There exists a legal relationΓ such thatRDBSϕ is one-copy equivalent to
1CDB. If C1 does not hold, then there existsβ ∈ behs(RDBSϕ) such that for somet ∈ T : πi =
Bsite(t)(t) ∧ ∀n ∈ N : ∀k : k > i : πk /∈ {Cn(t), An(t), crashn}. Among the possible behaviors that
fulfill the previous condition, there also exists a behaviorβ′ such that∀k : k < i : πk /∈ {crashn :
n ∈ N}. Therefore,|(β′|{crashn : n ∈ N})| = 0. SinceΓ is a legal relation,γ ∈ Γ (β′) holds that
|(γ|{crash})| = 0. For transactiont andγ ∈ Γ (β′), γ|{B(t), C(t), A(t), crash} = B(t). Then, for all
γ ∈ Γ (β), γ|{B(t), C(t), A(t), crash} = B(t) and thereforeγ is not progressive with regard tot.

Theorem 6.2. LetRDBSϕ be a module ofRDBS. If Criterion C2 does not hold inbehs(RDBSϕ), then
RDBSϕ is not one-copy equivalent to1CDB.

Proof. By contradiction. There exists a legal relationΓ such thatRDBSϕ is one-copy equivalent to
1CDB. If C2 does not hold, then there existsβ ∈ behs(RDBSϕ) such that for some transactiont ∈ T ,
πi = Cn(t) andπj = An′(t) with n 6= n′ by Property 4.2.1 and Property 4.3.1. Then, for anyγ ∈ Γ (β),
it is true thatγ|{B(t), C(t), A(t)} is eitherB(t) · C(t) · A(t) or B(t) · A(t) · C(t) and thereforeγ is not
well-formed.

Theorem 6.3. LetRDBSϕ be a module ofRDBS. If C3 does not hold inbehs(RDBSϕ), thenRDBSϕ

is not one-copy equivalent to1CDB.

Proof. By contradiction. There exists a legal relationΓ such thatRDBSϕ is one-copy equivalent to
1CDB. If C3 does not hold, then there exists a finiteβ ∈ behs(RDBSϕ) such thatlog(β|EDBn) �
log(β|EDBn′) for some pair(n, n′) with n 6= n′. This inequality cannot be caused by writesets of a
committed transaction being different at system sites (seeCorollary 4.1). Such difference may be produced
because some transactions did not commit or they committed in different order at system sites. In both

21

β|EDB

β|EDBn

n'

B (t)n 0

B (t)n' 0

B (t)n 1

B (t)n' 2

C (t)n 0

apply (t)n' 0 apply (t)n' 1

apply (t)n 2B (t)n 3

B (t)n' 4

B (t)n 2

B (t)n' 1

C (t)n 3

C (t)n' 4

C (t)n 2

C (t)n' 1

C (t)n 1

C (t)n' 2

S0
n

S0
n'

S2
n'

S1
n

S1
n'

S2
n

t0

t0

t1

t2

t2

t3

t1

t4

n=site(t)0

C (t)n' 0

 =site(t)1

n'=site(t)2

Figure 10: Example of a behavior in which transactions are committed in different order at two sites.

cases, it suffices to study the case when transactions have been committed in different order. Let us consider
theβ of Figure 10.

We do not take into account the intermediate actions of the local transactions since they are irrelevant to
the proof. Note thatsite(t1) = n andsite(t2) = n′; i.e,t1 andt2 are local atn andn′ respectively. In both
β|EDBn andβ|EDBn′ , t0, t1 andt2 do not conflict among them since they are executed sequentially and
they all are compatible and consistent by Property 4.4. Transactionst3 andt4 do not conflict witht1 or t2.
LetSk

i be the snapshot created by the transactionti : i ∈ {0, 1, 2} when it is committed at sitek ∈ {n, n′}
in β|EDBk.

According to the system model, transactions can be executedunder any isolation level and they can
read/write any item at any time. Then, we establish the following additional conditions to the considered
behaviorβ:

(1) rst1 ⊆ Sn
0 andrst2 ⊆ Sn′

0

(2) items(wst1) * items(wst2) anditems(wst2) * items(wst1)

(3) rst3 ⊆ Sn
1 andrst4 ⊆ Sn′

2

(4) items(rst3) ∩ items(wst1) 6= ∅ ∧ items(rst3) ∩ items(wst2) 6= ∅

(5) items(rst4) ∩ items(wst1) 6= ∅ ∧ items(rst4) ∩ items(wst2) 6= ∅

By the first condition, transactionst1 andt2 must see at their beginning the snapshots created byt0
in n andn′. Recall that local and remote transactions commit the same writeset (see Corollary 4.1), and
therefore these snapshots must be equal, i.e.,S0 = Sn

0 = Sn′

0 = wst0 . Thus,t0 must be committed
beforet1 andt2 begin so that the snapshot is available at their beginning. Then, the only behaviorsγ ∈
behs(1CDB) that can be possible considering the transformation of Definition 5.1 and onlyt0, t1 andt2
are the ones of Figure 11:

t1

t2

t0 t2

t1

B(t)0 B(t)2C(t)0 B(t)1 C(t)2 C(t)1

t0

B(t)0 B(t)1C(t)0 B(t)2 C(t)1 C(t)2

t1

t2

t0

t1

t2

B(t)0 B(t)1C(t)0 B(t)2 C(t)2 C(t)1

t0

B(t)0 B(t)2C(t)0 B(t)1 C(t)1 C(t)2

t0 t2

B(t)0 B(t)2C(t)0 B(t)1C(t)2 C(t)1

t0

B(t)0 C(t)0

t1

B(t)1 B(t)2C(t)1 C(t)2

t1

t2

1 2

3

5

4

6

S0

S0 S2
n'

S1
n'

S2
n'

S1
n'

S0 S1
n

S2
n

S1
n

S2
n

S0

S0 S2
n'

S1
n'

S1
n

S2
n

S0

Figure 11: Possible one-copy behaviors following the transformation of Definition 5.1 fort1, t2 andt3.

As a result of the second condition being applied toβ, it holds thatSn
1 6= Sn′

2 , Sn
1 6= Sn′

1 andSn′

2 6=

22

Sn
2 . Note thatSn′

1 6= Sn
2 does not necessarily hold. As the figure shows, for any possible γ ∈ Γ (β),

γ|{C(t0), C(t1), C(t2)} is eitherC(t0) · C(t1) · C(t2) orC(t0) · C(t2) · C(t1). In the former caseSn′

2 is
never created inγ and in the latter caseSn

1 is never created inγ.
By the last three conditions, botht3 and t4 have to read versions of some items of bothwst1 and

wst2 from Sn
1 andSn′

2 respectively. However,γ produces justSn
1 or Sn′

2 and besides these versions
can not be obtained fromSn

2 or Sn′

1 sinceSn
1 6= Sn′

1 andSn′

2 6= Sn
2 . Then, for anyγ′ ∈ Γ (β) that

could be built includingt3 and t4 over γ, eithert3 is incompatible ort4 is incompatible and therefore
γ′ /∈ behs(1CDB).

Theorem 6.4. LetRDBSϕ be a module ofRDBS. If C4 does not hold inbehs(RDBSϕ), thenRDBSϕ

is not one-copy equivalent to1CDB.

Proof. By contradiction. There exists a legal relationΓ such thatRDBSϕ is one-copy equivalent to
1CDB. If C4 does not hold, there existsβ ∈ behs(RDBSϕ) such thatπi = Bsite(t)(t) ∧ πj =
Cn′(last(i, site(t), β)) ∧ πk = Cn′(t) ∧ site(t) 6= n′ ∧ ∃t′′ ∈ T : conflict(t′′, t, j, β(k)|EDBn′).
Let us consider theβ of the example of Figure 12.

n=site(t)0

n'=site(t)2

 =site(t)1

β|EDB

β|EDBn

n'

t0 t1

t0 t2 t1

B (t)n 0

B (t)n' 0

B (t)n 1

B (t)n' 2

C (t)n 0

apply (t)n' 0 apply (t)n' 1 B (t)n' 1 C (t)n' 1

crash n

C (t)n' 2C (t)n' 0

S0

S0

ready (t)n 1

Figure 12: Example of a behavior in which a site crashes.

LetS0 be the snapshot whenCn(t0) andCn′(t0) in bothβ|EDBn andβ|EDBn′ . As t0, t1 andt2 are
arbitrary transactions, then we assume a particular isolation level in which conflicts can arise, for example,
the simplest one would beSnapshot Isolation. Then, we establish the following additional conditions for
β:

(1) rst1 ⊆ S0 andrst2 ⊆ S0

(2) items(wst1) ∩ items(wst2) 6= ∅

(3) items(rst1) ∩ items(wst2) 6= ∅ ∧ items(rst2) ∩ items(wst1) 6= ∅

By the first condition, transactionst1 andt2 must see at their beginning the snapshots created byt0 in
n andn′. Therefore,t0 must be committed beforet1 andt2 begin. Then, the only behaviorsγ ∈ Γ (β) that
can be possible considering the transformation of Definition 5.1 are the ones of Figure 13.

However, in the casesγ1 andγ3, for the transactiont1, conflict(t2, t1, 4, γ1(6)) andconflict(t2, t1, 3,
γ3(6)). Therefore,γ1 andγ3 are not generalized legal behaviors. The same happens forγ2 andγ4, but with
t2, i.e., conflict(t1, t2, 4, γ2(6)) andconflict(t1, t2, 3, γ4(6)). Therefore,γ2 andγ4 are not generalized
legal behaviors either.

By the last condition,γ5 is not possible sincerst1 * S2 and hence¬compatible(t1, 5, γ5(6)), andγ6
is neither possible sincerst2 * S1 and hence¬compatible(t2, 5, γ6(6)).

6.2 Proof of Sufficiency

In the previous Subsection, we have proved that Criteria C1 to C4 are necessary conditions to obtain a one-
copy equivalence of anRDBSϕ module. In the following, we prove that they are also sufficient conditions.
To this end, we denote byRDBSCC the moduleRDBSϕ in which its behaviors satisfy C1 to C4. In order
to prove their sufficiency, the criteria must ensure that anybehavior of theRDBSCC can be transformed
in such a way that the result is a behavior of the1CDB module.

23

t1

t2

t0 t2

t1

B(t)0 B(t)2C(t)0 B(t)1 C(t)2 C(t)1

t0

B(t)0 B(t)1C(t)0 B(t)2 C(t)1 C(t)2

t1

t2

t0

t1

t2

B(t)0 B(t)1C(t)0 B(t)2 C(t)2 C(t)1

t0

B(t)0 B(t)2C(t)0 B(t)1 C(t)1 C(t)2

t0 t2

B(t)0 B(t)2C(t)0 B(t)1C(t)2 C(t)1

t0

B(t)0 C(t)0

t1

B(t)1 B(t)2C(t)1 C(t)2

t1

t2

1 2

3

5

4

6

S0

S0

S0

S0

S0 S0S2 S1

Figure 13: Possible one-copy behaviors following the transformation of Definition 5.1 fort1, t2 andt3.

Next, we study the structure of a transaction in a behaviorβ. Let βt be the subsequenceβt =
β|{Bsite(t)(t), An(t), Cn(t) : n ∈ N}. For each transactiont ∈ T , theβt sequence will always be one of
the sequences defined in the next Theorem 6.5 due to the conditions enforced by Criterion C2.

Theorem 6.5. Let β be a behavior ofRDBSCC . For each transactiont ∈ T , the sequenceβt is one of
the following sequences:

(a) βt = empty

(b) βt = Bsite(t)(t) · γct with γct � Cn1
(t) . . . CnN

(t)

(c) βt = Bsite(t)(t) · γat
with γat

� An1
(t) . . . AnN

(t)

where(n1, . . . , nN) is a permutation of the site identifiers,1..N .

Proof. By Corollary 4.2,Bsite(t)(t) � β|acts(RDBS, t). Therefore,βt = empty in caseBsite(t) is
not in β. Otherwise, by the definition ofβt, it holds thatBsite(t)(t) � βt. If γct = γat

= empty, the
Theorem holds; if not,βt will be Bsite(t)(t) · γ. Then, letπi, πj be inβ such thati < j. Now suppose
thatπi = An(t) is in γ. Then, by contradiction, we assume that there also exists aπj = Cn′(t) in γ.
By Property 4.2.1 and Property 4.3.1,n 6= n′. Sinceβ satisfies C2, suchγ is not possible. The same
happens, ifπi = Cn(t) andπj = An′(t). Thus, the Theorem holds.

A transactiont ∈ T is said to becommitted ina behaviorβ ∈ behs(RDBSCC), denoted byt ∈
Committed(β), if and only if βt has an actionCn(t) for any siten ∈ N , formally: βt � Bsite(t)(t)
· γct with γct 6= empty. In the same way, a transactiont ∈ T is aborted inβ ∈ behs(RDBSCC),
(t ∈ Aborted(β)), if and only if βt has an actionAn(t) for any siten ∈ N , formally: βt � Bsite(t)(t) ·
γat

with γat
6= empty.

As a result of Theorem 6.5: (i) ift ∈ Committed(β), thenβt is a prefix ofBsite(t)(t) · Cfc(βt)(t)
wherefc(βt) is the first site at whicht is committed; and (ii) ift ∈ Aborted(β), thenβt is a prefix of
Bsite(t)(t) ·Aac(βt)(t) wherefa(βt) is the first site at whicht is aborted. Next, we define the subsequence
of β which comprises the beginning and the first output (committed or aborted) of each transaction, as well
as the crash actions.

Definition 6.2. (Transaction’s First-Output Behavior)Letβ be a behavior ofRDBSCC . The subsequence
βF is defined asβF = β|F (β) where F (β) = {Bsite(t)(t) : t ∈ T } ∪ {Cfc(βt)(t) : t ∈
Committed(β)} ∪ {Afa(βt)(t) : t ∈ Aborted(β)} ∪ {crashn : n ∈ N}. Moreover,wst(βF) = wst(β),
rst(βF) = rst(β) andinft(βF) = inft(β).

Example 7. As Figure 14 shows, the subsequenceβF of the behavior of Example 5 (see also Figure 8) is
β = B1(t1) · B2(t2) · C2(t1) · C2(t2). In this case,fc(βt1) = 2 (i.e., t1 is committed first at the remote
site2) andfc(βt2) = 2 (i.e., t2 is committed first at its local site2). The sequences ofβt1 andβt2 of this
example are also presented in Figure 14.

24

t1 (local)

t1 (remote)

t2 (local)

t2 (remote)
1=site(t)1

2=site(t)2

β|EDB

β|EDB1

2

B (t)1 1

B (t)2 2

ready (t)1 1

apply (t)2 1

commit (t)1 1

ready (t)2 2 B (t)2 1

apply (t)1 2

commit (t)2 2

C (t)1 1 C (t)1 2B (t)1 2

C (t)2 1 C (t)2 2

B (t)1 1 C (t)2 1 C (t)1 1

C (t)1 2B (t)2 2 C (t)2 2

B (t)1 1 C (t)2 1B (t)2 2 C (t)2 2

βt1

βt2

β
F

Figure 14: TheβF subsequence for the execution of Example 5.

Note that the actions inβF for each transactiont ∈ T (i.e.,Bsite(t)(t), Cfc(βt)(t) andAfa(βt)(t)) are
unique. TheβF sequence has some useful properties, shown in Lemma 6.1, of which we will make use
later.

Lemma 6.1. Letβ be a behavior ofRDBSCC . In the subsequenceβF the following conditions hold:

(1) πi ∈ {Cfc(βt)(t), Afa(βt)(t)} ⇒ ∃k : k < i : πk = Bsite(t)(t)

(2) if crashn1
· · · crashnN

is a subsequence ofβF with (n1, · · · , nN) a permutation of(1..N) and
πj = crashnN

, thenβF = β(j)F

(3) πi = Bsite(t)(t) ⇒ ∃k : k > i : πk ∈ {Cfc(βt)(t), Afa(βt)(t), crashn : n ∈ N}

Proof. The first condition comes from Definition 6.2 ofβF and Theorem 6.5. The second one is proved by
Property 4.1, since after the lastπj = crashnN

no action is possible afterj at any site of theRDBSCC

and henceβ = β(j). Finally, asβ ∈ behs(RDBSCC) satisfies C1, then again by Definition 6.2 ofβF

and Theorem 6.5 the third condition holds.

TheβF sequence has also the nice property thatlog(β|EDBn) � log(βF) for all n ∈ N , as stated
in Lemma 6.2. This means thatβF installs the same snapshots, and in the same order, as the ones installed
at each replica of the replicated system. This consideration is possible due toβF being trivially well-formed
in the sense given by Definition 3.1 and the fact that each transaction inβF hasrst, wst andinft as its
readset, writeset and control information by Remark 4.2.

Lemma 6.2. Let β be a behavior ofRDBSCC . It holds thatlog(β(j)|EDBn) � log(β(j)F) for every
prefixβ(j) � β and everyn ∈ N .

Proof. Let β(j) be a finite prefix ofβ for some indexj ∈ Z+. By induction overj ≥ 0.

- Basis: j = 0. β(0)|EDBn=β(0)F=empty and, by definition,log(β(0)|EDBn)=log(β(0)F)=empty.

- Hypothesis: j > 0 andlog(β(j)|EDBn) � log(β(j)F).

- Induction Step: we only consider the eventsπj+1 affecting the Lemma statement.

• πj+1 = Cfc(βt)(t) andfc(βt) = n. By Hypothesis,log(β(j)|EDBn) � log(β(j)F). The only
possible case from the Hypothesis islog(β(j)|EDBn) = log(β(j)F).
Considerlog(β(j)|EDBn) ≺ log(β(j)F). There is at least one different element〈t′, wst′〉
in log(β(j)F). Thus,β(j) includesπj′ = Cfc(βt′

)(t
′) with j′ < j. This action is also in

β(j)F but not inβ(j)|EDBn. By C3, there is some replica (fc(βt′) = n′) n′ 6= n such that
log(β(j′)|EDBn) ≺ log(β(j′)|EDBn′). Then,log(β(j)|EDBn) ≺ log(β(j)|EDBn′). By
the log Definition 3.2, asβ(j + 1)|EDBn = β(j)|EDBn · πj+1 andβ(j + 1)|EDBn′ =
β(j)|EDBn′ thenlog(β(j + 1)|EDBn) � log(β(j + 1)|EDBn′) that leads to a contradiction
with C3.

25

As a conclusion,log(β(j)|EDBn) = log(β(j)F). As β(j+1)|EDBn = β(j)|EDBn · πj+1

andβ(j+1)F = β(j)F · πj+1, by the log Definition 3.2,log(β(j+1)|EDBn) = log(β(j+1)F)
holds.

• πj+1 = Cfc(βt)(t) andfc(βt) 6= n. By Hypothesis,log(β(j)|EDBn) � log(β(j)F). Since
β(j + 1)|EDBn = β(j)|EDBn andβ(j + 1)F = β(j)F · πj+1, then by the log Definition 3.2,
log(β(j + 1)|EDBn) ≺ log(β(j + 1)F) holds.

• πj+1 = Cnk
(t) andnk = n, beingnk 6= fc(βt). By Theorem 6.5, there existsj′ < j such

thatπj′ = Cfc(βt)(t) is in β(j)F . This action is inβ(j)F but not inβ(j)|EDBn. By induction
Hypothesis,log(β(j′)|EDBn) ≺ log(β(j′)F) and alsolog(β(j)|EDBn) ≺ log(β(j)F). Thus,
asβ(j + 1)|EDBn = β(j)|EDBn · πj+1 andβ(j + 1)F = β(j)F , by the log Definition 3.2,
log(β(j + 1)|EDBn) � log(β(j + 1)F).

• πj+1 = Cnk
(t) andnk 6= n, beingnk 6= fc(βt). In this case,β(j + 1)|EDBn = β(j)|EDBn

andβ(j + 1)F = β(j)F . Thus, trivially log(β(j + 1)|EDBn) � log(β(j + 1)F) by induction
Hypothesis.

Thus, the Lemma holds.

The actions of sequenceβF compose a behavior which somehow represents the way in whichtransac-
tions behave in the replicated system. This behavior is not strictly the same as the one of a single database
system (Definition 3.5), but it satisfies the generalized legal behavior of Definition 3.6, in which transac-
tions may obtain older snapshots prior to their beginning. Theorem 6.6 covers this issue.

Theorem 6.6. Letβ be a behavior ofRDBSCC andβF = β|F (β). For each transactiont ∈ T such that
πi = Bsite(t)(t) andπj = Cfc(βt)(t), there exists0 ≤ s ≤ i such that the following conditions hold:

(a) compatible(t, s, β(j)F)

(b) ¬conflict(t′, t, s, β(j)F), for all t′ ∈ T

(c) consistent(t, β(j)F)

Proof. By the Definition 6.2 ofβF , there exists inβ both πi = Bsite(t)(t) andπj = Cfc(βt)(t) with
i < j for each consideredt ∈ T . SinceβF = β|F (β), we can use the indexesi, j of β in βF , although
the properties to be proved are related only withβF . Let t0 ∈ T be the transaction such thatt0 =
last(i, site(t), β) andπi0 = Csite(t)(t0). By Theorem 6.5, there existsπi′

0
= Cfc(βt)(t0) with i′0 < j, as

log(β(j)|EDBsite(t)) � log(β(j)|EDBfc(βt)).

- Proof of Condition (a):

By Property 4.2.1 whenfc(βt) = site(t) or by Theorem 4.1 whenfc(βt) 6= site(t), if πj =
Cfc(βt)(t) is inβ, thenπr = readysite(t)(t) is inβ. Thus, by Property 4.2.4, it holds thatcompatible(
t, i, β(r)|EDBsite(t)). Note that, by its Definition 3.3, the snapshot only changes on when a trans-
action is committed. Thus,S(β(i)|EDBsite(t)) = S(β(i0)|EDBsite(t)). Then, we have to be con-
cerned about the transactionstk which were committed between the commitment oft0 andt atfc(βt)
(wheret was committed first); i.e.,tk ∈ T such thatπi′

k
= Cfc(βt)(tk) andi′0 < i′k < j. Note that

t0 and eachtk have been committed inβ. Then, letπs = Cfc(βt0
)(t0) andπk = Cfc(βt

k
)(tk), it is

satisfied thats < i0 < i and, by Lemma 6.2,s < k < j sincelog(β(j)|EDBfc(βt)) � log(β(j)F).

Let πik = Csite(t)(tk) be the committed actions atsite(t) of eachtk with ik : i0, i1, .., ik, .., im and
im < r. The sequence of snapshots insite(t) which makescompatible(t, i, β(r)|EDBsite(t)) true
is: S(β(i0)|EDBsite(t))S(β(i1)|EDBsite(t)) . . .S(β(ik)|EDBsite(t)) . . .S(β(im)|EDBsite(t)).

By Property 4.2.1 iffc(βt) = site(t) or by Theorem 4.1 iffc(βt) 6= site(t), it is satisfied in both
cases thatim < r < j. By Lemma 6.2,log(β|EDBsite(t)) � log(βF). Both behaviors have
built the same snapshots. By the previous definition ofπs andπk, thenlog(β(i0)|EDBsite(t)) =
log(β(s)F) andlog(β(ik)|EDBsite(t)) = log(β(k)F) for k : 1..m. By the snapshot Definition 3.3,
S(β(s)F) · · · S(β(k)F) · · · S(β(m)F) is the same sequence of snapshots. Then,compatible(t, s,
β(m)F) holds and triviallycompatible(t, s, β(j)F) holds too, sincerst(β) does not change after
actionreadysite(t)(t) is executed, and therefore neither doesrst(βF).

- Proof of Condition (b):

26

Recall thatwst(β) and inft(β) of any committed transactiont are the same at all system sites no
matter if t is local or remote (see Remark 4.2), thus by Definition 6.2 they are also the same forβF .
Moreover,πi0 = Csite(t)(t0) andπi′

0
= Cfc(βt)(t0). If fc(βt) = site(t), thenπi′

0
= πi0 and, by

Property 4.4, it holds that∀t′′ ∈ T : ¬conflict(t′′, t, i, β(j)|EDBfc(βt)). As t0 is the last committed
transaction insite(t) beforeπi = Bsite(t)(t), theconflict() predicate can be extended toi′0, i.e., it
holds that∀t′′ ∈ T : ¬conflict(t′′, t, i′0, β(j)|EDBfc(βt)). On the other hand, iffc(βt) 6= site(t),
then also, by C4, it holds that∀t′′ ∈ T : ¬conflict(t′′, t, i′0, β(j)|EDBfc(βt)). Then, we have to be
again concerned about the transactionstk ∈ T such thatπi′

k
= Cfc(βt)(tk) andi′0 < i′k < j. By the

definition ofconflict(), these transactions satisfy¬conflict(tk, t, i′k, β(j)|EDBfc(βt)).

Then, recalling thatπs = Cfc(βt0
)(t0) andπk = Cfc(βt

k
)(tk), in βF , by Definition 6.2,s < k <

j. Therefore,¬conflict(tk, t, s, β(j)F). For the rest of committed transactionst′ such thatπk′ =
Cfc(βt′

)(t
′) and thats < k′ < j does not hold,¬conflict(t′, t, s, β(j)F) holds too.

- Proof of Condition (c):

Finally, asπj = Cfc(βt)(t), by Property 4.4,consistent(t, β(j)|EDBfc(βt)) = ∀i : Ki(S(β(j −
1)|EDBfc(βt)), wst). By Lemma 6.2,log(β(j)|EDBfc(βt)) = log(β(j)F). Thus,log(β(j − 1)|
EDBfc(βt)) = log(β(j − 1)F), sinceπj = Cfc(βt)(t). Then,S(β(j − 1)|EDBfc(βt)) = S(β(j −
1)F) and thereforeconsistent(t, β(j)F) holds.

One can think that theβF of eachβ ∈ behs(RDBSCC) keeps the properties we need to prove the
existence of a one-copy equivalence of theRDBSCC . This is the conclusion drawn from Theorem 6.7,
which proves that any behavior of theRDBSCC can be transformed in order to become a behavior of the
1CDB module.

Theorem 6.7. TheRDBSCC module satisfying Criteria C1 to C4 is one-copy equivalent to the1CDB.

Proof. For eachβ ∈ behs(RDBSCC), we define the following legal relationΓ : behs(RDBSCC) →
behs(1CDB); Γ (β) = R(βF) whereR() is a renaming function which removes every reference of a site
in the actions ofβF related to a transaction or a crash action. That is,B(t), C(t), A(t) or crash appear
in R(βF) whenBsite(t)(t), Cfc(βt)(t), Afa(βt)(t), or crashn appear inβF . Note that|βF |{crashn : n ∈
N}| = |R(βF)|crash|. Thus,βF satisfies Lemma 6.1 and Theorem 6.6; the definition ofrst, wst and
inft does not change for the transactions inR(βF); and the actions inR(βF) are included in the1CDB
signature, i.e.,acts(1CDB). Therefore,Γ (β) ∈ behs(1CDB), i.e.,Γ (β) is a well-formed, N-crash-stop,
generalized legal and progressive behavior.

The resulting one-copy behavior models the behavior of all the committed and aborted transactions in
the replicated systemRDBSCC . In this way, transactions in the1CDB behavior are committed, aborted
or provide no result because of the same reasons as in theRDBSCC module.

In conclusion, the conditions imposed by Criteria C1 to C4 upon theRDBS constitute theRDBSCC .
Such criteria are the sufficient and necessary conditions for theRDBSCC to be one-copy equivalent to the
1CDB module.

7 Discussion

Before presenting the refinements derived from theRDBSCC that model the implementation of anRDBS
in Sections 8 and 9, this Section discusses some interestingaspects related to the correctness criteria pre-
sented in Section 6.

Read-only transactions: After having stated Remark 4.1, read-only transactions have been ignored, as
they can be directly executed at their respective delegate site without requiring any remote transac-
tions to propagate the transaction to the rest of sites. In order to ignore read-only transactions, Re-
mark 4.1 states that read-only transactions do not conflict with other transactions. Without this
assumption, Criterion C2 may be violated, since Criterion C4 would not observe conflicts derived
from read-only transactions.

27

Serializability: As far as serializability is concerned, in order to require transactions to be executed under
theSerializableisolation level at eachEDBn, it would only be necessary to consider that committed
transactions are executed in a view-equivalent way with respect to an execution where transactions
are executed sequentially one after the other. Besides, module 1CDB can be easily transformed
into a1CSER module by removing the condition that requires behaviors tobe generalizedly legal
and replacing it with a condition requiring the sequential execution of committed transactions in its
behaviors.

Even so, Criteria C1 to C4 are still necessary and sufficient conditions in order for aRDBSCC (with
the aforementioned assumptions) to be equivalent to module1CSER. C1 and C2 are independent
of the isolation level. As for C3 and C4, the examples used in Section 6 to prove that they both are
necessary conditions may be reinterpreted for the Serializable level. This way, Criteria C3 and C4 are
necessary conditions for obtaining serializability. Since serializable behaviors include the behaviors
obtained for the Dynamic-Serializable level (see Table 1) and conditions C1 to C4 are sufficient
conditions for obtaining one-copy equivalence under this level, it is reasonable to assume that they
are also sufficient conditions for serializability (although this has not been proven).

Relaxation of the correctness criteria: As it has been proved before, the addition of Criteria C1, C2,C3
and C4 to theRDBS results in a new systemRDBSCC , which is correct in the sense that it is
equivalent to module1CDB. Such conditions are necessary and sufficient under the assumptions
given for a fully replicated system:

(a) The crash failure model is considered

(b) Transactions can be executed at any place

(c) Transactions can begin at any time

(d) Transactions can read/write any item

(e) Transactions run under any isolation level defined in the database (which may also declare
integrity constraints).

Evidently, if we restrict the initial assumptions of the replication model some of the correctness crite-
ria may be relaxed with the aim to improve the system’s performance. For instance, by constraining
assumption (b) to its limit, we would obtain a primary-copy replication model.

By restricting condition (c), transactions would not be allowed to start at any time. Thus, a control
mechanism over the start point of transactions would enablethe relaxation of Criterion C3 (i.e., logs
of different replicas could be disordered), since C3 is necessary in a system that fulfills condition (c).
In this case, the most appropriate moment for starting each transaction should be determined (e.g.,
when the same snapshot is reached at different replicas).

If condition (d) were modified in order to impose certain restrictions on transactions with respect to
the database items that they read/write, it would be possible to divide transactions into sets that work
with disjoint sets of database items. In this context, each transaction set should fulfill C1 to C4, but
would work independently with regard to the rest of transaction sets.

Finally, if condition (e) is restricted so that all transactions use the same level of isolation, it is obvious
that using isolation levels that produce fewer conflicts will result in a better system performance.

Note that most of these constraints on the initial assumptions lead to better performance and im-
proved scalability. This had been already argued in [25] regarding condition (d), with the proposal of
theshared-nothingconcept that implies a perfect database partitioning. Modern replication systems
have combined such partitioning with passive replication,as in theDiscor protocol of [26] where
disjoint conflict classes (i.e., the database is logically partitioned for evaluating conflicts, although
this does not demand a physical non-sharing distribution) are assigned to different master replicas
(i.e., passive replication within each logical partition). This boosts the resulting scalability. These
results have been further improved with an important re-design of the DBMS core and maintaining
data in RAM, as in the H-Store system [27]. Moreover, all these systems still preserveone-copy
equivalence, but reaching a level of scalability in the latter that is close to that provided in modern
cloud-based systems [28].

28

Implications of crash failures: Before presenting the successive refinements of the replicated database
system and the replication protocol, we now introduce a relevant consideration regarding assump-
tion (a) of the failure model and its influence on the design ofthe replication protocol. Instead
of using theRDBSCC directly, we may consider other correct systemsRDBSϕ; for instance, an
RDBS{C′1,C′2,C′3,C′4} with C′i ⇒ Ci (i : 1..4) would also be a correct system (note that condi-
tionsC′i would be sufficient but not necessary conditions for one-copy equivalence, since they are
stronger properties). Among Criteria C1 to C4, the suitablecandidate to be strengthened is C1, as it
is a very weak criterion and therefore finding a property thatguarantees a stronger progress condition
than the one required by C1 is a straightforward task. Let C’1be the following condition:

(C’1: Transaction Progress) For every behaviorβ ∈ RDBS, the following holds:πi = Bn(t) ⇒
∃k : k > i : πk ∈ {Cn(t), An(t), crashn}

An RDBS satisfying Criteria C’1, C2, C3 and C4, denoted byRDBS{C′1,C2,C3,C4}, is a correct
system sinceβ ∈ behs(RDBS{C′1,C2,C3,C4}) ⇒ β ∈ behs(RDBSCC) (as if β satisfiesC′1
then C1 holds trivially). What is more, a systemRDBS{C′1,C2,C3} (i.e. it satisfies Criteria C’1, C2
and C3) is correct in a scenario with no crash failures, because it also satisfies C4, as shown in the
following theorem:

Theorem 7.1. Let β be a behavior ofRDBS{C′1,C2,C3} such that there is no actioncrashn in β
for anyn ∈ N . Then,β satisfies C4.

Proof. By contradiction. Ifβ does not satisfy C4, then there exists a transactiont ∈ T such that
πi = Bsite(t)(t) ∧ πj = Cn′(last(i, site(t), β)) ∧ πk = Cn′(t) ∧ n′ 6= site(t) ∧ ∃t′′ ∈ T :
conflict(t′′, t, j, β(k)|EDBn′)

By C’1, ∃s : s > i : πs ∈ {Csite(t)(t), Asite(t)(t)} in β. By C2:πs = Csite(t)(t) sinceπk = Cn′(t).

By its definition there exists aπl = Csite(t)(t0) beingt0 = last(i, site(t), β). By Property 4.4,
∀t′′ ∈ T : ¬conflict(t′′, t, i, β(s)|EDBsite(t)), and therefore∀t′′ ∈ T : ¬conflict(t′′, t, l, β(s)|
EDBsite(t)). By C3,log(β(k)|EDBn′) = log(β(s)|EDBsite(t)).

If there exists a transactiontm ∈ T such thatl < m < s andπm = Csite(t)(tm), then there exists an
m′ such thatj < m′ < k andπm′ = Cn′(tm). Recall thatwstm(β) andinftm(β) are the same for
every site. Thus, ifconflict(tm, t, j, β(k)|EDBn′) is true, then a contradiction is obtained because
¬conflict(tm, t, l, β(s)|EDBsite(t)) is true.

From this theorem, we can infer that if crash failures had notbeen considered, it would have been
possible to develop a correct system based on Criteria C’1, C2 and C3 (without taking into ac-
count C4). However, when introducing theRDBS{C′1,C2,C3} in a crash-prone environment, it may
behave incorrectly (as Criteria C4 may be violated). This result shows the importance of considering
crash failures from the beginning of the specification.

8 A First Refinement of the Replicated System

One of the advantages of using the I/O automaton model is thatit permits to provide accurate descriptions
of a distributed system at different levels of abstraction through successive refinements [2]. In the first part
of this work, a specification of a replicated database systemhas been presented by means of theRDBS
module. Its purpose was to introduce the problem specification. Then, we have described theRDBSCC

module as anRDBS module satisfying the correctness criteria (Criteria C1-C4), which guarantee the
one-copy equivalence of the replicated system. TheRDBSCC is partially distributed: the set ofEDBn

corresponds to the extended databases at each location, while theDRP simply models any replication
protocol responsible for ensuring the deferred-update technique.

29

In this Section, a new level of abstraction of the replicatedsystem is proposed. On one hand, this re-
finement introduces a new module for the replication protocol, calledDRPA, which is compatible with
theDRP specification. Besides, theDRPA is closer to the possible algorithms which could be imple-
mented in practice. On the other hand, this Section describes a new module namedEDBA

n , which consists
in a refinement of theEDBn presenting a more detailed specification of an extended database. It shares
the same signature and properties with theEDBn module, but it provides some extra properties to help
theDRPA with the replication process. Thus, we are going to study thecorrectness of a more specific
replicated database system, which is the composition of theDRPA module and a set ofEDBA

n modules.

8.1 Extended Database Refinement

Up until now, all the extended functionalities of theEDBn module that have been modeled are the
applyn(t, data), readyn(t, data) and commitn(t) actions as well as some basic properties which dis-
tinguish between local and remote transactions, which wereenough to prove the one-copy equivalence of
theRDBSCC . However, some additional properties are necessary to study the correctness of a particular
replication protocol based on the functionalities provided by theEDBn at each site.

Thus, a new extended database module, denoted asEDBA
n , is defined as a refinement of theEDBn.

TheEDBA
n module is the same as theEDBn except for some properties imposed on its behaviors. This

means that they both have the same signature,sig(EDBA
n) = sig(EDBn); and that the behaviors of

theEDBA
n are a subset of the behaviors of theEDBn, behs(EDBA

n) ⊂ behs(EDBn). Therefore, the
EDBA

n satisfies Property 4.1, Property 4.2, Property 4.3, and Property 4.4. We will refer to the original
properties specified for anEDBn behavior when it is necessary to apply them for aEDBA

n behavior.
Additionally, the behaviors of theEDBA

n satisfy Property 8.1 and Property 8.2.

Property 8.1. (Extended Database Refinement)Each behaviorβ ∈ behs(EDBA
n) holds that:

(1) πi = Bn(t) ∧ πj = readyn(t, data) ⇒ data.last = last(i, n, β)6

(2) πj = applyn(t, data)∧ πi = Cn(data.last)∧ i < j ∧∃t′ ∈ T : conflict(t′, t, i, β(j)) ⇒ ∀k : k >
j : πk 6= Cn(t)

(3) πi = Bsite(t)(t) ∧ site(t) = n ⇒ ∃ k : k>i : πk ∈ {readyn(t, data), An(t), crashn : data ∈ D}

(4) πi ∈ {commitn(t), applyn(t, data)} ⇒ ∃ k : k > i : πk ∈ {Cn(t), An(t), crashn}

Recall that whenreadyn(t, data) is generated,data containsdata.ws, data.inf anddata.last (see Sec-
tion 4.1). Property 8.1.1 is a safety property ensuring thatthe fielddata.last in actionreadyn(t, data)
will contain the transaction identifier of the last committed transaction before the beginning of transaction
t. This is essential to detect conflicts when applying remote transactions in the extended database. Thus, in
order to guarantee Criterion C4, Property 8.1.2 usesdata.last to restrict the remote transactions that can
be committed in the local database. Thus, if any conflicting transactiont′ has been committed beforet is
applied, the remote transactiont can never be committed; actually, by Property 8.1.2 and Property 8.1.4, it
will eventually be aborted or the site will crash.

Property 8.1.3 and Property 8.1.4 are liveness properties.The former ensures that if a transactiont
begins at a siten, the transaction will eventually be ready or will be abortedat the local databaseEDBA

n ,
unless siten crashes. The latter ensures that if a transaction requests acommit or an apply operation at
a siten, theEDBA

n will eventually provide a response (eitherCn(t) or An(t)), or the siten will crash
otherwise.

Aborts can happen as a result of a conflictive concurrent transaction at commit time, an integrity con-
straint violation or any other internal cause of the database such as deadlocks, timeouts and so on. Unilateral
aborts are going to be considered as crash failures. Property 8.2 specifies which causes may be responsible
for the aborted response of a transaction.

Property 8.2. (Abort Causes)For every behaviorβ ∈ behs(EDBA
n), it holds that:

(1) There is no transaction unilateral abort or, if any, it is observed as acrashn action.

(2) For any local transactiont ∈ T , with site(t) = n:

6In Definition 6.1,last(i, n, β) is specified forβ ∈ behs(RDBS), but it can be redefined for anyβ ∈ behs(EDBA
n).

30

• Letπi = Bn(t) andπj = An(t). If pattern (b) of Property 4.2.1 is followed, then there exists
t′ ∈ T such thatconflict(t′, t, i, β(j)) or ¬consistent(t, β(j)).

• ActionAn(t) in the sequence (c) of Property 4.2.1 is possible by any abortion cause with the ex-
ception of an unilateral abort (e.g., incompatible read operations, deadlock resolutions, timeout
expirations, explicit client aborts or conflicting transactions).

(3) For any remote transactiont ∈ T (with site(t) 6= n) such thatπi = applyn(t, data), πj = Bn(t)
andπk(t) = An(t) follow pattern (b) in Property 4.3.1, either¬consistent(t, β(k)), or there exists
t′ ∈ T such thatconflict(t′, t, l, β(k)) beingπl = Cn(data.last) with l < i7.

In fact, by the time a transactiont delegates the decision on its outcome to the replication protocol
(by executingreadyn(t, data)), all the operations oft have already been performed successfully in the
database and therefore the transaction is ready for its commit (by Property 4.2.1readyn(t, data) must be
followed by commitn(t)). Therefore, from then on,t will only be aborted in case it does not fulfill the
integrity constraints or if there is another concurrent conflicting transaction which causes its abortion. As
for remote transactions, they will be aborted in case Property 8.1.2 is satisfied, i.e., they are not consistent.

8.2 Replication Protocol Refinement

We now introduce theDRPA module as a refinement of theDRP module. This new level of abstraction of
theDRP specification models the general characteristics which anydeferred-update protocol working with
anEDBA

n module has. The newDRPA module has the same signature as theDRP , i.e.,sig(DRPA) =
sig(DRP). TheDRPA only defines some additional properties (Property 8.3) to refine the specification of
theDRP (behs(DRPA) ⊂ behs(DRP)). Thus, the behaviors ofDRPA satisfy all theDRP ’s properties
(Property 4.5).

TheDRPA explains the way in which the protocol requests the commit ofa local transaction or applies
a remote one. Since both actions are treated in a similar way in some of the presented propertiesREQ(n) =
{applyn(t, data), commitn(t) : t ∈ T, data ∈ D} andREQ(n, t) = {applyn(t, data), commitn(t) :
data ∈ D} to work with both of them at the same time.

Property 8.3. (Replication Protocol Refinement)Letβ be a behavior ofDRPA, it holds that:

(1) πi ∈ REQ(n, t′) ∧ πj ∈ REQ(n, t) ∧ i < j ⇒ ∃k : i < k < j : πk ∈ {Cn(t
′), An(t

′)}

(2) trans(β(j)|REQ(n)) � trans(β(j)|REQ(n′)) or vice versa for every prefixβ(j) � β

(3) πi = readyn(t, data) ⇒ ∃k : k > i : πk ∈ {commitn(t), crashn}

As Property 8.3.1 shows, acommitn(t) or applyn(t, data) can only be executed at siten once the
outcome of the previous request has been decided. This property is necessary in case the underlaying
database replicas do not guarantee that the outcomes of two concurrent transactions are delivered in the
same order as the request operations for committing or applying them. Since Criterion C3 requires the
order of committed responses to be the same at all sites, thiscondition is essential for the model considered
in this work.

Apart from performing commit and apply requests sequentially, in order to build the same snapshots
(and hence the same logs) at all the databases of the replicated system, the protocol must also ensure that
the sequences of transactions that make the commit or apply requests at each site are prefixes of the others
or vice versa. This is formalized by Property 8.3.2. Finally, Property 8.3.3 states that every local transaction
that becomes ready will either be aborted, or will request for its commit, unless the site crashes.

8.3 Composition of the Refinements

Once presented the new modules, now we can build a new replicated systemRDBSA, as a composition
of theDRPA module and a set ofEDBA

n modules, i.e.,RDBSA = DRPA × (
∏

n∈N EDBA
n).

By the properties of composition, the resultingRDBSA will have crashn as input action, that is,
in(RDBSA) = {crashn}, and the union of the outputs of theDRPA and theEDBA

n modules as output

7Recall that forl = 0, data.last = f0

31

DRP

EDB EDB.....EDB1

RDBSA

A

2

A

n

A

A

Figure 15: Composition of the Refined Replicated Database System.

actions, i.e.,out(RDBSA) = (
⋃

n∈N out(EDBA
n)) ∪ out(DRPA). By its definition,sig(RDBSA) =

sig(RDBS). Besides, its behaviors hold that∀n ∈ N : β|EDBA
n ∈ behs(EDBA

n) andβ|DRPA ∈
behs(DRPA).

The RDBSA can be proven correct by showing thatbehs(RDBSA) ⊆ behs(RDBSCC), as we
already know that theRDBSCC is a correct system. However, theRDBSCC is specified from the
RDBS module including theEDBn andDRP modules and therefore it is necessary to prove first that
behs(RDBSA) ⊆ behs(RDBS).

Let β ∈ behs(RDBSA). By contradiction, ifbehs(RDBSA) * behs(RDBS), then there exists a
behaviorβ of RDBSA such thatβ /∈ behs(RDBS). As sig(RDBSA) = sig(RDBS), the properties
of the composition entail thatβ|EDBn /∈ behs(EDBn) or β|DRP /∈ behs(DRP). A contradiction is
obtained, since for everyβ ∈ behs(RDBSA), β|EDBA

n ∈ behs(EDBn) andβ|DRPA ∈ behs(DRP)
must hold by the definition of theEDBA

n andDRPA refinements.
Thus, we only need to prove that the behaviors inbehs(RDBSA) satisfy Criteria C1 to C4 to guarantee

thatbehs(RDBSA) ⊆ behs(RDBSCC).

8.4 Correctness Proof

The correctness proof of theRDBSA is based on a set of theorems (Theorems 8.1 to 8.4). They include
assertions which satisfy every previous considered criteria. These assertions are the logical consequence
of the properties specified for the new hierarchical level.

Theorem 8.1. For every behaviorβ ∈ behs(RDBSA), it holds that:

πi = Bn(t) ⇒ ∃k : k > i : πk ∈ {Cn(t), An(t), crashn}

Proof. By contradiction, ifsite(t) = n, then there existsπi = Bsite(t)(t) and ∀k : k > i : πk /∈
{Csite(t)(t), Asite(t)(t), crashsite(t)}. By Property 8.1.3, there existsπj = readysite(t)(t, data) in β with
j > i. By Property 8.3.3, there existsπr = commitsite(t)(t) in β with r > j. Finally, by Property 8.1.4,
there existsπk ∈ {Csite(t)(t), Asite(t)(t), crashsite(t)} in β with k > r. Then, there is a contradiction
with the initial supposition and the Theorem holds. Ifsite(t) 6= n, by Property 4.3.1 and Property 8.1.4,
the Theorem holds trivially.

Lemma 8.1. For everyβ ∈ behs(RDBSA), it holds thatπi ∈ REQ(n, t) ∧ πj ∈ {Cn(t), An(t)} ⇒
∀k : i < k < j : πk /∈ {Cn(t

′) : t′ ∈ T }

Proof. By contradiction, let us assume that the antecedent holds and there existst′ ∈ T such thatπk =
Cn(t

′) andi < k < j. By Property 4.2.1, there existsπk′ ∈ REQ(n, t′) in β with k′ < k andπk = Cn(t
′)

is unique inβ. If k′ < i, thenk′ < k < i (by Property 8.3.1), which is a contradiction. On the other hand,
if i < k′, theni < j < k′ (by Property 8.3.1), and hencej < k′ < k, which is also a contradiction.

Corollary 8.1. For everyβ ∈ behs(RDBSA), it holds thatπi ∈ REQ(n, t) ∧ πj ∈ {Cn(t), An(t)} ⇒
∀k : i < k < j : πk /∈ {Cn(t

′) : t′ ∈ T } ∧ πk /∈ REQ(n)

Proof. It is proved trivially from Lemma 8.1 and Property 8.3.1.

Lemma 8.2. For everyβ ∈ behs(RDBSA), it holds that:

32

(1) πi = Bn(t) ∧ πj = commitn(t) ∧ πk = Cn(t)
⇒ ∀t′ ∈ T : ¬conflict(t′, t, i, β(k)|EDBA

n) ∧ consistent(t, β(j)|EDBA
n)

(2) πi = Cn(data.last) ∧ πj = applyn(t, data) ∧ πk = Cn(t) ∧ i < j
⇒ ∀t′ ∈ T : ¬conflict(t′, t, i, β(k)|EDBA

n) ∧ consistent(t, β(j)|EDBA
n)

Proof. (1) By contradiction, let us assume that the antecedent is true and either there existst′ ∈ T
such thatconflict(t′, t, i, β(k)|EDBA

n) or ¬consistent(t, β(j)|EDBA
n). By Property 4.4, condition

¬conflict(t′, t, i, β(k)|EDBA
n) holds for everyt′ ∈ T . Thus, there is a contradiction. On the other

hand, by Property 4.4,consistent(t, β(k)|EDBA
n). By Lemma 8.1, there does not exist anyt′ ∈ T

such thatπk′ = Cn(t
′) andj < k′ < k. Therefore, by the snapshot definitionS(β(k − 1)|EDBA

n) =
S(β(j − 1)|EDBA

n). Thus,consistent(t, β(j)|EDBA
n) holds in contradiction to the initial supposition.

(2) By contradiction, assume that the antecedent is true andeither there existst′ ∈ T such that
conflict(t′, t, i, β(k)|EDBA

n) or¬consistent(t, β(j)|EDBA
n). By Lemma 8.1, there cannot existt′ ∈ T

such thatconflict(t′, t, j, β(k)|EDBA
n). By Property 8.1.2, ifconflict(t′, t, i, β(j)|EDBA

n), then there
cannot existπk = Cn(t) with k > j in β, in contradiction with the antecedent. On the other hand,
if πk = Cn(t), by Property 4.4,consistent(t, β(k)|EDBA

n) holds. By Lemma 8.1, there does not
exist anyt′ ∈ T such thatπk′ = Cn(t

′) and j < k′ < k. Therefore, by the snapshot definition
S(β(k− 1)|EDBA

n) = S(β(j − 1)|EDBA
n). Thus,consistent(t, β(j)|EDBA

n) holds in contradiction to
the initial supposition.

Lemma 8.3. For everyβ ∈ behs(RDBSA), it holds that:

(1) πi = Bn(t) ∧ πj = commitn(t) ∧ πk = An(t) ⇒ (∃t′ ∈ T : conflict(t′, t, i, β(j)|EDBA
n) ∨

¬consistent(t, β(j)|EDBA
n)) ∧ ∀t′ ∈ T : ¬conflict(t′, t, j, β(k)|EDBA

n)

(2) πj = applyn(t, data) ∧ πk = An(t) ⇒ ((πi = Cn(data.last) ∧ i < j ∧ ∃t′ ∈ T : conflict(t′, t, i,
β(j)|EDBA

n)) ∨ ¬consistent(t, β(j)|EDBA
n)) ∧ ∀t′ ∈ T : ¬conflict(t′, t, j, β(k)|EDBA

n)

Proof. (1) By Property 8.2.2, for pattern (b) of Property 4.2.1, there exists a transactiont′ ∈ T such that
conflict(t′, t, i, β(k)|EDBA

n) or¬consistent(t, β(k)|EDBA
n). By Lemma 8.1, there cannot existt′ ∈ T

such thatconflict(t′, t, j, β(k)|EDBA
n). Thus,conflict(t′, t, i, β(j)|EDBA

n). By Lemma 8.1 and the
snapshot definition,S(β(k− 1)|EDBA

n) = S(β(j − 1)|EDBA
n). Thus, if¬consistent(t, β(k)|EDBA

n),
then¬consistent(t, β(j)|EDBA

n).
(2) By Lemma 8.1 and the definition ofconflict(), ¬conflict(t′, t, j, β(k)|EDBA

n) for all t′ ∈ T .
Then, by Property 8.2.3 for pattern (b) of Property 4.3.1, either there existst′ ∈ T such thatconflict(t′, t, i,
β(j)|EDBA

n) with πi = Cn(data.last) andi < j, or ¬consistent(t, β(k)|EDBA
n). If ¬consistent(t,

β(k)|EDBA
n), by Lemma 8.1 and the definition of snapshot,S(β(k−1)|EDBA

n) = S(β(j−1)|EDBA
n).

Thus, if¬consistent(t, β(k)|EDBA
n), then¬consistent(t, β(j)|EDBA

n).

Lemma 8.4. For everyβ ∈ behs(RDBSA), it holds that: πi = REQ(n, t) ∧ πj ∈ REQ(n′, t) ∧
log(β(i)|EDBA

n) = log(β(j)|EDBA
n′) ∧ πk = Cn(t) ⇒ ∀k′ : k′ > j : πk′ 6= An′(t)

Proof. By contradiction, let us consider that the antecedent holdsandπk′ = An′(t) with k′ > j is in
β|EDBA

n′ . By Lemma 8.2, in any case ofπi ∈ REQ(n, t), if πk = Cn(t), thenconsistent(t, β(i)|EDBA
n).

By the antecedent and the log Definition 3.2,S(β(i)|EDBA
n) = S(β(j)|EDBA

n′). Therefore, since
consistent(t, β(i)|EDBA

n), thenconsistent(t, β(j)|EDBA
n′). Then, by Lemma 8.3,An′(t) can only

be caused by theconflict() predicate. Let consider the rest of possible cases:

• Let πj = commitn′(t) and hencesite(t) = n′. By Property 4.2.1,πb′ = Bn′(t) and πr′ =
readyn′(t, data) with b′ < r′ < j are inβ|EDBA

n′ . By Lemma 8.3.1, sinceπk′ = An′(t) and
consistent(t, β(j)|EDBA

n′), there existst′ ∈ T such thatconflict(t′, t, b′, β(j)|EDBA
n′). Then,

πc′ = Cn′(t′) with b′ < c′ < j is in β|EDBA
n′ . By Property 8.1.1 and thelast() definition,

πl′ = Cn′(data.last) with l′ < b′ is in β|EDBA
n′ (or l′ = 0 if data.last = f0). By Theo-

rem 4.1,πi = applyn(t, data). Sincelog(β(i)|EDBA
n) = log(β(j)|EDBA

n′), πl = Cn(data.last)

33

(or l = 0) andπc = Cn(t
′) are inβ|EDBA

n . By Property 4.3.1(a), Property 8.3.2 and Corol-
lary 8.1,l < c < i < k holds. Then,conflict(t′, t, l, β(i)|EDBA

n) is true. Thus, by Property 8.1.2,
πk 6= Cn(t), a contradiction.

• Let πj = applyn′(t, data) and hencesite(t) 6= n′. By Lemma 8.3.2, sinceπk′ = An′(t) and
consistent(t, β(j)|EDBA

n′), there existst′ ∈ T such thatconflict(t′, t, l′, β(j)|EDBA
n′) with πl′ =

Cn′(data.last) (or l′ = 0 if data.last = f0) andl′ < j. Then,πc′ = Cn′(t′) with l′ < c′ < j is
in β|EDBA

n′ . Sincelog(β(i)|EDBA
n) = log(β(j)|EDBA

n′), πl = Cn(data.last) andπc = Cn(t
′)

are inβ|EDBA
n . By Property 8.3.2 and Corollary 8.1,l < c < i < k holds. Once more we have to

consider two cases:

- Let πi = commitn(t) and hencesite(t) = n. By Property 4.2.1 (a),πb = Bn(t) andπr =
readyn(t, data) with b < r < j is in β|EDBA

n . By Property 8.1.1 and thelast() definition,
l < b (or l = 0 if last(b, n, β) = f0). By thelast() definition, it is not possible thatl < c < b and
hencel < b < c < i < k holds. Thus, by Property 4.4¬conflict(t′, t, b, β(k)|EDBA

n . Then,
by theconflict() definition, we have a contradiction sinceconflict(t′, t, l′, β(j)|EDBA

n′).

- Let πi = applyn(t, data) and hencesite(t) 6= n. Thus, by Property 8.1.2,πk 6= Cn(t), a
contradiction.

Lemma 8.5. For everyβ ∈ behs(RDBSA), it holds that: πi ∈ REQ(n, t) ∧ πj ∈ REQ(n′, t) ⇒
trans(β(i)|{Cn(t) : t ∈ T }) = trans(β(j)|{Cn′ (t) : t ∈ T }).

Proof. Let trans(β|REQ(n)) be the sequence of transaction identifierst1, t2, t3, ..., tm, We proof this
Lemma by induction over the lengthm ≥ 1 of this sequence.

- Basis: (m = 1) Let πi1 ∈ REQ(n, t1). Then,trans(β(i1)|REQ(n)) = t1. If there does not exist
πj1 ∈ REQ(n′, t1) in β the antecedent is false and the Lemma holds. Otherwise, by Property 8.3.2,
trans(β(j1)|REQ(n′)) = t1. Then, neithert′ ∈ T such thatπr ∈ REQ(n, t′) in β(i1), nor t′ ∈ T
such thatπr′ ∈ REQ(n′, t′) in β(j1) exist. By Property 4.2.1(a) or by Property 4.3.1(a), neither
πk ∈ {Cn(t) : t ∈ T } in β(i1) norπk′ ∈ {Cn′(t) : t ∈ T } in β(j1) exist. Thus, the Lemma holds for
m = 1 sincetrans(β(i1)|{Cn(t) : t ∈ T }) = trans(β(j1)|{Cn′(t) : t ∈ T }) = empty.

- Hypothesis: (m ≥ 1) We assume thatπim ∈ REQ(n, tm) ∧ πjm ∈ REQ(n′, tm) ⇒ trans(β(im)|
{Cn(t) : t ∈ T }) = trans(β(jm)|{Cn′(t) : t ∈ T }) holds. Note that, by Corollary 4.1 and Defi-
nition 3.2,log(β(im)|EDBA

n) = log(β(jm)|EDBA
n′) holds. Thus,S(β(im)|EDBA

n) = S(β(jm)|
EDBA

n′) holds by Definition 3.3.

- Induction Step: Let m + 1 be the next step. Letπim+1
∈ REQ(n, tm+1). Then,trans(β(im+1)|

REQ(n)) = t1, t2, t3, ..., tm, tm+1. If there does not existπjm+1
∈ REQ(n′, tm+1) the antecedent is

false and the Lemma holds. Otherwise, by Property 8.3.2,trans(β′|REQ(n)) � trans(β′|REQ(n′))
or vice versa for anyβ′ � β and hencetrans(β(jm+1)|REQ(n′)) = t1, t2, t3, ..., tm, tm+1. By Prop-
erty 8.3.1, there existsπkm

∈ {Cn(tm), An(tm)} andπk′

m
∈ {Cn′(tm), An′ (tm)}. By contradiction,

let πkm
= Cn(tm) andπk′

m
= An′(tm) (the other possibility is proof by a symmetric procedure). By

Hypothesis,log(β(im)|EDBA
n) = log(β(jm)|EDBA

n′). Thus, the conditions of Lemma 8.4 lead to
a contradiction.

Thus, the Theorem holds.

Corollary 8.2. For everyβ ∈ behs(RDBSA), it holds that:

(1) πi = REQ(n, t) ∧ πj ∈ REQ(n′, t) ∧ πk = Cn(t) ⇒ ∀n′ : n′ ∈ N ∧ n 6= n′ : ∀k′ : πk′ 6= An′(t)

(2) πi = REQ(n, t) ∧ πj ∈ REQ(n′, t) ∧ πk = An(t) ⇒ ∀n′ : n′ ∈ N ∧ n 6= n′ : ∀k′ : πk′ 6= Cn′(t)

Proof. (1) It is trivially proven by Lemma 8.5 and Lemma 8.4. (2) By contradiction,πk′ = Cn′(t).
By Lemma 8.5 and Lemma 8.4,πk′′ = Cn(t) is in β. By Property 4.2.1 or Property 4.3.1, a contradiction
appears since bothπk′′ = Cn(t) andπk = An(t) can not be inβ|EDBA

n .

34

Theorem 8.2. For everyβ ∈ behs(RDBSA), it holds that:

(1) πk = Cn(t) ⇒ ∀n′ : n′ ∈ N : ∀k′ : πk′ 6= An′(t)

(2) πk = An(t) ⇒ ∀n′ : n′ ∈ N : ∀k′ : πk′ 6= Cn′(t)

Proof. For n = n′ the properties are proved trivially by Property 4.2.1 and Property 4.3.1. Thus, let
n 6= n′. (1) By contradiction,πk = Cn(t) andπk′ = An′(t). By Property 4.2.1 and Property 4.3.1.
πj ∈ REQ(n, t) is inβ. If πi ∈ REQ(n′, t) is inβ, then Corollary 8.2 leads to a contradiction. Otherwise,
by Property 4.2.1n′ = site(t) andt follows sequence (c). This means thatπr = readyn′(t, data) does not
exist. Then,n 6= site(t) and thusπj = applyn(t, data) is in β. Therefore, by Theorem 4.1 a contradiction
appears. (2) By contradiction,πk = An(t) andπk′ = Cn′(t). We can prove it as done before, swappingn
by n′ and vice versa.

Theorem 8.3. For every behaviorβ ∈ behs(RDBSA), it holds that, for any prefixβ(j) ∈ β, log(β(j)|
EDBA

n) � log(β(j)|EDBA
n′) or vice versa.

Proof. By Property 8.3.2,trans(β(j)|REQ(n)) � trans(β(j)|REQ(n′)) or vice versa. Let us as-
sume thattrans(β(j)|REQ(n)) � trans(β(j)|REQ(n′)). Then, there must existi < j such that
trans(β(j)|REQ(n)) = trans(β(i)|REQ(n′)). Let πj ∈ REQ(n, t) andπi ∈ REQ(n′, t). More-
over, by Lemma 8.5,trans(β(j)|{Cn(t) : t ∈ T }) = trans(β(i)|{Cn′(t) : t ∈ T }). By Corollary 4.1
and Definition 3.2,log(β(j)|EDBA

n) = log(β(i)|EDBA
n′). Sincei < j, then log(β(j)|EDBA

n) �
log(β(j)|EDBA

n′).

Theorem 8.4. For every behaviorβ ∈ behs(RDBSA), it holds that:

πi = Bsite(t)(t) ∧ πj = Cn(last(i, site(t), β)) ∧ πk = Cn(t) ∧ site(t) 6= n ⇒ ∀t′ ∈
T : ¬conflict(t′, t, j, β(k)|EDBA

n).

Proof. By Property 4.3.1, assite(t) 6= n, πr ∈ applyn(t, data) with r < k is in β|EDBA
n . By The-

orem 4.1 and Property 8.1.1data.last = last(i, site(t), β). Thus, by Lemma 8.2.2, we can conlude
∀t′ ∈ T : ¬conflict(t′, t, j, β(k)|EDBA

n).

9 Replication Protocol Implementation

After having presented the replicated systemRDBSA in Section 8, this Section presents a new refinement
that models an actual implementation, considering distribution and communication issues. This new sys-
tem, namedRDBSB, is shown in Figure 16. The database at each system siten ∈ N is modeled by means
of the moduleEDBA

n proposed in the previous Section. In contrast, theRDBSB extends the replication
protocolDRPA of theRDBSA so as to describe the replication protocol from an implementation-oriented
point of view.

In theRDBSB, the replication protocol consists of a set of modulesRPn (where eachRPn is located
at siten ∈ N), along with a moduleAB which is in charge of the communication among theRPn modules.
EachRPn interacts with the correspondingEDBA

n . Upon receiving areadysite(t)(t, data) input action
from theEDBA

site(t), theRPsite(t) sends a message〈t, data〉 to all system replicas by means of theAB
module, which provides an atomic broadcast communication primitive [8]. When receiving such message,
at the delegate site theRPsite(t) requests the commit of transactiont by executingcommitsite(t)(t) (which
is an input action of theEDBA

site(t)), whereas at each remote siten′ 6= site(n) theRPn′ will execute

applyn′(t, data). Once theRPn receives aCn(t) or An(t) input action from theEDBA
n in response of

either acommitn(t) (for n = site(t)) or anapplyn(t, data) (for n 6= site(t)) action, it can process the
next message. Since messages are sent using atomic broadcast, they are delivered at all sites in the same
order, and therefore theapply() andcommit() operations are executed in the same order at all sites.

35

RDBS
B

AB

1
RP

1
EDB

A

2
RP

2
EDB

A

N
EDB

A

N
RP

Figure 16: Composition of the Implementation of the Replicated Database System.

9.1 Atomic Broadcast

We first introduce the properties of the atomic broadcast communication primitive by means of theAB
module and described in Figure 17. VariableM denotes the set of possible messages that allRPn can
send. The automatonRPn at siten ∈ N makes use of two primitives which conform the main possible
actions of this component:sendn(m) andreceiven(m). The former is used by theRPn to broadcast a
messagem, whereas the latter allows theRPn to receive in total order a messagem that was previously
broadcast by some replica. The moduleAB also includes an input action to model the failure of siten
(crashn).

• Signature:

in(AB) = {crashn, sendn(m) : n ∈ N ,m ∈ M}

out(AB) = {receiven(m) : n ∈ N ,m ∈ M}

• A setbehs(AB) of behaviors

Figure 17: Module AB.

In the following, we provide the assumptions verified bybehs(AB). First, the definition ofdeliveredn
as the sequence of messages delivered at siten ∈ N is presented.

Definition 9.1. Let β be a behavior ofAB. For every prefixβ(j), 0 ≤ j ≤ |β|, the sequence of delivered
messages at each siten ∈ N by theAB module atβ(j) is recursively defined as follows:

deliveredn(β(j)) =







empty ⇔ j = 0
deliveredn(β(j − 1)) ·m ⇔ πj = receiven(m) ∧ j > 0
deliveredn(β(j − 1)) ⇔ otherwise

The replication protocol requires all messages to be delivered in the same order to all available replicas
in order to have a correct behavior. This feature is providedby the atomic broadcast communication
primitive of theAB module. However, the conventional uniform total order broadcast properties [8] do not
avoid the contamination phenomenon [29], as they do not prevent gaps in the delivery sequence. This is a
serious problem, because a faulty site could reach an inconsistent state due to delivery gaps before crashing
and broadcast a message based on its inconsistent state, thus contaminating other sites. In order to avoid
contamination, for any two replicas, the set of delivered messages of one must be prefix of the other or vice
versa. This property, known asprefix orderdelivery [29], is formalized in Property 9.1, along with therest
of properties that model the atomic broadcast communication primitive.

Property 9.1. (Atomic Broadcast) For each behaviorβ ∈ behs(AB):

36

(1) (Crash Failures)πi ∈ {receiven(m) : m ∈ M} ⇒ ∀ k : k < i : πk 6= crashn

(2) (Message Uniqueness)πi = sendn(m) ∧ πj = sendn′(m) ⇒ i = j

(3) (Delivery Integrity)πi = receiven(m) ⇒ ∃n′ ∈ N : (∃ k : k < i : πk = sendn′(m))

(4) (No Duplication)πi = receiven(m) ∧ πj = receiven(m) ⇒ i = j

(5) (Prefix Order)deliveredn(β(j)) � deliveredn′(β(j)) or vice versa, for every prefixβ(j) � β

(6) (Validity)πi = sendn(m) ⇒ ∃ k : k > i : πk = receiven(m) ∨ πk = crashn

(7) (Uniform Agreement)πi = receiven(m) ⇒ ∃ k : πk = receiven′(m) ∨ πk = crashn′

In the previous property, condition 1 (Crash Failures) states that after acrashn event the siten stops
its activity; condition 2 (Message Uniqueness) indicates that each message is unique and different from the
rest; conditions 3 (Delivery Integrity) and 4 (No Duplication) state that every site delivers each message
at most once and only if it was previously sent by some site; condition 5 (Prefix Order) guarantees that
messages are delivered in the same total order withoug gaps even in the case of faulty sites; condition 6
(Validity) indicates that if a correct site invokes a broadcast event, then this site will eventually deliver the
message; and condition 7 (Uniform Agreement) states that ifa site (correct or faulty) delivers a message,
then all correct sites will eventually deliver it.

9.2 Replication Protocol: I/O AutomatonRPn

Figure 18 presents the implementation of the replication protocolRPn at a given replican ∈ N by means
of an I/O automaton. The components used by aRPn are its corresponding database systemEDBA

n and
theAB. This is shown in the signature of theRPn automaton in Figure 18, as its input (in(RPn)) and
output (out(RPn)) correspond with the actions of theEDBA

n andAB modules.
The different state variables used by theRPn are the following:

• Variablesite status (initially set to alive) monitors the state of siten and indicates whether it is
alive or crashed.

• Variableto send is a subset of messagesM whereM = T × D (recall that subsetD was defined
in Section 4.1), and initiallyto send = ∅. This variable contains messages〈t, data〉 that correspond
to all local transactionst ∈ T (with site(t) = n). Every message contained in this variable must be
sent using the atomic broadcast primitive to decide the outcome oft.

• Variablereceived is a FIFO queue (initially empty) containing the previous messages in the or-
der they were delivered by theAB module. This is the order in which theapplyn(t, data) and
commitn(t) operations are executed.

• Variablesent(t) indicates whether a local transactiont has already sent or not its message〈t, data〉
to the rest of replicas (initially false). Thus, theRPn can only send the message corresponding to a
transactiont at most once.

• Variablestatus(t) monitors the states that each transactiont goes through:⊥ (which denotes that
the state is unknown and is used as a default value that avoidsthe repetition of actions),commit (a
local transaction that has requested its commit),apply (a remote transaction that is being applied),
committed (the transaction has been committed) andaborted (the transaction has been aborted). It
is worth noting the difference between the status commit andapply for a transactiont; they are used
for avoiding multiple invocations of the same actions, in this casecommitn(t) andapplyn(t, data),
respectively.

In order to define fair executions and fair behaviors [1,30],the tasks for each transactiont are also given
in Figure 18. This means that if a task is continuously enabled in a fair execution (some of its respective
actions are enabled, i.e. some of the preconditions are true), then it will eventually execute any of its
enabled actions.

The effects of actions presented in Figure 18 are self-explanatory with the exception of some aspects
that are detailed in the following. Note thatB(t) has no effects because the replication protocol does

37

AUTOMATON RPn

SIGNATURE:
in(RPn) = {Bn(t), readyn(t, data), Cn(t), An(t), receiven(m), crashn : t ∈ T,m ∈M,data ∈ D}
out(RPn) = {commitn(t), applyn(t, data), sendn(m) : t ∈ T,m ∈M,data ∈ D}

STATES:
site status ∈ {alive, crashed}, initially site status = alive
to send a subset ofM , initially to send = ∅
received a FIFO queue ofM , initially received =empty
sent(t) ∈ {true, false} for all t ∈ T , initially sent(t) = false

status(t) ∈ {⊥, commit, apply, aborted, committed} for all t ∈ T , initially status(t) =⊥

TASKS:
For everyt ∈ T : commitn(t), applyn(t, data), {sendn(〈t, data〉) : data ∈ D}

TRANSITIONS:

Bn(t)
eff≡

readyn(t, data)
eff to send← to send ∪ {〈t, data〉}

sendn(〈t, data〉)
pre≡site status = alive ∧

site(t) = n ∧
¬sent(t) ∧
〈t, data〉 ∈ to send

eff≡ to send← to send \ {〈t, data〉}
sent(t)← true

receiven(〈t, data〉)
eff≡ received← received · 〈t, data〉

crashn
eff≡ site status← crashed

Cn(t)
eff≡ if 〈t, data〉 = head(received) then

received← tail(received);
status(t) ← committed

An(t)
eff≡ if status(t) ∈ {commit, apply} ∧

〈t, data〉 = head(received) then
received← tail(received);

status(t) ← aborted

commitn(t)
pre≡site status = alive ∧

site(t) = n ∧
status(t) =⊥ ∧
〈t, data〉 = head(received)

eff≡ status(t) ← commit

applyn(t, data)
pre≡site status = alive ∧

site(t) 6= n ∧
status(t) =⊥ ∧
〈t, data〉 = head(received)

eff≡ status(t) ← apply

Figure 18: Replication Protocol at siten ∈ N : I/O automatonRPn

not actually start dealing witht until readyn(t, data) is executed. Note also that a single message per
transactiont is sent. Hence, it makes sense to remove the message〈t, data〉 from thereceived queue, in the
effects of actionAn(t), since it will be in that queue in case it was a local transaction andreadyn(t, data)
had been executed before. Moreover, the boolean variablesent(t) controls that each local transaction is
broadcast at most once, since theRPn does not know in advance how many actionsreadyn(t, data) will
theEDBA

n invoke. Recall that the automatonRPn is input enabled, hence these input actions can be
invoked at any time and several times. Thus, the automaton isresponsible for managing all possible error
situations in actionsBn(t), readyn(t, data), Cn(t) andAn(t). However, we have not included all possible
cases for the sake of simplicity, assumming that the environment has a correct behavior.

9.3 Composition and Correctness Proof

As outlined in the introduction of this Section, the system that models an actual implementation of a
replicated database system, calledRDBSB, has the following components: a database at each system site
n ∈ N modeled by theEDBA

n module presented in Section 8, and a refinement of theDRPA module.

38

Such refinement consists of a set of modulesRPn (with n ∈ N), along with theAB module. Note that
(Πn∈NRPn) × AB represents a composition with the same signature as theDRPA module, with the
exception of actionssendn(m) andreceiven(m) (which are output actions of(Πn∈NRPn)×AB but do
not appear in the signature ofDRPA).

In order for the refinement of theDRPA to have the same signature as theDRPA, it is only necessary
to hide these two actions as if they were internal actions. Tothis end, we make use of the hiding operation
described in [31], which merely classifies a certain set of actions as internal actions. Thus, we define a
new module that represents the implementation of the replication protocol, denoted byIRP , with IRP =
Hideφ((Πn∈NRPn) × AB), beingφ = {sendn(m), receiven(m) : m ∈ M}. Once this new module
IRP has been introduced, theRDBSB can be formally defined asRDBSB = (Πn∈NEDBA

n)×IRP =
(Πn∈NEDBA

n)×Hideφ((Πn∈NRPn)×AB).
In order to ensure that theRDBSB is correct, we must prove thatbehs(RDBSB) ⊆ behs(RDBSA).

Sincesig(IRP) = sig(DRPA) (interpreting theIRP module as an automaton), it suffices to prove that
fairbehs(IRP) ⊆ behs(DRPA), i.e. fairbehs(IRP) satisfies Property 4.5 and Property 8.3 (where
fairbehs(IRP) stands for the set of fair behaviors [1] of theIRP automaton). Recall that these prop-
erties are the ones that allow theDRPA, in composition withΠn∈NEDBA

n , to form the correct system
RDBSA.

According to the I/O Automaton model, an executionα of an automaton is described as a sequence
s0π1s1 · · ·πksk · · · , where eachsi is a state, eachπi is an action, and(si, πi, si+1) denotes a transition. In
our case,α ∈ execs(IRP), and for each statesi, si[n] represents the state of theRPn. The fair executions
satisfy the progress properties of theIRP defined by the tasks of eachRPn and the progress properties of
theAB module (assuming that theAB module is implemented as an I/O automaton).

As theIRP hasΠn∈NEDBA
n as its environment, the proof assumes some of the well-formedness

conditions ofΠn∈NEDBA
n for the sake of simplicity. For instance, it is considered that readyn(t, data)

occurs at most once inα ∈ execs(IRP). The same assumption is made in the case ofCn(t) or An(t)
(see Properties 4.1, 4.2.1 and 4.3.1). In any case, theIRP must not violate the well-formedness of
Πn∈NEDBA

n when it behaves according to its specification.
The following lemmas help us show thatfairbehs(IRP) satisfies Property 4.5 (as proven in Theo-

rem 9.1) and Property 8.3 (as shown in Theorem 9.2).

Lemma 9.1. Letα be an execution ofIRP . It holds that:

(1) πi = sendn(m) ⇒ ∀ k : k < i : πk 6= crashn

(2) πi = sendn(〈t, data〉) ∧ πj = sendn′(〈t, data′〉) ⇒ i = j ∧ n = n′ = site(t) ∧ data =
data′ ∧ ∃k : k < i : πk = readysite(t)(t, data)

Proof. Let us prove each assertion separately:

• By contradiction,πi = sendn(m) andπk = crashn with k < i. Then,sk[n].site status = crashed.
No other action can change that status. So,sendn(m) is disabled at every reachable state ofα from
sk and henceπi 6= sendn(m).

• By the preconditions ofπi andπj , site(t) = n andsite(t) = n′. By Assumption 4.1, the delegate
site of t is unique. Then,n = n′ = site(t). If i 6= j and i < j, thensi[n].sent(t) = true. No
other action can change that value. So,sendn(〈t, data′〉) is disabled at every reachable state ofα.
Therefore,i = j and thendata = data′. That is, it is the onlysendn(〈t, data〉) action for transaction
t. Finally, by the preconditions ofπi, 〈t, data〉 ∈ si−1[n].to send. The only acion that makes this
happen isreadyn(t, data). Thus, asn = site(t), ∃k : k < i : πk = readysite(t)(t, data) holds.

Lemma 9.2. Letα be an execution ofIRP . It holds that:

(1) πi = receiven(〈t, data〉) ∧ πj = receiven(〈t, data′〉) ⇒ i = j ∧ data = data′

(2) 〈t, data〉 = head(si[n].received) ⇒ ∃j : j < i : πj = readysite(t)(t, data)

Proof. Let us prove each assertion separately:

39

• By Property 9.1.3,πk = sendn′(〈t, data〉) andπm = sendn′′(〈t, data′〉). By Lemma 9.1,πk = πm

anddata = data′. Then, by Property 9.1.4,πi = πj andi = j.

• The only action that makes at some previous statesr in α that 〈t, data〉 ∈ sr[n].received is πr =
receiven(〈t, data〉). By Property 9.1.3,πm = sendn′(〈t, data〉) with m < r happened inα. By its
preconditions,site(t) = n′ and〈t, data〉 ∈ sm−1[n

′].to send. The only action making〈t, data〉 ∈
sm−1[n

′].to send is πk = readyn′(t, data) with k < m andn′ = site(t).

Theorem 9.1. Letα be an execution ofIRP . It holds that:

(1) πi ∈ REQ(n) ⇒ ∀k : k < i : πk 6= crashn

(2) πi = commitn(t) ⇒ ∃j : j < i : πj = readyn(t, data) ∧ ∀k : i < k < j : πk 6= commitn(t)

(3) πi = applyn(t, data) ⇒ ∀k : k < i : πk 6= applyn(t, data
′) ∧ site(t) 6= n

(4) πi = applyn(t, data) ⇒ ∃k : k < i : πk = readysite(t)(t, data) ∧ site(t) 6= n

Proof. Let us prove each assertion separately:

• By contradiction,πi ∈ REQ(n) andπk = crashn with i < k. Then,sk[n].site status = crashed.
No other action can change that status. Anyπi ∈ REQ(n) is disabled at every reachable state ofα
from sk and henceπi /∈ REQ(n).

• By the precondition ofπi, 〈t, data〉 = head(si−1[n].received) andsite(t) = n. By Lemma 9.2.2,
there existsπj = readyn(t, data) with j < i for somedata ∈ D. Let us assume by contradiction that
πk = commitn(t) with j < k < i. By its effects,sk[n].status(t) = commit. Thus,πi is disabled
since there is no action that can setstatus(t) to⊥ again. A contradiction.

• By contradiction,πi = applyn(t, data) andπk = applyn(t, data
′) with k < i. By the precondi-

tions ofπk, site(t) 6= n. By the effects ofπk, sk[n].status(t) = apply and no other action makes
status(t) =⊥ again. Then,πi = applyn(t, data) is disabled at every reachable state ofα from sk
and henceπi 6= applyn(t, data).

• By the precondition ofπi, 〈t, data〉 = head(si−1[n].received) andsite(t) 6= n. By Lemma 9.2.2,
πk = readysite(t)(t, data) with k < i is inα. As site(t) 6= n the property holds.

Lemma 9.3. Let α be a fair execution ofIRP . It holds that: 〈t, data〉 = head(si[n].received) ∧
si[n].site status = alive∧ ∀j : j < i : πj /∈ REQ(n, t) ⇒ ∃k : k > i : πk ∈ REQ(n, t) ∨ πk = crashn

Proof. By contradiction, neitherπk ∈ REQ(n, t) norπk = crashn with k > i are inα. If site(t) 6= n
andπk = applyn(t, data) is not inα, then by Property 4.3 there is no other action fromacts(EDBn, t).
If site(t) = n, as〈t, data〉 = head(si[n].received), by Lemma 9.2.2, there existsπq = readyn(t, data)
with q < i in α and then, by Property 4.2, there cannot be other action fromacts(EDBn, t).

Therefore, in any case,status(t) is never modified and hencesr[n].status(t) =⊥. Besides, for any
reachable statesr with r > i, sr[n].site status = alive (as there is nocrashn in α); and〈t, data〉 =
head(sr[n].received), as there is noπk ∈ {Cn(t), An(t)} that removes〈t, data〉 from head(received).
Thus, for any statesr with r > i all the preconditions of eithercommitn(t) if site(t) = n orapplyn(t, data)
if site(t) 6= n hold. Asα is a fair behavior, eithercommitn(t) if site(t) = n or applyn(t, data) if
site(t) 6= n must be eventually executed. Thus, we get a contradiction.

Before the following Lemma, we introduce some additional notation. Let us denote the distance of a
given messagem ∈ M (m = 〈t, data〉) to the head of queuereceived at a given replican ∈ N in a given
statesi asD(m,head(si[n].received).

Lemma 9.4. Letα = s0π1s1...si−1πisi be a fair execution ofIRP . Then, it holds that:

D(m,head(si[n].received)) > 0 ∧ si[n].site status = alive⇒
∃k : k > i : D(m,head(sk[n].received)) < D(m,head(si[n].received)) ∨ πk = crashn

40

Proof. Let 〈t, data〉 = head(si[n].received). By contradiction,πk = crashn with k > i never happens
in α andD(m,head(sk[n].received)) = D(m,head(si[n].received)) for any reachable statesk > si at
α. Then, we can consider two cases:

• If there existsπj ∈ REQ(n, t) with j < i, then by Property 8.1.4,πk ∈ {Cn(t), An(t)} with k > j
happens inα.

• If there does not existπj ∈ REQ(n, t) with j < i, then by Lemma 9.3 there existsπj ∈ REQ(n, t)
with j > i in α. By Property 8.1.4, there existsπk ∈ {Cn(t), An(t)} in α with k > j > i.

By the effects ofπj , sj−1[n].status(t) ∈ {commit, apply}. Then, by Property 4.2 or Property 4.3,
there is no other action untilsk−1 that modifiesstatus(t) and hence by the effects of any case ofπk ∈
{Cn(t), An(t)}, 〈t, data〉 /∈ sk[n].received. Thus, ifk > i, then we get a contradiction since〈t, data〉
is removed fromhead(received) at a statesk with k > i and henceD(m,head(sk[n].received)) <
D(m,head(si[n].received)). Otherwise, ifk < i, by Property 9.1.4〈t, data〉 /∈ sk′ [n].received for any
reachable statesk′ > sk. However,〈t, data〉 = head(si[n].received), in contradiction.

Theorem 9.2. Letα be an fair execution ofIRP andβ the fair behavior ofα. It holds that:

(1) πi ∈ REQ(n, t′) ∧ πj ∈ REQ(n, t) ∧ i < j ⇒ ∃k : i < k < j : πk ∈ {Cn(t
′), An(t

′)}

(2) trans(β(j)|REQ(n)) � trans(β(j)|REQ(n′)) or vice versa for every prefixβ(j) � β

(3) πi = readyn(t, data) ⇒ ∃k : k > i : πk ∈ {commitn(t), crashn}

Proof. Let us prove each assertion separately:

• By contradiction,πk /∈ {Cn(t
′), An(t

′)} with i < k < j. By the preconditions ofπi andπj ,
head(si−1[n].received) = 〈t′, data′〉 andhead(sj−1[n].received) = 〈t, data〉. By Theorem 9.1.2
and 9.1.3, asi 6= j, thent 6= t′. The only action that removes〈t′, data′〉 from head(received) is
πk ∈ {Cn(t

′), An(t
′)}. A contradiction.

• Letdelivered be a history variable defined in the states ofRPn at eachn ∈ N wheres0[n].delivered =
empty andsi[n].delivered = si−1[n].delivered · 〈t, data〉 whenπi = receivedn(〈t, data〉). Let
trans(β(j)|REQ(n)) = t1...tk...tm, then it holds thatsj−1[n].delivered = 〈t1, data1〉 ...〈tk, datak〉
...〈tm, datam〉 since 〈tk, datak〉 has been inhead(sk[n].received) for somek ≤ j − 1 by the
preconditions of the actions inREQ(n). In the same way,trans(β(j)|REQ(n′)) implies that
sj−1[n

′].delivered = 〈t′1, data
′
1〉...〈t

′
k, data

′
k〉...〈t

′
m, data′m〉. Moreover, by contradiction,trans(β(j)|

REQ(n)) � trans(β(j)|REQ(n′)) implies thatsj−1[n].delivered � sj−1[n
′].delivered. Since

sj−1[n].delivered satisfies Definition 9.1 for everyn ∈ N , then by Property 9.1.5,deliveredn(β(j)|
AB) � deliveredn′(β(j)|AB) or vice versa. Therefore,sj−1[n].delivered � sj−1[n

′].delivered
or vice versa. A contradiction.

• By contradiction,πk /∈ {commitn(t), crashn} with k > i in α. If there is nocrashn in α,
site status = alive for any reachable state ofα from si. By Lemma 9.1.2,πk′ = sendn(〈t, data′〉)
with k′ < i cannot happen inα. As sendn(〈t, data〉) is the only action that modifiessent(t)
and initially s0[n].sent(t) = false, thensi[n].sent(t) = false. By the effects ofπi, 〈t, data〉 ∈
si[n].to send. By Property 4.2, the only action that can follow thereadyn(t, data) is acommitn(t)
and hence there is no other action inacts(EDBn, t) that changes the initial value ofstatus(t), that
is, status(t) =⊥ for any reachable state ofα from si. Finally, by Property 4.2,site(t) = n. Thus,
all the preconditions ofsendn(〈t, data〉) are enabled fromsi on and thereforeπj = sendn(〈t, data〉)
with j > i will be executed eventually. By Property 9.1.6,πr = receiven(〈t, data〉) with r > j
happens inα. By the effects ofπr, 〈t, data〉 ∈ sr[n].received. By Lemma 9.4,〈t, data〉 will become
head(sm[n].received) at some statesm of α with m > r. Thus, all the preconditions ofcommitn(t)
are enabled fromsm and thereforeπk = commitn(t) with k > m > r > j > i will be executed
eventually. A contradiction.

Remark 9.1. Theorem 9.1 and Theorem 9.2 guarantee the correction of theRDBSB and, therefore, the
implementation of the replication protocol by means of the composition of the set ofRPn modules and the
AB module is correct for the databases considered in this work,i.e., databases that run under a variety of

41

isolation levels and with integrity constraints. The proposed implementation, which makes use of atomic
broadcast, provides a property related to uniformity. Thanks to Property 9.1.7 (Uniform Agreement), which
has not been used so far, uniformity of committed transactions is an straightforward property, as formalized
in the following Lemma.

Lemma 9.5. Let α be an execution of theIRP . It holds that: πi = Cn(t) ⇒ ∀n′ ∈ N : ∃k : πk =
Cn′(t) ∨ πk = crashn′

10 Conclusions

Deferred-update replication protocols have been regularly used in the database replication field, since they
are appropriate for update-everywhere approaches, i.e. insystems where every replica may receive and
directly serve different client transactions. These protocols execute the transaction operations in a delegate
site, propagating later its writeset to other replicas in total order. This ensures a high level of consistency
and an asymmetric workload management that boosts performance, since writeset application at remote
sites requires less effort than a local transaction service.

Up to our knowledge, there exists no general formalization of this kind of replication protocols that
considers transactions running under different isolationlevels, supporting both integrity constraints and
crash failures. We have provided a detailed specification ofa replicated database system that fills this void.
To this end, we have used the Input/Output Automaton model.

The specification has been modularly structured; i.e., it distinguishes different components that need to
interact for managing transactions in any distributed architecture: the DBMS being used in each replica,
the replication protocol and the communication support. The use of the I/O Automaton model allows us
to develop hierarchical proofs. Starting with an abstract level of specification, we can refine and prove
other modules with lower levels of abstraction, which correspond to a coarse problem solution and finally
to a specific solution of the problem. The correctness proof for a given level is based on satisfying the
properties of the previous abstraction level. This simplifies the proofs.

The properties stated at the top-most level of this hierarchical refinement provide the correctness cri-
teria ensuring that the replicated system will behave as a single one. So, they can be considered as a
new proposal for one-copy equivalence criteria, specifically tailored for deferred-update replication proto-
cols. Several relaxations of these criteria and their corresponding constraints on the assumptions taken in
the current paper (full replication, crash failures, update-everywhere server architecture, non-constrained
transaction start time, no database partitioning, supportfor multiple isolation levels) have been analysed.
This analysis shows that those additional restrictions on the system assumptions do not compromise the
obtained correctness criteria. So, they would still be applicable to systems with, e.g., partial replication,
passive replication or partitioned databases; thus improving the scalability of the resulting deferred-update
protocols.

References
[1] N. A. Lynch and M. R. Tuttle, “An introduction to input/output automata,”CWI-Quarterly, vol. 2, no. 3, pp. 219–

246, 1989.

[2] N. A. Lynch and M. R. Tuttle, “Hierarchical correctness proofs for distributed algorithms,” inPODC ’87: Pro-
ceedings of the 6th ACM Symposium on Principles of Distributed Computing, (New York, NY, USA), pp. 137–
151, ACM, 1987.

[3] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication and a solution,” inSIGMOD ’96:
Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, (New York, NY,
USA), pp. 173–182, ACM, 1996.

[4] M. Wiesmann and A. Schiper, “Comparison of database replication techniques based on total order broadcast,”
IEEE Trans. on Knowl. and Data Eng., vol. 17, no. 4, pp. 551–566, 2005.

[5] M. Fischer, “The consensus problem in unreliable distributed systems (a brief survey),” inProc. 1983 Inter-
national Conference on Foundations of Computations Theory, Lecture Notes in Computer Science, vol. 158,
pp. 127–140, Springer-Verlag, 1983.

42

[6] T. Härder and A. Reuter, “Principles of transaction-oriented database recovery,”ACM Comput. Surv., vol. 15,
no. 4, pp. 287–317, 1983.

[7] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: A tutorial,”ACM Com-
put. Surv., vol. 22, no. 4, pp. 299–319, 1990.

[8] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communication specifications: a comprehensive study,”ACM
Comput. Surv., vol. 33, no. 4, pp. 427–469, 2001.

[9] N. A. Lynch, M. Merritt, W. Weihl, and A. Fekete,Atomic Transactions: In Concurrent and Distributed Systems.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[10] A. Fekete, N. Lynch, M. Merritt, and W. Weihl, “Commutativity-based locking for nested transactions,”J. Com-
put. Syst. Sci., vol. 41, no. 1, pp. 65–156, 1990.

[11] A. Feteke, “Formal models of communication services: Acase study,”IEEE Computer, vol. 26, no. 8, pp. 37–47,
1993.

[12] D. Kuo, “Model and verification of a data manager based onARIES,” ACM Trans. Database Syst., vol. 21, no. 4,
pp. 427–479, 1996.

[13] A. Adya,Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions.
PhD thesis, MIT, 1999.

[14] P. A. Bernstein, V. Hadzilacos, and N. Goodman,Concurrency Control and Recovery in Database Systems.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1987.

[15] C. H. Papadimitriou,The Theory of Database Concurrency Control. Computer Science Press, 1986.

[16] J. Gray and A. Reuter,Transaction Processing: Concepts and Techniques. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1992.

[17] J. Bernabé-Gisbert, J. Armendáriz-Iñigo, R. de Juan-Marı́n, and F. Muñoz-Escoı́., “Providing read committed
isolation level in non-blocking rowa database replicationprotocols,” inJCSD ’07: Proceedings of XV Jornadas
de Concurrencia y Sistemas Distribuidos, 2007.

[18] S. Elnikety, W. Zwaenepoel, and F. Pedone, “Database replication using generalized snapshot isolation,” inIEEE
Symposium on Reliable Distributed Systems, (Washington, DC, USA), pp. 73–84, IEEE Computer Society, 2005.

[19] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris, “Middleware based data replication providing
snapshot isolation,” inSIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, (New York, NY, USA), pp. 419–430, ACM, 2005.

[20] F. Pedone,The Database State Machine and Group Communication Issues (Thèse N. 2090). PhD thesis,́Ecole
Polytecnique Fédérale de Lausanne, Lausanne, Switzerland, 1999.

[21] J. Salas, R. Jiménez-Peris, M. Patiño-Martı́nez, and B. Kemme, “Lightweight reflection for middleware-based
database replication,” inIEEE Symposium on Reliable Distributed Systems, (Washington, DC, USA), pp. 377–
390, IEEE Computer Society, 2006.

[22] F. D. Muñoz-Escoı́, J. Pla-Civera, M. I. Ruiz-Fuertes, L. Irún-Briz, H. Decker, J. E. Armendáriz-Íñigo, and J. R.
González de Mendı́vil, “Managing transaction conflicts inmiddleware-based database replication architectures,”
in IEEE Symposium on Reliable Distributed Systems, (Washington, DC, USA), pp. 401–420, IEEE Computer
Society, 2006.

[23] N. Carvalho, A. Correia Jr., J. Pereira, L. Rodrigues, R. Oliveira, and S. Guedes, “On the use of a reflective
architecture to augment database management systems,”Journal of Universal Computer Science, vol. 13, no. 8,
pp. 1110–1135, 2007.

[24] R. Jiménez-Peris, M. Patiño-Martı́nez, G. Alonso, and B. Kemme, “Are quorums an alternative for data replica-
tion?,” ACM Trans. Database Syst., vol. 28, no. 3, pp. 257–294, 2003.

[25] M. Stonebraker, “The case for shared nothing,”IEEE Database Eng. Bull., vol. 9, no. 1, pp. 4–9, 1986.

[26] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso, “MIDDLE-R: Consistent database replication
at the middleware level,”ACM Trans. Comput. Syst., vol. 23, no. 4, pp. 375–423, 2005.

[27] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S.B. Zdonik, E. P. C. Jones, S. Madden, M. Stone-
braker, Y. Zhang, J. Hugg, and D. J. Abadi, “H-store: a high-performance, distributed main memory transaction
processing system,”PVLDB, vol. 1, no. 2, pp. 1496–1499, 2008.

[28] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,S. Madden, and M. Stonebraker, “A comparison of
approaches to large-scale data analysis,” inSIGMOD Conference, pp. 165–178, 2009.

43

[29] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast algorithms: Taxonomy and survey,”
ACM Comput. Surv., vol. 36, no. 4, pp. 372–421, 2004.

[30] N. A. Lynch,Distributed Systems. Morgan Kaufmann Publishers, 1996.

[31] N. A. Lynch and M. Tuttle, “Hierarchical correctness proofs for distributed algorithms,” tech. rep., Cambridge,
MA, USA, 1987.

44

	Introduction
	Content of the Paper
	Paper Roadmap
	Specification Framework
	A Database System Model
	Database Transactions
	Single Database Module
	Legal Database Behaviors
	Generalized Legal Behavior

	An Abstract Replicated Database System
	Extended Database System
	Replication Protocol: Deferred-Update Technique
	Module Composition

	One-Copy Equivalence
	The 1CDB Module
	One-copy Equivalence Definition

	Necessary and Sufficient Conditions for One-Copy Equivalence
	Proof of Necessity
	Proof of Sufficiency

	Discussion
	A First Refinement of the Replicated System
	Extended Database Refinement
	Replication Protocol Refinement
	Composition of the Refinements
	Correctness Proof

	Replication Protocol Implementation
	Atomic Broadcast
	Replication Protocol: I/O Automaton RPn
	Composition and Correctness Proof

	Conclusions

