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Abstract

Modern database replication protocols are based oddf@red-update techniquie. each transac-
tion is initially executed in a single node (or delegate) &atdr its updates are propagated and applied
in the rest of replicas. This introduces an asymmetric effavdel, since the delegate replica has to ex-
ecute all transaction sentences, but other replicas mayweea pre-processed writeset that can be easily
applied. This model is able to boost both performance andlsitisy.

This paper thoroughly studies the deferred-update tealerfigm a theoretical point of view. To this
end, the 1/0 automaton model is used, developing a hiei@akborrectness proof. At each abstraction
level differerent properties are analysed and proved cbrr&o begin with, a new set of correctness
criteria to ensure one-copy equivalence is proposed. Meredailures are considered throughout all
abstraction levels, proving that failure management cebe@dded a posteriori, as a patch to a protocol
that was proven correct in a system where failures were ntidered.

Additionally, our assumed deferred-update replicatiostquols are general enough to include the
management of any isolation level and support integrityst@mts in those levels where they make
sense. Up to our knowledge, this is the first paper able toigeoa correctness framework for all the
replication protocols that encompass this variety of ottersstics.
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1 Introduction

The design and implementation of fault-tolerant appl@asiin a distributed system is a complex endeav-
our. If those applications are built in a modular way, theairtlalgorithms may be generated following

formal theoretical approaches and later proven corredt vigforous mechanisms. By making use of a
modular design, each element provides a well-defined axterfspecifying the operations available to other



application modules. Moreover, the specification of thepprties satisfied by the operations of a module
allows their usage by other application components regasdbf how such operations are implemented.

Thel/O automatorformal model[[1] makes use of a modular approach in its sisater distributed
algorithms, generatingierarchical correctness prooff2]. This hierarchy represents a series of system
(or algorithm) descriptions from different abstractiomdes. The topmost layer corresponds to a precise
specification of the problem to be solved. Its next refinerpentides a first raw solution to that problem;
for instance, a centralized solution instead of the intdrdistributed one. Finally, the bottom layer imple-
ments an actual solution that takes into account all distidlh and communication issues. The correctness
proof of a given layer is based on checking the propertiessafpper layer, thus simplifying the proving
tasks. Additionally, the properties of a given layer are algtior developing the lower layer. As a result,
this method is similar to deriving a solution through a sedérefinements.

This paper presents a hierarchical correctness proof fepkcation protocol based on theferred-
updatetechniquel[3] for a crash-prone replicated database system

In the last years, there have been many implementationstafrdalication protocols based on the
deferred-update technique, since (i) such protocols cazabily implemented in a middleware over sep-
arate database management systems (DBMS)), (ii) theirqpeaface is still good when compared to other
previous techniques|[4].

In a database replication system with a deferred-updateqwh each transaction starts its execution
in adelegate siteAll transaction operations are served by the database dkiegate site in a transparent
way; i.e., the protocol does not need to be aware of them. Whiesequence of operations is completed
and the transaction commit is requested, the protocoldafes such last request and starts the replication
management. At this time, the protocol collects some infdiom about that transaction. That information
comprises, among other items, the transaction writeseichniB the set of(item_id, value) pairs that
have been created, written or deleted by the transactiompidtocol manages this information, involving
all system sites. When the information is received at edaeh aidecision on the transaction’s fate must
be made: (i) in the delegate site, the protocol only neededoiest a commit (or abort) operation to
the underlaying DBMS to complete the transaction; and (ipther sites, and only if the transaction
is accepted, the protocol should apply the writeset upddtesrder to apply the writeset, a new light
instance of the transaction is created in those sites. Sgithimstances are known amote transactions

We assume partially synchronouslistributed system andaash[5] failure modél. Each system site
has a local DBMS and full replication model is followed; i.e., each database replica holds a plyaf
the database and all replicas share the same schema. Tiamsacay be started at any time and at any
site, and may read or write any item. Each DBMS guaranteeA@1P properties|[6] for its transactions.
Transactions may be executed under any isolation levelastggbby the DBMSs. Thus, applications may
combine sets of transactions with different isolation levéoreover, databases admit the declaration of
integrity constraints (data invariants) that should b@eeted by all committed transactions.

Most replication protocols assume a single isolation lewel do not consider integrity constraints in
the databases, but we break this trend and provide suppatidggeneral case outlined in the previous
paragraph. Two other important issues constitute the lwagtis work: (i) failures have been considered
along the entire work, from its start at a high-level of ahstion to its end, where several implementation
details have been included; and (ii) we have followed atsteparation of concerns: the replication proto-
col does not repeat any managing task that could be delegathd underlying database or to additional
facilities that could be implemented as other middlewarapgonents.

This paper shows that, requiring the appropriate propettieach system component, the resulting pro-
tocol is extremely simple. Itis similar to the one employeddctively replicating distributed processes [7]
using atomic broadcasf8] as its communication support. The protocol does notestoty information
about the items read or written by transactions, nor abeuitiiegrity constraints to be respected, and does
not repeat any of the tasks already executed by the undgridtabases. It simply schedules the order in
which transactions should request their commitment (wloeal) or to be programmed as remote ones,
waiting for an answer from the underlying DBMS.

1The model assumes that the underlaying communicationcsekeieps track of the active sites and detects crashes inspénant
way.



1.1 Content of the Paper

Figure[d shows the process that has been followed in therbidcal correctness proof, from the most
abstract replicated database system to the implementatithve replication protocol. As stated before,
this approach is based on the I/O automaton model. In eaphtsie correctness proof of a given layer
consists of checking that the properties satisfied by thewulpyer are also satisfied in that layer. Note that
each arrow in Figurg]1 indicates that the properties of theetanodule verify the properties of the upper
module.

The top of the hierarchical proof is the most abstract systeeR D BS. It consists of the composition
of an extended database mod@l® B,, at each site of the distributed system (withe A/, being\ the
set of system sites), along with a very abstract (non-tisteid) deferred-update replication protocol called
DRP. EachED B, module specifies a database that satisfies the ACID propeiitiefact, this model
allows transactions to be executed under different ismliakeévels. Moreover, the database may define
integrity constraints.

The EDB,, module is intended for making the replication process easie this end, it provides
the replication protocol with the necessary mechanismbtaio information about each transaction that
is ready to commit. Such information is basically the wetteand some control information regarding
the isolation level of the transaction. In addition, thé& B,, module includes some basic properties that
distinguish between local and remote transactions. Theaadbprotocol, represented by theR P module,
simply specifies that the creation of a remote transactimtnoneF D B,, derives from a local transaction
trying to commit at its delegate siteD By (1), Wheresite(t) is the delegate site of the transaction. Both
modules consider the possibility of crash failures at edtehtlsat would stop the execution at the crashed
site. This system has no obligation to be correct and sesMf®wadasic system over which other conditions
must be imposed in order to guarantee its correctness.

The correctness of replicated database systems is traalifjosubjected to the notion of one-copy
equivalence. The main idea is that every transaction in eépéicated system behaves as if it had been
executed in a logical copy of the database maintaining d@sf®n level and respecting the integrity con-
straints in case it is committed. In order to define this labim=havior for transactions, ti€' D B module
is defined as a reference for this equivalence notion. It definsingle copy database model, which should
be equivalent to thé&k DBS. However, the basic properties of ti&D BS do not guarantee this at all.
Therefore, theR D BS requires some additional properties on its behaviors todindquivalence relation
between its behaviors and the ones of tli&D B. As proved in this work, these properties are necessary
and sufficient conditions and hence they are consideredrasctoess criteria. As in any specification of
a distributed system these conditions are safety and ldseares. These criteria require thafl(- local
transaction progregsvery transaction that starts in its delegate site evéiptiges a termination response
(committed or aborted) at some site of the system unlessiteatrashes {2 - uniform decisio)if a trans-
action is committed (aborted) at one site, then it cannobloetad (committed) at other site€J3 - uniform
prefix order consistengyor every two distinct sites, the sequence of committedatptransactions at one
site is a prefix of the sequence of the committed update tctinga at the other site or vice versa providing
that the writesets of remote and local transactions areahesand (I4 - non-contradictiohif a remote
transactiornt is committed, then it does not conflict with any of the tranigas that were committed &
delegate replica between the beginning and commitment Afthough these criteria are quite intuitive,
they have never been formalized or proved as valid correstogteria for such a general model of data
replication based on deferred-update techniques. Thetanty introduced by crash failures requires Cri-
terion €4, which has not been discussed before despitejitsriance. Thus, th@ DBScc is the RDBS
with Criteria €1 to C#. TheRDBSc¢ is one-copy equivalent to tHe®' D B, as proven in this paper.

The following step of the hierarchical proof tries to refite tinitial £DB,, and DRP modules in
order to compose a new system, callef) BS4, which satisfies the aforementioned correctness criteria.
For this purpose, the task of guaranteeing such criterigdhbe distributed between tHeD B,, and the
DRP. Thus, the refinement8 D B! and D RP* include some new properties but still satisfy the ones of
the EDB,, and theDRP. This entails that the behaviors &DBS4 are still behaviors of th&® DBS,
since they satisfy the same set of properties. The modeldhefain from putting the replication protocol
in charge of tasks that could be handled directly by the desain a simpler and more efficient way. Thus,
in this work, we have tried to avoid including propertieslie D R P4 that could be easily implemented



by the EDB. Basically, Criterion ClL is guaranteed by the collaboratié both modules; Criterion[C3
is responsibility of theD RP4 by requesting the commitment of local transactions or thaliegtion of
the remote transactions in the same prefix order among & Sriterion C4 is under the responsibility
of the EDBZ; and Criterion CP is derived from the collaboration of botbdules when executing the
transactions.

In the last step of the proof, we just provide a concrete imgetation of theD R P4 module, by means
of the composition of an I/0 automatd®P,, at each site and a group communication system module,
denoted byA B, that satisfies the atomic broadcast properties. The fipatetion protocol is very simple,
as it only propagates the information about each local &etitn to the rest of sites by means of th&
module. As the atomic broadcast primitive delivers messagthe same order at all sites, transactions are
applied at remote sites (or committed at delegate siteliolg the same sequence at all sites.
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Figure 1: Organization of the hierarchical correctnesspro

1.2 Paper Roadmap

The rest of this paper is organized as follows. Seciibn Déhices the specification framework used
throughoutthis work. Sectidn 3 explains the basic definiifor understanding single database systems. Sec-
tion[4 specifies the abstract replicated database systémefrasents the top of the hierarchical proof. Sec-
tion[3 formalizes the notion of one-copy equivalence. $&¢f is devoted to the necessary and sufficient
conditions conforming the correctness criteria that mesiniposed in order to achieve one-copy equiv-
alence. In Sectioh] 7, some interesting aspects relatedetodirectness criteria are discussed. Se¢fion 8
includes a first refinement of the abstract replicated datbgstem which satisfies the correctness criteria,
whereas Sectidd 9 provides a more concrete implementdttbe distributed replication protocol. Finally,
conclusions end the paper.



2 Specification Framework

This work describes a hierarchy of replicated databasemsystwhose properties are formalized by means
of the I/O automaton modd[1] with the aim to prove their correctness using a rigorowategy. This
model provides an intuitive and precise method for desugiblistributed systems and formulating accurate
assertions about how systems behave. The I/O automaton imexibeen widely used for modeling and
verifying distributed applications, such as concurreraytml algorithms[[9,10], distributed algorithms [2],
network protocols [11] and data managérs [12], among others

An I/O automaton generates executions, which are altergagquences of states and actions. Execu-
tions are assumed to be sequential, that is, actions aréczamhno two actions of the same automaton can
occur simultaneously. Aehavioris the subsequence of input and output actions of an exegatia it is
independent of the internal state and actions of the autmmahus, an I/O automaton can be viewed as a
“black box”, characterized by a particular set of behavawrsording to the properties of its specifications.

In order to promote a modular design, the description of esltem component makes use of the
properties of the rest of components regardless of anycpdatiimplementation. Thus, each component is
described as an 1/0 automaton module. Each modifiis specified by its external signatusg (M) and
a set of behaviorsehs(M) delimited by some specified safety and liveness propeffies bottom line of
such a modular design is that the internal behavior of a neoderains invisible to the rest of modules,
whereas its external behavior is determined by the prageitiposed on the module. The signature of a
moduleM, sig(M), consists of two different kinds of actions that alldd to communicate with other
modules: input actions#{(M)) and output actionso@it(M)). Thus,sig(M) = (in(M),out(M)). The
set comprising all the possible actions of a modulés denoted byicts(M) = in(M) U out(M).

Each behavior of a modul®/ is a finite or infinite sequence of actions frams(M ). The set of all
acceptable behaviors @f is denoted byehs(M). An infinite (finite) behaviors € behs(M) is denoted
by 8 = m - mo.mtm... (B = 71 - Ta2.T) With m; € acts(M). We say thatr; is in 3 if the i-th event in
B ism;, and thatr is in § if there exists an indek such thatr, = 7 andry is in 8. For any0 < j < |f|
(where| | stands for the length of), 3(j) represents the finite prefix (denoted') of length j of 3, i.e.,
B(5) = B, |B(j)| = j andend(3(j)) = =;. By its definition,3(0) = empty.

Let ¢ C acts(M), By is the subsequence ¢f including only the actions o in 3, i.e., Blp =
iy * Tiy---T, -.. SUCh thatr;, isin 8 andm;, € ¢. Note that we can use the original indexes of the actions
of 8 when working with actions of|p. Wheny = acts(M') for some modulé\/’, we can simply write
BIM’.

In this paper, a replicated system is represented as theasitiom of a set of compatible modules [2].
A composition operation of several modulkg whose signatures are compatible results in a moddle
which has a signature composed by the sef\ffsignatures {ig(M) = Il,crsig(M;)) and a set of
behaviordehs(M) such that each behavigre behs(M) satisfies that|M; € behs(M;).

On the other hand, if a modul® is a more detailed refinement of another moduié in order to
ensure thaf\/ fulfills the requirements imposed d’, M must satisfyM’ in the sense thatig(M) =
sig(M'") andbehs(M) C behs(M’). Therefore, the properties satisfied h§f will also be satisfied by/.

In this work, some actions of the presented modules havedeslparameters, e.g¢.,€ T with T’
being the set of transactions,erc A with A/ being the set of sites of a distributed system. In the former
case, we consider a mapping functiorgns: acts(M) — T U {udef}, such thatrans(r) = ¢ if and
only if action = hast as a parameter, drans(m) = udef otherwise. This mapping is also used for
defining the seticts(M,t) = {m: © € acts(M) A trans(r) = t}, as well as the sequence of transaction
identifiers of a prefix3(j) such thatrans(8(j)) = trans(8(j — 1)) - trans(w;) for 0 < j < |8| (being
trans(B(j)) = empty whenj = 0).

Although some variables used in the formulation of the prisggof the behaviors may be unbounded,
it is understood that they are universaly quantified in teimains for the scope of the entire formulas,
unless we explicitely specify them for a better comprehamsi



3 A Database System Model

This Section presents the specification of a single datatyetem with no failures, by means of a module
denoted byD B. This module is used for introducing some basic definitiomations and preliminary
facts related to single database systems, which are usatiout this work.

3.1 Database Transactions

A databaseconsists of a set of items that can be accessed by concuraestttions. Lef be the set
of database items. The set of possible values for eachaitem! is represented by,.. A transaction
t € T (whereT stands for the set of all possible transaction identifiess) sequence of read and write
operations over the database items, starting withgan operation (denoted b (¢)) and ending with a
commit or abort operation. Each operatiamp is actually arequest_oplresponse_op paifd. The response
of a commit operation corresponding to a transactigeither acommitted or anaborted notification
(C(t) and A(t) respectively), whereas the response of:aart operation (i.e., a rollback request) always
reports aruborted notification.

If a transactiont completes a write operation on an itemby setting its value ta) (denoted by
W (t,z,v)) and is committed afterwards, a new versianv, ¢) is installed on the datab&seThus, a
version(z, v, t) relates an itemx € I to the valuev € V, installed by a commited transactiore T'. Let
Y the set of all possible versions of the database. For eattuite 7, its initial version is the first version
installed by the first committed transaction creating ite Tiiodel assumes that several versions of the same
data item can be available in the database. Therefore, whrangactiort completes a read operation on
an itemz, it can get any versiof, v,t’) € V previously installed by’. This is denoted by (¢, (z,v,t')).

A behavior of a set of concurrent transactions is usuallyasgnted by an interleaved sequence of
completed transaction operations with some defined réetigcthat limit the set of valid behaviors in the
database [14, 15]. Such a way of considering behaviors tigagpin the following example:

Example 1. Given three transaction§t1, t2, t5 }, a possible behavior is:

> /8 = B(tl) 'W(tla xz, ’Ul) C(tl) B(tQ) 'W(t27 Zz, UQ) B(t3) 'R(t3a (‘Ta U1, tl)) 'W(t3a Y, U3) C(t3) C(tQ)
That is,t; writes a valuey; onx, t writes a valuev, onz andts reads the versiofe, vy, ¢1) of « installed
byt¢; and writes the values; ony.

Given a transaction taking place in behavio8, the writesetws;(3) is characterized as the set of
versions which writes in 5. Similarly, thereadsetrs;(3) represents the set of versions readtby .
For instance, the readsets and writesets of the transaaibBxamplddL ares;, (3) = rs.,(8) = 0,
51, (B) = {(2,v1,t1) }, andwsy, (8) = {(z,v1,t1)}, wst, (B) = {(z,v2,t2) }, wse, (B) = {(y, vs, t3)}.

Let us note thats;(8') andws;(8’) change dynamically over the prefix@sof 5. For instance, if
we considerrg = B(t3) andmy = C(¢3) in the behavior of Example I;s¢, (3(6)) = wst, (5(6)) = 0
whereas s, (8(9)) = {(x,v1,t1)} andws, (8(9)) = {(y, vs, t3)}.

A transactiort. in 3 is said to be read-only if for all > 0 ws;(5(j)) = 0; otherwise, it is called an
update transaction.

The use of readsets and writesets removes the need to dy@mecify the individual read and write
operations of each transaction in a behavior, as shown ifotlogving example.

Example 2. Given the transaction$t, t2, t5} of Examplé&lL, the behavior of Example 1 now turns into:

l>6 = B(tl)C(tl)B(tg)B(tg)C(tg)C(tQ), Wherel"Stl (ﬂ) = @, 7S¢, (5) = @,TStS(B) = {(Z‘,’Ul,tl)},
wst, (5) = {(mavlatl)}’ wstz(ﬁ) = {(maUQatQ)} andwst, (6) = {(yvv3vt3)}

It is worth noting thats is merely a syntactic sequence obtained from thedset { B(t), C(t), A(t) :

t € T} whose semantics (the effects of committed transactionspoly be known by providingus:(3)
andrs:(8). In order to maintain a complete description without spéeg the sequence of individual

2This notation has been used in other works, such @s [12],ennelata manager is so specified under the I/O Automaton Model.

3We assume that each transaction writes an item at most ohegefbre, each version of an item will correspond with thitewr
made by the transaction that installed it in the databasés aoids considering anomalies such as “intermediatesigd8)] thus
simplifying the model description.



read/write operations in a behavior, the existence of theviing functions is assummedos : 7' x A* —

Y andrs : T x A* — V. Thus, the description obtained for a behayids syntactically and semantically
complete thanks to these functions. As mentioned befoeagididset and writeset of a transaction may vary
over the execution. However, there is some point of the di@tat which these sets become meaningful
and never change again from then on. At that point, they cetalyldefine the versions that the transaction
has (or has tried to) read and write. The readset and writesetefined in the following way:

=0 & j=0

rsy(B(5)){ €2V & (m e {CH), A Nj>0
=rs¢(B(j —1)) <« otherwise
=0 & j=0

wsi(B(5)) ¢ €27 & (m; € {C(1), A{t)}) Aj >0

=ws:(B(j —1)) < otherwise

This assumption does not impose any limitations on the mattede the properties that must be satis-
fied by correct behaviors are the ones that determine whitksets and readsets are valid. Some known
concepts such agew-equivalencean be straightforwardly adapted to this representatiam. Behaviors
B andp’ are view-equivalent if and only if for each, = C(¢) in 8 there existsr; = C(t) in 8’ such
thatrs,(8(i)) = rs:(8'(j)) andws(5(i)) = ws¢(5'(4)), i.e., both behaviors contain the same committed
transactions and these transactions have read and whtesaie versions.

Previous representations do not determine which is thermdtion used for establishing whether a
transaction can be committed or not. This control inforovathay be the readset or the writeset themselves,
it may be inferred from these sets (e.g. the items of the seat)eor it may even be related with the execution
behavior. To represent this information in a general waydadefine a functiom f : T'x A* — £, whose
contents will depend on the restrictions imposed to a padicexecution. Therefore, the s&twill be
defined according to the kind of information thatf includes. Likers.(8) andws:(8), inf:(53) is defined
at some point off and from then on it does not change.

=0 & j=0
infi(B(j))§ €€ & (m; € {C(1),At)}) Aj >0
=infi(B(j —1)) < otherwise

The fact that most properties related to readsets, writese this last control information are associ-
ated with a concrete behavior allows us to omit the parantetenvs, (3), rs.(8) andinfi(8) when it is
clear in the context.

The main reason for this alternative notation is that thedfithis work is to study replication protocols
based on the deferred-update technique, in which the tterabetween the replication protocol and the
database at a site is performed at a specific point of theactina execution, when the protocol can obtain
the writeset and the information required to decide on itc@me to apply changes at other sites. As a
consequence, the protocol does not need to track evenyjdodivoperation performed by the transaction.
In fact, it should be possible to develop a database modei fhe same point of view in which this kind
of protocols observe the execution of transactions in thatdse system.

3.2 Single Database Module

The single database moduleB is defined by its action signature and the set of its possibleatiors
in Figurd 2. The set of transaction identifiers is denote@ bywhereas functionss : T'x behs(DB) — V,
rs:Txbehs(DB) — Vandinf : T xbehs(DB) — £ determine the writeset, the readset and the control
information of each transactiane 7' in a behaviors € behs(DB).

By means of actioB(t), the DB module notifies the event concerning the beginning of a nanstr
actiont. ActionsC'(t) andA(t) represent the database’s final decision on the transadfauise

Definition 3.1. (Well-formed Behaviorsi behaviors of behs(D B) is well-formed if for each transaction
t € T the sequencg|acts(DB, t) is a prefix of one of the following sequencéXy)-C(t) or B(t)- A(t).



e Signature:
in(DB) =1
out(DB) ={B(t),C(t), A(t) : t € T}
e A setbehs(DB) of well-formed(Definition[3.1) andegal (Definition[3.5)
behaviors.

Figure 2: Module DB

This definition ensures that after a transactitegins, it can only be either committed or aborted, and
such actions can only appear at most once in a behavior.

The database specification is based onctiramitted stateoncept, also callesnapshot. A database
shapshot provides a view of the installed versions of thaldete items existing at a certain time in a
behavior. In order to determine the versions that comphiseshapshot, the log of a behavior is defined as
the ordered sequence of the writesets of commited updatsartions.

Definition 3.2. (Log of DB) Let 3 be a behavior oD B. For each prefix3(j) of 5, with0 < j < |3|, the
log of 3(j) is defined as follows:

empty & 53=0
log(B(3)) = { log(B(j — 1)) (wsy) < (mj=C{t) ANwsg Z0)ANj>0
log(B(j — 1)) < otherwise

The log represents the set of versions that have been paithysnstalled on the database. This can be
seen as an abstraction that ensures data durability.

The latest version of an itemfor a finite prefix3(j) is the version of that item installed by the latest
committed transaction which updated (or created) its valubat prefix. Thislatest versionis used for
defining the concept of database snapshot in Defiritidn 3.3.

Definition 3.3. (Database Snapshdtt 5 be a behavior oD B. For each prefix3(j) of 8, with0 < j <
|8], the snapshot of () is defined asS(5(j)) = U, lastVer(z, 5(j))

{(z,v,)} & Fi: 0<i<j: (x,0,1) € wsy A (wsg)=end(log(B(7)))A
wherelastVer(z, 8(j)) = VE:i <k <j:(wsy) € end(log(B(k))) = (x,v',t') ¢ wsy
0 otherwise

zel

3.3 Legal Database Behaviors

A database management system must guarantee all the ACfienties [16] for each transaction: atom-
icity, consistency, isolation and durability. Considerithat thelog(3) for a behaviors represents the
durability of the writesets of the committed update tratisas, what remains to be defined is when a be-
havior satisfies the rest of the properties. In order to guarsatomicity, the model establishes that aborted
transactions must never interfere with committed transast i.e., the operations of aborted transactions
are appropriately rolled back. The presented definitiotisfgatomicity.

Real database management systems admit the definition afedyvaf isolation levels under which
transactions are executed. In addition, it is possible &rifp a whole range of integrity constraints to
maintain data consistency. Instead of assuming a spedfatiisn level for each transaction, the presented
database model considers weak conditions from which atyaselation levels can be derived (within the
limits of the proposed mathematical formulation). The d&éins of predicatesompatible(), con flict()
andconsistent() allow us to achieve this degree of generality.

Definition 3.4. Let3 be a behavior oD B, t',t € T be two transactions and j be two indexes of such
that0 <i < j <|g|:

e compatible(t,i, 3(j)) = rs: C (U;<x<; S(B(K))) Uwst

o conflict(t',t,i,8(j))=3k: i<k <j:m =C{')NP(infy,inf;)



e consistent(t, B(j)) = Vz: K.(S(B(j — 1)), ws:) where K, () is an integrity constraint defined in
the database.

Predicateompatible(t, i, 8(j)) shows that the versions that can belong¢pmust have been installed
on the database between indexasd; of 5 or must be invs,. From its definition, if a transactianreads
nothing ¢s; = 0), thencompatible(t, i, 3(j)) is always true.

On the other handon flict(t', t, 4, 5(j)) determines the conditions that may happen in the context of
a transaction between indexesand; of 8 with regard to another transactignthat may be concurrently
committed in that context. If those conditions happen thenttansaction is unable to reach the com-
mitted status (see Definitidn 3.5 below). By its definitidint’iis not committed betweenandj, then it
will never conflict with¢. Note that, in this case, the predicate becomes false. dfithppens for every
transaction’ € T, then this entails thathas been executed completely isolated from the rest ofarans
tions between andj. Otherwise, the control information of the involved tractsans,in f andin f, will
determine if their isolation level permits them to be comently committed, by means d@?(in f:, in f:)
in con flict(t',t,i,5(5)).

Finally, consistent(t, 3(j)) holds if and only if the writesets, does not infringe any integrity con-
straint demanded by the databasg.dach constraint depends on the previous committed stapg$hot)
of the database and thes; to be installed. Trivially,consistent(t, 8(j)) is always true for read-only
transactionsws; = 0).

By making use of the aforementioned predicates, Definltidh8ovides the obligations for every
committed transaction inleagal behavior

Definition 3.5. (Legal Behavior)A behaviors of DB is legal, if for each transactiom € T such that
m; = B(t) andw; = C(t) are in 3, the following conditions hold:

(&) compatible(t,i, 5(5))
(b) —conflict(t',t,i,0(j)), forallt’ e T
(c) consistent(t,5(j))

Thus, Definitiod 3.b establishes that if a transacticommitted: (a) its readset is obtained from the
committed states seen within its context; (b) there is nemottansactiort’ conflicting with¢; and (c) all
the integrity constraints hold at the time the transactiocommitted.

In order to better understand the proposed database mbeébliowing two examples are provided.

Example 3. The aim of this example is to show how different isolatioelieused in replicated systems
can be seen as particular cases of Definifion 3.5 by imposimgesrestrictions on theompatible() and
conflict() predicates. We focus on the simplest cas€@h f;/,inf;), in which its formulation only de-
pends on the items of the writesets and/or readsets of tctiosest’ andt and the conflicts between trans-
actions are caused only by non-empty intersections of thetse In this casen fi, C I andinf; C I. Ta-
bled presents the definition 8f(in f1/, in f;) and the corresponding restrictions fesmpatible(t, i, 5(j))
for each isolation level.

The Serial level is the most restrictive one, as transastioonflict with any concurrent one that has
committed P(in f, inf;) = true). In this case, a legal behavior consists of a successioraoktctions
without interleaving among them. On the contrary, in WeakdR@ommitted there are no conflicts between
concurrent transactiongéP (in fy,inf;) = false). In this case, a legal behavior allows any interleaving
among transactions.

It is also possible to represent intermediate isolatiorelsy such as Snapshot Isolation or Dynamic-
Serializable. The former takes into account conflicts gateel by update transactions that concurrently
try to write on the same data item®(infy,inf;) = items(wsy) N items(ws;) # . In contrast,
the latter considers conflicts between reads and writ@gin fy/, infi) = items(wsy) N (items(wsg) U
items(rst)) # 0.

With regard to predicateompatible(), all the definitions shown in Tatlé 1 satisfy Definifiod 3tts,
atransactionis able to read its own writes and reads fromcitted states, although each case may impose
additional restrictions to its general definition. Snapstsmlation, Dynamic-Serializable and Serial allow
transactions to read from a single concrete snapshot, vaseWeak Read Committed allows values to be
read from any snapshot created during the transaction ei@tu



P(infy,inf) in compatible(t,i, B(j))
conflict(t',t,1, B(j))
Weak Read Committed [17 false rse C U cp; AS(B(K))} U ws:
Snapshot Isolation [18.19]|| items(wsy ) Nitems(ws:) # 0 rsy € (S(B(2)) Uwse)
Dynamic-Serializablée [18] items(wsy) N (items(wse) U rsy € (S(B(2)) Uwse)
items(rsy)) # 0
Serial true rse € (S(B(2)) Uwse)

Table 1: Predicates depending on isolation levels

In the proposed database model, transactioris inay have the same isolation level or not. As a re-
sult, the database can behave in a heterogeneous way, daedadtions being executed under different
isolation levels. In spite of this, all committed transan8 must satisfy Definition 3.5. It is worth not-
ing that Definition3.b limits the possible values of the restd and writesets of committed transactions.
The following example displays a behavior with concurreansactions executed under different isolation
levels.

Example 4. Let us consider four update transactiofys, t2, t3, ¢4} such thatt; is executed under Weak
Read Committedi, under Snapshot Isolatiorg under Dynamic-Serializable, and under Serial. As-
suming that transactions satisfy all the integrity constta.and they are compatible, one of the possible
behaviors could be, as shown in Figlie 3:

> B = B(t1) - B(t2) - B(ts) - B(ta) - C(t2) - A(ta) - C(t3) - C(t1)

Transactiort; is executed under Weak Read Committed, hemeglict(t', ¢1, 1, 5(8)) is false for any
transactiont’. As forts, which is executed under Snapshot Isolatiam, flict(t', t2, 2, 5(5)) is also false,
because there is no transactishthat commits betweem, = B(t2) andns = C(t2). Transactionts,
which runs under Dynamic-Serializable, would make flict(ts, t3, 3, 3(7)) true in caseitemns(ws, ) N
(items(wsy, Uitems(rse,)) # 0, sincers = C(t2). Thereforets does not have any intersections with the
writeset ofty becauser; = C(t3). Finally, transactiont, can never be committed, asn flict(to, 4,4,
B(6)) is true because; = C(t2). When the execution ends, the log persistently contairiballritesets
of the committed transactions, i.@og(58(8)) = (wsst,) - (wst,) - (wsy, ). Let us note that each time a
transaction is committed, a new snapshot is obtained.

— t, (READ COMMITTED) |
4| t, (SNAPSHOT ISOLATION) } >
—| t; (DYNAMIC SERIALIZABLE) |——>

} t4 (SERIAL) } >
B _———r—r——— o. ...... o. ...... o. ...................... o. ........ o. ...... o. ...... o. —— _>
B(t) B(t) B(ts) Bts) C(t  A(ts) C(ty) C(t)
T M M Ty s s T, T

Figure 3: Example of a behavior with transactions execubederrently under different isolation levels.

3.4 Generalized Legal Behavior

The definition of a legal behavior (see Definition13.5) can baegalized in a very simple way to make
it suitable for replicated settings. In a generalized Idugthavior, a transaction is allowed to perform
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operations with stale information about the database massias if it had been started before the time it
actually did. This idea was originally introduced by 18} fbe Snapshot Isolation level, under the name of
Generalized Snapshot Isolation (GSI). We extend this ndtanake it valid under other isolation levels.

Definition 3.6. (Generalized Legal Behaviorkgt 3 be a behavior obehs(DB). 3 is a generalized legal
behavior, if for each transactione T' such thatr; = B(t) andw; = C(t) are in 3, there exist < s <1
such that the following conditions hold:

(&) compatible(t, s, B(j))
(b) —conflict(t',t,s,B(j)), forallt’ € T
(c) consistent(t,5(j))

Trivially, Definition[3.8 includes Definition 3]5 as a panilar case when for every transactien= i
holds. Moreover, if3 is a generalized legal behavior, then there exists a ledga\er 3’ such thatg
is view equivalent tg3’. Basically, the legal behavig?’ is inductively built from3 by moving action
m; = B(t) in 8 to the positionr, = B(t) of the transactionm wheni # s and adequately redefining the
indexes of the new obtained behavior.

Remark 3.1. All definitions introduced in this Section can be adapteddfioy other set of behaviors that
satisfy the well-formedness in the sense given in DefirBidn These behaviors are obtained from a
signature that includesut(BD).

4 An Abstract Replicated Database System

This Section provides the specification of an abstractcafdid database system, represented by a module
namedRDBS. The components of this module, as depicted in Figlre 4, agplecation protocoD R P

and a group of extended databases callddB,,, beingn the site identifier. The set of site identifiers
{1..N} is denoted byV. The system is crash-prone: sites may fail and stop themuaian at any time. At

this level of abstraction, there are no assumptions on thaeu of sites that may crash. The database at
each siten executes transactions with independence from the restesf, $#aving the replication protocol

in charge of coordinating them. In the followin@;, represents the set of transaction identifiers in the
RDBS.

AAAA AAAA

A
C
<
<
<
<
<
<
<
<

EDB, EDB,| --- *[EDB,|

Figure 4: Replicated Database System.

This paper focuses on replication protocols based ordéferred-update technigyg0]. In this ap-
proach, a transactianperforms all its operations on the database of the site whstarts, calledlelegate
site Transactions are said to bmcal transactionsat their respective delegate sites, aehote transac-
tionsat the other sites. A transactiombout to be committed must be programmed on the databad®es of t
remote sites. To this end, the protocol receives some daa the local transactiof) takes control of it
and decides on the execution of the remote transactiohatdhe rest of system sites. In the delegate site,
the protocol may just request the commit of the transaction.

In database replication, it is convenient to avoid dupiigatvork that can be easily performed by
databases. Several works|[21:-23] point out the convenigifm®viding databases with extended features
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to simplify their replicatioB. These features are modeled by #i® B,, in an abstract way, regardless of
their implementation. In fact, th& D B,, module can be interpreted as an extension of/i¢ module
at siten. Both modules are essentially similar, but thé B,, module presents some particular properties
that model its extended operation. In particular, B¥8 B,, clearly distinguishes between local and remote
transactions, and handles the remote ones in a special way.

All the extended databases in the system have the same s&hefiand the same set of valu&s € V
for each itemz € I, as well as the same set of integrity constraints. Thus, dildyave the same set of
possible version¥ for the setl’. Under these conditions, full database replication isagssl

In the replicated system, a local transaction and all ite@ated remote transactions share the same
transaction identifier, although they are actually différeansactions. This is possible because they are
executed in different sites. In order to distinguish betwieeal and remote transactions of a particular site
n, there is a functiosite: T — N such thatite(t) (the delegate site @) is unique.

Assumption 4.1. (Unique Delegate Site)For every transactiont € 7T, it holds that
site(t) =n Asite(t) =n’ & n=n'

There are no further assumptions restricting the way in idcal transactions can appear in the
system; therefore, they may begin anytime at any site artiweide any item under any isolation level.

4.1 Extended Database System

Figure[® describes the moduteD B,, for a siten € A/. This module is intended for replicated settings
and hence its specification is subject to its site identifiéius, functionsvs™ : T x behs(EDB,) — V,
rs" : T x behs(EDB,) — V andinf™ : T x behs(EDB,,) — £ now determine the writeset, the readset
and the control information of each transactioa 7" in a behavior3 € behs(EDB,,). In the following,
let D be the seY x &€ x (T'U{fo}).

e Signature:
in(EDBy,)={crashy,, commit, (t), apply,(t, data): t € T,data € D}
out(EDB,,) = {Bn(t), ready, (t, data), Cp,(t), An(t): t € T,data € D}
e Asetof behaviordehs(E D B,,) which satisfy Property 411, Propefiy¥.2, Prap-
erty[4.3 and Properfy 4.4

Figure 5: ModuleEDB,,

The EDB,, includes its owrcrash,, input action in its signature to model the failure of site The
following property indicates that after@ash,, the ED B,, stops its activity and no further output actions
are performed.

Property 4.1. (Execution IntegrityJor every behaviops € behs(EDB,,), it holds thatr; € out(EDB,,)
=Vk: k<i:mg # crashy.

The ED B,, notifies the beginning as well as the final outcome of a traiwatat siten € N through
the B,,(t), Cy,(t) and A, (t) output actions.

After the beginning actio,, () of a local transaction with site(t) = n, the EDB,, can notify that
the transactiom has no pending work left (and therefore, it is waiting fordtsnmit) by means of action
readyy, (t, data) wheredata € D. This action has two goals: (i) it states the point of the bédrat which
the readset, writeset and control information of the tratigsa are defined; (ii) it allows to communicate
the data of the transaction to the replication protocol.

Thus, whenr; = ready, (t, data) happens in a behavigr as in theD B modules} (6(5)), ws} (8(4))
andinf{*(5(j)) become defined and never change again.

Actionready(t, data) permits to pass some information from the transaction toghkcation protocol
by means of thelata paramater, which provides the writeset of the local tratisaddata.ws € 2V) as

4In [24] several mechanisms for the writeset extraction ajcal transaction are presented and_if [22] some ones arenpees
for remote transactions.
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well as the control informatiodata.inf € &, whose contents will depend on the isolation levek.of
Besidesdata can provide some extra information about the transactiot.last € T' U { fo }, which will
be discussed later when presenting one of the refinemertsafibdule in Sectiop]8.

Therefore, whemr; = ready, (t, data) happens in a behavig, it explicitly provides the writeset and
the information for the conflict evaluation of the transantt at sitern. in that behavior; i.e.data.ws =
wsy(B(4)) anddata.inf = inf} (B(j)).

The extended database controls local transactions wheatbstarted, and by executingndy,, (¢, data),
the control of a local transactianis transferred to the replication protocol, so that it cacidie whether
to commit it or not. The replication protocol requests thenadit of the local transactionvia the input
actioncommit,, (t) to persistently install its changes on tB B,,, if possible.

Property4.P defines the allowed behaviors of local tramnsast

Property 4.2. (Local Transactions)et 5 be a behavior of® D B,,. For any transaction € 7' such that
site(t) = n:
(1) The sequencg|acts(EDB,,t) is a prefix of one of the following sequences:

(@) By (t) - readyy (t, data) - commit,, (t) - Cy(t) for somedata € D
(b) By, (t) - readyy, (¢, data) - commit, (t) - A, (t) for somedata € D
(C) By, (t> Ay (t)

(2) mj = readyn(t,data) = Vk : k = j : rsy(B(k)) = rsi(B(j)) A wsi (B(k)) = wsy(B(4)) A
inf{'(B(k)) = infi(B(5))

(3) m; = readyy(t,data) = data.ws = ws}(8(4)) A data.inf = infl*(B(5))

(4) 7 = By (t) A7y = readyy (t, data) = compatible(t, i, 3(5))

The first part of Property 4.2 ensures that each action ofa tognsaction appears at most once in a
behaviors € behs(EDB,,) in the given order. The other parts of Propériy 4.2 provideesoequirements
that are fulfilled whenr; = ready,, (¢, data) is an action taking place ifi € behs(EDB,,): the readset,
writeset and control information efare defined when this action happens; data féota.ws anddata.in f
match up with the values of the corresponding sets at fintleat is,ws} (3(j)) andin f{*(8(4)); and the
readsets}(5(j)) is compatible af, i.e.,compatible(t, i, 5(5)).

As far as remote transactions are concerned, the inpunagtigy,, (¢, data) of the ED B,, module is
used by the replication protocol to program a transadtierf” with site(t) # n. Thedata € D parameter
of actionapply,, (t, data) contains information related to transactiaat its delegate sitejte(t). Basically,
it includes the writeset of the transactidnta.ws € 2¥ and, depending on the isolation levédta.inf €
£. Besidesdata provides some extra information about the transactiorh aséata.last € TU{ fo}. The
E DB, isresponsible for programming that remote transactioneénunderlaying database, in a transparent
way to the replication protocol. ThEDB,,, who is in charge of the transaction termination, may have
to abort other transactions to guarantee its successfuh@nddowever, in order to be independent of
the replication protocol characteristics, any transactian be aborted and hence a programmed remote
transaction is not guaranteed to be committed.

Property 4.B establishes the permitted behaviors of retrarisactions. Again, this property states that
each action of a remote transaction appears at most onceéhavibr € behs(EDB,,) in the given
order.

Property 4.3. (Remote Transactionggt 5 be a behavior o2 D B,,. For any transactiort € T, such that
site(t) # n:
(1) The sequencg|acts(EDB,,t) is a prefix of one of the following sequences:

(@) applyn(t, data) - By(t) - Cy,(t) for somedata € D
(b) applyn(t, data) - By (t) - A, (t) for somedata € D

(2) 7 = applyn(t, data) = data.ws = wsy (B(j))Adata.inf =inf](B(5))AVk: k > j: wsP(B(k)) =
wsy (B(7)) Ninfi(B(k)) = infi"(B(5)) Arsi (B(k)) =0

Whenr; = apply,(t, data) happens in a behavigt of the ED B,,, the module knows the writeset of
the remote transactianat siten; i.e., ws}(5(j)) = data.ws. The writeset is explicitly indicated in that
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action. Thus, if the remote transaction is commitiééa.ws is the writeset that must be installed in the
database. However, théD B,, enforces the remote transaction to read nothing, thatfs= ) for remote
transactions. The remaining informationdnta, data.inf is used for checking theon flict() predicate

if it is required by the isolation level df i.e.,in f*(5(j)) = data.inf.

Note thatcommit, (t) andapply,(t) are input actions of thé& D B,,, thus Propert{ 4l211 and Prop-
erty[4.3[] are well-formedness conditions for #i® B,,.

Our purpose is to keep the notation from Definition 3.5 forldgal behaviors of thé& D B,, by using
thecompatible(), con flict() andconsistent() as well as their respective properties (Definifiod 3.4).sThi
is possible by Remaifk=3.1, Propeltyl4.2.1 and Progerty 4r8rfh which transaction well-formedness is
obtained. Properfy 4.4 states that the behavio#s BfB,, are legal behaviors.

Property 4.4. (Legal BehaviorsEvery behaviop of behs(EDB,,) is alegalbehavior. For each transac-
tiont¢ € T such thatr; = B(t) andw; = C(t) are in §:

(&) compatible(t,i, 5(5))
(b) —conflict(t',t,i,0(j)), forallt’ e T
(c) consistent(t,5(j))

Let us note that by Properfy 4.2¢dmpatible(t, i, k, 5) holds whenm, = ready, (¢, data) and if
mi = By(t) andw; = C,(t) are inj, theni < k < j holds by by Propertjy 412.1. As the readset
never changes after, (see Propertly 412.2),s7(8(j)) = rsi*(B(k)) holds whenr; = C(t), and hence
compatible(t, i, 5(j)) holds too.

This module only covers the properties needed to presentrave the sufficient and necessary condi-
tions required for the replicated database system to beopgequivalent. Later, in Sectibh 8, a refinement
of the extended database is presented, including someaddiproperties to study the correctness of a
particular replication protocol.

4.2 Replication Protocol: Deferred-Update Technique

This Section presents the basic properties shared by tliedfiprotocols which are being dealt with in
this work, i.e., the ones based on the deferred-updateitpehinThe abstract deferred-update replication
protocol is specified by the moduleR P.

e Signature:

in(DRP) =, cnr out(EDB,) U {crashy,: n € N'}
out(DRP) = {commit,(t), apply,(t,data): t € T,n € N,data €
D}
e A set of behavioréehs(DRP) which satisfy Property 415

Figure 6: Module DRP

The signature oD RP is presented in Figufd 6 along with the set of possible behsvits signature
must be compatible with the signature of ed¢b B,,, n € N and, therefore, its inputs will be thHéD B,,
module outputs and vice versa. Thesh,, actions are also included as input actions infheP to model
the crash failure of each site.

Property 4.5. (Deferred-Updateffor every behaviop € behs(DRP), it holds that:

(1) m € {commit,(t), apply,(t,data) : t € T,data € D} = Vk : k < i : 7, # crash, (execution
integrity).

(2) m = commit,(t) = Jj: j <i: m; = readyn(t,data) AVk: j < k <i: mp, # commit,(t)
(3) m = applyn(t, data) = Vk: k < i: 7 & apply,(t, data’) A site(t) #n
(4) 7 = applyn(t,data) = Ik: k < i: mp = readygiser) (t, data) A site(t) # n
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The main properties which characterize the behaviors ofiiferred-update protocol can be easily
identified. Its behaviors must be consistent with the ongk@éxtended databases, i.e., outputs generated
by the DRP module must not break the execution integrity or the welifedness of the inputs of the
EDB,, module (Propertly 416{[I}3)). Besides, deferred-updat®pods can only apply a remote transaction
as long as the transaction was ready to commit at its respedélegate replica (Propeffty #5.4), thus
avoiding the spontaneous creation of remote transactiotigi system. Théata in the apply., (¢, data)
action contains the same information as inthedy;. () (t, data) action.

Let us note that explicit abort requests have not been cereidby the protocol, since they are not
necessary as long as tli&D B,, module manages the transactions in a correct way so thatatongfl
transactions are aborted when others are committed. Fortine, if explicit abort requests were allowed,
it would be possible to build a trivial protocol which wouldat every transaction.

This module covers the general properties of a deferredtgpeplication protocol. It neither differen-
tiates between sites, nor considers any properties abaupracesses communicate among them. Later, a
series of successive refinements is provided in order tdrotita specification of a particular replication
protocol based on the primitives of a group communicaticztesy.

4.3 Module Composition

As FigurelT shows (see also Figlide 4), th® BS module is the result of the module composition [2]
between the replication protocol and the group of extendedidses, one at each site of the distributed
system: RDBS = DRP x (Il,enr EDB,). The signature of th&e DBS is well-defined, since the
collection of signatures of the component modules is coiblegP].

e Signature:
in(RDBS) = {crashy,: n € N'}
out(RDBS) = (U,en 0ut(EDBy,)) U out(DRP)

o A set of behavioréehs(RDBS) which satisfy3|EDB,, € behs(EDDB,,) and
B|DRP € behs(DRP).

Figure 7: Module RDBS

Each behaviop of the RDBS is composed by the actions that transactions generateertathif sites.
Due to module composition|[2], every behavipof the RD BS has to comply with the behavior of each
EDB,, module and théDRP module, i.e.3|EDB,, € behs(EDB,) and3|DRP € behs(DRP).

The well-formedness properties of the modules are alsagteed in the composition of both of them.
For instance, thanks to Propeltylf]5.2, Proplertji #.2.1tisfieal. Similarly, Propertly 41513 guarantees the
behavior specified in Propeiffy 4.B.1.

The only input actions of syste®D BS are the actions iicrash,, : n € N'}. Throughout this work,
we assume that an action = crash,, can occur in a behavig? € beh(RDB.S) at most once. In this
way, and as a result of Propelty#.1 and Proderty¥.5.1, ameetionr; = crash,, happens in a behavior
there are no more actions of sitec NV, as formalized in the following Lemma:

Lemma 4.1. Let 5 be a behavior of th&® DBS. Then:w; = crash,, = B|EDB,, = (i)|EDB,,.

Behavior3|EDB,, satisfies Property 4.1, Propefty 4.2, Propérty 4.3 and Proided, and3|DRP
satisfies Properfy 4.5. In some cases, we will just refer éootliginal properties of these modules, when
necessary, without referring to the module compositionpprtes too.

Inthe RDBS, a transactiom € T'may span several sites. There is only one local transadtionedt)
and, possibly, several remote transactions at the otlesx. itremote transaction is directly related with its
local transaction by the following causal dependency antbeiy actions.

Theorem 4.1. Let 3 be a behavior of theRBDS. If m; € {C,(t), A.(t)}, site(t) # n, isin § then
there are four unique actions;,, m;,, m;, andm;, in 8, withi; < iy < iz < i4 < j such that, for some
data € D:
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o T, = Bgiter)(t) andm;, = readysieq) (t, data) are in 3| ED Byje(r), and
o 7, = apply,(t, data) andm;, = B,(t) are in3|EDB,,

Proof. By the composition3|EDB,, € behs(EDB,,), B|DRP € behs(DRP) and B3|ED Bgjie(r) €
behs(EDB;e1)). By Property(4.1l, Properfy 4.3.1 fgf EDB,,; by Property 4.6.4 fo| DRP; and
Property 4.1, Properfy 4.2.1 f{6{ ED By (1), the Theorem holds. O

As aresult, the following corollaries hold.

Corollary 4.1. Let be a behavior ofR DBS, it holds that:

o= Cu(t) = Ir :r <i:m = readysier)(t, data) A wsfite(t) (B(r)|EDBgite(r)) =
end(log(B(i)|[EDBy))

Proof. If m; = C,(t) andn = site(t), the Corollary holds by Properfy 4.2.1, Propdriyl4.2.2 avel t
log definition (Definitio3.R). Ifr; = C,,(¢t) andn # site(t), then by Theoreh 411 there exists =
applyn(t, data) andm, = readys;e ) (t, data) in Bwithr < k < 4. By Property 4.2.3 and Propefty #.2.2,
ws? (B(k)|[EDBy) = ws;" " (B(r)|[EDByiterr))- AsT; = Cy(t), by the log definition (Definitiof:3]2)
the Corollary holds. O

Thus, as remote transactions have the same writeset asti¢rimsaction (i.ews} = wsf“e(t)), if a
remote transactiohis committed at, it will install the same writeset as the local transactionld installl
atsite(t). Hence, all transactions with the same identifier, localr@maote, provide the same data updates
at every replica.

Recall that we assumed that the delegate sitesate(¢) is unique in the replicated system by Assump-
tion[41. This implies that the first action of every trangatt € T in the replicated system can be only
Bgiter) (1), just as Corollarj 412 states.

Corollary 4.2. Let 3 be a behavior of2DBS. For each transactiom € 7" such thatr; = Bjse(r) (1), itis
satisfied thaiB;;c ;) (t) = Blacts(RDBS, t).

Proof. By Property 4.2.1 and Theordm ¥.1 the Corollary holds. O
The following remark allows us to ignore read-only trangats for the rest of the paper.

Remark 4.1. (Read-only transactiondj ¢’ is a read-only transaction atite(t') then it does not ap-
pear at thelog() of site(t’). Every possible remote transactiontbis an empty transaction by Property
[43.2. Thus, it is not necessary to program a read-only renti@nsaction; and it is sufficient to pro-
gram it at its site(t') in a transparent way for the replication protocol. Howevir,order for a read-
only transaction to be purely a local transaction, it is mataty that read-only transactions satisfy
—conflict(t',t,i, B(j)| EDBgitery) for anyt. Under this assumption, no control informatian., f}”e(t/)
has to be sent to remote sites (this is a consequence of ohe obtrectness criteria for one-copy equiva-
lence in this paper). The global atomicity of the read-oméinsaction is trivially guaranteed by Property
[4.2.1. In addition, every global conclusion obtained foe tkadsets of update transactions is applicable
to the readsets of read-only transactions. From now on, wesicler that every transactione T is an
update transaction.

In the following, we will apply Remark4]2, which is derivegbin the previous results, to simplify the
notation and make the formal reasoning easier to follow.

Remark 4.2. (Notation convention)n a behaviors of the RDBS, a transactiont € T has glob-
ally the following semanticsrs:(8) = U, cpn 75t (BIEDB,), wsi(8) = U,en wst (B|EDB,) and
infi(B) = Upeninfi'(B|[EDB,). By Propertyl4.p.2, Theorem 4.1 and Propertyl 4.3:2;(3) =
rsy " (Bl EDBliteqs)), wsi(8) = wsi "V (B|EDBuieqr) andinfi(8) = inf;" (8| EDByirerr))-
This is possible becauseadys;.t)(t, data) is unique ing and defines the only possible semantics for
the transactiont, considering that remote transactionstafo not read anything. From this point onwards,
rsi(B), ws:(B) andinfi(S) will be the readset, writeset and control informationtafo matter if it is a

16



t; (local) |

| t, (remote) | > 1=site(t)
t; (remote) | o

| ' 1, (local) | 2=site(ty)
BIEDB =:=¢ = mrimi o= o o G i Qe = O = O
(t) ready1(t1) commm(t1) app|y1( ) (tﬂ) B1(t2) C1(t2)
BlEDBz ........ o TR M, SO B b Gl N L. Gt

Bz(tz) applyz(h) readY2(tz) Bz(h) commltz(tz) 02(11) Cilt)

R U 7 Gt o U s Sl S W W

B1 (t) Bz(tz) ready1(t1) applyz(h) commm(h) readyz(tg) Bz(h) apP|Y1(t2) Commltz(tz) Cz(tw) Cw('ﬁ) B1(t2) Cato) 1(12)

Figure 8: An example of a behavior of the RDBS module.

local or a remote transaction. Moreover, parametecan be ommitted when it is clear within the context.
This simplification is possible since these sets will be rypused in the proofs and they always use

in a compatible() predicate in reference to thete(t). In addition, we also omit théata parameter in
readyy, (t, data) andapply,, (t, data) actions unless strictly necessary. This is possible by tewieni 4.11
and the fact that under the previous convention = data.ws andin f; = data.inf in both actions.

Finally, this Section concludes with an example of a betravidhe RD BS module that illustrates
how the module composition works.

Example 5. Figure[8 presents a behavior of tieDBS, 8 € behs(RDBS), generated by two transac-
tionst; andts both executed under the Dynamic-Serializable level at gpdicas1 and2. Transaction

t1 is local at1 and remote at andt, is local at2 and remote atl. §|EDB; and 3|EDB; are the
sequences of actions executed at sitesd 2 respectively and they must be behaviors of edéhB,, by

the properties of the composition. Thustass committed afs| ED B, betweenBs(t2) andCa(t2) andty

is not aborted, thefitems(wsy, ) Nitems(wsy,) = O anditems(wsy, ) Nitems(rs,) = § must hold to
satisfy Propertj/4]4.b and hen6¢E D B; € behs(EDBs), i.e., itis alegal behavior. The same happens at
ED B, regarding local transaction; and remote transactioty. Similarly, 3| DRP € behs(DRP) must
also hold and thus Properfy 4[%.4 must also holgirThis forcesipply2(t1) andapply: (t2) to appear at
their remote sites afteready; (t1) andreadys(t2) at their local sites respectively.

The RDBS is just the composition ofV > 1 extended databases with a very abstract replication
protocol,([[,,cor EDBr) x DRP. Inthe RDBS there are not any other global properties for local and
remote transactions apart from the ones given in this Secfiben, any pattern is possible, e.g, although
a remote transaction is committed, its local transactiog beaaborted or may not give any response by
the effect of a crash. Therefore, other global conditioescemmanded to get@orrectreplicated database
system.

5 One-Copy Equivalence

The RDBS is just the composition aV > 1 extended databases with a very abstract replication pbtoc
(Il,enr EDBy) x DRP. Inthe RDBS there are not any other global properties for local and remot
transactions apart from the ones given in the previous &eclihen, any pattern is possible, e.g, although
a remote transaction is committed, its local transactiog beaaborted or may not give any response by
the effect of a crash. Therefore, other global conditioescemmanded to get@orrectreplicated database
system.

In general, given a list of conditions theRDBS, module is defined asig(RDBS,) = sig(RDBS)
andbehs(RDBS,) = {§ : B € behs(RDBS) andf satisfies all the conditions ip}. Any RDBS,, is
called a (refined) module of thRDBS, sincebehs(RDBS,) C behs(RDBS). Among all possible
RDBS,, we need to determine which of them are correct, in other sjongt must find the conditions
imposed byp that make theé? D B.S module a correct system.
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The correctness criterion commonly used to prove that acepld database system works correctly
is the one-copy equivalence notion [14]. Its main idea deisthe transactions executed in the replicated
system must behave as if they were executed in a one logipglafdhe database. This one-copy database
is again an abstract view for a givétD BS,,. Following this notion, a committed or aborted transactfon
also committed or aborted in the one-copy database, butrésmonse is produced for a transaction which
started in the replicated system because of a crash, theathe happens in the one-copy database. In this
paper, the one-copy database attempts to provide an exiplaf@r each transaction in a behavior of the
RDBS,,. Thus, the one-copy equivalence considers that transaoctiommit, abort or otherwise give no
answer because the site has failed. This general one-capyaéent model accurately reflects the actual
behavior of all transactions in the replicated system.

On the other hand, when designing a replicated databasensygtoperties satisfied by the databases
and the replication protocol are engineered to obtain suglivalence. Designing a replicated system
considering failures with the minimum properties that aeeessary and sufficient conditions to establish
one-copy equivalence would define the correctness critérihe system. This is one of the objectives
of our work, i.e., finding the necessary and sufficient coad# ¢ that must be fulfilled by the system
specified by theRDB.S,, in order to be one-copy equivalent.

5.1 The 1CDB Module

The1CDB module is defined in Figufg 9. TH& D B bears some similarity to th® B module presented
in Sectior 8. Its signature is quite similar to the3 module except for therash action included in this
case as input action to consider the effect of failures. difagh action included in thd CDB is not
exactly the same as theash,, action of theE D B,, module (see Properfy 4.1, execution integrity). As
there areN replicas, in thelC DB there are at mos¥ chances to get the system down in the same way
as in theRD B.S module. ThelC DB module is the most abstract specification of a replicatedbdete
system; therefore, it includes not only safety propertigisaiso liveness properties in its behaviors. The
1CDB is used to prove that the behaviors of RV BS,, are somehowiew-equivalento the behaviors
of the 1ICDB. As it was done in other previous modulés,s the set of transaction identifiers and the
functionsws : T' x behs(1CDB) — V,rs : T x behs(1CDB) — V andinf : T x behs(1CDB) — &
determine the writeset, the readset and the control infoomaf each transaction € T in a behavior

B € behs(1CDB).

e Signature:
in(1CDB) = {crash}
out(1CDB) = {B(t), A(t),C(t): t € T}
e A setbehs(1CDB) such that everyy € behs(1CDB) is awell-formed N-
crash-stopgeneralized legahndprogressivebehavior.

Figure 9: Module 1CDB

The set of the behaviorsare characterized by four properties, which are analyz#usirfiollowing:

- ~is awell-formedbehavior; i.e.;y|acts(1C DB, t) is a prefix sequence @ (t) - C(¢) or B(t) - A(t).
The transaction can only be committed or aborted after iinfsegnd this action only happens once
in-~.

- v is anN-crash-stoehavior. This simply states that aft¥rcrashes iny the 1C DB module stops
producing any output: If(y|{crash})| = N andr; = crash is the lastcrash in v, theny = y(j).

- v is ageneralized legabehavior in the sense given by Definition]3.6.

- ~ is aprogressivebehavior. Ifr; = B(t), then3j: j > i: m; € {C(t), A(t), crash}. Therefore,
a transactiont that begins but executes neith@(t) nor A(t) indicates the occurrence ofcaash
action.
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Let us note that the last property foiis a liveness property. Every formal specification requitgsh
kind of properties since a system in which nothing happeakiays safe. The fact that th€’ D B module
considers generalized legal behaviors instead of lega\iers is because in a replicated (asynchronous
distributed) setting, the updates of remote transactioag happen at different times in different sites.
Thus, a transaction that begins in a site may not see the mosint versions of the database items in the
whole system, and the transaction may be committed locgllydrking with stale versions of those items.

5.2 One-copy Equivalence Definition

Inan RDBS, module, a transactione 7' may appear it € behs(RDBS,,) operating as either a local
transaction or a remote transaction. However, inlthé B module each transactiere 7" can only appear
once without making reference to any site. Thus, it is nenge®e relate the actions of a transactioim
both modules and also their semantics, i.e., the readsétsetrand control information. Consequently, in
order to study the one-copy equivalence we have to defin@aaebetween the behaviors of D BS,,
and thelCDB.

Definition 5.1. (Legal Relation) et RDBS,, be amodule oRDBS. LetI” be arelation inbehs(RDBS,,)
xbehs(1CDB). I'is a legal relation if for eachs € behs(RDBS,) there exists at least & <
behs(1C'DB) such that:

(1) rse(B) = rse(v), ws(B) = wse(v) andinfi(B) = infi(v)
(2) In e N: B,(t)isins < B(t)isin~y

) ImeN:C,(t)ising < C(t)isiny

(4) IneN: A, (t)isinp < A(t)isiny

(5) [(Bl{crashy: n € N})| = [(v[{crash})|

To define the relation in a more general way, Definifiod 5.1rpesrto choose arbitrarily the order of
the actions iny regardless of the order established/bfor these actions. By its definition, the image of
B by the legal relation”, denotedl"(5), satisfiesI'(5) C behs(1CDB). Thus, each behavior if(3)
must be well-formed, N-crash-stop, generalized legal angnessive (as the behaviors bf’ DB were
defined) and contain all the transactions that were comdyitteorted or did not provide any response in
each behavior.

Example 6. Regarding Examplée 5, shown in Figliie 8, we can find severahpies ofy € behs(1CDB)
satisfying Definitiof 5]1:

71 = B(t1) - B(t2) - C(t1) - C(t2), v2 = B(t2) - B(t1) - C(t1) - C(t2),
73 = B(t1) - B(t2) - C(t2) - C(t1), 74 = B(t2) - B(t1) - C(t2) - C(t1),
vs = B(t1) - C(t1) - B(t2) - C(t2), 76 = B(t2) - C(t2) - B(t1) - C(t1)

However, as both transactions are executed under the Dym&grializable isolation level, if they also
hold thatiterms(ws:,) Nitems(rsy,) # 0, theny, and~; are not behaviors of C'D B since in this case
they are not generalized legal behaviors (Definifiod 3.6).

This is a specific example for thiepresented in Exampléd 5. A legal relation (Definition] 5.1)uees
this to be possible for evey € behs(RDBS,,).

Therefore, since transactionsin< I'(S) have the same readset;, writesetws; andinf; as in
B, this legal relation can be somehow considered as an oneamgvalence notion between a system
characterized byehs(RDBS,,) and thelC'D B module. This allows us to define the one-copy equivalence
between alR D BS, module and tha C DB module.

Definition 5.2. (One-Copy Equivalencd)et RDBS, be a module oRDBS. The RDBS, module is
one-copy equivalent to the”' D B module if and only if there exists a legal relatiohC behs(RDBS,,) x
behs(1CDB).
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6 Necessary and Sufficient Conditions for One-Copy Equivalece

After having explained the conditions that makeb®BS, module one-copy equivalent in the previous
Section, we will determine the set of propertiethat have to be imposed on the behaviors offieB S,
module to provide one-copy equivalence. As it will be prove proposed properties are necessary and
sufficient to guarantee one-copy equivalence. For thioredkey are correctness criteria. In the following,
we present and explain these correctness criteria.

Criterion 1. (C1: Local Transaction Progres3)r every behaviog € behs(RDBS), the following holds:
i = Byjte)(t) = In:n e N: ki k> i mp € {Cn(t), An(t), crashn}

Criterion €1 indicates that if a transaction begins its exien, then it will be committed or aborted
at least at one site, or some site will crash otherwise. Tihigils that if a transaction begins and does
not provide any output then there must have been at least rasé i the system. Note that, despite
ensuring some kind of progress of transactions in the rajgétsystem, this criterion does not imply any
local progress of the transaction at its delegate replica.

Criterion 2. (C2: Uniform Decision)for every behaviops € behs(RDB.S), it holds that:
1) m=C,{t)=Vn:n e N:Vk: m # A (t)
2 m=A4,0t)=vYn":n eN:Vk: m # Cpn(t)

Criterion €2 considers committed and aborted transactieparately. [32.1 states that if a transaction
is committed at one site (either correct or faulty), it canine aborted at any site, even the former one.
Similarly G2.2 ensures that if a transaction is aborted atessite, then it cannot be committed at any site.
Thus, €2 guarantees that the decision on the outcome ofsatrtaon has to be the same at every site which
has made a decision and that the transaction will not be mthmitted and aborted at different sites.

Criterion 3. (C3: Uniform Prefix Order Consistenci®r every behaviops € behs(RDBS), it holds that
log(B(4)|EDBy,) = log(8(4)|EDB,) or vice versa, for everg(j) < S.

Criterion €3 forces the system to build the same snapshatkthe databases. In fact, the same commit
ordering must be followed at all sites by all committed updaansactions, not only by the conflicting
ones, i.e.trans(B(J){Cn(t): t € T}) = trans(B(j){Cn (t): t € T}). Recall thattrans(8(j)) =
trans(B(j — 1)) - trans(w;) for 0 < j < |B|, wheretrans(w) = t if and only if = hast as a paramter (or
trans(m) = udef otherwise). Every remote transactiowill install, if possible, the same writeseis, as
the one defined for the local transaction (see Corollady. Nbje also that if a database fails, this criterion
ensures that the last installed snapshot is also a valicsboafor the rest of the correct sites.

When it comes to considering crash failures, the previoiisri may not avoid some undesirable
behaviors of the replicated system. For example, if a trietitgabegins at its delegate site, notifies that it
is ready to commit and then the site fails, none of the preswiteria will prevent its changes from being
committed elsewhere by a remote transaction, even wherathsetction, according to the previous criteria,
has been aborted locally by another conflicting transagtidhe site had not crashed and all transactions
had been committed in the same order at every replica. Im othls, the behavior of a remote transaction
has to be equivalent to the one of its local transaction eliéimas not been able to notify its termination
due to a crash. Criterion[C4 avoids such potential unddsitahaviors.

To simplify the formulation of C4, we definast(i, n, 3) as the last transaction which has committed
in a siten before an actiomr; in a behaviors € behs(RDBS)E.

Definition 6.1. (Last Transactionl.et 3 be a behavior oRDBS. The last committed transaction 6fat
a siten beforer; is defined as follows:

last(i,n, B) = tlast < Fj:1j<i:mj=Chtiast) AVEk: j <k <i:mp ¢ {Cn(t):t €T}
astit,n, p) = fo otherwise

5In other parts of the paper, we also use this notation fordietss € behs(EDBy,), since the definition is also valid for such
behaviors.
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By Definition[6.1, either there exists a transactign; which is the last committed one just before
action; in 3, or there does not exist a previous committed transactitnigehe latter case, in order to
simplify the notation, we assume that forale N, if 7; = C,,(fo) thenj = 0; i.e., afictitious transaction
fo has been committed at every site at the initial point.

Criterion 4. (C4: Non-Contradictionfor every behavior3 € behs(RDBS), the following holds:
i = Bsgey(t) N m; = Cw(last(i,site(t),B)) N m, = Cu(t) A n' # site(t) =
Vit € T: —conflict(t’,t, j, B(k)|EDB,).

4 prevents transactions that conflict with a transactishich was local at a site from being com-
mitted at another site’ between the last committed transactiomawvhent began and the commit af
Therefore, crash uncertainty is avoided, as a transatfimm a crashed siteite(t) would not be allowed
to be committed, if any other concurrent transactions thaukl be committed beforeconflict with it.

It is worth noting that Criterion[34 is only necessary whenidsion levels may cause conflicts. Thus, if
all transactions were executed under the Weak Read Condristifation level (see Tablé 1), CriterionlC4
would not be necessary, as it would be trivially satisfiedwigeer, we cannot ignore Criteriori IC4, as the
model does not assume a concrete isolation level.

Sectior 6.1l and Sectidn 6.2 detail the proof that theseriaritge necessary and sufficient conditions
for the proposed model.

6.1 Proof of Necessity

In order to study whether these criteria are necessary tonslito get thelC D B equivalent system, we
will prove that such equivalence is not possible when suipgothat each of the criteria does not hold
separately. From Definitidn 3.2 aRDBS,, is not one-copy equivalent tbtC'D B if there does not exist
a legal relationl”, i.e., you can find at least one € behs(RDBS,,) such that anyy obtained using the
conditions of Definitiol 511 from any possible relation sgisy ¢ behs(1CDB).

Theorem 6.1. Let RDBS,, be a module oRDBS. If Criterion (1 does not hold ihehs(RDBS,,), then
RDBS, is not one-copy equivalent i@’ D B.

Proof. By contradiction. There exists a legal relatidhsuch thatRDBS,, is one-copy equivalent to
1CDB. If Il does not hold, then there existse behs(RDBS,) such that for some € T: m; =
Bgitery(t) AV € N:Vk: k > i:mp & {Cn(t), An(t), crashy, }. Among the possible behaviors that
fulfill the previous condition, there also exists a behawibisuch thatvk : k < i : 7 ¢ {crash, :

n € N}. Therefore|(8'|{crash, : n € N'})| = 0. Sincel is a legal relation;y € I'(8’) holds that
|(v/{crash})| = 0. For transaction andvy € I'(8"), v{ B(¢), C(t), A(t), crash} = B(t). Then, for all

v e I'(B),y{{B(t),C(t), A(t), crash} = B(t) and therefores is not progressive with regardto O

Theorem 6.2. Let RDBS,, be a module oRDBS. If Criterion (2 does not hold ihehs(RDBS,,), then
RDBS,, is not one-copy equivalent &' D B.

Proof. By contradiction. There exists a legal relatidhsuch thatRDBS,, is one-copy equivalent to
1CDB. If (2 does not hold, then there exigtsc behs(RDBS,,) such that for some transactiore T,
m = Cy(t) andm; = A, (t) with n # n’ by Property 4211 and Propefty #.3.1. Then, for any I"(5),
it is true thaty|{B(t), C(t), A(t)} is eitherB(t) - C(¢t) - A(t) or B(t) - A(t) - C(t) and thereforey is not
well-formed. O

Theorem 6.3. Let RDBS,, be amodule oRDBS. If 03 does not hold inehs(RDBS,,), thenRDBS,,
is not one-copy equivalent ta”' D B.

Proof. By contradiction. There exists a legal relatidhsuch thatRDBS,, is one-copy equivalent to
1CDB. If C3does not hold, then there exists a finites behs(RDBS,,) such thatog(3|EDB,,) #
log(B|EDB,) for some pair(n,n’) with n # n’. This inequality cannot be caused by writesets of a
committed transaction being different at system sitesQaellary[4.1). Such difference may be produced
because some transactions did not commit or they committeiifferent order at system sites. In both
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Figure 10: Example of a behavior in which transactions arerodted in different order at two sites.

cases, it suffices to study the case when transactions hamebemitted in different order. Let us consider
the 8 of Figure[10.

We do not take into account the intermediate actions of tb& knansactions since they are irrelevant to
the proof. Note thatite(t1) = n andsite(t2) = n'; i.e,¢; andt, are local at: andn’ respectively. In both
BIEDB,, and3|EDB,,, to, t; andts do not conflict among them since they are executed sequgria
they all are compatible and consistent by Progerty 4.4. Saetions; andt, do not conflict witht; or 5.
Let S* be the snapshot created by the transaatjon € {0, 1,2} when it is committed at sité € {n,n’}
in 3|EDBy.

According to the system model, transactions can be execurtddr any isolation level and they can
read/write any item at any time. Then, we establish the faotig additional conditions to the considered
behaviors:

(1) rs¢; C S§ andrsg, C S{)‘/

(2) items(wsy, ) € items(wsy, ) anditems(wsy,) € items(wsy,)

(3) rsy, C S andrs;, C Sy

(4) items(rss,) Nitems(wsy,) # O A items(rse, ) Nitems(wsy,) # 0
(5) items(rsy,) Nitems(wsy, ) # O A items(rse,) Nitems(wse,) # 0

By the first condition, transactiorts andt¢, must see at their beginning the snapshots createdg by
in n andn’. Recall that local and remote transactions commit the saritesst (see Corollafy4.1), and
therefore these snapshots must be equal, $@.+= S; = S§ = ws;,. Thus,t, must be committed
beforet; andt, begin so that the snapshot is available at their beginnimgenTthe only behaviorg €
behs(1C D B) that can be possible considering the transformation of Riefie.1 and onlytg, ¢, and¢,
are the ones of FigufeTL1:

+So 08§ o8t 9So ISHINR S
| to i ] t2 B R | to [P ] t N
t tz
)/1 B T S e - SR }/2 =m0 = O 0= -o O mme -o
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t t2
)/5 --0 o--0 0= -0 o> }/6 --0 o --0 0:--0 o>
B(to) C(to) B(t2) C(t2) B(t) Clty) B(to) Cl(to) B(ty) C(tr) B(t) C(t2)

Figure 11: Possible one-copy behaviors following the tiamsation of Definitior 5.1 fot, > andts.

As a result of the second condition being appliedtdt holds thatS7 # Sz', S # ST and Sy #
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S%. Note thatS" # S% does not necessarily hold. As the figure shows, for any plessite F(ﬁ)
7|{C(t0) C(t1),C(t2)} is eitherC(tg) - C(t1) - C(t2) or C(to) - C(t2) - C(t1). In the former cas&y
never created iry and in the latter casg]’ is never created in.

By the last three conditions, both andt, have to read versions of some items of batk, and
ws,, from S} and Sy’ respectively. Howevery produces justS]” or S5 and besides these versions
can not be obtained fromdy or S’ sinceS? # S7" andSy # S7. Then, for anyy’ € I'(3) that
could be built includingt; andt, over~, eitherts is incompatible ort, is incompatible and therefore
~' & behs(1CDB). O

Theorem 6.4. Let RDBS,, be a module oRDBS. If G4 does not hold ihehs(RDBS,,), thenRDBS,,
is not one-copy equivalent i@ D B.

Proof. By contradiction. There exists a legal relatidhsuch thatRDBS,, is one-copy equivalent to
1CDB. If G4 does not hold, there exist$ € behs(RDBS,,) such thatr; = Bger)(t) A 75 =
Cy (last(i, site(t), ) N mp = Cupi(t) A site(t) # n' A 3" € T: conflict(t’,t, 7, 8(k)|EDB,,).
Let us consider thg of the example of Figurle12.

2So ﬂ
to < t; n=site(to)

. . =site(ty)
to 5 | to | | s .

» n'=site(ty)

BIEDB), =m0 == = O i Or e O >
Bt 0) C (to) ( 1) readyn(t1) crash

BIEDByy = - m o 0o i m G QGO m mmm o>
applyn(to) By (to) Cn (to) By (tz) o (tz) aPP|Yn(t1)B (t1) Cr(t)

Figure 12: Example of a behavior in which a site crashes.

Let Sy be the snapshot whefi, () andC,, (to) in both5|EDB,, and5|EDB,,,. Ast, t; andt, are
arbitrary transactions, then we assume a particular isol&vel in which conflicts can arise, for example,
the simplest one would b&napshot IsolationThen, we establish the following additional conditions fo
IoF

() rst; € Spandrsg, C Sp
(2) items(wsy,) Nitems(wsy,) # 0
(3) items(rsy, ) Nitems(wsy,) # O A items(rsy,) Nitems(wsy, ) # 0

By the first condition, transactiorts andt, must see at their beginning the snapshots createg iny
n andn’. Thereforet, must be committed beforg andt, begin. Then, the only behaviosse I'(3) that
can be possible considering the transformation of Defimid are the ones of Figure]13.

However, in the cases and~ys, for the transactiony, con flict(ta, t1,4,v1(6)) andcon flict(ts, t1, 3,
~v3(6)). Thereforey; andys are not generalized legal behaviors. The same happens &od-y,, but with
to, i.e.,conflict(ty, ta,4,v2(6)) andconflict(t1,ts, 3,74(6)). Therefore;, andy, are not generalized
legal behaviors either.

By the last conditionys is not possible sinces;, ¢ S> and hence-compatible(t1,5,v5(6)), andys
is neither possible sinces;, ¢ S; and hence-compatible(ts, 5, v6(6)).

O

6.2 Proof of Sufficiency

In the previous Subsection, we have proved that Critdrlao@I4tare necessary conditions to obtain a one-
copy equivalence of aRD BS, module. In the following, we prove that they are also sufficeonditions.

To this end, we denote b§ D BSc¢ the moduleRD BS,, in which its behaviors satisfy{C1 td_C4. In order
to prove their sufficiency, the criteria must ensure that aglyavior of theRD BS- ¢ can be transformed

in such a way that the result is a behavior of tlie¢D B module.
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Figure 13: Possible one-copy behaviors following the timmsation of Definitio 5.1l fot, t> andts.

Next, we study the structure of a transaction in a behagiorLet 3; be the subsequengs =
BH Bsitet) (t), An(t), Cn(t): n € N'}. For each transactiane T, the 3; sequence will always be one of
the sequences defined in the next Thedreth 6.5 due to the icosdinforced by Criterion[T2.

Theorem 6.5. Let 5 be a behavior oRDBSc¢. For each transaction € T', the sequencg; is one of
the following sequences:

(@) Bt = empty

(b) B = Bsite(t) (t) “ Ve with Ve, 2 Cm (t) s CnN (ﬁ)

(©) Bt = Byite(t)(t) - Ya, Withva, = Ap, (1) ... Apy(t)
where(n, ..., ny) is a permutation of the site identifiers, V.

Proof. By Corollary[4.2, By;.1)(t) = Blacts(RDBS,t). Therefore,3; = empty in caseB,;..(;) IS
not in 3. Otherwise, by the definition of;, it holds thatB,;.)(t) = B:. If 7., = 74, = empty, the
Theorem holds; if notg; will be B+ (t) - 7. Then, letr;, 7; be in 3 such that < j. Now suppose
thatm; = A, (¢) is in~. Then, by contradiction, we assume that there also exists=a C,,/(¢) in 7.
By Property 4211 and Propefty £.B:1,# n’. Sincep satisfies CR, such is not possible. The same
happens, ifr; = C,,(t) andr; = A,/ (t). Thus, the Theorem holds. O

A transactiont € T is said to becommitted ina behavior3 € behs(RDBSc¢), denoted byt €

Committed(B), if and only if 3, has an actiorC,, (t) for any siten € N, formally: 3; =< Bgjie(s)(t)
- Ye, With 7., # empty. In the same way, a transactionc T is aborted ing € behs(RDBScc),
(t € Aborted(f3)), if and only if 3; has an actiom,,(t) for any siten € N, formally: 8; = Byjeq) (t) -

Ya, With 74, # empty.

As a result of Theorem 6.5: (i) if € Committed(3), thenj; is a prefix of Byise(r)(t) - Ct.(,)(t)
where f.(5;) is the first site at which is committed; and (ii) ift € Aborted(B), thenp; is a prefix of
Biite(t)(t) - Aa,(5,) (t) Wheref,(53;) is the first site at which is aborted. Next, we define the subsequence
of 5 which comprises the beginning and the first output (comuhitteaborted) of each transaction, as well
as the crash actions.

Definition 6.2. (Transaction’s First-Output Behavidrgt 8 be a behavior okR D BSc¢. The subsequence
Br is defined asfr = p|F(8) where F(8) = {Bsiew)(t):t € T} U {Crpyt):t €
Committed(B8)} U {Ay,(,)(t): t € Aborted(B)} U {crashy,: n € N'}. Moreoverws(8r) = ws(j),
rsi(Br) = rs«(B) andinfi(Br) = infi(B).

Example 7. As Figurd 1# shows, the subsequepigeof the behavior of Examplé 5 (see also Figlre 8) is
B = Bi(t1) - Ba(t2) - Ca(t1) - Ca(t2). In this casef.(B:,) = 2 (i.e., t; is committed first at the remote
site2) and f.(8:,) = 2 (i.e., t2 is committed first at its local sit2). The sequences @f, and j3;, of this
example are also presented in Figlrd 14.
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Figure 14: The3r subsequence for the execution of Exaniple 5.

Note that the actions ifir for each transactione€ T (i.e., Byite(r) (t), Cy.(5,)(t) and Ay, ,)(t)) are
unique. The3r sequence has some useful properties, shown in Lemrha 6.1hickh we will make use
later.

Lemma 6.1. Let 3 be a behavior oRDBS¢¢. In the subsequengs- the following conditions hold:
(1) ™ € {Cfc(ﬁt)(t)vAfa(ﬁt)(t)} =dk:k<i:m = Bsite(t) (t)
(2) if crashy, - --crash,, is a subsequence @fr with (n1,--- ,ny) a permutation of(1..N) and
7 = crashy,, thenfr = B(j)r
() mi = Bgiter)(t) = 3k: k > i mp € {Cp5,)(t), Ag, (8, (1), crashy, : n € N'}

Proof. The first condition comes from Definition 6.2 8f- and Theorern 6]5. The second one is proved by
Property{ 4.1, since after the lasf = crash,, no action is possible aftgrat any site of theRDBSc¢
and hences = 3(j). Finally, asg € behs(RDBSc¢) satisfies ClL, then again by Definitibni6.2 @f
and Theorerfi 615 the third condition holds. O

The 8 sequence has also the nice property thats|FDB,,) < log(8r) for all n € N, as stated
in Lemmd®&.2. This means that installs the same snapshots, and in the same order, as thnstaled
at each replica of the replicated system. This consider&ipossible due t6 being trivially well-formed
in the sense given by Definitidn 3.1 and the fact that eactsa@tion inSr hasrs;, ws; andinf; as its
readset, writeset and control information by Reniark 4.2.

Lemma 6.2. Let 8 be a behavior oRDBS¢¢. It holds thatiog(5(j)|EDB,) = log(8(j)r) for every
prefix3(j) < B and everyn € NV.

Proof. Let 3(j) be a finite prefix of3 for some index € Z*. By induction overj > 0.
- Basis j = 0. 5(0)|EDB,,=3(0) p=empty and, by definitioripg(5(0)| ED By,)=log(5(0) r)=empty.
- Hypothesisj > 0 andlog(8(j)|EDB,) = log(8(j)F).
- Induction Stepwe only consider the events.; affecting the Lemma statement.

o mir1 = Cf (s, (t) and f.(B;) = n. By Hypothesisjog(3(j)|EDB,,) = log(3(j)r). The only
possible case from the Hypothesisag (5(j)|EDB,) = log(8(j) F)-
Considerlog(3(j)|EDB,) < log(B(j)r). There is at least one different elemépit ws;)
in log(B(j)r). Thus,3(j) includesm; = Cy, (s,)(t') with j* < j. This action is also in
B(7)r but notin3(;7)|EDB,,. By 43, there is some replicd{ ;) = n’) n’ # n such that
log(B(j")IEDB,,) < log(B(j")|EDB,,). Then,log(3(j)|EDB,) < log(8(j)|EDB,). By
the log Definition 3.2, asi(j + 1)|EDB, = B(j)|EDB, - 741 and3(j + 1)|EDB,, =
B(4)|EDB,, thenlog(B(j + 1)|EDB,,) 4 log(3(j + 1)|EDB,,) that leads to a contradiction
with d3.
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As a conclusionjog(8(j)|EDBy,) = log(8(j)r). As B(j+1)|EDB,, = B(j)|EDB,, - Tjt1
andB(j+1)r = B(j)F - j41, by the log Definition3Rlog(3(j+1)| EDB,) = log(B(j+1)F)
holds.

o mip1 = Cyp,)(t) and f(B;) # n. By Hypothesisjog(3(j)|EDB,) = log(B(j)r). Since
B(j +1)|EDB,, = B(j)|EDB, andB(j + 1)r = B(j)r - 7+1, then by the log Definition 3] 2,
log(B(j + 1)|EDB,,) < log(8(j + 1)r) holds.

o i1 = Cy,(t) andng = n, beingni, # f.(8:). By Theoreni 65, there exisf$ < j such
thatm; = Cf,(,)(t) isin B(j)r. This action is in3(j)r but noting(j)|EDB,. By induction
Hypothesisiog(5(j')|EDBy,) < log(8(3)r) and alsdog(5(j)|EDB,,) < log(5(j)r). Thus,
asfp(j + 1)|[EDB, = (j)|EDB, - mj+1 and3(j + 1)r = (j)r, by the log Definition 3.2,
log(B(j + 1|EDBy) = log(6(j + 1)F).

o w1 = Cy, (t) andny # n, beingny # f.(8:). In this cases(j + 1)|EDB,, = B(j)|EDB,
andg(j + 1)r = B(j)r. Thus, triviallylog(5(j + 1)|EDB,,) < log(8(j + 1)r) by induction
Hypothesis.

Thus, the Lemma holds. O

The actions of sequengl: compose a behavior which somehow represents the way in wraickac-
tions behave in the replicated system. This behavior istniotly the same as the one of a single database
system (Definitiol_3]5), but it satisfies the generalizedléghavior of Definitiof 316, in which transac-
tions may obtain older snapshots prior to their beginnirgedreni 6.6 covers this issue.

Theorem 6.6. Let 8 be a behavior oRDBScc andfr = S| F(8). For each transaction € T' such that
i = Baiter)(t) andm; = Cy,s,)(t), there exist® < s < i such that the following conditions hold:

(@) compatible(t, s, B(5)r)
(b) —conflict(t',t,s,B(j)r), foralt’' € T
(c) consistent(t,B(5)r)

Proof. By the Definition[6.2 offr, there exists in3 bothm; = By (t) andw; = Cy (s,)(t) with
i < j for each consideretie T'. SincefSr = B|F (), we can use the indexesj of 5 in Sr, although
the properties to be proved are related only with. Let ¢, € 7T be the transaction such that =
last(i, site(t), B) andm;, = Cyie(r) (to). By Theoremi 65, there exists, = Cy,(s,)(to) with i < j, as
10g(B(H)IEDBgitery) = log(B(j)|ED By, s,))-

- Proof of Condition (a):
By Propertyl4.P1l1 whery.(5;) = site(t) or by Theoreni_4]1 wherf.(8;) # site(t), if m; =
Ct.(3,)(t)isin B, thenm, = readyge(r) (t) isin 8. Thus, by Property 4l2.4, it holds thatmpatible(
t,i, B(r)|EDByge(ry). Note that, by its Definition 313, the snapshot only changewben a trans-
action is committed. Thus§(3(i)|ED Bjter)) = S(B(i0)|EDBgitery)- Then, we have to be con-
cerned about the transactianswhich were committed between the commitmentodndt at f..(5:)
(wheret was committed first); i.es), € 7" such thatr, = Cf, g,)(tx) andig < i} < j. Note that
to and eacht; have been committed ii. Then, letr, = Cfc(ﬂto)(to) andm, = Cfc(sz)(tk% it is
satisfied thas < ip < i and, by Lemm&agl2 < k < j sincelog(3(j)|ED By, s,)) = log(B(j)F).
Letm;, = Cyite(r)(tr) be the committed actions atte(t) of eacht, with iy : ig, i1, .., ix, .., i, and
im < 7. The sequence of snapshotssiitie(t) which makes:ompatible(t,i, 3(r)|ED Bgjse(r)) true
is: S(B(iO)|EDBsite(t))S(ﬁ(il)lEDBsite(t)) .. S(B(Zk”EDBszte(t)) C S(B(im)lEDBsite(t))-
By Propertyf4.B1 iff.(8;) = site(t) or by Theoreni 41 iff.(3;) # site(t), it is satisfied in both
cases that,, < r < j. By Lemmal6.2,log(B|EDBg;icry) = log(fr). Both behaviors have
built the same snapshots. By the previous definitiomrotndy, thenlog(B(io)| ED Byjterr)) =
log(B(s)r) andlog(B(ix)| ED Bgite(ry) = log(B(k)r) for k: 1..m. By the snapshot Definitidn 3.3,
SB(s)p)---SBk)r)---S(B(m)Fr) is the same sequence of snapshots. Thempatible(t, s,
B(m)r) holds and triviallycompatible(t, s, 3(j) r) holds too, sincers;(3) does not change after
actionready;(+)(t) is executed, and therefore neither doeg3r ).

- Proof of Condition (b):
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Recall thatws,(8) andin f,(5) of any committed transactionare the same at all system sites no
matter ift is local or remote (see Remdrk 14.2), thus by Definifion 6.% tve also the same fgty.
Moreover,mi, = Ciite(r)(to) andmy = Cy,p,)(to). If fe(Bi) = site(t), thenm;, = m;, and, by
Property 4.4, it holds thatt” € T': —con flict(t”,t,i, B(j)|ED By, (s,)). Asto is the last committed
transaction insite(t) beforer; = Be(4)(t), thecon flict() predicate can be extendedifp i.e., it
holds thatvt” € T': —conflict(t",t,iy, B(j)|EDBy, s,)). On the other hand, if.(8;) # site(t),
then also, by G4, it holds that” € T': —conflict(t”,t, i, B(j)|EDBy,g,))- Then, we have to be
again concerned about the transactiong 7' such thatr;, = Cy, (s,)(tx) andip < 4 < j. By the
definition ofcon flict(), these transactions Satls-fyonflzct(tk,t,zk,ﬂ( )EDBy, s,))-

Then, recalling that; = C,(g,,)(to) andm, = Cy (g, (tx), in Br, by Definition[6.2,s < k <
j. Therefore,~conflict(tx,t,s, 5(j)r). For the rest of committed transactiotissuch thatr,, =
Cy.(3,)(t") and thats < k" < j does not holdscon flict(t',t, s, (j) r) holds too.

- Proof of Condition (c):

Finally, asm; = Cf,(g,)(t), by Property 44 consistent(t, 3(j)|EDBy,(s,)) = Vi: Ki(S(B(j —
DIEDBy,(s,)), wst). By Lemmal8.R]og(B(j)|EDBy,(s,)) = log(B(j)r). Thus,log(B(j — )I
EDch(gt)) = log(ﬁ(j — 1)F), SInCEﬂ'j = Cfc(ﬁt)(ﬁ)' Then,S(B(j — 1 |EDch(5t ) 8(6

1)r) and thereforeonsistent(t, 5(j)r) holds. 0

One can think that th@r of eachf € behs(RDBSc¢) keeps the properties we need to prove the
existence of a one-copy equivalence of RE®BSc¢. This is the conclusion drawn from Theoréml6.7,
which proves that any behavior of t#&D BSc¢ can be transformed in order to become a behavior of the
1C'DB module.

Theorem 6.7. The RD BS¢¢ module satisfying Criteria[G1 to[C4 is one-copy equivalertte1C' D B.
Proof. For eachg € behs(RDBSc¢), we define the following legal relatiol': behs(RDBScc) —
behs(1CDB); I'(8) = R(Br) whereR() is a renaming function which removes every reference ofea sit
in the actions of3r related to a transaction or a crash action. ThaBig,), C(t), A(t) or crash appear

in R(Br) WhenBgie) (1), Cr.s,)(t), Ay, (s,)(t), OF crash, appear in3r. Note thatl 3r|{crash.,

N} = |R(BF)|crash|. Thus,(F satisfies LemmB6l.1 and Theorém]6.6; the definitionsef ws; and

in f; does not change for the transaction$i(3r); and the actions iR (5r) are included in the CDB
signature, i.e.qcts(1CDB). Therefore['(8) € behs(1CDB), i.e.,I'(§) is a well-formed, N-crash-stop,
generalized legal and progressive behavior. O

The resulting one-copy behavior models the behavior ohalldommitted and aborted transactions in
the replicated systetRD BScc¢. In this way, transactions in the” D B behavior are committed, aborted
or provide no result because of the same reasons as iRiheScc module.

In conclusion, the conditions imposed by Criter[d C1 o Cdruthe RD BSS constitute theRDBScc.
Such criteria are the sufficient and necessary conditionthé? D BSc¢ to be one-copy equivalent to the
1C'DB module.

7 Discussion

Before presenting the refinements derived fromitieB S that model the implementation of &) B.S
in Sectiong B and]9, this Section discusses some interestjmerts related to the correctness criteria pre-
sented in Section] 6.

Read-only transactions: After having stated Rematk 4.1, read-only transaction® lmeen ignored, as
they can be directly executed at their respective delegi@tevithout requiring any remote transac-
tions to propagate the transaction to the rest of sites. derdo ignore read-only transactions, Re-
mark[4.1 states that read-only transactions do not confliitt @ther transactions. Without this
assumption, Criterion[@2 may be violated, since Criteri@ghvwiduld not observe conflicts derived
from read-only transactions.
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Serializability: As far as serializability is concerned, in order to requiegsactions to be executed under
theSerializablasolation level at eacv D B,,, it would only be necessary to consider that committed
transactions are executed in a view-equivalent way witpeetsto an execution where transactions
are executed sequentially one after the other. Besidesulmad DB can be easily transformed
into alC'SER module by removing the condition that requires behaviofsetgeneralizedly legal
and replacing it with a condition requiring the sequentiaaition of committed transactions in its
behaviors.

Even so, Criteriald1 to[C4 are still necessary and sufficienditions in order for &2D BSc¢ (with

the aforementioned assumptions) to be equivalent to maduier R. 41 and CP are independent
of the isolation level. As for @3 andC4, the examples useckictiBn[6 to prove that they both are
necessary conditions may be reinterpreted for the Saatzlkdevel. This way, CriterialC3 anIC4 are
necessary conditions for obtaining serializability. ®iiserializable behaviors include the behaviors
obtained for the Dynamic-Serializable level (see Tablerid eonditions Clil to [34 are sufficient
conditions for obtaining one-copy equivalence under tgl, it is reasonable to assume that they
are also sufficient conditions for serializability (althgiuthis has not been proven).

Relaxation of the correctness criteria: As it has been proved before, the addition of Critefia C1,@2,
and C4 to theRDBS results in a new systelRDBSc¢, which is correct in the sense that it is
equivalent to moduléC DB. Such conditions are necessary and sufficient under thengsisuns
given for a fully replicated system:

(a) The crash failure model is considered

(b) Transactions can be executed at any place
(c) Transactions can begin at any time

(d) Transactions can read/write any item

(e) Transactions run under any isolation level defined in thalede (which may also declare
integrity constraints).

Evidently, if we restrict the initial assumptions of the lieption model some of the correctness crite-
ria may be relaxed with the aim to improve the system’s pettorce. For instance, by constraining
assumption (b) to its limit, we would obtain a primary-copyplication model.

By restricting condition (c), transactions would not bevakd to start at any time. Thus, a control
mechanism over the start point of transactions would ertableslaxation of Criterion[G3 (i.e., logs
of different replicas could be disordered), sin¢é C3 is ssagy in a system that fulfills condition (c).
In this case, the most appropriate moment for starting eactsaction should be determined (e.g.,
when the same snapshot is reached at different replicas).

If condition (d) were modified in order to impose certain rig$ions on transactions with respect to
the database items that they read/write, it would be passibdiivide transactions into sets that work
with disjoint sets of database items. In this context, eeahsaction set should fulfill[C1 td C4, but
would work independently with regard to the rest of tranisecsets.

Finally, if condition (e) is restricted so that all trandaos use the same level of isolation, it is obvious
that using isolation levels that produce fewer conflictd meisult in a better system performance.

Note that most of these constraints on the initial assumptlead to better performance and im-
proved scalability. This had been already argued in [254réigpng condition (d), with the proposal of
theshared-nothingoncept that implies a perfect database partitioning. Mwodeplication systems
have combined such partitioning with passive replicatamin theDiscor protocol of [26] where
disjoint conflict classes (i.e., the database is logicadlstiboned for evaluating conflicts, although
this does not demand a physical non-sharing distributiom)aasigned to different master replicas
(i.e., passive replication within each logical partitiohis boosts the resulting scalability. These
results have been further improved with an important régaesf the DBMS core and maintaining
data in RAM, as in the H-Store system [27]. Moreover, all thegstems still preservene-copy
equivalencebut reaching a level of scalability in the latter that issgdo that provided in modern
cloud-based systenis [28].
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Implications of crash failures: Before presenting the successive refinements of the réglictatabase
system and the replication protocol, we now introduce avegleconsideration regarding assump-
tion @) of the failure model and its influence on the desigrihef replication protocol. Instead
of using theRDBSc¢ directly, we may consider other correct systeRBB.S,,; for instance, an
RDBSci,cr2,003,c04y With C'i = Ci (i : 1..4) would also be a correct system (note that condi-
tions C’7 would be sufficient but not necessary conditions for oney@piivalence, since they are
stronger properties). Among Criteri&IC1 tolC4, the suitabledidate to be strengthened [S C1, as it
is a very weak criterion and therefore finding a property thetrantees a stronger progress condition
than the one required by C1 is a straightforward task. Let@ the following condition:

(C'1: Transaction Progress) For every behaviere RDBS, the following holds:r; = B, (t) =
3k k>i:m € {Cu(t), Ap(t), crashy }

An RDBS satisfying Criteria C'1, C2, [03 and_C4, denoted BP BS(c+1,¢2,c3,c43, IS @ correct
system sinced € behs(RDBS{cn,c2,03,c4y) = B € behs(RDBScc) (as if § satisfiesC’1
then C1 holds trivially). What is more, a systétiD BS{c+1,c2,03; (i.€. it satisfies Criteria C'1,[02
and €3) is correct in a scenario with no crash failures, beeitalso satisfies[C4, as shown in the
following theorem:

Theorem 7.1. Let 8 be a behavior oRDBS ¢ 02,031 such that there is no actiomrash,, in 3
for anyn € A. Then,3 satisfies CK.

Proof. By contradiction. If3 does not satisfy [34, then there exists a transactianT such that
i = Biiter)(t) A 15 = Cpr(last(i, site(t), B)) A m = Cn(t) An' # site(t) N3t € T :
conflict(t",t,j, B(k)|EDBy)

By Cl,ds:s>1:7m5 € {Csite(t) (t), Asite(t) (t)} in B. By Cm:ﬁs = Csite(t) (t) sincer, = Cyy (t)
By its definition there exists @ = Clic(4)(to) beingto = last(i, site(t), 3). By Property 4.4,
V" € T : —conflict(t",t,i, B(s)|ED By ), and therefor&/t” € T : —con flict(t”,t,1, 5(s)|
EDBsite(t))' By CE’lOg(ﬂ(k”EDBn/) - log(ﬂ(s>|EDBsite(t))'

If there exists a transactiap, € T such thal < m < sandm,, = Cge(r) (tm), then there exists an
m’ such thaj < m’ < k andn,,, = Cy/ (¢,,). Recall thatws;, (8) andinf;, (3) are the same for
every site. Thus, ifon flict(t., t, 5, 8(k)|EDB,) is true, then a contradiction is obtained because
—con flict(tm,t,1, B(s)|EDBgie(r) is true.

O

From this theorem, we can infer that if crash failures hadh®an considered, it would have been
possible to develop a correct system based on Criteria @lai@ CB (without taking into ac-
count C4). However, when introducing th&) BS{c+1,c2,c3y in a crash-prone environment, it may
behave incorrectly (as Criterid 14 may be violated). Thésittesshows the importance of considering
crash failures from the beginning of the specification.

8 A First Refinement of the Replicated System

One of the advantages of using the I/O automaton model istthatmits to provide accurate descriptions
of a distributed system at different levels of abstractlmotgh successive refinements [2]. In the first part
of this work, a specification of a replicated database systasibeen presented by means of 8% B.S
module. Its purpose was to introduce the problem specificaflhen, we have described theD BSc¢
module as alRDBS module satisfying the correctness criteria (Criterid @f);Gvhich guarantee the
one-copy equivalence of the replicated system. RieBSc¢ is partially distributed: the set df DB,,
corresponds to the extended databases at each locatide, thwbiD R P simply models any replication
protocol responsible for ensuring the deferred-updatatigee.
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In this Section, a new level of abstraction of the replicatgstem is proposed. On one hand, this re-
finement introduces a new module for the replication pratczalled DRP#, which is compatible with
the DRP specification. Besides, thBRP4 is closer to the possible algorithms which could be imple-
mented in practice. On the other hand, this Section descailnew module nameidD B, which consists
in a refinement of théz D B,, presenting a more detailed specification of an extendedds¢a It shares
the same signature and properties with B B,, module, but it provides some extra properties to help
the DRP# with the replication process. Thus, we are going to studyctireectness of a more specific
replicated database system, which is the composition oPtR&“ module and a set df D B2 modules.

8.1 Extended Database Refinement

Up until now, all the extended functionalities of tHeD B,, module that have been modeled are the
apply, (t, data), ready,(t, data) and commit, (t) actions as well as some basic properties which dis-
tinguish between local and remote transactions, which weoaigh to prove the one-copy equivalence of
the RDBScc. However, some additional properties are necessary ty sadcorrectness of a particular
replication protocol based on the functionalities prodithy the £ D B,, at each site.

Thus, a new extended database module, denotdﬂﬂa@,ﬁ‘, is defined as a refinement of ti&D B,,.
The EDBZ module is the same as tli&D B,, except for some properties imposed on its behaviors. This
means that they both have the same signatig,EDB;') = sig(EDB,); and that the behaviors of
the EDB;} are a subset of the behaviors of tA® B,,, behs(EDB) C behs(EDB,,). Therefore, the
EDB; satisfies Properfy 4.1, Propelfy 4.2, PropErty 4.3, ande?tglg.4. We will refer to the original
properties specified for avD B,, behavior when it is necessary to apply them foE® B behavior.
Additionally, the behaviors of th& D B} satisfy Propertjz 811 and Propefty8.2.

Property 8.1. (Extended Database RefinemeBgch behaviop € behs(EDB2) holds that:
(1) m = Bn(t) A7 = readyn (t, data) = data.last = last(i, n, e}
(2) 7 = applyn(t, data) Am; = Cy(datalast) Ni < jAT € T: conflict(t',t,i,5(5)) = Vk: k>
J: e # Cn(t)
(3) i = Baiter) (t) A site(t) = n = Ik: k>i: mp € {readyn(t, data), A, (t), crashy: data € D}
(4) m; € {commit,(t), applyn(t,data)} = Fk: k> i: m, € {CL(t), An(t), crashy }

Recall that whemeady,, (t, data) is generatediata containsiata.ws, data.in f anddata.last (See Sec-
tion[4.1). Property8]1.1 is a safety property ensuring thatfield data.last in actionready., (t, data)
will contain the transaction identifier of the last comndtteansaction before the beginning of transaction
t. This is essential to detect conflicts when applying renmatestactions in the extended database. Thus, in
order to guarantee Criterior . C4, Propdrtyl 8.1.2 ugga.last to restrict the remote transactions that can
be committed in the local database. Thus, if any confliciaggsactiort’ has been committed befotés
applied, the remote transactioean never be committed; actually, by Propériy 8.1.2 andd&ttg@.1.4, it
will eventually be aborted or the site will crash.

Property[8.1..3 and Propelfty 8.1.4 are liveness properiige. former ensures that if a transaction
begins at a site, the transaction will eventually be ready or will be aborééthe local databaséD B2,
unless siten crashes. The latter ensures that if a transaction requestait or an apply operation at
a siten, the ED B will eventually provide a response (eith€y,(¢) or A, (t)), or the siten will crash
otherwise.

Aborts can happen as a result of a conflictive concurrenséetion at commit time, an integrity con-
straint violation or any other internal cause of the datalsash as deadlocks, timeouts and so on. Unilateral
aborts are going to be considered as crash failures. Pyi@rspecifies which causes may be responsible
for the aborted response of a transaction.

Property 8.2. (Abort Causesfor every behaviop € behs(EDB2), it holds that:
(1) There is no transaction unilateral abort or, if any, it is @rsed as arash,, action.
(2) Forany local transactiont € T', with site(t) = n:

8In Definition[6.,last (4, n, B) is specified for3 € behs(RDBS), but it can be redefined for arfy € behs(EDBL).
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e Letm;, = B,(t) andw; = A, (t). If pattern (b) of Property 41211 is followed, then theresesi
t' € T such thaton flict(t',t,i, B(j)) or -consistent(t, 5(5)).

e ActionA4,,(t) in the sequence (c) of Propeffiy #.2.1 is possible by any aocause with the ex-
ception of an unilateral abort (e.g., incompatible read mg®ns, deadlock resolutions, timeout
expirations, explicit client aborts or conflicting trangams).

(3) For any remote transaction e T (with site(t) # n) such thatr; = apply,, (¢, data), m; = B, (t)
andmy(t) = A, (t) follow pattern (b) in Properti 41811, eitherconsistent(t, 5(k)), or there exists
t' € T such thaton flict(t', t,1, 3(k)) beingm, = Cy (data.last) with 1 < 1.

In fact, by the time a transactiondelegates the decision on its outcome to the replicatiotopob
(by executingready., (t, data)), all the operations of have already been performed successfully in the
database and therefore the transaction is ready for its éofipynProperty 4.2 ready, (t, data) must be
followed by commit, (t)). Therefore, from then ort, will only be aborted in case it does not fulfill the
integrity constraints or if there is another concurrentféotling transaction which causes its abortion. As
for remote transactions, they will be aborted in case Pigfeeldl.2 is satisfied, i.e., they are not consistent.

8.2 Replication Protocol Refinement

We now introduce th& R P4 module as a refinement of ti&R P module. This new level of abstraction of
the D R P specification models the general characteristics whicldafsrred-update protocol working with
an ED B module has. The new RP# module has the same signature asfheP, i.e.,sig(DRP*) =
sig(DRP). The D RP# only defines some additional properties (Property 8.3)ftoe¢he specification of
the DRP (behs(DRP4) C behs(DRP)). Thus, the behaviors dd R P4 satisfy all theD RP’s properties
(Propertf 4.b).

The DR P4 explains the way in which the protocol requests the commitlotal transaction or applies
aremote one. Since both actions are treated in a similarmsgyme of the presented propertieEQ(n) =
{applyn(t, data), commit,(t): t € T,data € D} and REQ(n,t) = {apply,(t,data), commity(t):
data € D} to work with both of them at the same time.

Property 8.3. (Replication Protocol Refinemeritet 5 be a behavior oD RP4, it holds that:
(1) m € REQn,t')Amj € REQ(n,t)Ni<j=Tk:i<k<j:m € {Cn(t),Ant)}
(2) trans(B(7)|REQ(n)) = trans(B(j)|REQ(n")) or vice versa for every prefig(j) < g
(3) m = readyy(t,data) = 3k: k > i: m, € {commity(t), crashy,}

As Propertyf 8.18.1 shows, @mmit, (t) or apply,(t, data) can only be executed at siteonce the
outcome of the previous request has been decided. This pydpenecessary in case the underlaying
database replicas do not guarantee that the outcomes ofomauicent transactions are delivered in the
same order as the request operations for committing or aqgpthem. Since Criterion[T3 requires the
order of committed responses to be the same at all sitesdhdition is essential for the model considered
in this work.

Apart from performing commit and apply requests sequdptia order to build the same snapshots
(and hence the same logs) at all the databases of the replisgstem, the protocol must also ensure that
the sequences of transactions that make the commit or agglyests at each site are prefixes of the others
or vice versa. This is formalized by Propdrtyl8.3.2. Findliyoperty 8.8.3 states that every local transaction
that becomes ready will either be aborted, or will requesitfocommit, unless the site crashes.

8.3 Composition of the Refinements

Once presented the new modules, now we can build a new regglisgstem? DBS4, as a composition
of the DRP# module and a set dfD B;} modules, i.e. RDBS* = DRP* x ([],,cnr EDB).

By the properties of composition, the resulti®y> BS54 will have crash,, as input action, that is,
in(RDBS*A) = {crash, }, and the union of the outputs of thieR P* and theE D B/* modules as output

"Recall that foll = 0, data.last = fo
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Figure 15: Composition of the Refined Replicated Databas&e8y.

actions, i.e.put(RDBS?) = (U,,cn out(EDB;})) U out(DRP#). By its definition,sig(RDBS4) =
sig(RDBS). Besides, its behaviors hold that € N: B|EDB/ € behs(EDB;) and 3|DRP# €
behs(DRP4).

The RDBS# can be proven correct by showing thaths(RDBS4) C behs(RDBScc), as we
already know that theRDBSc¢ is a correct system. However, tHeDBSc¢ is specified from the
RDBS module including the D B,, and DRP modules and therefore it is necessary to prove first that
behs(RDBSA) C behs(RDBS).

Let B € behs(RDBS#). By contradiction, ifbehs(RDBS“) ¢ behs(RDBS), then there exists a
behavior3 of RDBS# such that3 ¢ behs(RDBS). As sig(RDBS#) = sig(RDBS), the properties
of the composition entail that| EDB,, ¢ behs(EDB,,) or B|DRP ¢ behs(DRP). A contradiction is
obtained, since for every € behs(RDBS4), BlEDB2 € behs(EDB,,) and3|DRP* € behs(DRP)
must hold by the definition of th& D B and DRP* refinements.

Thus, we only need to prove that the behaviorigihs (RD BS#) satisfy Criteria ClL to 04 to guarantee
thatbehs(RDBS#) C behs(RDBScc).

8.4 Correctness Proof

The correctness proof of theDBS4 is based on a set of theorems (Theorémb 8[1 o 8.4). Theyd@clu
assertions which satisfy every previous considered @itérhese assertions are the logical consequence
of the properties specified for the new hierarchical level.

Theorem 8.1. For every behaviop € behs(RDBS4), it holds that:
mi = Bp(t) = Jk: k> i: w1, € {Ch(t), An(t), crashy }

Proof. By contradiction, ifsite(t) = n, then there exists; = Bge)(t) andVk: k > i:mp ¢
{Clite) (1), Asiter) (1), crashger) }- By Property 8.11.3, there exists = ready,ite(+) (t, data) in 5 with

J > i. By Property 8.B.3, there exists = commit.c(+)(t) in B with » > j. Finally, by Property 811.4,
there existsry, € {Cyiter) (1), Asiteqr) (1), crashgiery } In B with & > r. Then, there is a contradiction
with the initial supposition and the Theorem holdssife(t) # n, by Property 41811 and Propeffy B.1.4,
the Theorem holds trivially. O

Lemma 8.1. For every3 € behs(RDBS#), it holds thatr; € REQ(n,t) A m; € {Cp(t), An(t)} =
Vk:i<k<j:m ¢ {Cn(t):t' €T}

Proof. By contradiction, let us assume that the antecedent holdgtene exists’ € T such thatr, =
Cyn(t") andi < k < j. By Property 4211, there exista: € REQ(n,t') in fwith k' < k andr, = C,,(¥')
is unique ing. If ¥’ < 7, thenk’ < k < ¢ (by Property 88.1), which is a contradiction. On the othemdy
if ¢ < &/, theni < j < k' (by Property 8.8.1), and henge< k¥’ < k, which is also a contradiction. O

Corollary 8.1. For everyj € behs(RDBS?), it holds thatr; € REQ(n,t) A m; € {Cn(t), An(t)} =
Vk:i<k<j:mp, ¢ {Cr(t): ¥ €T} AT, ¢ REQ(n)

Proof. Itis proved trivially from Lemma8]1 and Propelfy B.3.1. O
Lemma 8.2. For everyj3 € behs(RDBS*), it holds that:
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(1) m = By (t) Amj = commit, (t) A mp = Cy(t)

= Vt' € T: —~conflict(t',t,i, B(k)|[EDB) A consistent(t, 8(j)|EDB2)
(2) m = Cy(data.last) A m; = apply,(t, data) A mp = Cp(t) Ni < j

= Vt' € T: —~conflict(t',t,i, B(k)|[EDBZ) A consistent(t, 8(j)|EDB2)

Proof. (1) By contradiction, let us assume that the antecedenus @nd either there exists € T
such thatcon flict(t',t,i, 3(k)|[EDBZ) or =consistent(t, 3(j)|EDB2). By Property(4}, condition
—conflict(t',t,i, B(k)|EDB) holds for everyt’ € T. Thus, there is a contradiction. On the other
hand, by Property 4l4;onsistent(t, 3(k)|EDBZ). By Lemmal8.1l, there does not exist attyc T
such thatry, = C,, (') andj < k' < k. Therefore, by the snapshot definitiii3(k — 1)|EDBZ) =
S(B(j — 1)|EDB2). Thus,consistent(t, 3(j)|EDB:') holds in contradiction to the initial supposition.
(2) By contradiction, assume that the antecedent is trueegthér there exist¢’ € T such that
conflict(t',t,4, B(k)|[EDBA) or ~consistent(t, 3(j)|EDB2). By Lemmd8.1L, there cannot exi$tc T
such thaton flict(t',t, j, B(k)|EDBA). By Property 8.1.2, iton flict(t',t,i, 3(j)|EDB:), then there
cannot existr, = C,(t) with & > j in g, in contradiction with the antecedent. On the other hand,
if 7, = Cn(t), by Property"ZM consistent(t, 3(k)|EDBZ) holds. By Lemmd8l1, there does not
exist anyt’ € T such thatr,, = C,(¢') andj < k' < k. Therefore, by the snapshot definition
S(B(k—1)|EDBZ) = S(B8(j — 1)|EDB2). Thus,consistent(t, 3(j)|EDB) holds in contradiction to
the initial supposition. O

Lemma 8.3. For every3 € behs(RDBS4), it holds that:
(1) mi = Bu(t) Amj = commit,(t) A7 = A,(t) = (3t' € T: conflict(t',t,i, 3(j)|[EDB2) v
—consistent(t, B(7)|EDB)) ANVt € T: —~conflict(t',t, j, B(k)|[EDBZ)
(2) 7 = applyn(t, data) A7, = An(t) = ((m; = Cy(data.last) Ni < j ATt € T: conflict(t',t, 1,
B(H)|EDBA)) v —consistent(t, B(j)|[EDB)) AVt € T: —conflict(t',t,j, B(k)|EDB)

Proof. (1) By Property 8.2.2, for pattern (b) of Propelfyl#l2.1 réhexists a transactioth € T' such that
conflict(t',t,4, B(k)|[EDBA) or ~consistent(t, 3(k)|EDB). By Lemmd8.1, there cannot existc T
such thatcon flict(t',t, 7, B(k)|EDB2). Thus,conflict(t',t,i, 3(5)|EDB2). By Lemma8.l and the
snapshot definition§(8(k — 1)|[EDBA) = S(B(j — 1)|EDBZ). Thus, if~consistent(t, (k)| EDBZ),
then—consistent(t, 3(5)|EDB2).

(2) By Lemma8.1L and the definition @bn flict(), —conflict(t',t, j, B(k)|EDBZ) for all t' € T.
Then, by Property 812.3 for pattern (b) of Prop&riyi4.3.thegithere exists € T such thaton flict(t',t, 1,
B(H)|EDBZ) with 7; = C,(data.last) andi < j, or ~consistent(t, B(k)|EDB2). |f —consistent(t,
B(k)|EDB), by Lemmd8&.ll and the definition of snapst®t3(k —1)|EDB2) = S(B(j —1)|EDB).
Thus, if~consistent(t, 3(k)|EDBA), then—consistent(t, B(j)|EDB).

O

Lemma 8.4. For every3 € behs(RDBS#), it holds that: 7; = REQ(n,t) Am; € REQ(n',t) A
log(B(i)|EDBZ) = log(B(5)|EDBX) Ay = Cu(t) = VE' 1 k' > j: m # Ans (1)

Proof. By contradiction, let us consider that the antecedent hafabsr,, = A,/ (t) with & > jis in
B|EDBZ. By Lemmd8.2, inany case of € REQ(n, ), if m; = C,(t), thenconsistent(t, (i)| EDBZ}).
By the antecedent and the log Definitibnl3&3(i)|EDBL) = S(8(j)|EDBZ). Therefore, since
consistent(t, 8(i)|EDBZ), thenconsistent(t, 3(j)|EDBZ,). Then, by Lemm&8I34,.(¢) can only
be caused by then flict() predicate. Let consider the rest of possible cases:

o Let m; = commit, (t) and hencesite(t) = n'. By Property{ 4PNy = B, (t) andn,. =
readyy, (t, data) with ¥’ < ' < j are in3|EDB?,. By Lemma[8.8.1, since, = A, (t) and
consistent(t, 3(j)|EDBZ,), there existy’ € T such thatcon flict(t',t,b', 3(j)|EDBZ,). Then,
T = Cp () with ' < ¢ < jisin 3|[EDBZ. By Property{81.1 and théust() definition,
7y = Cpn(datalast) with I’ < b is in B|EDBZ (or I’ = 0 if data.last = fo). By Theo-
remd1,m; = apply,(t,data). Sincelog(B(i)|EDBL) = log(B(j)|EDBZ), m = Cy(data.last)

33



(orl = 0) andnw. = C, (') are in3|EDB. By Property(418]1(a), Properfy 8.3.2 and Corol-
lary[81,] < ¢ < i < k holds. Thencon flict(t',t,1, 3(i)|EDB;}) is true. Thus, by Properfy 8.1.2,
7 # Cy(t), a contradiction.

e Letm; = apply, (t,data) and hencesite(t) # n’. By Lemmal8.3.2, sincey,, = A, (t) and
consistent(t, 3(j)|EDBZ), there existg’ € T such thaton flict(t',t,I', 5(j)|EDB2) with m;p =
Cy(data.last) (orl’ = 0if data.last = fo) andl’ < j. Then,me = Cp (t) With I’ < ¢ < jis
in B|EDBZ,. Sincelog(B(i)|EDB;) = log(B(j)|EDBA), m = Cy(data.last) andrw. = C,,(t')
are in3|EDBZ. By Property8.8.2 and Corollaiy 8.1 < ¢ < i < k holds. Once more we have to
consider two cases:

- Letm; = commit,(t) and hencesite(t) = n. By Propertyf 411 (a)f, = B,(t) andrw, =
ready, (t,data) with b < r < jisin f|EDB. By Property81l.1 and thkust() definition,
I <b(orl =0if last(b,n,8) = fo). By thelast() definition, it is not possible thdt< ¢ < band
hencel < b < ¢ < i < k holds. Thus, by Properfy 4-4con flict(t',t,b, 3(k)|EDB/. Then,
by thecon flict() definition, we have a contradiction sineen flict(t',¢,1’, 3(j)|EDB2A).

- Letm; = applyn(t,data) and hencesite(t) # n. Thus, by Property 8l1.27, # C,(¢), a
contradiction.

O

Lemma 8.5. For every3 € behs(RDBS4), it holds that: 7; € REQ(n,t) A7, € REQ(n',t) =
trans(B(1)[{Cn(t): t € T}) = trans(B(J){Cn/ (t): t € T}).

Proof. Lettrans(8|REQ(n)) be the sequence of transaction identifigt$s, ts, ..., t, ... . We proof this
Lemma by induction over the length > 1 of this sequence.

- Basis (m = 1) Letm;, € REQ(n,t1). Then,trans(8(i1)|REQ(n)) = t;. If there does not exist
7, € REQ(n/,t1) in B the antecedent is false and the Lemma holds. Otherwise,dpeRy(8.3.2,
trans(B8(j1)|REQ(n')) = t1. Then, neithet’ € T such thatr, € REQ(n,t’) in 8(i1), nort’ € T
such thatr,, € REQ(n/,t') in 5(j1) exist. By Property 41211(a) or by Propeffy#13.1(a), neithe
7 € {Cpn(t): t € T}in B(i1) normy € {Cy(t): t € T} in (j1) exist. Thus, the Lemma holds for
m = 1sincetrans(B(i1)[{Cn(t): t € T}) = trans(B(j1){Cn/ (t): t € T}) = empty.

- Hypothesis(m > 1) We assume that;,, € REQ(n,t,) A7}, € REQ(n/, ty) = trans(B(im)|
{CL(@):t € T}) = trans(B(jm)|{Cn (t): t € T}) holds. Note that, by Corollafy 4.1 and Defi-
nition[3.2,10g(B(im)| EDBy) = log(B(jm)|EDB;}) holds. ThusS(B(im)| EDB;) = S(B(jm)|
EDBZ) holds by Definitio 3.B.

- Induction Step Let m + 1 be the next step. Let; .., € REQ(n,tpm41). Then,trans(B(im+1)]
REQ(n)) = t1,t2,t3, ..., tm, tm1. Ifthere does notexist; ., € REQ(n’, t,,,+1) the antecedentis
false and the Lemma holds. Otherwise, by Progerty 8:8ds(5' | REQ(n)) <X trans(8'|REQ(n'))
orvice versaforang’ < gandhencerans(8(jm+1)|REQ(n’)) = t1,t2,t3, ..., tm, tm+1. By Prop-
erty[8.3.1, there exists,, € {Cy(tm), An(tm)} andmy, € {Cp (tm), Ans (tm)}. By contradiction,
let g, = Cn(tm) andm,, = A (L) (the other possibility is proof by a symmetric procedure). B
Hypothesis/og(B(im)|EDBZ) = log(8(jm)|EDB2A). Thus, the conditions of Lemnia8.4 lead to
a contradiction.

Thus, the Theorem holds. O

Corollary 8.2. For every3 € behs(RDBS), it holds that:
(1) m; = REQ(n,t) Am; € REQ(n/,t) A, = Cp(t) = Vn':n' e N An#n': VK : mp # Ap(t)
(2) m; = REQ(n,t) Am; € REQ(n/,t) A, = Ay (t) = Vn':n' e NAn#n': VE : mp # Cpi(t)
Proof. (1) It is trivially proven by Lemma8l5 and LemniaB.4. (2) Bynt@diction, 7y, = C(¢).

By Lemmd8.b and Lemmia8.4,. = C,(¢) is in 3. By Property 2211 or Properfiy 4.8.1, a contradiction
appears since both,» = C,,(t) andr;, = A,(t) can not be in3| EDBA. O
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Theorem 8.2. For everyj3 € behs(RDBS#), it holds that:
(1) mp = Cr(t) =Vn':n' e N: VK : mp # Ay (t)
(2) mp = An(t) = Vn': 0/ e N VE : m # Chi(t)

Proof. Forn = n’ the properties are proved trivially by Propeftyldl2.1 andperty[4.8.]. Thus, let
n # n/. (1) By contradictions;, = C,(¢t) andm = A,/ (t). By Property(4.211 and Propefy #.3.1.
7j € REQ(n,t)isin . If m;; € REQ(n/,t)isin 3, then Corollary 8.2 leads to a contradiction. Otherwise,
by Property Z2]h’ = site(t) andt follows sequence (c). This means that= ready,, (t, data) does not
exist. Thenn # site(t) and thust; = apply,(t, data) is in . Therefore, by Theorem 4.1 a contradiction
appears. (2) By contradiction;, = A, (t) andm,, = C,/(t). We can prove it as done before, swapping
by n’ and vice versa. O

Theorem 8.3. For every behavioB € behs(RDBS4), it holds that, for any prefi(j) € 3, log(5(j)|
EDB) < log(B(j)|EDBZ) or vice versa.

Proof. By Property{8.B.2{rans(8(j)|REQ(n)) =< trans(8(j)|REQ(n')) or vice versa. Let us as-
sume thattrans(8(j)|REQ(n)) = trans(S(j)|REQ(n')). Then, there must exist < j such that
trans(B(j)|REQ(n)) = trans(f ()|REQ( ). Letw; € REQ(n,t) andm; € REQ(n',t). More-
over, by Lemma&8I5trans(8(j)|[{Cn(t): t € T}) = trans(B8(1)|{Cn (t): t € T}). By Corollary[41
and Definition[3.2,log(B(j)|EDBZ) = log(B3(i)|EDBZ). Sincei < j, thenlog(B(j)|EDBZ) <
log(B(j)|EDB;Y). O

Theorem 8.4. For every behaviop € behs(RDBS4), it holds that:

Ty = Biiter)(t) AN 15 = Cp(last(i, site(t), ) A m = Cu(t) A site(t) # n = Vt' €
T: —conflict(t',t,j, (k)| EDB).

Proof. By Property 4811, asite(t) # n, . € apply,(t,data) with r < k is in 3|EDBZ. By The-
orem[4.1 and Properfy 8.1data.last = last(i, site(t), ). Thus, by Lemm&8]2.2, we can conlude
V' € T: —conflict(t',t, ], B(k)|[EDBA). O

9 Replication Protocol Implementation

After having presented the replicated systBi BS4 in Sectior 8, this Section presents a new refinement
that models an actual implementation, considering distidin and communication issues. This new sys-
tem, namedrDBS 5, is shown in FigurE16. The database at each system sitd/ is modeled by means
of the moduleF D B2 proposed in the previous Section. In contrast, e BS” extends the replication
protocolD RP4 of the RD BS“ so as to describe the replication protocol from an implemgon-oriented
point of view.

Inthe RDBSB, the replication protocol consists of a set of moduk#3, (where eachz P, is located
atsiten € '), along with a modulel B which is in charge of the communication among th&, modules.
EachRP, interacts with the correspondirigD B/A. Upon receiving aeadysire(r (1, data) input action
from theEDBAt () the RP;;i.(+) Sends a message, data) to all system replicas by means of the3
module, which provides an atomic broadcast communicatiionitive [8]. When receiving such message,
at the delegate site thieP,;,. ) requests the commit of transactibby executing-ommit i+ (t) (which
is an input action of theEDBmS(t ), whereas at each remote sité # site(n) the RP,,, will execute
apply, (t,data). Once theRP, receives &, (t) or A, (t) input action from theZ D B/ in response of
either acommit,, (t) (for n = site(t)) or anapply,(t, data) (for n # site(t)) action, it can process the
next message. Since messages are sent using atomic bro#usaare delivered at all sites in the same
order, and therefore thepply () andcommit() operations are executed in the same order at all sites.
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Figure 16: Composition of the Implementation of the RepideDatabase System.

9.1 Atomic Broadcast

We first introduce the properties of the atomic broadcastroanication primitive by means of thé B
module and described in Figurel17. VariaBlg denotes the set of possible messages thakA]] can
send. The automatoRP, at siten € N makes use of two primitives which conform the main possible
actions of this componentend,,(m) andreceive,(m). The former is used by th®P,, to broadcast a
messagen, whereas the latter allows thieP, to receive in total order a messagethat was previously
broadcast by some replica. The moddl®& also includes an input action to model the failure of site
(crashy,).

e Signature:
in(AB) = {crashy, send,(m) :n € N,m € M}
out(AB) = {receive,(m) :n e N,m € M}

e Asetbehs(AB) of behaviors

Figure 17: Module AB.

In the following, we provide the assumptions verifiedbeyis(AB). First, the definition oflelivered,,
as the sequence of messages delivered atsiteV is presented.

Definition 9.1. Let 8 be a behavior ofAB. For every prefix3(j), 0 < j < |8], the sequence of delivered
messages at each sitec N by theAB module at3(5) is recursively defined as follows:

empty & =0
delivered, (8(j)) = { delivered,(8(j —1))-m <& w; = receive,(m)Aj >0
delivered, (B(j — 1)) < otherwise

The replication protocol requires all messages to be delid/in the same order to all available replicas
in order to have a correct behavior. This feature is providgdhe atomic broadcast communication
primitive of the AB module. However, the conventional uniform total order liczst properties [8] do not
avoid the contamination phenomenbnl|[29], as they do nogmtayaps in the delivery sequence. This is a
serious problem, because a faulty site could reach an irstensstate due to delivery gaps before crashing
and broadcast a message based on its inconsistent staeptiaminating other sites. In order to avoid
contamination, for any two replicas, the set of deliveredsages of one must be prefix of the other or vice
versa. This property, known gsefix orderdelivery [29], is formalized in Properfy 9.1, along with tresst
of properties that model the atomic broadcast communicgtionitive.

Property 9.1. (Atomic Broadcast) For each behavi@re behs(AB):
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(1) (Crash Failures)r; € {receive,(m): m € M} = Vk: k <i: m # crashy

(2) (Message Uniqueness) = send,(m) A mj; = send,/(m) =i = j

(3) (Delivery Integrity)r; = receive,(m) = 3In’ e N': (Fk: k < i: mp = send,(m))

(4) (No Duplication)r; = receive,(m) A m; = receivep(m) =i =j

(5) (Prefix Order)delivered, (8(j)) = delivered, (5(j)) or vice versa, for every prefix(j) <
(6) (Validity) m; = send,(m) = 3k: k > i: w1 = receive,(m) V m, = crash,

(7) (Uniform Agreementy; = receive,(m) = 3k: w1 = receive, (m) V 7y, = crashy,

In the previous property, conditién 1 (Crash Failures)estahat after arash,, event the siten stops

its activity; conditior 2 (Message Uniqueness) indicalies each message is unique and different from the
rest; condition§13 (Delivery Integrity) and 4 (No Duplicat) state that every site delivers each message
at most once and only if it was previously sent by some siteditin[8 (Prefix Order) guarantees that
messages are delivered in the same total order withoug gapsie the case of faulty sites; conditibh 6
(Validity) indicates that if a correct site invokes a broasioevent, then this site will eventually deliver the
message; and conditibh 7 (Uniform Agreement) states thasife (correct or faulty) delivers a message,
then all correct sites will eventually deliver it.

9.2 Replication Protocol: I/0O Automaton RP,,

Figure[18 presents the implementation of the replicatiatqmol R P, at a given replica € N by means
of an I/O automaton. The components used Wy, are its corresponding database systémB;' and
the AB. This is shown in the signature of tieP,, automaton in Figure18, as its inpu(RP,)) and
output put(RP,)) correspond with the actions of tieD B2 and AB modules.

The different state variables used by tR&,, are the following:

e Variable site_status (initially set to alive) monitors the state of site and indicates whether it is
alive or crashed.

e Variableto_send is a subset of messagés$ whereM = T x D (recall that subseb was defined
in Sectiori4.1l), and initiallyo_send = 0. This variable contains messagesdata) that correspond
to all local transactions € T' (with site(t) = n). Every message contained in this variable must be
sent using the atomic broadcast primitive to decide theavuécoft.

e Variablereceived is a FIFO queue (initially empty) containing the previousssages in the or-
der they were delivered by thé B module. This is the order in which thepply,, (¢, data) and
commit,(t) operations are executed.

¢ Variablesent(t) indicates whether a local transactiohas already sent or not its messagelata)
to the rest of replicas (initially false). Thus, tii&>,, can only send the message corresponding to a
transactiort at most once.

e Variablestatus(t) monitors the states that each transactigoes through:L (which denotes that
the state is unknown and is used as a default value that atl@dspetition of actionsyommit (a
local transaction that has requested its commjiply (a remote transaction that is being applied),
committed (the transaction has been committed) abdr-ted (the transaction has been aborted). It
is worth noting the difference between the status commitegmdy for a transactioty they are used
for avoiding multiple invocations of the same actions, iis tasecommit,, (t) andapply.,, (t, data),
respectively.

In order to define fair executions and fair behaviois [1, 8% tasks for each transactibare also given
in Figure[18. This means that if a task is continuously erthbiiea fair execution (some of its respective
actions are enabled, i.e. some of the preconditions arg, tituen it will eventually execute any of its
enabled actions.

The effects of actions presented in Figliré 18 are self-exgptay with the exception of some aspects
that are detailed in the following. Note that(t) has no effects because the replication protocol does

37



AUTOMATON RPy

SIGNATURE:

STATES:

TASKS:

TRANSITIONS!

B ()
eff=

readyy, (¢, data)
effto_send < to_send U {(t, data)}

send, (({t, data))
pre =site_status = alive A
site(t) =n A
—sent(t) A
(t,data) € to_send
eff= to_send + to-send \ {(t, data)}
sent(t) < true

receive, ((t, data))
eff = received <+ received - (t, data)

in(RPn) = {Bn(t), readyn(t, data), Cn(t), An(t), receive,(m), crashy :t € T,m € M,data € D}
out(RPy) = {commity (t), applyn(t,data), send,(m):t € T,m € M,data € D}

site_status € {alive, crashed, initially site_status = alive

to_send a subset of\/, initially to_send = 0

received a FIFO queue of\/, initially received =empty

sent(t) € {true, false} forallt € T, initially sent(t) = false

status(t) € {_L, commit apply, aborted committed: for all ¢t € T, initially status(t) =L

For everyt € T: commity (t), applyn (t, data), {sendy ({t, data)): data € D}

Cn(t)
eff=if (¢, data) = head(received) then
received < tail(received);
status(t) < committed

An(t)
eff=if status(t) € {commit apply} A
(t, data) = head(received) then
received < tail(received);
status(t) < aborted

commity, ()
pre =site_status = alive A
site(t) =n A

status(t) =L A
(t, data) = head(received)

eff = status(t) - commit
crashy,
eff = site_status < crashed applynr (¢, data)
pre =site_status = alive A
site(t) #n A
status(t) =L A
(t, data) = head(received)
eff = status(t) < apply

Figure 18: Replication Protocol at sitec N 1/O automatonkR P,

not actually start dealing with until ready., (¢, data) is executed. Note also that a single message per
transactiort is sent. Hence, it makes sense to remove the messaty¢a) from thereceived queue, in the
effects of actiom4,, (), since it will be in that queue in case it was a local transactindready,, (¢, data)

had been executed before. Moreover, the boolean variablgt) controls that each local transaction is
broadcast at most once, since tRé&,, does not know in advance how many actiengdy,, (¢, data) will

the EDBZ invoke. Recall that the automatddp, is input enabled, hence these input actions can be
invoked at any time and several times. Thus, the automat@sonsible for managing all possible error
situations in action®,,(t), readys, (t, data), Cy, (t) and A, (t). However, we have not included all possible
cases for the sake of simplicity, assumming that the enmient has a correct behavior.

9.3 Composition and Correctness Proof

As outlined in the introduction of this Section, the systdmttmodels an actual implementation of a
replicated database system, calleid BS?, has the following components: a database at each system sit
n € N modeled by theZ DB module presented in Sectibh 8, and a refinement of2f&P* module.
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Such refinement consists of a set of modukds, (with n € N), along with theAB module. Note that
(I,enRP,) x AB represents a composition with the same signature adté&“ module, with the
exception of actionsend,, (m) andreceive, (m) (which are output actions @fl,,c ;s RP,) x AB but do

not appear in the signature BfRP4).

In order for the refinement of thB R P“ to have the same signature as I8 P4, it is only necessary
to hide these two actions as if they were internal actionghigend, we make use of the hiding operation
described in[[31], which merely classifies a certain set tibas as internal actions. Thus, we define a
new module that represents the implementation of the r&jmic protocol, denoted byR P, with TRP =
Hideg((Il,enp RP,) x AB), beinggp = {send,,(m), receive,(m) : m € M}. Once this new module
IRP has been introduced, tieD BS® can be formally defined a8DBS? = (I,,exr EDB2) x IRP =
(I,ex EDB) x Hidey((IenrRP,) x AB).

In order to ensure that theD BS® is correct, we must prove thaths(RDBS?) C behs(RDBS#).
Sincesig(IRP) = sig(DRP) (interpreting thel RP module as an automaton), it suffices to prove that
fairbehs(IRP) C behs(DRP#), i.e. fairbehs(IRP) satisfies Property 4.5 and Propertyl8.3 (where
fairbehs(IRP) stands for the set of fair behaviofs [1] of th& P automaton). Recall that these prop-
erties are the ones that allow tfigR P“, in composition withlT,,c ;- ED B, to form the correct system
RDBSA.

According to the 1/0O Automaton model, an executi@rof an automaton is described as a sequence
soms1 - TSk - -+, Where each; is a state, each; is an action, ands;, 7;, s;+1) denotes a transition. In
our caseg € execs(IRP), and for each statg, s;[n] represents the state of ti&,,. The fair executions
satisfy the progress properties of thR P defined by the tasks of eaé¢hP,, and the progress properties of
the AB module (assuming that théB module is implemented as an I/O automaton).

As the IRP hasll,cx EDBZ as its environment, the proof assumes some of the well-foness
conditions ofTl,,c - £ D B} for the sake of simplicity. For instance, it is considereat theady, (¢, data)
occurs at most once i € execs(IRP). The same assumption is made in the cas€,gf) or A, (t)
(see Properties 4.1, 42.1 and]43.1). In any case]E must not violate the well-formedness of
I, ;- ED B2 when it behaves according to its specification.

The following lemmas help us show thatirbehs(I RP) satisfies Property 4.5 (as proven in Theo-
rem[9.1) and Properfy 8.3 (as shown in Theokerh 9.2).

Lemma 9.1. Leta be an execution afRP. It holds that:
(1) 7 = send,(m) =Vk: k <i:m # crashy,
(2) m = send,((t,data)) N m; = send, ((t,data’)) = i = j An = n' = site(t) A data =
data’ A 3k: k <i: mp = readysiet)(t, data)
Proof. Let us prove each assertion separately:

e By contradictionsr; = send,,(m) andr, = crash, with k < i. Then,si[n].site_status = crashed.
No other action can change that status. $od,, (m) is disabled at every reachable statexdfom
sk and hencer; # send,,(m).

¢ By the preconditions of; and;, site(t) = n andsite(t) = n/. By Assumptiori 4.1, the delegate
site of ¢ is unique. Thenp = n' = site(t). If i # j andi < j, thens;[n].sent(t) = true. No
other action can change that value. Send, ({t,data’)) is disabled at every reachable statenof
Thereforej = j and thendata = data’. That s, itis the onlyend,, ({t, data)) action for transaction
t. Finally, by the preconditions aof;, (¢, data) € s;_1[n].to_send. The only acion that makes this
happen iseady,(t, data). Thus, asy = site(t), Ik: k < i: T, = readysite(s) (t, data) holds.

o

Lemma 9.2. Leta be an execution ofRP. It holds that:
(1) m; = receive,((t,data)) A m; = receive, ((t,data’)) = i = j A data = data’
(2) (t,data) = head(s;[n].received) = 3j: j <i: m; = readysite(s)(t, data)

Proof. Let us prove each assertion separately:
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e By Property Q.1 Bx. = send, ({t,data)) andr,, = send, ((t,data’)). By Lemmd Qs = w1,
anddata = data’. Then, by Property 9l1l.4,; = 7; andi = j.

e The only action that makes at some previous statim « that (¢, data) € s,[n].received is m, =
receive, ({t,data)). By Property 9.LBr,, = send, ({t,data)) with m < r happened im. By its
preconditionsgite(t) = n’ and(t, data) € s,,—1[n'].to_send. The only action makingt, data) €
Sm—1[n'].to_send is my, = ready, (t,data) with k < m andn’ = site(t).

o

Theorem 9.1. Leta be an execution ofRP. It holds that:
(1) m € REQ(n) = Vk: k <i: m # crashy,
(2) m = commit,(t) = 3Jj: j <i: m; = readyn(t,data) AVk: i < k < j: mp # commit,(t)
(3) m = applyn(t,data) = Vk: k < i: 7 # applyn(t, data’) A site(t) #n
(4) ™ = apply,(t,data) = 3k: k < i: 1 = readysier)(t, data) A site(t) #n

Proof. Let us prove each assertion separately:

e By contradictions; € REQ(n) andrny, = crash, with i < k. Then,si[n].site_status = crashed.
No other action can change that status. Anye REQ(n) is disabled at every reachable statexof
from s;, and hencer; ¢ REQ(n).

e By the precondition ofr;, (¢, data) = head(s;—1[n].received) andsite(t) = n. By Lemmd9.R.2,
there existsr; = ready, (t, data) with j < i for somedata € D. Let us assume by contradiction that
7 = commit, (t) With j < k < i. By its effects,si[n].status(t) = commit. Thus,r; is disabled
since there is no action that can séitus(t) to L again. A contradiction.

e By contradiction,r; = apply,(t,data) andr, = apply,(t, data’) with k& < . By the precondi-
tions of 7y, site(t) # n. By the effects ofry, si[n].status(t) = apply and no other action makes
status(t) =1 again. Theng; = apply,(t, data) is disabled at every reachable statexdrom s;
and hencer; # apply,(t, data).

e By the precondition ofr;, (¢, data) = head(s;—1[n].received) andsite(t) # n. By Lemmd9.P.2,
Tk = readysite(r) (t, data) with k < iis in a. As site(t) # n the property holds.

O

Lemma 9.3. Let a be a fair execution of RP. It holds that: (t,data) = head(s;[n].received) A
si[n].site_status = aliveAVj: j <i: m; ¢ REQ(n,t) = Jk: k> i: my € REQ(n,t) V m, = crash,

Proof. By contradiction, neithefr, € REQ(n,t) norm, = crash, with k > i are ina. If site(t) # n
andry, = apply,(t, data) is not inw, then by Property 413 there is no other action frems(EDB,,, t).
If site(t) = n, as(t, data) = head(s;[n].received), by Lemmd9.R.2, there existy = ready, (t, data)
with ¢ < 7 in « and then, by Properfy 4.2, there cannot be other action frar{ ED B,,, t).

Therefore, in any casetatus(t) is never modified and heneg|[n].status(t) =L. Besides, for any
reachable state. with r > i, s,[n].site_status = alive (as there is nerash,, in «); and(t, data) =
head(sy[n].received), as there is na, € {C),(t), A, (t)} that removest, data) from head(received).
Thus, for any state, with r > i all the preconditions of eithebmmit,, (¢) if site(t) = n orapply,(t, data)
if site(t) # n hold. Asc is a fair behavior, eithecommit, (t) if site(t) = n or apply,(t, data) if
site(t) # n must be eventually executed. Thus, we get a contradiction.

O

Before the following Lemma, we introduce some additionabtion. Let us denote the distance of a
given messager € M (m = (¢, data)) to the head of queuesceived at a given replica € N in a given
states; asD(m, head(s;[n].received).

Lemma 9.4. Leta = sgm s1...8,_17;5; be a fair execution of RP. Then, it holds that:

D(m, head(s;[n].received)) > 0 A s;[n].site_status = alive =
Jk: k > i: D(m, head(sg[n].received)) < D(m, head(s;[n].received)) V m = crashy,
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Proof. Let (¢, data) = head(s;[n].received). By contradictionsry, = crash,, with k > i never happens
in & and D (m, head(sg[n].received)) = D(m, head(s;[n].received)) for any reachable statg, > s; at
a. Then, we can consider two cases:

e If there existst; € REQ(n,t) with j < i, then by Property 811.4;, € {C,,(t), A, (t)} with k > j
happens inv.
e If there does not exist; € REQ(n,t) with j < 4, then by Lemm&3]3 there exists € REQ(n,t)
with 7 > i in . By Property 8114, there existg € {C,,(t), An(t)} in awith k& > j > 1.
By the effects ofr;, s;j_1[n].status(t) € {commitapply}. Then, by Property_412 or Propeffy 4.3,
there is no other action unti};,_; that modifiesstatus(t) and hence by the effects of any caserpfec
{Ch(t), An(t)}, (t,data) ¢ sg[n].received. Thus, ifk > i, then we get a contradiction sin¢g data)
is removed fromhead(received) at a states;, with k& > ¢ and henceD(m, head(si[n].received)) <
D(m, head(s;[n].received)). Otherwise, ifk < 4, by Property 9ll14¢, data) ¢ sy [n].received for any
reachable state,, > s,. However,(t, data) = head(s;[n].received), in contradiction. O

Theorem 9.2. Let« be an fair execution of RP and 3 the fair behavior ofv. It holds that:
(1) m € REQn,t')Am; e REQ(n,t)Ni<j=Tk:i<k<j:m e {Cn(t),An(t')}
(2) trans(B(j)|REQ(n)) =< trans(B(j)|REQ(n")) or vice versa for every prefig(j) < g
(3) m; = readyy,(t,data) = Ik: k > i: m, € {commit,(t), crashy,}

Proof. Let us prove each assertion separately:

e By contradiction,m;, ¢ {C,(t'), A.(t')} with ¢ < k < j. By the preconditions ofr; andr;,
head(s;—1[n].received) = (', data’) andhead(s;—1[n].received) = (t,data). By Theorenf 9.2
and[9.1.3, as # j, thent # ¢’. The only action that remove$’, data’) from head(received) is
7 € {Cn(t'), An(t')}. A contradiction.

e Letdelivered be a history variable defined in the statedid?,, at eachh € A wheresg[n].delivered =
empty ands;[n].delivered = s;_1[n].delivered - (t,data) whenm; = received, ({t,data)). Let
trans(B(j)|REQ(n)) = t1...tk...tm, thenitholds that;_; [n].delivered = (t1, datai) ...(tx, datay)
ooi{tm, datan,) since (ty,datay) has been imhead(si[n].received) for somek < j — 1 by the
preconditions of the actions iIREQ(n). In the same way{rans(8(j)|REQ(n’)) implies that
sj—1[n’].delivered = (t, data’)...(t},, datay,)...(t,, , data),). Moreover, by contradictiontyans(5(j)|
REQ(n)) £ trans(B(j)|REQ(n')) implies thats;_1 [n].delivered £ s;_i[n'].delivered. Since
s;j—1[n].delivered satisfies Definitiof 911 for eveny € N, then by Property Ollll.9elivered,, (5(j)|
AB) = delivered, (8(j)|AB) or vice versa. Therefore,_;[n].delivered < s;_1[n'].delivered
or vice versa. A contradiction.

e By contradiction,m,, ¢ {commit,(t),crashy,} with k& > i in a. If there is nocrash, in «,
site_status = alive for any reachable state affrom s;. By Lemmd9.]l.27; = send,, ({t, data’})
with £’ < i cannot happen imv. As send,((t,data)) is the only action that modifiesent(t)
and initially so[n].sent(t) = false, thens;[n].sent(t) = false. By the effects of:;, (¢, data) €
si[n].to-send. By Property 4.2, the only action that can follow thewdy,, (¢, data) is acommit,,(t)
and hence there is no other actiorniitts(ED B,,, t) that changes the initial value efatus(t), that
is, status(t) =L for any reachable state af from s;. Finally, by Property 412site(t) = n. Thus,
all the preconditions ofend,, ((t, data)) are enabled frors; on and therefore; = send,, ((t, data))
with j > ¢ will be executed eventually. By Propeffly 176, = receive,((t, data)) with r > j
happens inv. By the effects ofr,., (t, data) € s,.[n].received. By Lemmd9.H4{t, data) will become
head(sm[n].received) at some state,,, of o« with m > r. Thus, all the preconditions @bmmit,, (t)
are enabled from,,, and thereforer, = commit, (t) with k > m > r > j > i will be executed
eventually. A contradiction.

O

Remark 9.1. Theoreni @J1 and Theordm B.2 guarantee the correction oRthé3 S? and, therefore, the
implementation of the replication protocol by means of theposition of the set a8 £,, modules and the
AB module is correct for the databases considered in this wicgk,databases that run under a variety of
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isolation levels and with integrity constraints. The prepd implementation, which makes use of atomic
broadcast, provides a property related to uniformity. Tkeaito Property 9JL17 (Uniform Agreement), which
has not been used so far, uniformity of committed transasti®an straightforward property, as formalized
in the following Lemma.

Lemma 9.5. Let @ be an execution of théRP. It holds that:m; = C,(t) = Vo' € N : 3k : mp =
Crn/(t) V g = crashy,

10 Conclusions

Deferred-update replication protocols have been reguled in the database replication field, since they
are appropriate for update-everywhere approaches, i.eysitems where every replica may receive and
directly serve different client transactions. These prot® execute the transaction operations in a delegate
site, propagating later its writeset to other replicas taltorder. This ensures a high level of consistency
and an asymmetric workload management that boosts penf@menagince writeset application at remote
sites requires less effort than a local transaction service

Up to our knowledge, there exists no general formalizatibthis kind of replication protocols that
considers transactions running under different isolatéwels, supporting both integrity constraints and
crash failures. We have provided a detailed specificati@replicated database system that fills this void.
To this end, we have used the Input/Output Automaton model.

The specification has been modularly structured; i.e.stirtjuishes different components that need to
interact for managing transactions in any distributed iéecture: the DBMS being used in each replica,
the replication protocol and the communication supporte Tike of the I/O Automaton model allows us
to develop hierarchical proofs. Starting with an abstragel of specification, we can refine and prove
other modules with lower levels of abstraction, which csp@nd to a coarse problem solution and finally
to a specific solution of the problem. The correctness prooffgiven level is based on satisfying the
properties of the previous abstraction level. This simgdithe proofs.

The properties stated at the top-most level of this hieiaatiefinement provide the correctness cri-
teria ensuring that the replicated system will behave asmglesione. So, they can be considered as a
new proposal for one-copy equivalence criteria, specifi¢allored for deferred-update replication proto-
cols. Several relaxations of these criteria and their apwading constraints on the assumptions taken in
the current paper (full replication, crash failures, updeterywhere server architecture, non-constrained
transaction start time, no database partitioning, sudpormnultiple isolation levels) have been analysed.
This analysis shows that those additional restrictionshensiystem assumptions do not compromise the
obtained correctness criteria. So, they would still be iapple to systems with, e.g., partial replication,
passive replication or partitioned databases; thus inipgthe scalability of the resulting deferred-update
protocols.

References

[1] N.A.Lynch and M. R. Tuttle, “An introduction to input/éput automata,CWI-Quarterly vol. 2, no. 3, pp. 219-
246, 1989.

[2] N. A. Lynch and M. R. Tuttle, “Hierarchical correctnesmpfs for distributed algorithms,” ifPODC '87: Pro-
ceedings of the 6th ACM Symposium on Principles of Disteith@omputing(New York, NY, USA), pp. 137—
151, ACM, 1987.

[3] J. Gray, P. Helland, P. O'Neil, and D. Shasha, “The dasgdrreplication and a solution,” iSIGMOD '96:
Proceedings of the 1996 ACM SIGMOD International Confeeean Management of DatgdNew York, NY,
USA), pp. 173-182, ACM, 1996.

[4] M. Wiesmann and A. Schiper, “Comparison of databaseicafibn techniques based on total order broadcast,”
IEEE Trans. on Knowl. and Data Engol. 17, no. 4, pp. 551-566, 2005.

[5] M. Fischer, “The consensus problem in unreliable distied systems (a brief survey),” Proc. 1983 Inter-
national Conference on Foundations of Computations Theloegture Notes in Computer Sciena®l. 158,
pp. 127-140, Springer-Verlag, 1983.

42



[6] T. Harder and A. Reuter, “Principles of transactioneated database recoveryACM Comput. Sury.vol. 15,
no. 4, pp. 287-317, 1983.

[7] F. B. Schneider, “Implementing fault-tolerant sendagsing the state machine approach: A tutoriaCM Com-
put. Sury, vol. 22, no. 4, pp. 299-319, 1990.

[8] G.V.Chockler, I. Keidar, and R. Vitenberg, “Group comnication specifications: a comprehensive studg;M
Comput. Sury.vol. 33, no. 4, pp. 427-469, 2001.

[9] N. A. Lynch, M. Merritt, W. Weihl, and A. Feketédtomic Transactions: In Concurrent and Distributed System
San Francisco, CA, USA: Morgan Kaufmann Publishers In©9319

[10] A. Fekete, N. Lynch, M. Merritt, and W. Weihl, “Commuieéty-based locking for nested transaction3,’ Com-
put. Syst. Scivol. 41, no. 1, pp. 65-156, 1990.

[11] A. Feteke, “Formal models of communication servicexa&e study,JEEE Computervol. 26, no. 8, pp. 37-47,
1993.

[12] D.Kuo, “Model and verification of a data manager basedRiES,” ACM Trans. Database Systol. 21, no. 4,
pp. 427-479, 1996.

[13] A. Adya,Weak Consistency: A Generalized Theory and Optimisticdmphtations for Distributed Transactions
PhD thesis, MIT, 1999.

[14] P. A. Bernstein, V. Hadzilacos, and N. Goodm&muncurrency Control and Recovery in Database Systems
Boston, MA, USA: Addison-Wesley Longman Publishing Coc.|r1987.

[15] C. H. PapadimitriouThe Theory of Database Concurrency Contl@bmputer Science Press, 1986.

[16] J. Gray and A. Reuteffransaction Processing: Concepts and Techniqugan Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1992.

[17] J. Bernabé-Gisbert, J. Armendariz-Ifiigo, R. dendiMarin, and F. Mufioz-Escoi., “Providing read comndtte
isolation level in non-blocking rowa database replicatatocols,” inJCSD '07: Proceedings of XV Jornadas
de Concurrencia y Sistemas Distribuid@907.

[18] S. Elnikety, W. Zwaenepoel, and F. Pedone, “Databaskcetion using generalized snapshot isolation JHEE
Symposium on Reliable Distributed Systefiashington, DC, USA), pp. 73-84, IEEE Computer Socied@32

[19] Y. Lin, B. Kemme, M. Patifio-Martinez, and R. Jimérfearis, “Middleware based data replication providing
shapshot isolation,” irBIGMOD '05: Proceedings of the 2005 ACM SIGMOD InternatioGanference on
Management of DatgNew York, NY, USA), pp. 419-430, ACM, 2005.

[20] F. PedoneThe Database State Machine and Group Communication Is3ue&s¢ N. 2090)PhD thesisFEcole
Polytecnique Fédérale de Lausanne, Lausanne, Switzerl@99.

[21] J. Salas, R. Jiménez-Peris, M. Patifio-Martinerl BnKemme, “Lightweight reflection for middleware-based
database replication,” ilEEE Symposium on Reliable Distributed SystefWéashington, DC, USA), pp. 377—
390, IEEE Computer Society, 2006.

[22] F. D. Mufioz-Escoti, J. Pla-Civera, M. |. Ruiz-Fuerteslrin-Briz, H. Decker, J. E. Armendarifﬂgo, and J. R.
Gonzalez de Mendivil, “Managing transaction conflictsritdleware-based database replication architectures,”
in IEEE Symposium on Reliable Distributed Systefiéashington, DC, USA), pp. 401-420, IEEE Computer
Society, 2006.

[23] N. Carvalho, A. Correia Jr., J. Pereira, L. Rodrigues(Rveira, and S. Guedes, “On the use of a reflective
architecture to augment database management systéoosiial of Universal Computer Scienaml. 13, no. 8,
pp. 1110-1135, 2007.

[24] R. Jiménez-Peris, M. Patifio-Martinez, G. Alonsagd 8. Kemme, “Are quorums an alternative for data replica-
tion?,” ACM Trans. Database Systol. 28, no. 3, pp. 257-294, 2003.

[25] M. Stonebraker, “The case for shared nothingEE Database Eng. Bullvol. 9, no. 1, pp. 4-9, 1986.

[26] M. Patifio-Martinez, R. Jiménez-Peris, B. Kemmej &1 Alonso, “MIDDLE-R: Consistent database replication
at the middleware level ACM Trans. Comput. Systiol. 23, no. 4, pp. 375-423, 2005.

[27] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, B. Zdonik, E. P. C. Jones, S. Madden, M. Stone-
braker, Y. Zhang, J. Hugg, and D. J. Abadi, “H-store: a highfgrmance, distributed main memory transaction
processing systemPVLDB, vol. 1, no. 2, pp. 1496-1499, 2008.

[28] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWstt,Madden, and M. Stonebraker, “A comparison of
approaches to large-scale data analysisSIBMOD Conferencepp. 165-178, 2009.

43



[29] X. Défago, A. Schiper, and P. Urban, “Total order lioast and multicast algorithms: Taxonomy and survey,”
ACM Comput. Suryvol. 36, no. 4, pp. 372—421, 2004.

[30] N.A. Lynch, Distributed SystemdMorgan Kaufmann Publishers, 1996.

[31] N. A. Lynch and M. Tuttle, “Hierarchical correctnesspfs for distributed algorithms,” tech. rep., Cambridge,
MA, USA, 1987.

44



	Introduction
	Content of the Paper
	Paper Roadmap
	Specification Framework
	A Database System Model
	Database Transactions
	Single Database Module
	Legal Database Behaviors
	Generalized Legal Behavior

	An Abstract Replicated Database System
	Extended Database System
	Replication Protocol: Deferred-Update Technique
	Module Composition

	One-Copy Equivalence
	The 1CDB Module
	One-copy Equivalence Definition

	Necessary and Sufficient Conditions for One-Copy Equivalence
	Proof of Necessity
	Proof of Sufficiency


	Discussion
	A First Refinement of the Replicated System
	Extended Database Refinement
	Replication Protocol Refinement
	Composition of the Refinements
	Correctness Proof

	Replication Protocol Implementation
	Atomic Broadcast
	Replication Protocol: I/O Automaton RPn
	Composition and Correctness Proof



	Conclusions

