
A Database Replication Protocol with a Straightforward

Recovery Synchronization.

Specification and Correctness Proof.

M. Liroz-Gistau, J.E. Armend́ariz-Iñigo, J.R. Júarez-Rodŕıguez,
J.R. Gonźalez de Mend́ıvil, F.D. Muñoz-Escóı

Instituto Tecnoĺogico de Inforḿatica - Universidad Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

miguel.liroz@unavarra.es

Technical Report TR-ITI-SIDI-2010/003

M
.L

iro
z-

G
is

ta
u

et
al

.:
A

D
a

ta
b

a
se

R
e

p
lic

a
tio

n
P

ro
to

co
lw

ith
a

S
tr

a
ig

h
tf

o
rw

a
rd

R
e

c
ov

e
ry

S
yn

ch
ro

n
iz

a
tio

n
.

T
R

-I
T

I-
S

ID
I-

20
10

/0
03

A Database Replication Protocol with a
Straightforward Recovery Synchronization. Specification

and Correctness Proof.

M. Liroz-Gistau, J.E. Armend́ariz-Iñigo, J.R. Júarez-Rodŕıguez,
J.R. Gonźalez de Mend́ıvil, F.D. Muñoz-Escóı

Instituto Tecnoĺogico de Inforḿatica - Universidad Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

Technical Report TR-ITI-SIDI-2010/003

e-mail:miguel.liroz@unavarra.es

Abstract

Database replication has been proposed as a solution to achieve both increased performance and high
availability in database systems. To that end, numerous replication protocols have been studied so far.
Nevertheless, only a few have considered scenarios where processes can both crash and recover.

Among the replication protocols, primary copy and certification are the approaches which have re-
ceived more attention in the literature. The suitability of a particular option depends on the application
workload and on which aspect is a priority for the system: scalability and performance or high availability.

Recovery proposals have been associated traditionally with certification based protocols and take
advantage of the properties provided by the group communication system, such as virtual synchrony. The
task is simple: transferring the state missed during the outage of failed replicas. However, performing
such procedure while serving clients is a challenge, which sometimes require special strategies, such as
the use of rounds or compaction, in order to obtain acceptable performances.

In this context, a new replication protocol has been proposed, formalized and proven correct. This
protocol shares characteristics of both certification and primary copy approaches and features a behavior
particularly suitable for recovery procedures.

The replication algorithm is an update-everywhere protocol based on thesending of transactions in an
ordered way, which ensures that multicast transactions are always committed. This feature is exploited by
the recovery mechanism, which does not need to use additional roundsin order to accelerate the recovery
procedure.

1

Contents

1 Introduction 6
1.1 Background. 6
1.2 Contributions . 6
1.3 Outline . 7

2 Database Replication and Recovery 8
2.1 Introduction. 8
2.2 Consistency. 8

2.2.1 Isolation Levels. 8
2.2.2 Replicated Databases. 9
2.2.3 Correctness. 9

2.3 Replication Protocols. 10
2.3.1 Taxonomy . 10
2.3.2 Putting All Together . 10
2.3.3 Primary Copy Protocols. 11
2.3.4 Certification Protocols. 11
2.3.5 Our Replication Proposal. 11

2.4 Recovery Protocols. 12
2.4.1 General Ideas. 12
2.4.2 Online Recovery Protocols. 12
2.4.3 Our Recovery Proposal. 13

3 System Model 14
3.1 Architecture. 14
3.2 Formalization. 14

3.2.1 State Transition Systems. 14
3.2.2 Component Interaction. 15
3.2.3 Assumptions About The Environment. 16

3.3 Group Communication System. 16
3.3.1 Introduction. 16
3.3.2 Signature. 16
3.3.3 Membership Service. 17
3.3.4 Communication Service. 20

3.4 Point-to-Point Communication System. 20
3.5 Extended Database System. 21

4 Algorithm 24
4.1 Algorithm Overview . 24
4.2 State Variables . 24
4.3 Signature . 25

4.3.1 Start Event . 27
4.3.2 Input events. 27
4.3.3 Replication Events. 27
4.3.4 View Management Events. 31
4.3.5 Recovery Events. 32

4.4 Improvements. 35
4.5 Implementation Issues. 35

2

5 Correctness Proof 37
5.1 Preliminary Definitions. 37
5.2 Turn Management. 38

5.2.1 Safety Properties. 38
5.2.2 Liveness Properties. 40

5.3 Replication Algorithm Correctness. 41
5.3.1 Safety Properties. 41
5.3.2 Liveness Properties. 43
5.3.3 Correctness Criteria. 43

5.4 Recovery Algorithm Correctness. 44
5.4.1 Safety Properties. 44
5.4.2 Liveness Properties. 46

6 Performance 49
6.1 Performance of the Replication Protocol. 49

6.1.1 Experimental Environment. 49
6.1.2 Workload . 49
6.1.3 Results . 50

6.2 Performance of the Recovery Protocol. 50

7 Conclusions 54
7.1 Summary . 54
7.2 Future Work. 54

7.2.1 Algorithm Improvements. 54
7.2.2 Evaluation . 54

3

List of Figures

1 System architecture. 14
2 GCS signature. 17
3 Scenario prevented by virtual synchrony. 18
4 Scenario delaying a view change forever. 19
5 Scenario prevented by TO2. 21
6 Example of total order . 21
7 PTP Communication System signature. 21
8 EDBi signature . 22
9 Algorithm signature. 26
10 Start event. 27
11 Input events. 28
12 Replication events. 28
13 Replication algorithm example. 30
14 View management events. 31
15 System states at processi . 32
16 Recovery events. 33
17 Response time vs. TPS for several update rates. 51
18 Maximum throughput vs. update rate. 52
19 Recovery time for processi . 53

4

List of Tables

1 Protocol classification. 10
2 State variables and initial values for processp. 25
3 Fixed parameter for protocols comparison. 49
4 Factors for protocols comparison. 50

5

1 Introduction

1.1 Background

Database replication has become very attractive due to an increasing demand for storage systems which
require both good performance and high availability even inthe presence of faults. Good performance
manifests on the ability of systems to provide short response times to client requests and higher global
throughputs, even if the system is accessed simultaneouslyby a great number of users. On the other hand,
high availability implies that the systems are able to service the requests during a high percentage of time,
even if some components of the system fail.

Nevertheless, replication introduces the problem of keeping all the copies of information consistent, so
that the user has the impression of being served by a normal system. To that end, replication protocols
synchronize the replicas by propagating changes made in onecopy to the other copies. This matter has
received a great attention in the last years and, as a result,a huge variety of replication techniques has been
developed.

Most of the proposals have focused on the performance aspectof replication, sometimes ignoring some
of the challenges that failures can pose to the system. The possibility of a replica failure is generally ad-
dressed by these proposals; nevertheless, the reconnection of such failed replicas has received less attention
in the literature. However, this is an essential task in order to ensure high availability and implies the design
of mechanisms that allow the reconnecting replicas to recover the state missed during their outage. These
techniques have usually been known as recovery mechanisms.

In general terms, a double classification is made on the replication protocols. With regard to where
updates are carried out, we distinguish betweenprimary copyprotocols [46], which perform all the update
transactions in the same replica, called the master; andupdate everywhereprotocols [32, 16], which allow
clients to perform updates on any copy. The former ones’ synchronization is performed in an straightfor-
ward way, propagating master updates to the secondary replicas. The latter ones have to take into account
other issues, such as conflicts between transactions, but are more flexible and (supposedly) obtain better
performance since, in primary copy replication, the masterreplica may be a bottleneck and a single point
of failure.

With regard to when synchronization is done, there are againtwo approaches, namelyeagerand lazy
[20, 33]. The former perform the synchronization within transaction boundaries; the latter propagates
changes after the client receives the transaction commit. Eager protocols achieve consistency requirements
as part of their normal execution but introduce a higher latency, whilst lazy ones may lead to inconsistencies,
which have to be resolved later.

Group communication systems have provided a very useful abstraction to be employed when designing
update-everywhere replication protocols. As a consequence, the latest proposals have been built on top of
these systems. One of the approaches which have proven a highefficiency in dealing with all the require-
ments is certification [53, 39, 16, 41]. However, this approach has been accused of lack of scalability when
compared to other simpler approaches like primary copy protocols, which can obtain better performance at
the cost of consistency and durability.

In this context, a new replication protocol has been proposed, formalized and proven correct. This
protocol shares characteristics of both update-everywhere and primary copy approaches and features a
behavior specially suitable for recovery procedures.

1.2 Contributions

This work presents an eager update-everywhere replicationprotocol along with its associated recovery
mechanism, which we calldeterministic protocol. These are the tasks accomplished in this paper:

• A new replication protocol is presented in a formal way. Thisprotocol exhibits a mechanism which
recalls both certification and primary copy approaches. Itsmain feature is that multicast transactions
are never aborted.

• A recovery mechanism is designed to be included alongside the replication protocol.

6

• A correctness proof is given both for the replication and recovery protocols, based on the properties
provided by the communication and database system and certain assumptions about the stability of
the processes. The correctness criteria proposed in [3] ensure that the protocol satisfies 1CSI [39].

• The replication protocol has been implemented and comparedwith certification and primary copy
implementations. It is shown that its performance lies amidboth approaches.

• The recovery mechanism’s performance is predicted to be better than the typical approaches followed
for certification protocols.

• A set of guidelines are provided to improve the proposed protocol in the future.

1.3 Outline

The rest of the paper is structured as follows. In Section2 the main concepts of database replication
and recovery are provided and the most important related work presented. Section3 formalizes the system
where our algorithm will be deployed, specifying the necessary properties of the modules that it uses. Then,
in Section4, the replication and recovery protocols are specified and explained in detail, and, in Section5,
their correctness proof is provided. Section6 presents a preliminary performance analysis. In the case of
the replication protocol, an experimental comparison withcertification and primary copy implementations
is made. In the case of the recovery algorithm, a theoreticaljustification is provided. Finally, Section7
sums up the content of the document and includes some guidelines for the future development of this work.

7

2 Database Replication and Recovery

This section explains the main concepts of database replication and recovery and presents the correctness
criteria to be followed in this work. The goal is to pinpoint where among all the previous related works
the proposed algorithms fit, in order to identify their contributions and improvements. In Section2.1, the
basic ideas and motivation for database replication are described and the necessity of recovery mechanisms
revealed. Section2.2exposes the main consistency models used in the literature for database replication and
introduces the correctness criteria to be used in the proof of the presented algorithms. Finally, Sections2.3
and 2.4 describe the basic ideas and proposal of both database replication and recovery and situate our
algorithm in relation to other works.

2.1 Introduction

Database replication consists in keeping multiple copies of data items in different physical locations, so
called replicas, by means of a replicated database management system. The motivation is twofold: on
the one hand, since data is stored in more than one physical location, better fault tolerance is achieved,
leading to high available systems; on the other hand, the performance can be improved as more resources
are used to perform the requests, which entails lower response times and higher throughputs. Two research
communities have made great efforts to achieve them, but each focusing on one of the aspects. The database
community has concentrated on improving the performance, whereas the distributed system community’s
main objective has been to provide high availability. This has resulted in a huge number of solutions, each
one fulfilling a particular set of requirements.

The main issue to deal with in database replication is consistency. From the user’s point of view, the
system should behave as if it were a single non-replicated database. This implies that transactions that
modify one replica’s data should be reflected on the others. The mission of a replicated protocol is to keep
replicas consistent by doing so. But things are not so simple. Database consistency is tightly related to the
isolation provided in the system and the former has been modeled in many different ways in the literature.
Such variations affect greatly the way in which the replication protocols are designed.

Although database replication has received much attentionin the research community, recovery mecha-
nisms are indispensable to actually achieve high availability. They include both the reincorporation of failed
replicas and the joining of new replicas to the system.

2.2 Consistency

A database management system must guarantee all the ACID properties [21] for each database transaction,
i.e., atomicity, consistency, isolation and durability. Consistency simply ensures that transactions take the
database from a consistent state to another consistent state. However, when applying transactions concur-
rently it is not a property easy to maintain and isolation between transactions has to be enforced. At this
point is where things complicate, since several distinct isolation levels are defined.

2.2.1 Isolation Levels

Isolation is the property which specifies how and when changes made by operations in the database become
visible to other concurrent operations. In the ideal case, users interact with the database in a serial man-
ner, i.e. only one user at a time can perform a transaction in the database. This ensures that a particular
transaction is not affected by the execution of other transactions; thus, isolation is trivially maintained. Un-
fortunately, this has a great limitation in terms of performance. This situation has led to the appearance of a
great variety of isolation levels, which differ in the levelof concurrency allowed and the possible anomalies
that can arise [6].

Serializability[7] is the strongest consistency criterion and avoids all possible anomalies. An execution
is said to be serializable if it produces the same output and has the same effect on the database as some serial
execution. Hence, it has been the preferred consistency criterion for a long time. However, more and more
commercial database systems (e.g. Oracle, PostgreSQL, andMicrosoft SQL Server) have adoptedSnapshot

8

Isolation (SI) [6] as the preferred isolation level, though it may generate non-serializable executions [6].
Even in some cases serializability is not supported.

Transactions executed under SI appear to operate on a personal copy of the database (snapshot), taken
at their beginning. They read data only from that snapshot and their own writes, so that read operations
are never blocked. When two concurrent transactions modify the same data, only one of them is allowed to
commit, whereas the other has to abort. Depending on the rule, the criterion to decide which one survives
differs: with thefirst-committer-winsrule, the first one to request the commit is the one which survives; with
thefirst-updater-winsrule, it is the first one writing a common item. Actually, the second criterion is the
one used in all the commercial systems, since it can be enforced easily by using locks for write operations.
In any case, compared to serializability, SI does not avoid thewrite skewanomaly [6] but, on the other hand,
read operations are never blocked and read-only transactions are never aborted.

There are some works which have related SI with serializable. For instance, [18] provides a set of tools
to transform a database application so that, when running ontop of a database system providing SI, only
serializable executions are produced. In relation with that, [8] shows how SI concurrency control can be
extended within the database kernel to enforce serializability in an efficient way.

2.2.2 Replicated Databases

In the design of a replicated database system, the aim is to hide all aspects of data replication from the
user. Hence, the replicated database should behave as if it were a single database system managing all user
transactions. In this way, when considering serializability, an extended criterion has been proposed, called
one-copy serializable(1CS) [7]. It ensures that the interleaved execution of all transactions in the replicated
system is equivalent to a serial execution of those transactions on a single database.

With the popularity of SI, an analogous extension was also considered,one-copy SI(1CSI) [39]. The
problem is that, in a replicated database, it is difficult to obtain the last snapshot of the system, provided that
transactions are applied asynchronously at the different replicas. [16] showed that this can not be achieved
without blocking transactions at their beginning. Hence, weaker models have been considered. In [16], a
generalization of SI is presented, calledGeneralized Snapshot Isolation(GSI). In this model, a transaction
is allowed to read from older snapshots, which is equivalentto artificially setting the start point of the
transaction in the past. A similar concept was also defined in[13] as weak SI. Although from the client
point of view, these approaches offer a different vision of the database than 1CSI, if we consider only the
history of transactions, the behaviors are equivalent.

2.2.3 Correctness

As it has been said before, replication protocols are responsible of maintaining the consistency among the
different replicas of the system. They are usually specifiedand their correctness proofs given in an informal
way [39, 41, 13, 46, 34, 36, 45, 25]. In order to overcome these situations, some correctness criteria have
been defined so that if a protocol satisfies them, a 1CSI behavior is ensured. These criteria are usually
formulated in terms of sufficient and necessary conditions.

In this work we are going to adopt the criteria proposed in [3] since our model is similar to the one used
in that work. For a replication protocol to be 1CSI it has to satisfy:

• Well-Formedness Conditions: the local behavior of each database replica must be respected in the
system.

• Prefix Order Database Consistency: The same snapshots must be generated in the system and, hence,
transactions must be committed in the same order in all replicas.

• Uniform Termination: the decision about a transaction is the same at all replicas.

• Local Transaction Progress: Local progress of transactions must be preserved at correct replicas.

Other works modeling correctness criteria include [16], which definePrefix-Consistent-SIand [38],
which is based on theGeneral Isolation Definition[1] to reason about the criteria.

9

Primary Copy Update-everywhere

Eager I II

Lazy III IV

Table 1: Protocol classification

2.3 Replication Protocols

2.3.1 Taxonomy

A typical classification of database replication protocolsis made in relation to the execution of update
transactions [20]. If we take into account where update transactions are executed, two approaches can be
differentiated: primary copy and update everywhere. If, onthe contrary, we look at when modifications are
propagated to the rest of the replicas, we have again two possibilities: eager and lazy protocols.
Primary Copy vs. Update Everywhere

In the case ofprimary copyreplication, all update transactions are executed in the same server, which is
called the master. Modifications are propagated to the rest of the replicas, which are called secondaries. The
secondaries act as back-ups and may execute read-only transactions [13, 46]. Conflicts between transactions
are handled by the DBMS itself, and the protocol has only to worry about how to maintain the secondaries
up-to-date. However, the master represents a single point of failure and mechanisms have to be designed
to deal with this situation, e.g., promoting a secondary to master. Moreover, performance problems might
arise if the workload is update-intensive, since all updatetransactions are performed in the same replica,
and it could become a bottleneck.

Update everywhereprotocols are more flexible, since update transactions can be performed in any
replica. Moreover, the failure of any replica is overcome easily: since the replicas are indistinguishable,
clients can be forwarded to another available replica. Nevertheless, data consistency has to be handled
globally and protocols are more complex. In this case, performance might be improved even in the case of
update-intensive workloads, although writesets still have to be applied in all the replicas.
Eager vs. Lazy

Eagerprotocols propagate changes within the boundaries of the transaction, i.e. before the commit is
reported to the client. In such situation, when the client receives a successful commit reply, it knowns that
the changes in the database are going to be reflected in the future.

On the contrary,lazyprotocols allow the changes to be propagated after the commit reply is sent to the
client. If there is a conflict and it is detected after the response, one of the transactions involved may be
aborted and the client may not be aware of that situation. Obviously, lazy protocols achieve better perfor-
mance, since the commit response does not need to wait for itsconfirmation in other replicas. However,
since replicas may diverge in their states, a reconciliation process has to take place, and this is a difficult
problem to deal with.

It is worth to be noted that the distinction between eager andlazy protocols is not equivalent to the
one made between synchronous and asynchronous protocols. Synchronous protocols do not sent back the
commit response until the commit is performed on every replica. On the other hand, eager protocols can
sent back this reply as soon as they know that the commit will be performed on every non-failing replica,
which takes less time. Every synchronous protocol is eager,but the opposite is not necessarily true. The
same differentiation can be made between asynchronous and lazy protocols.

2.3.2 Putting All Together

By combining the two mentioned classifications, four different protocols can be differentiated, as shown in
Table1. The ideal system would be one of type II since it provides maximum flexibility and correctness
guarantees, but systems of that kind are usually consideredto obtain poorer results regarding performance
and scalability. In fact, commercial solutions usually focus on primary copy or lazy update-everywhere
protocols [42, 23, 26, 12].

10

Taking into account only the four subsets depicted in Table1 is, however, a narrow-minded approach.
We think that the limits between these types of protocols arefuzzy by nature and better results can be
obtained having this idea in mind when designing new ones. Infact, the workload will determine which
protocol type is the best for each situation. Hence, it wouldbe interesting to develop protocols which adapt
themselves in order to achieve better performance.

2.3.3 Primary Copy Protocols

The primary copy approach is the easiest protocol to implement and to tune. For this reason, a primary
copy replication protocol has been developed for practically every commercial solution, e.g. Slony-I [23]
(PostgreSQL), MySQL Replication [42] or SyBase Replication Server [26], even though there is a great
variability among implementations. The research community has not paid so much attention to primary
copy, except for new non-standard contributions to the protocol [46, 13, 16].

All solutions share one feature: there is an special replica, called the master, which is in charge of
executing all the update transactions. The rest of the replicas are used as back-ups, and usually can perform
read-only transactions. Both eager and lazy approaches areused, even though there exist some systems that
implement intermediate solutions [46]. As far as transparency is concerned, distinctions can also be made.
In general, clients have to be aware of which replica is the master and which are the secondaries, in order to
direct transactions correctly. Nevertheless, some solutions solve this problem by means of a scheduler [46],
which decides which replica has to execute each transaction.

2.3.4 Certification Protocols

Among the eager update-everywhere protocols [7, 9, 16, 39, 41, 34, 53, 36, 45, 25], those based on group
communication systems [11] have been the most widely used. They typically rely on a broadcast primitive
calledatomicor total order broadcast [15], which ensures that messages are delivered reliably and inthe
same order in all replicas. Protocols using this primitive have been proved to obtain better performance
results [52] than those based on distributed locking and, moreover, areeasy to develop.

Certification protocols, which only exchange one message per transaction, [53, 39, 16, 41] are the ones
which obtain better results [52]. They decide whether a transaction can commit or must be aborted by
means of a deterministic certification test performed on each replica. Transactions are executed under ade-
ferred update technique: each transaction is executed locally at the delegate replica and when its commit is
requested, itswriteset(the set of modified items and their new values) is total-order broadcast to all replicas
(including the delegate). When delivered, it is compared with the previously committed transactions, which
are stored on a log. To be accepted for commit, it has to satisfy a set of rules (certification test). Then, the
writeset has to be applied and committed at the remote replicas, while at the delegate replica it is straightly
committed. If the certification test is not passed, the transaction must be aborted on the delegate replica,
and discarded on the rest.

The certification test for a given transactiont under GSI or 1CSI checks whether in the interval between
its snapshot time and its certification, a transaction writing an object thatt also writes has committed. If
such transaction exists,t has to be aborted; otherwise,t is allowed to commit. In order to implement this
procedure, a log of committed transactions has to be maintained. That is one of the weak points of the
certification protocols, since its size could increase indefinitely. If a transaction with a very old snapshot is
delivered, the log has to contain all the committed transactions since when the snapshot was taken in order
to perform the certification test correctly and that could represent a great amount of information.

Finally, another drawback of certification protocols is theuse of the total order broadcast, which is
expensive in terms of latency and can pose some limitations in the scalability of the system [46].

2.3.5 Our Replication Proposal

The deterministic protocol [31, 30, 40] lies amid certification and primary copy protocols. It is anupdate-
everywhere replication protocol where transactions are certified1 in turns depending on their delegate. This

1Note that this certification is not exactly the same as the one in the certification protocols. In the algorithm descriptionit will be
explained in more detail.

11

establishes a total order of transactions, but may be seen, as well, as a rotating primary copy protocol,
since at each time, only the transactions of the replica whose turn is active can be marked for commitment.
Further details can be found in Section4.

In comparison with primary copy protocols, it solves the problems related with site failures and does
not have a bottleneck for update transactions. In comparison with certification, it does not need to use total
order (although if recovery is implemented uniformity [11] is required), and does not need to store such
a large log. Moreover, it can be easily extended to hybrid configurations with both several primaries and
secondaries.

The main handicap of this proposal is that, since replicas have to wait for their turns, the slowest replica
(in terms of communications) can pose a delay in the turn circulation, which may cause more aborts.

2.4 Recovery Protocols

2.4.1 General Ideas

As it has been said before, recovery is an indispensable taskto provide high availability in a database
system. Few attention has been paid to that problem in comparison to database replication, but still several
ideas have been proposed [35, 24, 29, 4, 47, 37, 51].

In a replicated system, the recovery process is divided intotwo steps. Upon restart of a failed replica,
the database has to be taken to a consistent state. This process is know aslocal recoveryand is carried out
by redoing some transactions committed before the crash andundoing the transactions that were aborted
or active at the time of the failure [7, 21]. This procedure is the same as the one used when dealing with
single databases; hence, no attention will be paid to it. After local recovery, a new process, calledglobalor
distributed recovery, is performed. Its goal is to provide the joining node (either a failed or a new one) the
current state of the database. This is the stage that is studied in this work.

First replication proposals treated tangentially the recovery mechanisms. Some of them proposedoffline
procedures [2], i.e., when the recovering of a replica is taking place no transactions can be processed in
the system. These kind of systems also fail to provide high availability; thus, better mechanisms have to
be used.Online recovery overcomes these limitations by performing the recovery of replicas while the
system is executing client operations. However, the solutions are more complicated, mainly because a
synchronization has to be made so that the recovering replicas can incorporate to the normal processing of
transactions with the replication protocol.

In any case, the recovering replica has to receive the necessary information to reach the state of the other
nodes. To achieve that, two approaches can be taken: the transfer of the whole database state, known as
total recovery, or the transfer only of the changes that the recovering replica has missed during its outage,
which is calledpartial recovery. In general, if the database is small or the joining replica has been down for
a long time, the total recovery mechanism outperforms the partial one. Conversely, if the database size is
large or the recovering replica has been down for a short period of time, the partial mechanism is preferred.
Finally, when a new replica joins the system, only the total recovery approach can be used.

2.4.2 Online Recovery Protocols

One of the firsts works dealing with online database recoverywas [35]. It proposed several recovery tech-
niques, which have been explored and refined afterwards. Thesolutions are aimed for replication protocols
based on group communication systems [11] and use the virtual synchrony property: when a node rejoins
the system, a view change is triggered where the new replica belongs to the group. It considers both total
and partial recovery solutions and reasons about the suitability of each option. Moreover, it refines the
partial recovery solution and proposes to transfer only thelatest data item version, for which a special log
has to be maintained. When analyzed, a problem is noticed: if the recovery takes a long time, the joining
replica may not be able to store all transactions delivered during data transfer or to apply them fast enough
to catch up with the rest of the system. To overcome this problem, the utilization of rounds is proposed.
The transfer is split into several stages, each responsibleof transferring the transactions delivered during
the previous phase.

In parallel, [24] proposed a recovery algorithm for different versions of one-copy serializable replication
protocols. In this case, the messages and view changes delivered at correct replicas are stored in a log. As

12

it would be pointed out afterwards, this solution suffers from the amnesia problem [14]: a replica may have
delivered a transaction but crashed just before its changeswere applied; hence, it is not easy to determine
from which transaction a replica must recover only taking into account the set of delivered messages.

Based on [35], other works proposed recovery algorithms for different kinds of replication protocols.
In [29], a solution is proposed for a replication protocol based onconflict classes that ensures 1CS [45].
A correctness proof is provided, although it is not studied in great detail. In the same way, [4] proposed a
general solution for 1CSI and provided an outline of a correctness proof.

In [35], it was already pointed out that the usage of enriched view synchrony [5] could overcome the
problems associated with cascading reconfigurations, i.e.continued failures of the recoverer process. In
this way, a primary subview was defined, which includes all the sites which can process transactions. Only
processes belonging to this subview can act as recoverers. In [29], enriched view synchrony is also used;
however, up to our knowledge, their model does not correspond nor have a direct translation to the work
where enriched view synchrony was proposed [5]. Instead of using structural information of the view, the
joining nodes are provided with the state of processes variables before the view change, which simplifies
greatly the recovery process.

All the works considered so far do not include any performance analysis of the recovery proposals. In
[47], a first evaluation of some of the previously mentioned techniques is provided. In particular, different
improvements to the main ideas are evaluated. It is shown that using two rounds in the transfer procedure
the recovery time is reduced. Moreover, a case is presented where, if rounds are not used, the recovery
procedure never ends. The other proposed improvements compact the information to be sent, so that only
the last version of each item is sent. It is shown that this enhancement also diminishes recovery time.

In [37], a hybrid recovery protocol is presented and evaluated. Itworks on top of Postgres-R [53], a
replication protocol providing SI. The recovery protocol selects whether to use total or partial replication
by an estimation of the cost that would take each approach. Inthe evaluation, they determine when to use
each strategy.

Finally, [51] performs an extensive evaluation of the previously explained techniques but with large
databases (on the order of 2GB) and standard benchmarks (TPC-W and TPC-C [50]). In the survey, the
number of transfer rounds, the participation of more than one recoverer per recovery process and the control
and reduction of the system throughput are studied. It is concluded that none of these parameters except in
one case affect the recovery time. This case corresponds to the use of one transfer round vs. two or more
rounds. With two rounds, the recovery time is reduced; however, the inclusion of more rounds has not a
great impact on the recovery procedure.

2.4.3 Our Recovery Proposal

The deterministic protocol that we propose has a particularfeature which makes it specially suitable for
recovery: transactions which have been multicast are neveraborted. Hence, transactions received during
the transfer and application of the missed updates only haveto be directly applied. This avoids the necessity
of additional rounds of messages. Moreover, missed transactions are stored previously to their commit in
the same way as normal replication transactions. Thus, onceall the missed transactions have been received,
they can be combined in a single queue and the replication protocol can take full responsibility of the
execution, which simplifies the synchronization process.

13

EDB1

R&R1 R&Rn

EDBn

GCSPTPS

Communication modules

Figure 1: System architecture

3 System Model

This section formalizes the environment where the proposedalgorithms have been developed. Firstly, in
Section3.1, an outline of the system architecture is provided. Then, the formal framework used to specify
the algorithms is described. Finally, Sections3.3, 3.4 and3.5 include the formal properties of the group
communication, point-to-point communication and extended database systems, respectively.

3.1 Architecture

The system consists of a fully replicated database system supporting the crash-recovery model. Its architec-
ture is depicted in Figure1. It consists of a set of replicas, each one holding a local database system (EDBi)
and a replication and recovery process (R&R), which communicate via message exchange.

Let Π = {p1, ..., pn} be the set ofn processes. We assume that there is an initial subset of processes
which are initially running, sayΠinit ⊆ Π. Processes not included in this set may join the system during
normal operation. Moreover, processes may unexpectedly crash and may also recover and rejoin the system.

Processes communicate with each other by means of message exchange through asynchronous quasi-
reliable channels. This exchange can take place in two ways:by means of a view-oriented group communi-
cation system (GCS) [11] or via point-to-point channels. The former provides both multicast delivery and
membership primitives, while the latter provides unicast delivery primitives.

The database at each replica is handled by an extended database system (EDB), which provides transac-
tional behavior implementing Snapshot Isolation [6]. It also provides special operations particularly useful
for database replication.

3.2 Formalization

The formal definition of our algorithm follows the specifications presented in [49], where a distributed
system is modeled using astate transition system. Broadly speaking, this formalization is based on a set
of actions that are enabled if the state variables satisfy certain conditions. Each action modifies the state of
variables so that other actions may be enabled or disabled. Furthermore, we define a composition approach
in order to integrate the state transition system with the rest of the system components, namely the GCS,
the PTPS and the EDBs.

3.2.1 State Transition Systems

Definition 3.1 (State Transition System). A state transition systemA is defined by:

• V ariables(A), a set of state variables and their domains.

• Initial(A), an initial condition onV ariables(A).

14

• Events(A), a set of events.

• For each evente ∈ Events(A):

– preA(e), precondition ofe in A. It is a predicate inV ariables(S) that enables the execution of
e.

– effA(e), the effects of evente in A. It is a sequential program that atomically modifies
V ariables(A). We assume thateffA(e) always terminates.

• A finite set of fairness requirements.

Each possible value assignment toV ariables(A) defines a particular state of the transition systemA.
Initial(A) specifies a subset of system states, referred to as the initial states. We assume that the set of
initial states is non-empty. For each evente, its associated preconditionpreA(e) and effectseffA(e) define
a set of state transitions, more formally:{(s, e, t): s, t are system states;s satisfiespreA(e); t is the result
of executingeffA(e) in s}.

An execution is a sequence of the formα = s0, e1, s1, e2, ...ez, sz... where thesz ’s are system states,
theez ’s are events,s0 is an initial state, and every(sz−1, ez, sz) is a transition ofez. An execution can be
finite or infinite. By definition, a finite execution ends in a state. The final state of a finite execution is a
reachable state. LetExecutions(A) denote the set of executions for systemA. Executions(A) is enough
for stating safety properties but not for its liveness properties, because it includes executions where fairness
requirements are not satisfied.

We next define the executions of the system that satisfy liveness requirements. LetE be a subset of
Events(A). The precondition ofE, denotedpre(E), is defined by:∃ e ∈ E : pre(e). Thus,E is enabled
in a statesz if and only if some action ofE is enabled insz, andE is disabled if and only if no action of
E is enabled insz. Let α = s0, e1, s1, e2, ...ez, sz... be an infinite execution. We say thatE is enabled
(disabled) infinitely often inα if E is enabled (disabled) at an infinite number ofsz ’s belonging toα. We
say thatE occurs infinitely often inα if an infinite number ofez ’s belong toE.

Definition 3.2 (Weak Fairness). An executionα satisfies weak fairness forE if and only if one of the
following occurs:

• α is finite andE is disabled in the last state ofα.

• α is infinite and eitherE occurs infinitely often or is disabled infinitely often inα.

Definition 3.3 (Strong Fairness). An executionα satisfies strong fairness forE if and only if one of the
following occurs:

• α is finite andE is disabled in the last state ofα.

• α is infinite and ifE is enabled infinitely often inα, then it occurs infinitely often inα.

An executionα is fair if and only if it satisfies every fairness requirementof the system. The set of
all possible fair executions of systemA is sufficient for defining its liveness and safety properties. In our
model, we assume that all events are weak-fair, except for the ones for which it is explicitly stated.

We allow actions to have parameters. This is a convenient wayof defining a collection of actions. For
example, consider an actione(i) with preconditionpre(e(i)) ≡ x = 0 and effectseff(e(i)) ≡ x ← i,
wherex is an integer and the parameteri ranges over{1, 2, ..., 50}. Evente(i) actually specifies a collection
of 50 different events,e(1), e(2), ...,e(50).

Finally, Since we are describing a distributed system, we use a subscript for each state variable and
event to denote where the state variable belongs to and in which site the event is executed, respectively.

3.2.2 Component Interaction

In order to model the specification of a system componentA, we give its external interface and a collection
of trace properties. The external interface ofA is Events(A), that defines the possible events the com-
ponent may engage. A trace is a finite or infinite sequence of events belonging toEvents(A). The set

15

of traces ofA is denoted asTraces(A). A finite trace is denotedβ = e1, e2, ...ej , and an infinite trace
β = e1, e2, ...ej ...; whereasβ[j] stands for a prefix of lengthj (0 ≤ j ≤| β |) of a traceβ. Properties over
traces are modeled as assumptions. The component satisfies its properties if each possible trace verifies the
set of defined assumptions.

A state transition systemA is able to interact with other componentA′ via executing an evente′ ∈
Events(A′) of the component as part of effects ofeffA(e) beinge ∈ Events(A). We do not requiree′

to be non-blocking but we do require that its execution terminates. Thus, the evente′ is simply a call from
A’s point of view. In the same way, the componentA′ is able to interact with a state transition systemA
via executing an evente′ ∈ Events(A′) which is also an event ofA, e′ ∈ Events(A). In this case, it is
required thatpreA(e′) ≡ true. Therefore, the evente′ of A can be considered an upcall fromA′’s point of
view.

3.2.3 Assumptions About The Environment

We model the crash and startup of a replica through eventscrashi andrestarti respectively. We make the
following assumptions:

Assumption 1(Execution Integrity).

• Eventrestarti is the first event in the execution ofi.

• If eventcrashi happens, the next event that occurs at processi, if any, isrestarti. Therefore, no
events occur at a processi between its crash and restart.

3.3 Group Communication System

3.3.1 Introduction

A GCS is a software platform which provides both membership and communication services [11]. The
former maintains a list of currently active processes in a group by means of the notion of views, while the
latter deliver messages to the current view members in accordance with some predefined primitives.

In this work, we are mainly interested in the virtual synchrony properties of the membership service
[19] and in the reliable total order multicast [15] provided by the communication service. This provides a
mechanism to reach consensus in the decision about the outcome of the transaction submitted by the clients.
We only consider a primary partition group, to which all replication and recovery processes, i.e.,Π, belong.
In the next subsections, the particular properties required to this system are formalized.

3.3.2 Signature

The signature of the GCS is depicted in Figure2. Each action occurs at a unique processp, which is
specified in the subscripts. The specification uses the following types:

• Π: The set of processes.

• M: The set of messages sent by the application.

• V: The set of views delivered invchg actions isN× 2Π. Thus, a viewV ∈ V is a pair. The elements
in the view can be accessed byV.id andV.members.

The events are briefly described in the following. Firstly, events provided by the communication service
are detailed. In the presented algorithm, only one multicast primitives is used, total order reliable uniform
multicast:

• TOMulticasti(m): Processi sends messagem to all the members of the group (includingi) with
total ordering and uniformity guarantees.

• TODeliveri(m): Processi delivers messagem sent previously using aTOMulticastj(m) event at
some processj, possiblyi = j.

16

(input)TOMulticasti(m), i ∈ Π, m ∈ M
(output)TODeliveri(m), i ∈ Π, m ∈ M

(input) joini, i ∈ Π
(output)blki, i ∈ Π
(input)flushi, i ∈ Π
(output)vchgi(V, joined, left, activeNodes),

i ∈ Π, V ∈ V, left ⊂ Π, joined, activeNodes ⊆ V.members

(input) joinActiveNodesi, i ∈ Π
(output)vchgActiveNodesi(V, activeNodes),

i ∈ Π, V ∈ V, activeNodes ⊆ V.members

(input)crashi, i ∈ Π

Figure 2: GCS signature

The next set of explained events is related to the regular view change events provided by a GCS imple-
menting strong virtual synchrony:

• joini: Processi joins the group. This eventually will install a view wherei will be included among
its members.

• blki: Processi receives a block notification indicating that it should stopsending messages so as a
view change event can take place. As it will be explained later it is necessary that processes stop
sending messages to provide some particular properties andstill ensure progress in the view installa-
tion.

• flushi: Processi notifies the GCS that no more messages will be sent until the installation of the
next view.

• vchgi(V, joined, left, activeNodes): Processi installs a new viewV which addsjoined processes
and removesleft processes from the previous view members. In addition, it marks processes be-
longing toactiveNodes as actives. Views installed by the GCS represent the state ofprocesses of
the group: members of the installed view are correct and reachable processes.

In addition, events related to the enriched view synchrony model are also included in the GCS:

• joinActiveNodesi: Processi joins theactiveNodes group.

• vchgActiveNodesi(V, activeNodes): Processi is notified about a change inV.members, which
now marks processes inactiveNodes as active.

Finally, the GCS has an input event to be informed about the failure of processes:

• crashi: Processi crashes. This eventually will install a view wherei will not be included among its
members.

Here, informal descriptions of the events have been included. In the next sections, these events are
detailed and the formal properties associated with them arespecified.

3.3.3 Membership Service

The membership service of the GCS maintains the set of currently available processes. This list may change
whenever a node joins the group or a current member leaves. The set of currently available processes is
modeled by the notion of view, formally:

Definition 3.4 (View). A view is a tupleV = 〈id,members〉, whereid ∈ N andmembers ⊆ Π. We
say thatid is the view identifier ofV andmembers is its membership (set of processes that belong to that
view). Letp ∈ Π be a process andV ∈ V a view; the following terminology is also used:

17

vip

q

r

m

m

mvi

vj

vj

vj

Figure 3: Scenario prevented by virtual synchrony

• p is in viewV = 〈id,members〉 if p ∈ V.members.

• The event by whichp changes its view is called view installation.

• The view ofp is V afterp has installed viewV and beforep installs another view.

• Evente ∈ sig(GCS) occurs onp in view V if evente occurs while the view ofp is V .

• View V is the last view ofp if p does not install any view afterV .

A membership service may be either primary component or partitionable. In aprimary component
membership service, views installed by all the processes inthe system are totally ordered. This requires
that for every pair of consecutive views, there is a process that survives from the first to the second. On the
contrary, in apartitionableone, views are only partially ordered and, therefore, disjoint views may coexist.
Primary component services are the preferred service when maintaining a globally consistent shared state
is a must; hence, we require that property:

Property 3.1 (Primary Component). The GCS provides a primary component membership service.

To provide some delivering guarantees with respect to view installations, the GCS offers an important
property known asvirtual synchrony. This requires two processes that participate in two consecutive views
to deliver the same set of messages in the first view; Hence, situations like the one depicted in Figure3
are not allowed. With this property, view changes are synchronization points, in the sense that multicast
messages are ordered with respect to view changes.

Nevertheless, there is still a stronger property which greatly simplifies the information that must be
carried out within the messages and that we demand to our GCS model:

Property 3.2. (SVD) Sending View Delivery: If some processp ∈ Π delivers messagem ∈ M in view
V ∈ V and some processq ∈ Π (possiblyp = q) sendsm in viewV ′ ∈ V, thenV = V ′.

If this property is satisfied, then the programming model is denoted asStrong Virtual Synchronyand
requires additional primitives not to discard messages from live processes [19]. In particular, the GCS has
to stop sending messages while a view change is taking place.Otherwise, a situation like the one depicted
in Figure4 could happen and the view change would be delayed forever because there are always messages
in transit. In this way, the GCS provides two special primitives: an output one,block, which request the
processes to stop sending messages and an input event,flush, which is called by the processes when all
messages in the old view have been already sent.

In order to simplify the recovery procedure, we consider an extension of virtual synchrony calleden-
riched virtual synchrony[5]. This model provides an extension of the notion of view, called enriched view
(e-view), which allows a further subdivision among the members of a view insubviewsand the grouping of
several subviews insv-sets. That does not mean that partitions are established in the system, but that pro-
cesses are tagged for specific groups. Since we do not need such complexity, our model of GCS is slightly
simplified. We only consider a special subview, denoted asactiveNodes, which includes all nodes in the
active state2. Specific events for our system have been used, although there is a map with the primitives
proposed in [5]:

2See Section4 for further details on the processes’ states.

18

vip

q

r

m1

m1

m1

m2

m2

m3

m3

m3

m4

vi

vi

m2 m4

Figure 4: Scenario delaying a view change forever

• joinActiveNodesi: It maps to the primitiveSubviewMerge(sv-list) but simply merge processi
with activeNodes subview.

• vchgActiveNodesi(V, activeNodes): We separate the installation of e-views:vchgi only models
view changes whereV.members is modified (regular view changes), whereas this new method mod-
els the installation of e-views where only the subviews composition has changed; in particular, the
composition ofactiveNodes.

Then, in the view change, apart from the information about the view members, further information. is
provided:

• left: The list of processes which belonged to the previous view but are not present in the new view.

• joined: The list of processes which did not belong to the previous view but have been incorporated
in the new one.

• activeNodes: The list of active nodes (those that are up-to-date and function in the regular way).

The behavior of the GCS with respect to theactiveNodes subview is detailed through the following
property:

Property 3.3 (activeNodes Subview). LetV1, V2 ∈ V be two consecutive views, and letvchgi(V2, joined,
left, activeNodes2) be the view change event which installsV2. LetactiveNodes1 be the composition of
the corresponding subview just beforeV2 installation, i.e. there is novchgActiveNodesi event executed
after that until the new view installation. ThenactiveNodes2 = V2.members ∩ activeNodes1.

It simply states that when a new view is installed, only the processes that where active in the previous
view and still belong to the new view continue being active. Moreover, we define a special view, called
initial view and denotedVinit which satisfies the following property.

Property 3.4 (Initial View). Let Vinit be the initial view, for each processi ∈ Πinit the first view change
event executed isvchg(Vinit, left, joined, activeNodes) where:

• Vinit.id = 1 andVinit.members = Πinit,

• left = ∅,

• joined = Πinit and

• activeNodes = Πinit.

Finally, in order to ensure liveness in the installation of views, the GCS provides the following proper-
ties:

Property 3.5 (Crash View Triggering). If the GCS executes input eventcrashi andi ∈ V.members, then
eventually a new view change event will be delivered wherei /∈ V.members and, thus,i ∈ left.

19

Property 3.6 (Join View Triggering). If the GCS executes input methodjoini, then eventually a new view
change event will be delivered wherei ∈ V.members and, thus,i ∈ joined.

Property 3.7 (JoinactiveNodes View Triggering). If the GCS executes input methodjoinActiveNodesi

in viewV , then eventually everyv correct processp ∈ V.members will executevchgActiveNodesp(V,
activeNodes), with i ∈ activeNodes.

3.3.4 Communication Service

The communication service of our GCS model provides a pair ofprimitives, namelyTOMulticast(m) and
TODeliver(m), implementing total order reliable uniform multicast. Butbefore specifying the properties
that these primitives satisfy, a notion of process correctness is defined:

Definition 3.5 (v correct). Consider some viewV ∈ V with processp ∈ Π in V . We say thatp is v correct
if the following properties hold:

• p installs viewV , with p ∈ V .

• p does not crash while its view isV .

• If V is not the last view of some process inV , then exists viewV ′ ∈ V installed immediately afterV
by some process inV such thatp ∈ V ′.

Definition 3.6 (v faulty). A process which is notv correct is said to bev faulty.

This definition is quite intuitive and states that a process is v correct in a view if it does not crash in
that view and survives to the next one. It is used in the specification of the properties of the previously
mentioned primitives.

Property 3.8 (Total Order Reliable Multicast).

• (TO1) Validity: If a v correct processp in V invokesTOMulticastp(m), then it eventually executes
TODeliverp(m).

• (TO2) Uniform Agreement: If a processp executesTODeliverp(m) in viewV , then every process
q in V which isv correct eventually executesTODeliverq(m).

• (TO3) Uniform Integrity: For any messagem ∈ M, every processq in V executesTODeliverq(m)
at most once and only ifm was sent by a processp (invokingTOMulticastp(m)).

• (TO4) Uniform Total Order: If some processp in V (whetherv faulty or v correct) executes
TODeliverp(m1) in viewV before it executesTODeliverp(m2), then every processq in viewV
executesTODeliverq(m2) only after it has executedTODeliverq(m1).

The first property, TO1, ensures that no message coming from av correct process is lost (reliable).
TO2 ensures that when a process delivers a message, then every other process will also deliver the message
or will crash (uniform). Hence, it is safe to apply the corresponding update. Note in the antecedent every
process is considered. This avoids the presence of false updates like in Figure5. TO3, on the other hand,
simply ensures that messages are not duplicated nor spontaneously generated.

Finally, TO4 ensures total order ordering guarantees. Notethat this property alone does not assure that
messages sent by a particular process are ordered in the sameway they are sent, but that they are deliver in
the same order everywhere. In Figure6 there is an example of total order multicast where this case occurs.

3.4 Point-to-Point Communication System

The Point-to-Point Communication System (PTPS) models thecommunication that takes place between
processes outside the GCS through a pair of primitives, namely, Send(p,m) andDeliver(p,m). This
system is used in the communication that takes place during recovery between the joining replica and the
recoverer.

The signature of this system is depicted in Figure7. The specification uses the following types:

20

vip

q

r

m Crash

vi

vi

Figure 5: Scenario prevented by TO2

vip

q

r

m1

m1

m1

m3

m3

m2

m2

m2

m4

m4

vi

vi

m3m4

Figure 6: Example of total order

• Π: The set of processes.

• M: The set of messages sent by the application.

(input)Sendi(p, m), i, p ∈ Π, m ∈ M
(output)Deliveri(i, m), i ∈ Π, m ∈ M
(input)crashi, i ∈ Π

Figure 7: PTP Communication System signature

Sendi(p,m) simply represents the sending of messagem from processi to processp andDeliveri(i,m)
represent the delivering of messagem at processi. crashi is an input method that notifies the PTPS of the
crashing ofi. The sending primitives satisfy the following properties

Property 3.9 (Point-to-point Channels).

• (PTP1) Channel Validity: If a processq executesDeliverq(q,m), thenm has been sent by some
processp by invokingSendp(q,m).

• (PTP2) Channel Non-duplication: A processq executesDeliverq(q,m) at most once.

• (PTP3) Channel Termination: If a processp executesSendp(q,m) and bothp andq do not crash
after that event, thenq eventually deliversm.

• (PTP4) FIFO Order: If a processp executesSendp(q,m1) beforeSendp(q,m2) and processq
executesDeliverq(q,m2) then it only executes that event after the execution ofDeliverq(q,m1).

3.5 Extended Database System

Each processi has an associated extended database system module EDBi where it stores a full copy of
the database. This system is an extension of a Snapshot-Isolation based database system; in particular, it
provides special properties for remote transactions.

An extended database consists of a set of uniquely identifieditems, denoted byI, which can be accessed
by concurrent transactions from the set of all possible transactionsT . We first begin defining a transaction:

21

Definition 3.7 (Transaction). A transactiont ∈ T is a sequence of read and write operations over the
database itemsI, starting with abeginoperation and ending either with acommitor abort operation.

Our replication protocol is based on the deferred update technique; hence, for the sake of simplicity, we
do not explicitly specify the write and read operations of each transaction. In fact, only the events relevant
to the replication protocol are considered.

In the model, transactions are treated differently depending on where they have been generated. More
formally:

Definition 3.8 (Site of a transaction). Let i ∈ Π be a process andt ∈ T a transaction. If the event
ready to commit(t) is executed at EDBi, i is said to bedelegate siteof t, denotedsite(t) = i. Moreover,
t is said to belocal at i andremoteat every other process.

Moreover, it is required that a transaction can only requestits commit once and at its delagate site:

Property 3.10. For every transactiont ∈ T , with site(t) = i ∈ Π there is one single execution of
ready to commit(t) in EDBi.

The signature of the EDB module associated toi is detailed in Figure8. The specification uses the
following types:

• T : The set of transactions issued to the system.

• I: The set of items that the database consists of.

(output)ready to commit(t), t ∈ T , site(t) = i
(input)commit(t), t ∈ T , site(t) = i
(input)applyAndCommit(t), t ∈ T

Figure 8: EDBi signature

Note that, even though the eventapplyAndCommit(t) is intended for remote transactions, it is not a
requirement: a local transaction can be multicast but not committed at processi because of a crash, but
later, wheni recovers, it has to be applied and committed from scratch.

The underlaying isolation model in the EDB is Snapshot Isolation (SI) and it determines which transac-
tions are going to commit and which ones are going to be aborted by the database. Under this model, when
a transaction begins, it is provided with a snapshot of the database, from which it will obtain all the read
items. To specify the allowed behaviors, further definitions have to be specified:

Definition 3.9 (Writeset of a transaction). Let t ∈ T be a transaction. The set of items written byt is called
its writesetand denoted byws(t) ∈ I. A transactiont is said to beread-onlyif ws(t) = ∅; otherwise, it is
called anupdatetransaction.

The differentiation of read-only and update transaction isimportant, provided that in SI, read-only
transactions do not entail any isolation problem. That willbe clarified with the following definition:

Definition 3.10 (Conflict). We say that two transactionst, t′ ∈ T conflict if they both write a common
item, i.e.,ws(t) ∩ ws(t′) 6= ∅.

Under SI, concurrent conflicting transactions cannot be committed due to isolation issues. When a
set of transactions concurrently write over a common set of items, only one of them can commit and the
other ones have to be aborted. In our model, we employ the firstupdater wins rule. That implies that the
first transaction accessing all common items is the one that is granted the permission to commit. In fact,
transactions have to acquire locks for every item before they are allowed to write them. Other concurrent
transactions have to wait for those locks. If the transaction holding those locks commits, they are aborted;
otherwise, locks are reassigned to the waiting transactions and the procedure repeats.

A special case, and the reason for considering an extended version of the database item, is the man-
agement of remote transactions. When those transactions areapplied throughapplyAndCommit, they
instantaneously acquire all the required locks and commit directly. Transactions holding those locks are
forced to abort. All this detailed behavior is summarized inthe following property:

22

Property 3.11. The isolation level provided by the database system is SI with the first updater wins rule,
except in one case: the operationapplyAndCommit(t) aborts all concurrent conflicting transactions and
always commits.

Finally, it has to be noted that bothcommit andapplyAndCommit events block the module calling
them until the operation finishes.

23

4 Algorithm

In this section, a formal specification of the replication and recovery algorithms is given. First, in Sec-
tion 4.1, an outline of the protocol is provided. Then, in Section4.2, the list of state variables are included,
along with their explanations and initial values. Section4.3 is the heart of this section, and includes the
signature of the algorithm and each of the system’s events. These events are divided in different groups
in order to ease the understating of the algorithm. Apart from the specification, detailed explanations and
examples are provided. Finally, Section4.4 includes some direct improvements that can be made to the
basic algorithm and Section4.5 includes some hints of how to implement the protocol.

4.1 Algorithm Overview

The algorithm presented here is an evolution of [31, 30] but with support for (re)joining of replicas. In
a nutshell, it is an update-everywhere replication protocol where processes multicast their transactions in
turns, so that it is ensured that when a transaction is sent itcan be safely committed. Processes order
themselves in a circular sequence and multicast their transactions in an ordered fashion; hence, the algorithm
can be seen as a sort of round robin based protocol. However, the commit of transactions is decoupled from
its sending; in this way, the system is not limited by the throughput of the slower replica. Prior to the
sending of a transaction, it is checked that it will not conflict with any of the transactions that are pending
to commit, then ensuring that it will not be aborted.

The replication protocol is augmented with a recovery algorithm which is responsible of transferring
the missed state to the joining replicas, so that they catch up with the rest. As it has been said before, the
fact that multicast transactions are never aborted makes the recovery procedure easier to synchronize with
the replication protocol, since the application of received turns is done just in the same way. This avoids the
need for extra rounds in order to accelerate the recovery procedure.

The algorithm is presented as a state transition system. Each replica holds a replication and recovery
process and an EDB. Processes communicate with each other bymeans of the GCS, when executing the
replication protocol; and by means of point-to-point channels, when the recoverer is transferring the missed
state to the joining replica.

4.2 State Variables

Each processp uses a set of state variables, all of which butlogp are volatile, i.e., their values are lost when
p crashes. Table2 presents for each state variable at processp its type and initial value. In the following we
also detail their meaning:

• statep: Process state.

• activeNodesp: The set of nodes in theactive state.

• ptpChannelp: Incoming channel of messages delivered by the PTPS.

• gcsChannelp: Incoming channel of messages and view changes delivered bythe GCS.

• blockedp: A boolean variable indicating whether total order messages can be sent or not. It is set to
false by the execution ofblocki previously to a view change and changed again totrue when this
view change effectively takes place.

• lastRcvTurnp: The turn number of the last turn delivered by the replication algorithm. Up to that
moment, its value is⊥.

• lastRcvTurnSitep: If lastRcvTurnp 6= 0 it represents the process that sent this turn; otherwise,
its value is undefined.

• lastV iewTurnp: The turn number of the last turn delivered by the replication algorithm in the
previous view.

24

Variable Initially

statep ∈ {crashed, joining, pre recovering, recovering, alive} crashed
activeNodesp ⊆ Π ∅
ptpChannelp : queue of M 〈 〉
gcsChannelp : queue of M 〈 〉
blockedp ∈ {true, false} true
lastRcvTurnp ∈ N ∪ {⊥} ⊥
lastRcvTurnSitep ∈ Π ∪ {⊥} ⊥
lastV iewTurnp ∈ N ∪ {⊥} ⊥
myTurnp ∈ {true, false} false
trs tosendp : queue of T 〈 〉
pendingp : queue of (N, queue of T) 〈 〉
logp ∈ (N, queue of T) ∅
recovererp ∈ Π ∪ {⊥} ⊥
recoveringp ⊂ Π ∅
lastAppTurnp ∈ N 0

lastTurnToRecoverp ∈ N ∞
lastSentTurnp : array[1, n] of N ⊥
recUpperBoundsp : array[1, n] of N ∅

Table 2: State variables and initial values for processp.

• myTurnp: Indicates whether processp has the privilege of sending the next turn.

• trs tosendp: Includes the list of transactions that has requested the commit since the last turn was
sent in processp.

• pendingp: Contains the list of transactions delivered by the replication algorithm that still have to be
applied.

• logp: It is the only persistent variable in the system and stores the list of pairs〈turn, trs list〉 that
have already been applied and committed in EDBp.

• recovererp: The process (if any) that is acting as a recoverer forp.

• recoveringp: The set of processes for whichp is acting as a recoverer.

• lastAppTurnp: The greatest turn number of the turns already applied in theEDBp. This variable
only makes sense during a recovery procedure.

• lastTurnToRecoverp: The turn number of the last turn to be applied in order to finish the recovery
procedure.

• lastSentTurnp: It only makes sense in a recoverer process in the context of arecovery procedure. It
stores, for each recovering procedure, the turn number of the last turn sent in the recovery procedure.

• recUpperBoundsp: It only makes sense in a recoverer process in the context of arecovery pro-
cedure. It stores, for each recovering procedure, the turn number of the last turn to be sent in the
recovery procedure.

4.3 Signature

The signature of the algorithm is depicted in Figure9. The events are classified into five different groups,
which will be later explained in separate sections.

25

Start events ={restarti | i ∈ Π}

Input events =
{crashi | i ∈ Π} ∪
{TOMulticasti(m) | i ∈ Π, m ∈ M} ∪
{TODeliveri(m) | i ∈ Π, m ∈ M} ∪
{blki | i ∈ Π} ∪
{vchgi(V, joined, left, activeNodes) |

i ∈ Π, V ∈ V, left ⊂ Π, joined, activeNodes ⊆ V.members, V ∩ left = ∅} ∪
{vchgActiveNodesi(V, activeNodes) |

i ∈ Π, V ∈ V, activeNodes ⊆ V.members} ∪
{Sendi(j, m) | i, j ∈ Π, m ∈ M} ∪
{Deliveri(j, m) | i, j ∈ Π, m ∈ M}}

Replication events =
{ready to commiti(t) | i ∈ Π, t ∈ T } ∪
{rcv msg repi(〈site, turn, trs list〉) | i, site ∈ Π, turn ∈ N, trs list ⊂ T } ∪
{send turni(turn) | turn ∈ N} ∪
{process turni(〈turn, trs list〉) | i ∈ Π, turn ∈ N, trs list ⊂ T }

View management events =
{initial viewi(V, joined, left, activeNodes) |

i ∈ Π, V ∈ V, joined, left ⊂ Π, joined ⊆ V.members, V ∩ left = ∅} ∪
{view changei(V, joined, left, activeNodes) |

i ∈ Π, V ∈ V, left ⊂ Π, joined, activeNodes ⊆ V.members, V ∩ left = ∅} ∪
{new activeNodesi(V, activeNodes) | i ∈ Π, V ∈ V, activeNodes ⊆ V.members} ∪
{blocki} | i ∈ Π

Recovery events =
{rcv msg rec requesti(〈j, lastAppTurn, lastTurnToRecover〉) |

i, j ∈ Π, lastAppTurn, lastTurnToRecover ∈ N} ∪
{send rec turni(j, turn) | i, j ∈ Π, turn ∈ N} ∪
{rcv msg rec initi(〈lastV iewTurn, lastV iewTurnSite〉) |

i, rec, j, lastV iewTurnSite ∈ Π, lastV iewTurn ∈ N} ∪
{rcv msg rec turni(〈turn, trs list〉)} ∪
{end recoveryi | i ∈ Π}∪
{rcv msg rec endi(j) | i, j ∈ Π}

Figure 9: Algorithm signature

26

restarti

statei ← joining;
lastAppTurni ← getLastTurn(logi);
GCS.joini.

getLastTurn(log) ≡ n|∀〈turn, trs list〉 ∈ log : turn ≤ n

Figure 10: Start event

4.3.1 Start Event

The start event is a special event executed whenever a process i ∈ Π restarts. It changesstatei to joining
and obtains the last applied turn number from the log. We assume that the rest of variables are initialized to
the values specified in Table2. Then it joins the group in order to appear in the next installed view.

4.3.2 Input events

The input events map to the output events of the GCS and the PTPS systems and are included in Figure11.
It is also included the eventcrashi, which notifies that processi has crashed and simply changes its state
to crashed.

The input events coming from the communication system append the messages and notifications in two
separate queues, namelygcsChanneli andptpChanneli. This approach aims to simplify the algorithm,
since messages are processed in different events dependingon its type; however, the behavior is exactly the
same. Hence, from now on we are going to consider indistinctly both the execution of the processing event
and its actual delivery. The types of messages used in the protocol are the following:

• rep turn: Contains a tuple〈site, turn, trs list〉 and represents a replication message sent by total
order, wheresite is the sender of the message,turn is the turn number andtrs list is a queue of
transactions.

• rec request: Contains a tuple〈i, rec, init, end〉 and represents the message sent by a joining replica
to the recoverer indicating the turns to recover:i is the joining replica,rec the selected recoverer,
init is the last applied turn andend is the last turn to be recovered.

• rec init: Contains a tuple〈lastV iewTurn, lastV iewTurnSite〉 and indicates the joining replica
some of the missed state. In particular,lastV iewTurn is the turn number of the last message re-
ceived before its rejoining andlastV iewTurnSite the process which sent that message.

• rec turn: Contains a tuple〈turn, trs list〉 and is a recovery message sent by the recoverer, where
turn is the turn number andtrs list is a queue of transactions.

• rec end: Contains a process idj and indicates thatj has finished the recovery procedure.

4.3.3 Replication Events

This section comprises the events that build the replication protocol. Its actions are included in Figure12.
It has also been included the input eventready to commiti(t), which notifies the protocol of the client’s
commit request for transactiont.

As explained in Section2, the goal of a replication protocol is to propagate the changes made in the
database at each particular site to the rest of processes andreach consensus on the ones that will be applied
(because they do not violate the predefined isolation requirements) and the ones that have to be discarded.
As opposed to certification, in our proposal, processes are not allowed to multicast transactions whenever
they want, but have to respect a predefined order. This will ensure that transactions that are actually multi-
cast will not violate the isolation requirements, and, hence, can be safely committed.

The algorithm at processi is notified about the client’s commit request on transactiont by means of
the input eventready to commiti(t). If the transaction is read-only, i.e.,ws(t) = ∅, it is committed

27

crashi

statei ← crashed.

TODeliveri(m)
gcsChanneli ← gcsChanneli · m.

PTPDeliveri(m)
ptpChanneli ← ptpChanneli · m.

blki

gcsChanneli ← gcsChanneli · 〈block〉.

vchgi(V, joined, left, activeNodes)
gcsChanneli ← gcsChanneli · 〈view change, 〈V, joined, left, activeNodes〉〉.

vchgActiveNodesi(V, activeNodes)
gcsChanneli ← gcsChanneli · 〈new activeNodes, 〈V, activeNodes〉〉.

Figure 11: Input events

ready to commiti(t)
if ws(t) = ∅ then

EDBi.commit(t);
else

trs tosendi ← trs tosendi · t.

rcv msg repi(〈site, turn, trs list〉)
{pre ≡ head(gcsChanneli) = 〈rep turn, 〈site, turn, trs list〉〉}

gcsChanneli ← tail(gcsChanneli);
if lastRcvTurni = ⊥ then

lastTurnToRecoveri ← turn − 1;
lastRcvTurni ← turn;
lastRcvTurnSitei ← site;
pendingi ← pendingi · 〈turn, trs list〉
if predecessor(site, i, activeNodesi) then

myTurni ← true.

send turni(turn)
{pre ≡ myTurni ∧ statei = active ∧ turn = lastRcvTurni + 1 ∧ ¬blockedi}

trs tosendi ← trs tosendi\conflicts(pendingi, trs tosendi);
GCS.TOMulticast(〈rep turn, 〈i, turn, trs tosendi〉〉);
myTurni ← false.

process turni(〈turn, trs list〉)
{pre ≡ head(pendingi) = 〈turn, trs list〉 ∧ statei = active}

while trs list 6= ∅ do
t ← head(trs list);
if site(t) 6= i then

trs tosendi ← trs tosendi\conflicts({t}, trs tosendi);
EDBi.applyAndCommit(t);

else
EDBi.commit(t)

trs list ← tail(trs list);
logi ← logi ∪ {〈turn, t〉};
pendingi ← tail(pendingi).

predecessor(p, n, V) ≡ ∃site ∈ Π : d(n, site) = min{d(n, n′) : n′ ∈ V ∨ n′ = p} ∧ site = p,
d(n, n′) ≡ (n − n′ + N) mod N

conflicts(trs list, trs list′) ≡ {t|t ∈ trs list ∧ ∃t′ ∈ trs list′ : ws(t) ∩ ws(t′) 6= ∅}

Figure 12: Replication events

28

straightaway; otherwise, it is stored in thependingi queue to be multicast afterwards, since it still has to be
determined whethert can be committed safely.

The replication protocol behaves as follows: at a given time, only one process is allowed to multicast
the transactions that have requested commit. We call that processturn master. Processes send transactions
in turns according to a predefined sequence; in particular, active processes are ordered according to their
identifiers and the list is traversed in a circular way.

Turns numbers represent an ordering of the turns; thus, in principle no special ordering guarantees in
the delivery of messages needs to be required. Nevertheless, the recovery algorithm requires uniformity in
their delivery, which is as expensive as total order in termsof latency. Therefore, in order to simplify the
algorithm, total order has been used to deliver messages, which then are received in the correct order and
appended topending as soon as they are delivered.

Each process determines in the reception of a message (eventrcv msg rep) if the sender is its prede-
cessor in the previously mentioned sequence. In the affirmative case, it sets its variablemyTurn to true,
thus enablingsend turn, which, when executed, multicasts the transactions that have requested their com-
mit at that process. In this way, a chain of receive and send events is formed. Thepredecessor function is
the responsible for determining if a given turn comes from the predecessor of the process in the sequence.

As it has been pointed out before, a specific feature of this protocol is that multicast transactions are
never aborted. Let us see how this property works. When a process is allowed to multicast its transactions,
it has already received all the transactions that must be committed prior to them. These transactions are
the only ones that may cause the abort of the transactions being sent. The received transactions which have
been already committed have aborted in their commit processall local concurrent conflicting transactions
because of the behavior of EDB.applyAndCommit. Moreover, local transactions which had already re-
quested their commit have been also removed fromtrs tosend in that procedure. Then, the transactions
that have survived intrs tosend might only be aborted by the transactions that have been received but
not committed yet. However, before local transactions intrs tosend are allowed to be multicast, a sort of
small certification is made and the ones that conflict with thereceived transactions that are pending to be
committed (those inpending) are also removed fromtrs tosend. That ensures that the transactions that
are finally multicast are never going to be aborted.

Transactions are committed asynchronously with respect tothe turns processing, by means of the event
process turn, which processes turns sequentially. For local turns, it commits the transactions straightfor-
wardly, since their changes have already been applied in thedatabase. On the other hand, remote transac-
tions have also to apply their changes, thenapplyAndCommit is used instead (which, moreover, ensures
that local transactions will not block them). Finally, the turn is stored in the log as a future aid to the re-
covery protocol. Note that this asynchronous behavior is the responsible for requiring transactions that are
going to be sent to be checked for conflicts. If the algorithm waited for the received transactions to commit
before processing the next turn, when local transactions would be about to be sent, all previous transac-
tions would have been already committed and local conflicting transactions would have been aborted by the
EDB. However, this behavior would make the system to progress at the pace of the slowest replica and the
performance would be compromised.

Figure13illustrates an example of the replication protocol operation for four active processes. For each
stage, the events executed up to that situation are shown. The more relevant state variables of each process
i are also presented; namely,myTurni, trs tosendi andpendingi. We assume that transactionst1 andt′1
andt2 andt′2 conflict and that every turn up ton − 1 has been processed.

To reach stage 1, transactionst1, t2 andt′1 have requested their commit, then they have been appended
to thetrs tosend queue at their respective processes. In the example, process1 starts being the turn master,
hencemyTurn1 = true, and the last turn received isn−1. Then, it executessend turn1(n) and dispatches
the transactions in thetrs tosend1 queue, namelyt1 andt2. Just after the reception of such message at
processes1, 2 and4, stage 2 is reached. It can be seen thatmyTurn1 is nowfalse, by the execution of the
sending event, and thatmyTurn2 = true, by the execution of the reception event. We can also observethat
those processes which have received the turn have appended the transactions to their respectivepending
queues.

To reach stage 3, process2 sends a message, in this case with no transactions, providedthattrs tosend2

contains no transactions. The message is delivered at everyprocess, including3, which, by total order
properties, has to deliver the first message before. Process3 appends transactionst1 andt2 to pending3

29

1 2

1

2

3

4

1

2

3

4

3 4

1

2

3

4

1

2

3

4

Events

1. ready to commit3(t′
1
), ready to commit1(t1), ready to commit1(t2).

2. send turn1(〈1, n, 〈t1, t2〉〉), rcv msg rep1(〈1, n, 〈t1, t2〉〉), rcv msg rep2(〈1, n, 〈t1, t2〉〉),
rcv msg rep4(〈1, n, 〈t1, t2〉〉).

3. send turn2(〈2, n + 1, 〈 〉〉), rcv msg rep2(〈2, n + 1, 〈 〉〉), rcv msg rep1(〈2, n + 1, 〈 〉〉),
process turn4(〈n, 〈t1, t2〉), rcv msg rep3(〈1, n, 〈t1, t2〉〉), rcv msg rep3(〈2, n + 1, 〈 〉〉),
rcv msg rep4(〈2, n + 1, 〈 〉〉).

4. send turn3(〈3, n + 2, 〈 〉〉), ready to commit4(t′
2
), rcv msg rep3(〈3, n + 2, 〈 〉〉),

rcv msg rep1(〈3, n + 2, 〈 〉〉), rcv msg rep2(〈3, n + 2, 〈 〉〉), rcv msg rep4(〈3, n + 2, 〈 〉〉).

5. send turn4(〈4, n + 3, 〈t′
2
〉〉).

Figure 13: Replication algorithm example

30

initial viewi(V, joined, left, activeNodes)
{pre ≡ head(gcsChanneli) = 〈view change, 〈V, joined, left, activeNodes〉〉 ∧ V = Vinit}

gcsChanneli ← tail(gcsChanneli);
statei ← active
activeNodesi ← V.members
if (i = min{V.members}) then

myTurni ← true.

blocki

{pre ≡ head(gcsChanneli) = 〈block〉}
gcsChanneli ← tail(gcsChanneli);
GCS.f lushi;
blockedi ← true.

view changei(V, joined, left, activeNodes)
{pre ≡ head(gcsChanneli) = 〈view change, 〈V, joined, left, activeNodes〉〉 ∧ V 6= Vinit}

gcsChanneli ← tail(gcsChanneli);
activeNodesi ← activeNodes;
if (i ∈ activeNodes) then

lastV iewTurni ← lastRcvTurni;
if predecessor(lastRcvTurnSitei, i, activeNodesi)∨

(lastRcvTurn = 0 ∧ i = min{activeNodes}) then
myTurni ← true;

else
if (recovereri /∈ activeNodes) then

if (statei 6= recovering) then
statei ← pre recovering

recovereri ← assignRecoverer(activeNodes);
GCS.TOMulticasti(recovereri, 〈rec request, 〈i, lastAppTurni, lastTurnToRecoveri〉〉);

blockedi ← false.

new activeNodesi(V, activeNodes)
{pre ≡ head(gcsChanneli) = 〈new activeNodes, 〈V, activeNodes〉〉}

gcsChanneli ← tail(gcsChanneli);
if (i ∈ activeNodes) then

statei ← active;
activeNodesi ← activeNodes.

Figure 14: View management events

and changemyTurn3 to true. Simultaneously, process4 applies transactionst1 andt2, removing them
from pending4.

In the transition from stage 3 to stage 4, process3 sends its turn. As transactiont′1 conflicts witht1 in
pending3, it is removed fromtrs tosend3 in the execution ofsend turn3(n + 2) and not included in the
message. Once the message is delivering, the rest of processes do not change theirpending queues. In
the case of process4, it changesmyTurn4 to true. In the events sequence it is also shown the next step,
although the state is not depicted in any figure. Note that, sincet′2 begins after the application oft2, i.e.,
they are not concurrent, it is not removed fromtrs tosend4 and is included in the message.

Other details in these events concern the recovery algorithm and, thus, are not covered here in a deep
manner. Later, when dealing with it, they will be explained in detail. As a particular case, the definition
of predecessor is slightly more complex than what would be thought only considering the replication
algorithm. It will also be explained later, when more information about the protocol will be provided.

4.3.4 View Management Events

This group of events includes those related to view changes and are detailed in Figure14. A distinction has
been made in the installation of the initial view and the restof views.

When the initial view is installed, every process is marked asactive. Moreover, the process with the
minimum identifier is marked as the turn master. Note that, ifthis process crashes before sending a message
or the message is lost because of the failure, in the new view installation, this condition is checked again

31

recovering pre_recovering

joiningcrashedactive

Figure 15: System states at processi

and the process with the minimum identifier from the ones thatare stillactive is selected.
Another special situation that can arise is the case when theturn master’s process crashes. To ensure

progress, some other process has to continue the sequence. This is considered in the view change event,
wherepredecessor function is checked again. This method only considers active nodes in the sequence;
therefore, the first active process with an identifier greater than the last turn master (or the one with the
minimum if the end of the sequence is reached) is the next turnmaster. Note that the function also takes
into account the case when the last received message comes from a non-active process. These considerations
ensure that, even when processes crash, there will be a process which will acquire the turn privilege.

As a special requisite of strong virtual synchrony, when a block event is executed, the state variable
blocked is set totrue. This variable is present in the precondition of all events where the communication
service of the GCS is used. Moreover, a flush notification is sent back to the GCS, since it is ensured that
no more messages will be sent until the next view is installed. When the view change is finally executed,
blocked is changed back tofalse to take up again in the sending of messages.

The rest of the actions that take place in the view change events are related to the recovery procedure
and, hence, are explained later.

4.3.5 Recovery Events

The recovery algorithm is in charge of transferring missed updates to the crashed processes when they
restart they execution. Broadly speaking, the procedure issimple: a recovering process chooses a recoverer
among the active nodes and sends a request indicating the turn number of the last turn applied before its
crash. The recovering process determines which is the last turn to recover (the last turn received before its
rejoining) and sends an initial message, so that the recovering process could reconstruct the state. Then, the
recoverer transfers all the missed turns in order one by one and the recovering process applies them. When
that procedure is finished, the recovering process asks for being part of theactiveNodes subview. Once
the new e-view is delivered, it becomesactive.

The recovery procedure is better understood if we take a lookat the states a process passes through
during its computation. The state transition is shown in Figure 15 and explained in the next. A process
begins in thecrashed state, and then, when it executesrestarti, it changes its state tojoining. If it
delivers the initial view, it becomesactive without further computation. On the other hand, if it delivers
another view, it has to recover from the missed updates. Then, its state is marked aspre recovering. This
state is maintained until the recovering process can recover the state variables, namelylastRcvTurn and
lastRcvTurnSite and knows which is the last missed turn (lastTurnToRecover). This is performed in
the processing of therec init message. After that, it becomesrecovering and applies in order the turns that
it is being transfered. As explained before, it is not until it delivers an e-view in which it belongs to the
activeNodes subview that it finally becomesactive.

The idea of recovering is, at first glance simple: the recovering task is integrated with the replication

32

rcv msg rec requesti(〈j, rec, lastAppTurn, lastTurnToRecover〉)
{pre ≡ head(gcsChanneli) = 〈rec request, 〈j, lastAppTurn, lastTurnToRecover〉〉}

gcsChanneli ← tail(gcsChanneli);
if rec = i then

recoveringi ← recoveringi ∪ {j};
lastSentTurni[j] ← lastAppTurn;
recUpperBoundsi[j] ← min(lastTurnToRecover, lastV iewTurni);
PTPS.Sendi(j, 〈rec init, 〈lastV iewTurni, lastV iewTurnSitei〉〉).

send rec turni(j, turn)
{pre ≡ j ∈ recovering ∧ lastSentTurni[j] < recUpperBoundsi[j] ∧ turn = lastSentTurni[j] + 1}

trs list ← getNextTurn(log, turn);
PTPS.Sendi(j, 〈rec turn, 〈turn, trs list〉〉)
lastSentTurni[j] ← turn;
if turn = recUpperBoundsi[j] then

recovering ← recovering \ {j}.

rcv msg rec initi(〈lastV iewTurn, lastV iewTurnSite〉)
{pre ≡ head(ptpChanneli) = 〈rec init, 〈lastV iewTurn, lastV iewTurnSite〉〉 ∧ j = i}

ptpChanneli ← tail(ptpChanneli);
if lastRcvTurni = ⊥ then

lastTurnToRecoveri ← lastV iewTurn;
lastRcvTurni ← lastV iewTurn;
lastRcvTurnSitei ← lastV iewTurnSite;

statei ← recovering.

rcv msg rec turni(〈turn, trs list〉)
{pre ≡ head(ptpChanneli) = 〈rec turn, 〈turn, wslist〉〉 ∧ statei = recovering}

ptpChanneli ← tail(ptpChanneli);
if turn = lastAppTurni + 1 then

while trs list 6= ∅ do
t ← head(trs list);
EDBi.applyAndCommit(t);
trs list ← tail(trs list)

lastAppTurni ← turn;
logi ← logi ∪ {〈turn, t〉}.

end recoveryi

{pre ≡ statei = recovering ∧ lastAppTurni = lastTurnToRecoveri ∧ ¬blockedi}
recovereri ← ⊥;
GCS.joinActiveNodesi.

getNextTurn(log, turn) ≡ {trs list|〈turn, trs list〉 ∈ log}

Figure 16: Recovery events

33

protocol, as it just merely consists on applying turns in thesame way they would have been applied by
the replication protocol if the process had not failed. However, several subtle issues have to be taken into
account, as it can be observed in the complexity of the recovery events in Figure16. We will address them
after the whole picture of the normal behavior of the recovery protocol is presented.

Eventsrcv msg rec request andsend rec turn are executed by the recoverer, whilercv msg rec init,
rcv msg rec turn andend recovery are executed by the joining process. For the explanation, let us con-
sider thati is the joining process.

In the first place, wheni restarts, a new view, sayV , will be eventually installed, so thati is in
V.members. This process detects that it is new in the view because it will belong tojoined (see Fig-
ure14 for the events related to views). It, then, chooses a recoverer, sayj, from the set ofactiveNodes
by means of theassignRecoverer function. We have not detailed this function since several heuristics
could be applied and we do not want to restrict those possibilities. Note that, although a recoverer has been
selected, the request message is sent in total order. The reason is that, in that way, it is ensured that the
message is received before a new change is installed and the recoverer then could determine safely the last
turn that the recovering process has missed. The processes that are not marked as the selected recoverer
simply discard the request.

The request message is processed in the eventrcv msg rec requestj at the recoverer. The set of turns
that have to be sent are limited by parameterslastAppTurn andlastTurnToRecover. Note that, when
the joining process has just installed the next view, it doesnot know which was the last received turn in
the system. Thus, it sends∞ as the upper bound of the recovery transference. The limits of the recovery
transference are stored in the recoverer inlastSentTurnj [i] and recUpperBoundj [i]. Moreover, the
joining replicai is added torecoveringj , thus enabling the transfer event for that process, and arec init
message is sent back to the joining replica; in this case, by means of point-to-point channels.

When the joining replica delivers therec init message, it executesrcv msg rec initi. This event
updates variableslastTurnToRecoveri, lastRcvTurni andlastRcvTurnSitei, if necessary, and sets its
state torecovering. Note that, iflastRcvTurni is defined, i.e.,lastRcvTurni 6= ⊥, it is not necessary to
update those variables since, in the execution ofrcv msg repi for the first received turn after the rejoining,
they have been already set.

From that moment on, the recoverer will send turns in order through a point-to-point channel, by means
of the execution ofsend rec turnj , and the joining replica will deliver and apply them by meansof the
rcv msg rec turni event. The recoverer will stop sending turns when the upper bound is reached; the
joining replica, on the other hand, will enableend recoveryi when lastTurnToRecoveri is reached.
When this last event is executed,i will ask for being part of theactiveNodes subview. This will lead to a
new e-view installation andnew activeNodesi will be executed, so that the joining replica belongs to the
activeNodes subview. Then it will change its state toactive, concluding the recovery procedure, and will
continue processing turns as if it has never crashed.

In the previously described procedure setbacks can arise, but these issues are also taken into account
by the proposed algorithm. Firstly, the selected recoverercould crash before sending therec init message.
That would lead to a view change where the recoverer were among the left nodes. In such a case, the
joining replica would have to ask for another recoverer, sayk, by sending anotherrec request message.
The problem is that, during that interval, replication messages could have been delivered. Then, when the
new recoverer processed the request,lastV iewTurnk would not reflect the last turn missed by the joining
replica, but a higher one. Nevertheless, when the first of those messages were received at the joining replica,
it would updatelastTurnToRecoveri properly and that value would be included as the upper bound in the
new recovery request message. Moreover, when therec init message were received, sincelastRcvTurni

would not be undefined, the variables would not be changed to incorrect values.
If the recoverer crashed after the recovery procedure had begun and therec init had been processed,

the joining replica would be notified again by a view change inwhich the recoverer would be marked as
left. It then would have to select another recoverer and indicate as the lower bound the last turn applied up
to that moment. Note that, since point-to-point messages donot keep any order with respect to total order
messages and view changes, some turns could still be inptpChanneli or arrive later and they would be
duplicated. That is solved inrcv msg rec turni event only applying turns corresponding to the next turn
to lastAppTurni (the rest are discarded).

34

4.4 Improvements

The algorithm that has been previously presented is a simplified version both to facilitate its understanding
and correctness proof. Nonetheless, several improvementscan be adopted without varying too much its
operation, in order to increase its performance. Here, we describe the most important ones:

• Writeset application: For the sake of simplicity, transactions are applied one by one within a turn.
However, a unique transaction containing the combined writeset of all the turn’s transactions could
be issued to the database. This improvement could be appliedboth in normal operation and during
recovery (eventsprocess turn andrcv msg rec turn).

• Queues compaction:When transactions are stored in queues for later application, some items may
be repeated. Then, to save computation time, only the last version could be applied. It has to be noted
that, if this approach is taken, all transactions stored between the first appearance of the data item to be
avoided and its final version should be applied as a unique transaction in order to ensure correctness;
otherwise, intermediate reads could read inconsistent states. This strategy could be applied both to
thepending queue and thelog.

• Optimized transfer: The transfer of missed updates could be optimized if turns were sent in groups
instead of one by one. In any case, a tradeoff should be studied: if too many turns were sent, the
recovering process could stay idle while waiting for the reception of the next message.

• Total recovery: In the same way as it has been done in [37], a hybrid approach could be taken and
either partial or total recovery could be used depending on the circumstances. From the point of view
of the algorithm, the result should not differ too much from the current version, since it would only
be necessary to model a new module (or an extension of the EDB)which allowed to both extract and
dump the entire database, and to include an heuristic function that decided which option to take.

4.5 Implementation Issues

Sometimes the transition from the formal specification to a real implementation is difficult because some
assumptions and simplifications made for the former are not directly applicable in a real environment. In
order to ease this task, some hints are provided:

• Parallelism and atomicity: In the state transition system model, every event is atomic and, hence,
its direct translation consists of a unique thread selecting one of the enabled events at a time and
executing it. However, in a real system, this is not feasiblefor performance reasons. Consequently,
attention has to be paid to the concurrency of some actions. Firstly, all the group communication
related events should be atomic in order to take full advantage of all the provided properties. This is
usually directly achieved by the group communication layeremployed; thus, this should not pose any
difficulty. Queues management should also be synchronized to avoid inconsistencies; in particular,
the management of thetrs tosend queue is essential, since it is accessed for the inclusion ofnew
elements (when a commit request is received), the removing of elements (when a turn is applied in
the database) and querying (when conflicts have to be checkedprior to multicast).

• Writeset extraction and application: In order to send the changes made by local transactions and
apply them in the remote replicas, their writesets must be obtained from the database. Several ap-
proaches have been explored in the literature, mainly divided into two groups: implementation of
a special module within the database [53, 46, 43] or an independentmiddlewareimplementation
[46, 10, 28]. When the first approach is employed, better performance canbe obtained at the cost
of high coupling. In the latter case, several proposals havebeen studied with different performance
trade-offs: the use of triggers [46, 28], the inclusion of a middle layer which captures SQL operations
[46, 27] and other mechanisms based on views offered by the DBMS [48].

• Transaction progress: If the database replication protocol is implemented withinthe DBMS, no
special actions have to be taken in order to ensure remote transactions progress: the internal concur-
rency control mechanisms can be used for transaction handling. However, if it is implemented in a

35

middleware layer, some problems may arise: a remote transaction could be blocked by a conflicting
local transaction. To solve this problem, these conflicts must be detected and the local transactions
forced to abort from outside the DBMS. A possible solution ispresented in [41, 39].

• Flow control: One of the handicaps of the presented protocol is that, even though no transactions
were issued to the system, empty messages would still have tobe sent to ensure turn progress, which
might saturate the network. A solution to that problem couldbe to implement a flow control mech-
anism which, when no transactions were issued, deceleratedthe turn circulation by imposing delays
on the processes. The magnitude of these delays is somethingthat needs further exploration in order
to find the appropriate heuristics for the optimum performance.

• Log implementation: The log is an essential structure for the recovery, since missed transactions
are obtained from it. Two goals have to be met when implementing a log: the minimization of the
overhead that the log update imposes in the normal operationof the replication protocol, and the
minimization of the log management cost when a recoverer is obtaining the missed information to be
transferred. The problem is that both goals are incompatible and a trade-off has to be made. Then,
to find an optimum solution, an experimental evaluation should be carried out for each particular
scenario. However, still some hints can be pointed-out:

– If a total/partial hybrid recovery approach is taken, then the log could be limited to the maximum
size that it could reach when using the partial recovery approach (when using the total recovery
approach, no log is needed). For instance, a practical solution would be to limit the log size to a
given threshold; if all missed updates were stored in the log, a partial recovery procedure would
be used; otherwise, the total recovery approach would be taken.

– As it has been explained in the previous section, only the last version of each data item could
be stored. Then the log could be compacted periodically to prune repeated items.

– If all replicas are active and exchange information about the committed turns, all log entries
corresponding to turns committed at every replica could be removed.

– If the log is updated within the transaction boundaries, itscontent would correspond exactly
with the durable version of the database. If, on the other hand, it is updated outside the trans-
action boundaries, a mismatch might occur and it may be required that the writeset application
were idempotent to ensure correctness. Note that, althoughthe fist option is safer, it imposes
an overhead on the transactions latency. To minimize this overhead, a hybrid approach can
be taken: inside the transaction boundaries, only information identifying the last committed
transaction is stored, while the associated writesets are written after the transaction returns its
commit.

36

5 Correctness Proof

In this section we provide the correctness proof for the protocol specified in the previous section. The
correctness proof uses the properties of the modules formalized in Section3 and needs some additional
assumptions for some particular results. As the protocol presented is basically a distributed algorithm, both
safety and liveness properties are required. A safety property stipulates that nothing ”bad” will happen,
ever, during the execution of a system. On the contrary, a liveness property specifies that something ”good”
will eventually happen.

In order to prove the correctness of the algorithm we do not start from the scratch, but use the correctness
criteria proposed in [3]. This work proves that, if these specific criteria are satisfied, a 1CSI behavior is
ensured. Since these criteria are proposed for a model were processes can crash but not recover, they can
only be safely applied to the replication algorithm and onlyconsidering executions were processes do not
incorporate to the system (Section5.3). However, we think that the extension to a crash-recovery model
should not pose too many variations in some of the criteria and, hence, we extend them to prove the safety of
our algorithm (Section5.4). In that section we also prove that, under certain assumptions, a process which
begins a recovery procedure ends it and continues the normalprocessing of transactions as if it had never
crashed. Nonetheless, before these proofs are provided some definitions and previous results are provided
in Sections5.1and5.2, respectively.

5.1 Preliminary Definitions

In this section some terminology that is going to be consistently used throughout all correctness proofs is
defined.

To ease the explanations we are going to introduce some simplifications when referring to the processes’
states. In this way, when we say that processi is state, in fact we are expressing thatstatei = state. For
instance, a processi is active if statei = active. Furthermore, we introduce another term:

Definition 5.1 (Alive process). A processi is said to bealive if statei 6= crashed.

The execution of the algorithm at a particular processi passes through different states that change with
the executions of some events, as explained in the previous section. In particular, there is a special phase
that we denote as recovery procedure, which represents the actions that a process has to execute in order to
recover the missed state, more formally:

Definition 5.2 (Recovery Procedure). A recovery procedureat a recovering processi ∈ Π is the com-
putation that takes place between the execution of the view change event where it incorporates to the
group, i.e.,view changei(V, joined, left, activeNodes), with i ∈ joined, and the first execution of
eithernew activeNodes(V, activeNodes), with i ∈ activeNodes, or crashi after that event. If the last
event of the recovery procedure isnew activeNodes(V, activeNodes), it is said that the recovery proce-
dure has beensuccessful; if, on the other hand, the last event iscrashi, the recovery procedure is said to
have beenunsuccessful.

Note that just before a recovery procedure begins at processi, statei = joining and just after it finishes,
eitherstatei = active if the procedure has been successful, orstatei = crashed otherwise. Moreover,
within the computation that takes place during the recoveryprocedure,statei is set topre recovering, and
then, when therec init message is received, torecovering.

In the next result we specify the events that can only be executed within the boundaries of a recovery
procedure. Hence, these events should not affect the normalexecution of the replication protocol.

Proposition 1. rec msg rec initi, rcv msg rec turni andend recoveryi can only be executed during
a recovery procedure taking place at processi ∈ Π.

Proof.

1. rec msg rec initi: This event is only enabled by the delivering of arec init message, which can
only be sent by the execution ofrcv msg rec requestj at a recoverer processj ∈ Π. This last event
is only enabled by the delivering of arec request message coming fromi and sent at the beginning

37

of its recovery procedure. Hence, forrcv msg rec initi to be enabled it is necessary that a recovery
procedure ati has begun. We also have to prove that it is impossible that this event be executed
before the recovery procedure has finished. A recovery procedure ati is finished when arec end
message coming fromi is received; a message which can only be sent ifend recoveryi is enabled.
For that to happen,statei = recovering, which is only set to that value just by the execution of
rec msg rec initi.

2. rcv msg rec turni: This event can only be enabled ifstatei = recovering, which is only set to that
value by the execution ofrec msg rec initi, which, by 1, is only possible if a recovery procedure
at i has begun but not ended. Now, we have to prove that this event be executed before the recovery
procedure has finished. But this is clear, since when a recovery process is endedstatei is again
different torecovering, then disabling this event.

3. end recoveryi: This event can only be enabled ifstatei = recovering, which is only set to that
value in the execution ofrec msg rec initi, which, by 1, can only occur within a recovery proce-
dure; thus,end recovery can only be executed if a recovery procedure ati has begun. We also have
to prove that it is impossible that this event be executed before the recovery procedure has finished.
Again, when the recovery process is ended,statei is again different torecovering, then disabling
this event.

On the other hand, to maintain the correctness of the algorithm, during recovery, the application of
transactions received within regular replication messages is disabled in the recovering process. This is
formally stated as a proposition:

Proposition 2. During a recovery procedure at processi ∈ Π neitherprocess turni nor send turni can
be executed.

Proof. When a recovery procedure begins,statei is set topre recovering. During the procedure it can
only be changed torecovering and only at the end of a recovery procedure it is set toactive. Hence,
neithersend turni norprocess turn can be enabled.

Finally, we define two useful functions that are going to be used in the correctness proof:

Definition 5.3 (Turn of a Transaction). Let t ∈ T be a committed transaction.turn(t) represents the turn
numberturn of the turn〈turn, trs list〉 where this transaction was included; hence,t ∈ trs list.

Definition 5.4 (Set of a Sequence). Let seq = 〈s1, ..., sn〉. set(seq) denotes the set made up by all the
elements inseq.

5.2 Turn Management

As it has been explained previously, turns play an essentialrole in the execution of the replication and
recovery algorithm for two reasons: they determine which process is allowed to certify and multicast its
transactions at a given time and they order committed transactions in the log, which facilitate a possible
recovery. In this section, we prove some results concerningthe management of turns in the protocol, which
will be used later in the correctness proof. We divide the results in two groups: safety properties will show
the restriction in the management of turns and liveness properties will show that turns allow the system to
progress.

5.2.1 Safety Properties

Firstly, we will prove that only one process at a time can certify transactions, which is expressed in the
Proposition5. However, we need some previous results on the conditions for acquiring the certification
and sending privilege. In the first result, it is shown that a process can only acquire such privilege after
the reception of a replication message and that it only lastsuntil the sending of its transactions, except for
the initial turn, which is a special case. Then we show that only with this privilege a process can send
replication messages.

38

Proposition 3. For a processi ∈ Π to havemyTurni = true it is necessary that:

1. it previously executedrcv msg repi(〈j, turn, trs list〉) or no replication message has been received
andi = min{activeNodes} (initial turn) and

2. it has not executedsend turni(turn + 1) yet3.

Proof.

1. Let i ∈ Π be a process; initially,myTurni = false. If no replication message has been received,
lastRcvTurni = 0. Then, either in the initial view installation or in subsequents installations, only
if i = min{activeNodes}, myTurni is set totrue. Apart from that case, the only events where
myTurni is set totrue are a receive or a view change; thus, if a processi satisfiesmyTurni = true it
necessarily has executedrcv msg repi(〈j, turn, trs list〉) or view changei(V, joined, left, acti-
veNodes). If the former case happens the result holds trivially. In the case of a view event, by
definition of predecessor, the only way it can be satisfied is thatlastRcvTurnSite ∈ Π, which
does not hold until a message has been received, satisfying then the result.

2. Whensend turni(turn + 1) is executedmyTurni is set tofalse.

Proposition 4. For a processi ∈ Π to executesend turni(turn), with turn > 1, it is necessary that it
previously executedrcv msg repi(〈j, turn − 1, trs list〉).

Proof. To enablesend turni(turn) with turn > 1 it is necessary thatlastRcvTurni > 0. This last
variable is initialized to0; hence, the only way its value can be greater than0 is that a receive event has
been executed. In fact, forsend turni(turn), with turn > 1, to be enabledlastRcvTurni = turn − 1,
which can only be set by the execution ofrcv msg repi(〈j, turn − 1, trs list〉).

Proposition 5. It is not possible that the same processi ∈ Π executes two events
rcv msg repi(〈site1, turn, tlst1〉) andrcv msg repi(〈site2, turn, tlst2〉) for the same turn numberturn
∈ N.

Proof. Let us prove the result by induction overN.

• Base case:The first sent turn has turn numberturn = 1. We prove the result by contradiction. Let
site1, site2 ∈ Π be two processes and supposei ∈ Π executesrcv msg repi(〈site1, 1, tlst1〉) and
rcv msg repi(〈site2, 1, tlst2〉). Then, by (TO3),send turnsite1

(1) andsend turnsite2
(1) have

been previously executed, which implies thatmyTurnsite1
= true and lastRcvTurnsite1

= 0
whensend turnsite1

(1) was executed and thatmyTurnsite2
= true and lastRcvTurnsite2

= 0
whensend turnsite2

(1) was executed. Without loss of generality, assume thatsend turnsite1
(1)

was executed beforesend turnsite2
(1). At that precise momentmyTurnsite1

= true; hence,i =
min{activeNodes} in the last view change event, and no other active process could satisfy that,
since every subsequent view change is executed after the delivery of 〈site1, 1, tlst1〉 by Sending View
Delivery property. Therefore, no other message is sent and〈site1, 1, tlst1〉 is the first replication
message delivered at every site, includingsite2, which then setlastRcvTurnsite2

to 1. Hence, it
can not executesend turnsite2

(1), contradiction.

• Induction step: Assume that the result holds for turn numbers up ton − 1. Let us prove that it
holds for turn = n > 1. It is proved by contradiction in a similar way as the base case. Let
site1, site2 ∈ Π be two processes and supposei ∈ Π executesrcv msg repi(〈site1, n, tlst1〉) and
rcv msg repi(〈site2, n, tlst2〉). Then, by (TO3),send turnsite1

(n) andsend turnsite2
(n) have

been previously executed. By Proposition4, site1 executedrcv msg repsite1
(〈prev1, n− 1, tlst1〉)

andsite2 executedrcv msg repsite2
(〈prev2, n−1, tlst2〉) before, but by induction hypothesis there

is only a single receive event for turnn − 1; hence,prev1 = prev2 = prev. Without loss of gen-
erality, assume thatsend turnsite1

(n) was executed beforesend turnsite2
(n). At that moment

3In the casei has the initial turn,turn is considered to be 0.

39

myTurnsite1
= true; thus,predecessor(prev, site1, activeNodessite1

) was satisfied either at the
processing ofrcv msg repsite1

(〈prev, n− 1, tlst1〉) or in the last view change before the execution
of send turnsite1

(n). No other node could satisfy that, provided thatactiveNodesp is changed
consistently in everyactive processp. Therefore, no other message is sent and〈site1, n, tlst1〉
is the first replication message delivered at every site after that, includingsite2, which then set
lastRcvTurnsite2

to n. Hence, it can not executesend turnsite2
(n), contradiction.

Finally, we establish a connection between the order in which turns are received and their associated
turn numbers. This result will be important in the recovery algorithm correctness proof, since it allows to
obtain transactions in an order consistent with their original commitment order (decided by the replication
algorithm).

Proposition 6. If event rcv msg repi(〈site1, turn1, trs list1〉) is executed before
rcv msg repi(〈site2, turn2, trs list2〉) and no other replication message is delivered in between, then
turn1 = turn2 − 1.

Proof. By (TO3), if rcv msg repi(〈site2, turn2, trs list2〉) is executed, thensite2 has previously exe-
cutedsend turn(turn2). For that to happen, it is required thatsite2 had also executedrcv msg repsite2

(
〈site, turn2−1, trs list〉) before, but, by Proposition5, only one message is received per turn; thus,site =
site1 andtrs list. Uniform Total Order property ensures that ifsite2 delivers〈site1, turn2 −1, trs list1〉
and then〈site2, turn2, trs list2〉, then every process does the same. Therefore,turn1 = turn2 − 1.

Corollary 0.1. If event rcv msg repi(〈site1, turn1, trs list1〉) is executed before
rcv msg repi(〈site2, turn2, trs list2〉), thenturn1 < turn2.

Proof. By repetition of Proposition6.

5.2.2 Liveness Properties

As important as ensuring that two processes can not certify transactions simultaneously is to guarantee
some progress in the turn privilege, i.e., that processes will eventually have the opportunity of certifying
and multicasting their transactions. That can only be ensured with the following assumption

Assumption 2. Eventually, a processi ∈ Π for whichsend turni is enabled will execute that event and
the corresponding message will be received by some other process.

Note that this assumption is not very strong; we are requiring that some processes be stable for the
sufficient amount of time to complete successfully a messagesending. A system which can not assure that
is not very useful for any distributed computation.

Proposition 7. Let i ∈ Π be anactive process; eventuallymyTurni = true unlessi crashes4.

Proof. Assume that there is a processj ∈ Π, with myTurnj = true, (it is safe to assume that since at
least at the beginningmyTurn1 = true). If i = j the result holds trivially; otherwise, there is a sequence
seq = 〈s1, s2, ..., sm〉 of processes such thats1 = j andsm = i, that, in order, setmyTurnsk

to true. Let
S = set(〈s1, ..., sm〉). We are going to proof that statement by considering three different scenarios with
increasing generality:

• Case 1:Consider that there are no view changes andactiveNodesp, with p ∈ S, is unchanged (in
fact activeNodesp = S ∀p). Consequently, by Property3.5, no process crashes and no process be-
comesactive. The referred sequenceseq will satisfy that∀sk, sk+1, 1 ≤ k < m : predecessor(sk,
sk+1, S). By weak fairness, processj = s1 will eventually executesend turnj(turn) and, by
(TO1,TO2,TO4), every processp ∈ S will receive the message and in the same order with respect
to other messages. By construction ofseq, in processs2, predecessor(s1, s2, S) will hold and
myTurns2

will be set totrue. Then, the succession continues untilsm = i receives the message
from sm−1, settingmyTurni to true.

4Whenever the restriction “unlessi crashes” is used in the formulation of a result, we do not consider the cases wherei crashes
since then the result holds trivially and in that way proofs are greatly simplified.

40

• Case 2:Consider now that there are no view changes but at a given timea processp becomesactive,
i.e., it has finished the recovery procedure. By total order delivery, everyv correct process will
receive the activation message (that with therec end tag) in the same order with respect to other
replication messages; therefore,predecessor will always be executed with the same parameters at
every site. If, when that message is received,myTurnsl

= true, with 1 ≤ l < m, a new sequence of
active processesseq′ = 〈sl, sl+1, ..., sm = i〉 can be built, and by Case 1,myTurni will eventually
be set totrue.

• Case 3:Finally, consider that view changes occur and see how they affect the reasoning on Case 2.
During view change events, processes can both join or leave the group. Let us consider both cases:

– Joining processes:During the view change event,predecessor is checked again but with the
same parameters as in its previous execution; hence, the outcome will be the same. Note that,
by (SVD), messages are delivered in the same view that they have been sent; hence, when the
view change event takes place there is no message in progressand no process can obtain the
turn again illegally.

– Leaving processes:During the view change event,activeNodes variable will be changed con-
sistently at everyactive process. There are two possible situations

∗ There is at least one replication message that has been delivered. Suppose that process
p was the one for whichpredecessor function was satisfied the last time. If that pro-
cess is stillalive, predecessor will return the same outcome as in the last execution at
every process. Conversely, ifp is one of the leaving processes, i.e.,p ∈ left, it will
not appear inactiveNodes variable. Then, the firstactive process in the sequence will
satisfypredecessor; in fact, every leaving process will be removed from the sequence.
Assumption2 ensures that eventually, some process satisfyingpredecessor will execute
successfullysend turn.

∗ No replication message has been already delivered. The active processp ∈ Π with the
minimum identifier will setmyTurnp to true. Then, new sequenceseq′′ = 〈s′′1 , ..., s′′m〉,
wheres′′1 = p ands′′m = i can be built. Assumption2 prevents the system to infinitely
create new sequences without sending a message. Hence, eventually a message will be
sent and, by the previous situation,myTurni will be set totrue.

5.3 Replication Algorithm Correctness

So far we have considered all events in the system. In this section we do not consider events only executed
in the context of a recovery procedure, since our attention will be focused on the regular replication mecha-
nism. Hence, by Proposition1, actions executed within eventsrec msg rec init, rcv msg rec turn and
end recovery are not taken into account. Actually, only the actions included inrcv msg rec turn could
affect somehow the results presented in this section. The reason is that the claim which says that the only
event where a transaction could be committed isprocess turn would be false. However, this only affects
Lemma1, and the result still holds, since for a transaction to be committed inrcv msg rec turn it has to be
logged in other process, which requires that it had been previously committed there by eventprocess turn.

In this section, the results are directed to satisfy the correctness criteria proposed in [3] for the system
to be 1CSI. In the final subsection, a mapping from the most important results to the criteria is provided.

5.3.1 Safety Properties

As for safety, the most important results are formulated in form of theorems. Theorem2 simply states
that transactions do not appear spontaneously in the system, but in response to a client commit request.
Theorem3 proves an important feature of the system, which states thatmulticast transactions are never
going to be aborted. Finally, Theorem5 is the main result, since it ensures that states of the different
databases are consistent.

41

In order to establish a consensus, update transactions haveto be multicast before being committed.
Recall that in our SI model, read-only transactions can be directly committed without affecting the system
correctness.

Lemma 1. An update transactiont ∈ T is only allowed to commit if it has been previously total order
delivered.

Proof. Let i ∈ Π be a process wheret is committed (t can be either local or remote at that process). For
that to happen, an eventprocess turni(〈turn, trs list〉), whereturn is a turn number andt ∈ trs list,
has been executed previously, which is only possible if〈turn, trs list〉 ∈ pendingi. That turn can be only
appended topendingi if an eventrcv msg repi(〈site, turn, trs list〉) had been executed, which can have
only been enabled by the delivering of〈site, turn, trs list〉 by processi.

Theorem 2. A transactiont ∈ T can only commit if a client has requested its commit.

Proof. By Lemma1, t can only commit if it has been previously delivered. By (TO3), t has been total
order delivered if it has been previously total order multicast, which can only occur by the execution of the
eventsend turni(turn) for some processi, with site(t) = i, and turn numberturn. For transactiont
to be multicast it has to belong totrs tosendi, which can only happen if the eventready to commiti(t)
has been previously executed, which is enabled by the commitrequest for transactiont issued by some
client.

Theorem 3. A transactiont ∈ T that has been delivered at some processi ∈ Π will never abort.

Proof. Let us assume that a client has issued the commit request for transactiont and that processj ∈
Π has executedready to commitj(t), hencet ∈ pendingj . By Property3.11 of the database system,
transactions can only abort if, while being active, anotherconflicting transaction commits. Moreover, it
is not possible for two conflicting transactions to be intrs tosendj . Thus, only transactions belonging to
other turns can abortt.

If a turn with turn numberturn1 coming from processi is delivered, it is necessary that it has been pre-
viously multicast, which requires thatsend turni(turn1) had been previously executed. By Proposition5,
only the processi can multicast turn numberturn1; therefore, no otherrcv msg repi(〈site2, turn2, trs list2〉)
can be executed. In fact, by (TO4), which ensures total orderdelivery of the replication messages, the next
receive event to be executed ati will be rcv msg repi(〈i, turn1, trs list1〉). Hence, transactions which
can cause the abort of any of the transactions oftrs tosendi, which includet, had been already appended
to pendingi. For every eventprocess turni(〈turn, trs list〉) for which there are transactions intrs list
of that kind, conflicting transactions inpendingi will be removed in the event execution. Finally, when
send turni(turn1) is executed, transactions oftrs tosendi that are going to be aborted during the appli-
cation of transactions inpendingi are removed fromtrs tosendi. Thus, ift is delivered, it is never going
to be aborted.

Corollary 3.1. A transactiont ∈ T which has been multicast by processi ∈ Π will never abort unlessi
crashes.

Proof. By (TO1), if processi does not crash, then eventually its sent messages will be delivered and, by
Theorem3, will never be aborted.

Lemma 4. The order in which turns are processed is the same as the orderin which they have been
delivered.

Proof. Let 〈site, turn, trs list〉 be a delivered turn at processi ∈ Π. Its processing is represented by the
execution of the eventprocess turni(〈turn, trs list〉), which applies (if it has been generated at other pro-
cess) and commits its transactions in the corresponding order. Turns are sent through the Total Order Uni-
form Multicast service; thus, its delivery is modeled by theexecution of the eventTODeliveri(〈rep turn, 〈site, turn,
trs list〉〉), which appends the message to thegcsChanneli queue. Messages in that queue are pro-
cessed sequentially; therefore, they reach its head in the same order in which they have been appended.
When that happens,head(gcsChanneli) = 〈rep turn, 〈site, turn, trs list〉〉; thus, enabling the event
rcv msg repi(〈site, turn, trs list〉). The execution of this event appends〈turn, trs list〉 to the queue

42

pendingi. Again, the sequential processing of turns in that queue guarantees that the order is maintained.
Hence,〈turn, trs list〉 reaches the head ofpendingi in the same order in which it has been delivered, and,
since that enables the eventprocess turni(〈turn, trs list〉), it is processed in the same order in which it
has been delivered.

Theorem 5. The order in which transactions are committed is the same at every processi ∈ Vinit.members
up to their first crash.

Proof. By Lemma1 a transactiont committed at processi has been total order delivered previously by
that process. (TO4) ensures that every process that delivers it, does it in the same order. Since turns
are processed in the order in which they are delivered (by Lemma 4), and transactions within a turn are
processed sequentially, thus maintaining the order, and never aborted (Theorem3), the commit order will
be consistent at every correct process.

5.3.2 Liveness Properties

The main result in reference to the progress of the system is formulated in Theorem7 and states that a client
which has requested a commit will finally obtain a response, either a commit or abort notification or a report
of a crash event in its local site.

Lemma 6. A transactiont ∈ T delivered at processi ∈ Π is eventually committed unlessi crashes.

Proof. Let t ∈ T be a transaction delivered at processi ∈ Π. By Theorem2, it will never be aborted.
Its delivering is modeled by the execution ofTODeliveri(〈rep turn, 〈site, turn, trs list〉〉), with t ∈
trs list. The result is the appending of〈rep turn, 〈site, turn, trs list〉〉 in gcsChanneli. By means
of weak fairness assumptions, previously appended messages of gcsChanneli are consumed and finally
head(gcsChanneli) = 〈rep turn, 〈site, turn, trs list〉〉, then enablingrcv msg repi(〈site, turn, trs list〉).
Eventually, this event executes and〈turn, trs list〉 is appended topendingi. Again, previously appended
pairs are consumed and〈turn, trs list〉 becomes the head ofpendingi. Then, by weak fearnessprocess turni(〈turn, trs list〉)
executes, resulting in the commit of all transactions intrs list, which includet.

Theorem 7. A transactiont ∈ T which has issued a commit request at an active processi ∈ Π, hence
site(t) = i, will eventually commit or abort unlessi crashes.

Proof. When a commit for a transactiont1 is issued at processi, by weak fairness, eventuallyready to com-
miti(t1) is executed, then appendingt1 to pendingi. By Proposition7, eventuallymyTurni = true, then
activatingsend turni(turn) for some turn numberturn1. By weak fairness, this event will eventually
execute. If, between the execution of the ready and the sending events, there is a turnturn2 which has
been processed and contained a transactiont2, t1 will be aborted. It will also be aborted if, when executing
send turni(turn) there is a turnturn3 in pendingi containing a conflicting transaction; otherwise a mes-
sage containing the transaction will be sent. Ifi does not crash, by (TO1), it will deliver that message, and
by Lemma6 its transactions, which includet1, will eventually commit.

5.3.3 Correctness Criteria

As it has been said in Section2.2.3, we adopt the correctness criteria formulated in [3] to ensure correctness
of the replication protocol. Here we link the results obtained previously with each of the criteria.

• Well-Formedness Conditions: In [3], three conditions have to be satisfied:

(a) Every behavior of the replication protocol has to respect the behavior of each EDBi module: It
is satisfied by execution ofprocess turn.

(b) The first event of a transactiont may only be a begin at its delegate sitei and thent is local
at that process and remote at every other process: It is satisfied by Property3.10and Defini-
tion 3.8.

(c) Every behavior of the replication protocol has to respect the behavior of each EDBi module:
By Theorem2 spontaneous creation of remote transactions is avoided.

43

• Prefix Order Database Consistency: It is satisfied by Theorem5, since if transactions are always com-
mitted in the same order at every replica, for every pair of replicas, either the sequence of snapshots
generated at one replica is a prefix of the other or vice-versa.

• Uniform Termination: Two conditions have to be satisfied:

(a) If a transaction is committed at one site, then it is committed at every correct site: Theorem6
ensures that delivered transactions will be committed unless the process crashes and Lemma1
ensures that only delivered transactions can commit. Hence, the condition is satisfied.

(b) Either if a transaction is aborted at one site it is aborted atevery site that does not crash or if it
is aborted at its delegate site then no one of the remote transactions has been programmed: In
our system, only the second part of the consequent can occur and is satisfied by Theorem3.

• Local Transaction Progress: The behavior of our system is slightly different from that of [3]. In our
case no requirements about the progress of started transactions is made, but only for those that have
requested their commit; hence, the criterion satisfied is not exactly the same. Theorem7 ensures this
progress condition.

5.4 Recovery Algorithm Correctness

When dealing with recoveries we have to extend the results to executions where processes can crash and
later recover several times. Up to our knowledge, there are no defined criteria for systems with the crash-
recovery model. As for safety, we have extended thePrefix Order Database Consistencycriterion to pro-
cesses that crash and then recover, i.e. the ordering of transactions applies also to these processes. With
respect to liveness, we demand that processes which (re)join the system could recover the missed changes
and reach a state where transactions were processed by the replication protocol as if the process had never
crashed.

5.4.1 Safety Properties

The main result to be proven with respect to safety is that, when a process recovers from a crash, it has to
apply missed transactions in the same order that they have been applied in a correct process and then, that
the replication algorithm continues applying transactions beginning from the next transaction to the last one
missed. To reach that result, we first prove that only missed transactions are transferred and applied. Then,
we prove that these transactions are applied in the correct order.

Lemma 8. During a recovery procedure taking place at processi ∈ Π, only turns from the last applied
turn in i up to the last turn received before its rejoining are transferred from the selected recoverers.

Proof. Let us consider a successful recovery procedure (for unsuccessful procedures a prefix of the follow-
ing sequence is executed). The recovery procedure is initiated with the eventview changei(V, joined, left,
activeNodes), wherei ∈ joined. In the rec request message,∞ is set as the upper bound and the
last applied turn as the lower bound in the recovery transference, since bothlastTurnToRecoveri and
lastAppTurni are initialized in such a way in the restart event. We assume that j ∈ Π is the selected
recoverer. We consider the two possible cases:

• Case 1: A rec init message is received from the intended recoverer. It impliesthat j has executed
rcv msg rec requestj(i, j, lastAppTurni,∞) and then answered with arec init message. In the
execution of the mentioned event,recUpperBoundsj [i] is set to the last turn received before the view
change and sent back toi (∞ is the neutral element formin). Then, in therec init message, that
value is sent back toi, which, during its processing, setslastTurnToRecoveri to the last message
received before its rejoining. It may also happen that during the mentioned procedure or after it, a
replication message be received. Then,lastTurnToRecoveri would also be changed; however, it
would also be set to the last message received before its rejoining.

44

• Case 2:No rec init message is received from the intended recoverer. By (PTP4),j has crashed, but
then, by Property3.5, a view change wherej ∈ left will be triggered. Theni has to ask again for a
recoverer in that view change. The process is the same as in Case 1, except in one circumstance: let
the new selected recoverer bek ∈ Π. If replication messages have been received before the new view
change,lastV iewTurnk do not reflect the last turn thati has missed, but a higher one. Nevertheless,
this situation is prevented because in that situationi would have modifiedlastTurnToRecoveri and
in therec request message it would be indicated as the upper bound. Hence, themin operator atk
will return that value.

If, for any reason, the recoverer replica,rec ∈ Π, crashes while the recovery procedure is taking place, a
new recoverer has to be chosen. Nevertheless, in the corresponding request message an upper bound to the
transferred messages is sent with the value oflastTurnToRecoveri. Then, the last turn the recoverer will
transfer will continue being the last message received before its rejoining.

Lemma 9. Let t1, t2 ∈ T be two committed update transactions. Ift1 is committed beforet2 at process
i ∈ Π, thenturn(t1) ≤ turn(t2).

Proof. If turn(t1) = turn(t2) the result holds trivially. Suppose〈turn1, tlst1〉, with t1 ∈ tlst1, and
〈turn2, tlst2〉, with 21 ∈ tlst1 be the turns wheret1 and t2 were included and consider processi. A
transaction can only be committed by the execution of two events:rcv msg rec turni andprocess turni.
Let us consider all possible orderings:

• rcv msg rec turni(〈turn1, tlst1〉) ≺ rcv msg rec turni(〈turn2, tlst2〉): By (PTP1), the deliv-
ery of the point-to-point messages enabling these events ispreceded by its sending, which takes place
at the execution of eventssend rec turn(j, turn1) andsend rec turn(j, turn2) respectively at a
recoverer processj ∈ Π. Messages of this kind are sent in an order consistent with the turn number
contained within them. By (PTP4), messages are delivered inFIFO order; hence,turn1 < turn2.

• process turni(〈turn1, tlist1〉) ≺ process turni(〈turn2, tlist2〉): By Lemma1 the processing of
a turn is consistent with the order in which it has been delivered, and, by Corollary0.1, it is also
consistent with its turn number. Hence,turn1 < turn2.

• process turni(〈turn1, tlst1〉) ≺ rcv msg rec turni(〈turn2, tlst2〉): By Proposi-
tion 2, the first event can not be executed during a recovery procedure and, by Proposition1, the
second event can only be executed during a recovery procedure. Hence,process turni is executed
beforei leaves the group andrcv msg rec turni after it rejoins the group. When the first event
is executed,〈turn1, tlst1〉 is added to the log; thus, any subsequent call togetLastTurn(logi) will
return turn numberturnla ≥ turn1. When the recovery procedure associated with the second event
begins,turnla is sent to the recoverer as the lower bound for the missed turns transference, which in
order will send turns beginning withturnla + 1. Hence,turn2 > turnla ≥ turn1.

• rcv msg rec turni(〈turn1, tlst1〉) ≺ process turni(〈turn2, tlst2〉): By Propositions2 and1, the
second event is executed when the recovery procedure associated torcv msg rec turni has fin-
ished. By Lemma8, lastTurnToRecoveri will be set to the turn number of the last message re-
ceived before the rejoining, sayturnltr. Hence, the first message that will be appended topendingi

will have a turn number greater thanturnltr. Then, process turni(〈turn2, tlst2〉) will satisfy
turn2 > turnltr. On the other hand, in the recovery procedure only turns withturn number less or
equal toturnltr will be sent; thusrcv msg rec turni(〈turn1, tlst1〉) will satisfy turn1 ≤ turnltr.
Consequently, it holds thatturn1 ≤ turnltr < turn2.

Corollary 9.1. Let t1, t2 ∈ T be two committed update transactions. Ifturn(t1) > turn(t2), thent2 is
committed beforet1 at every processi ∈ Π.

Proof. By negation of Lemma9.

45

Theorem 10. The order in which transactions are committed is the same at every process (even for recov-
ered processes).

Proof. We first show that transactions belonging to the same turn areexecuted in the same order and then
that transactions belonging to different turns are also committed in the same order.

• Consider two transactionst1, t2 ∈ T such thatturn(t1) = turn(t2). There is a turn〈turn, trs list〉
such thatt1, t2 ∈ trs list. In fact, sincetrs list is a sequence of transactions, eithert1 ≺ t2 or
t2 ≺ t1. That turn is processed either atprocess turn or at rcv msg rec turn. In both events,
trs list is consumed in the same way in every process. Hence, both transactions are committed in
the same order at every process.

• Consider two transactionst1, t2 ∈ T such thatturn(t1) > turn(t2). By Corollary9.1, t2 is com-
mitted beforet1 at every process.

5.4.2 Liveness Properties

Intuitively, the result to be proven in recovery is that, when a process recovers, it catches up with the
rest of processes. Nevertheless, it is difficult to define when a process reaches the other ones, given the
asynchronous nature of the replication protocol. Hence, wehave defined the concept of anup-to-date
process, which will be our objective in the recovery procedure:

Definition 5.5 (Up-to-date). A processi ∈ Π is said to beup-to-dateif for every turn 〈turn, trs list〉
delivered by some process from the beginning of the execution up to the last message delivered in the
previous view, either:

• it has committed every transactiont ∈ trs list or

• it maintains a copy of it in any of the process’ data structures5.

The sense of that definition is that a process is up-to-date when it can continue processing transactions
just like a process which has never crashed (it could be a slowone). The problem with recovery is that it
may be possible that the recovering replica did not apply themissed updates fast enough to catch up with the
rest of the system. However, with this definition, it does notmatter, since our single worry is that the missed
updates were applied. Nevertheless, this simplification isnot enough to ensure that the procedure eventually
ends. Firstly, we need to guarantee that there will always bea process from which another joining process
can recover. This is expressed in the following assumption6.

Assumption 3. There is always a majority view in the system (|V.members| ≥ ⌈n/2⌉) and at least one of
its members isactive.

Moreover, we have to require some stability in the system, sothat the recovery procedure can progress.
This is the minimal assumption that has to be taken in order toensure progress in the recovery procedure:

Assumption 4. Eventually one of the selected recoverers (hence,active) will sent at least one recovery
message.

With this last assumption we ensure that, given that the joining process only has to recover from a finite
number of missed transactions, if there are recoverers thatallow the recovering process to carry on with the
procedure, it will eventually finish.

Lemma 11. If a recovering processi ∈ Π chooses as recoverers a set of up-to-date processesrec ⊂ Π and
completes its recovery procedure successfully, it becomesup-to-date.

5In fact it can only be stored on the receiving queues, namelygcsChanneli andptpChanneli; or in pendingi.
6This is not an extraordinary requirement since in other worksit is also assumed [29].

46

Proof. When the recovery procedure begins ati, the last applied turn number is obtained and, by Lemma9,
every previous transaction has been already applied (hencedelivered). During the recovery, every turn
missed ati, i.e., turns from the following turn to the last applied up tothe last turn received in the previous
views beforei’s rejoining, are transferred (by Lemma8). Every subsequent turn is also received, in this
case by the normal execution of the replication algorithm. Therefore, every turn from the beginning of the
execution is received andi is up-to-date.

Lemma 12. If a processi ∈ Π is in theactive state, then it is up-to-date.

Proof. A processi can only beactive either if it has never crashed, since in the initial view installation
statei is set toactive; or if it has completed a successful recovery procedure, since in its final step (execu-
tion of new ActiveNodesi) statei is also set toactive. In the former case, the node is trivially up to date
by properties of Uniformity Agreement and Sending View Delivery. In the latter, a recovery procedure has
to take place. Since a recoverer assigned toi can be a previously crashed process, the proof is presented by
induction over the successful recovery procedures:

• Base case:Suppose thati is the first process to recover. The onlyactive processes in the sys-
tem, say{corr1, ..., corrm1

} ⊂ Π, are up-to-date. Ifj is a recoverer assigned toi, then j ∈
{corr1, ..., corrm1

}, i.e., it has never crashed; hence,j is up-to-date. Since processi is in theactive
state, it has completed the recovery. Then, by Lemma11, it becomes up-to-date

• Inductive step: Assume that thenr first successful recovery procedures, associated to processes
{rec1, ..., recr} ⊂ Π have been completed and that the processes that have never crashed in the
system are{corr1, ..., corrmnr

} ⊂ Π. Then, letact ⊂ Π be the set ofactive processes in the
system,act ⊆ {corr1, ..., corrmnr

} ∪ {rec1, ..., recr}. By induction hypothesis, every of these
processes is up-to-date. We have to prove that in the next recovery procedure, associated to process
i, i becomes up-to-date. But since a recovererj can only be one of theactive processes,j ∈ act, and
these processes areactive, by Lemma11, it also becomes up-to-date.

Lemma 13. If a processi ∈ Π multicasts arec request message, then it eventually is assigned a recoverer
j ∈ Π andstatei = recovering.

Proof. Let i be a process which has multicast arec request message. Therefore, it executedview change(
V, left, joined, activeNodes) and selected a recoverer. By Assumption3, activeNodes 6= ∅; then, by
definition ofassignRecoverer, a processj ∈ Π is always selected as the recoverer. If that process crashes,
by Property3.5, a new view change is triggered andi will ask again for a recoverer. By Assumption4, a
recoverer, sayrec ∈ Π, that staysalive the sufficient amount of time to respond is finally selected and then
i receives arec init message, which enablesrcv msg rec initi. By weak fairness, this event is eventually
executed settingstatei to recoverer.

Lemma 14. A crashed processi ∈ Π which restarts, then invokingrestarti, eventually reaches the
recovering state and is assigned anactive recoverer unless it crashes again.

Proof. Wheni restarts it executes eventrestarti, where it callsjoini to become part of the group. By Prop-
erty3.6, eventually a viewV is installed withi ∈ V.members. In fact, the eventview changei(V, joined,
left, activeNodes) will be executed, withi ∈ joined. In the processing of that event,i total order mul-
ticasts arec request message. By Lemma13 it eventually is assigned a recovererj ∈ Π andstatei =
recoverer

Lemma 15. A processi in therecovering state will eventually becomeactive unless it crashes.

Proof. Let i ∈ Π be a process withstatei = recovering, lastAppTurni = turnla andlastTurnToReco-
veri = turnltr. Let turnsToRecover denote the number of turns thati missed during its last outage that
have not been received and applied yet. Consequently,turnsToRecoveri = turnltr − turnla. We prove
the result by induction overturnsToRecover:

47

• Base case:Suppose thatturnsToRecover = 0; then, lastTurnToRecoveri = lastAppTurni

andend recoveryi is enabled. By weak fairness, it is eventually executed andi asks for joining
theactiveNodes subview. By Property3.7, eventuallynew activeNodes(V, activeNodes), with
i ∈ activeNodes is executed, settingstatei to active.

• Induction step: Assume that ifturnsToRecover = n − 1, i eventually becomesactive. Let us
prove the result forturnsToRecover = n. If a message fromj is delivered, by weak fairness,
rcv msg rec turni is executed andlastAppTurni decreases in one unit. ConsequentlyturnsTo-
Recover = n−1 and, by induction hypothesis,i eventually becomesactive. Conversely, ifj crashes,
by Property3.5, view changei(V, joined, left, activeNodes), with j ∈ left, will be eventually ex-
ecuted. Theni will ask for another recoverer by sending arec request message. By Lemma13, i
is eventually assigned a new recovererk ∈ Π. That is the same situation as before, but, by Assump-
tion 4, eventually one of the assigned recoverers will complete the sending of a turn andi will deliver
it. Then, by weak fairness,rcv msg rec turni is executed andturnsToRecover decreases ton−1,
which, by induction hypothesis, implies thati become up-to-date.

Theorem 16. A crashed processi ∈ Π which restarts, then invokingrestarti, will eventually be up-to-date
unless it crashes.

Proof. By Lemma14 a processi ∈ Π which restarts will eventually change its state torecovering. Then,
by Lemma15 it will eventually becomeactive. Finally, by Lemma12, if it becomesactive, then it is
up-to-date. Hence the result holds.

48

Workload parameters DB parameters

Reads size 50 Table number 10
Update operations 1 Number of items 2000000
Threads number 25, 50 DB size 2 GB
Hot spot ratio 0%

Table 3: Fixed parameter for protocols comparison

6 Performance

In this section we provide an experimental comparison of theproposed protocol with versions of the cer-
tification and primary copy protocols when the system is operating in normal mode (replication). We also
provide a theoretical background to justify the performance improvements that our protocol offers in the
recovery procedure.

6.1 Performance of the Replication Protocol

We have implemented a prototype of the replication part of the proposed algorithm and compared it with
implementations of the certification and primary copy protocols. The objective of the experiments is to find
the scenarios where the three protocols behave distinctly.In this way, the parameters and factors (variables
varied throughout the tests) have been selected specially to point out these differences.

6.1.1 Experimental Environment

The experimental environment consists of a set of computersconnected in a 100 Mbps switched LAN.
Variable configurations of one to four computers have been used to hold the database replicas. Each machine
was equipped with an IntelR© PentiumR© 4 at 3.4 GHz, 2 GB of RAM and a 250 GB hard disk. All of them
run the Linux distribution OpenSuse 10.2 (kernel version 2.16.18.8-0.3).

The replication protocols have been implemented in the ESCADA system [17], a middleware replication
framework. ESCADA is built upon theGorda Programming Interface(GAPI) [43], which consists of a set
of interfaces providing useful methods for database replication by means of reflection mechanisms. In this
way, the DBMS management is abstracted while keeping the processing efficient, since GAPI allows close
coupling to the DBMS internals.

As an intermediate layer amid the ESCADA system and the clients, a scheduler has been placed to
redirect the transactions to the appropriate replica. In the case of update-everywhere protocols, a simply
random mechanism is used; for primary copy protocols, update transactions are redirected to the primary
replica while the read-only transactions’ delegate is selected randomly.

The DBMS used in the experimental evaluation is PostgreSQL/G [44], a version of PostgreSQL [22]
implementing the GAPI natively. This implementation is achieved by means of a set of patches, a trigger
library and a standalone Java process exposing the GAPI interface. The standard PostgreSQL configuration
has been used, except when the connection limit has had to be modified in order to test the system under a
specific number of clients.

6.1.2 Workload

In this section, a primary copy protocol, a certification protocol and the proposed deterministic protocol
are compared. The metrics used have been the typical ones: maximum throughput and response time. The
parameter used as the independent variable has been the update transactions rate.

The experiment fixed parameters are shown in Table3. For reads size and update operations, lower
values have been selected not to saturate the system. With higher values, the primary copy approach would
behave even worse. It is possible that greater differences could be obtained for the certification and deter-
ministic protocols, but the behavior is not so distinct. Therate has been issued varying the time between
transaction submissions. Hence, the number of threads has not a greater impact, except for different levels
of response times; however, the proportion remains the same.

49

Factor Levels

Update rate 0, 10, 25, 50, 75, 100 (%)
TPS issued 10 - 200
Number of replicas 1, 2, 4

Table 4: Factors for protocols comparison

The update transactions rate is the main factor for the comparison. The issued rate has been also varied.
In this way, we can observe how the response time evolves withthe increase in the load and determine
at which point the system saturates. The number of replicas has been also varied, although it has not
been possible to perform tests with more than 4 replicas. This is also an interesting factor since different
replication protocols do not scale in the same way. Besides,we can compare how much the performance
increases with the addition of more replicas (scale-up).

6.1.3 Results

In Figure17, the response times of the three protocols are shown depending on the issued transactions per
second for various update rates. The results correspond to ascenario with 50 clients and are only depicted
until the system saturates.

For a read-only scenario, the three protocols behave in the same way, although sometimes the primary
copy protocol obtains slightly worse response times. As it can be seen, the system scales almost linearly
according to the number of replicas: for a single replica, a maximum throughput of almost 45 TPS is
obtained, whereas for 2 and 4 replicas 90 and 165 TPS are obtained respectively.

Scenarios with a small quantity of updates already cause differences between the primary copy protocol
and the update everywhere ones. The former approach suffersthe overhead posed by all the update transac-
tions being executed on the same replica. The way in which thescheduler has been designed does not favor
this protocol because, despite the master receiving all theupdate load, it is not lightened from the read load,
which is assigned in equal measure to all the replicas.

For medium update loads, the deterministic protocol beginsto behave a bit worse than the certification
protocol. For 25% of update transactions the results are quite similar, but in the 50% scenario it suffers
an important degradation. The protocol may have a worse behavior for heavy loads, but we do not discard
implementation problems since we have used a prototype. Thefact that no behavior difference manifests
until 50% of update rate supports this hypothesis. We also observe that from 25% of update rates on,
the certification protocol with 2 replicas obtains even better results than the primary copy approach for 4
replicas, and at 50% it obtains similar results than the deterministic protocol.

For heavy loads, the tendencies which appeared for the medium loads, are confirmed. All the primary
copy configurations have the same results, since no matter the number of replicas, all the operations are
performed in a single one. Despite the fact that certification obtains better results, in this case the system
does not scale very well. The improvement obtained by the 2 and 4 replicas configurations are approxi-
mately of 135 and 165% respectively (the perfect scalability would imply 200 and 400% of improvement
respectively).

In Figure18 the maximum throughput reached on each configuration is represented, although, in this
case, both scenarios with 25 and 50 threads are included. It can be seen how all the primary copy protocols
converge in the same maximum throughput with the increase ofthe update rate, as it has been mentioned
before. It can also be seen that the deterministic protocol obtains the same results than the certification
protocol for lower update rates, but there is a point beyond which it behaves worse; and eventually its
maximum throughput lies amid the certification and the primary copy protocols.

6.2 Performance of the Recovery Protocol

No experimental results have been obtained yet for the recovery protocol; however, a theoretical justification
of the new protocol performance in terms of recovery time is provided. Figure19 represents how a failed
and later recovered node may evolve both with the certification and the deterministic recovery protocols.

50

0% update rate 10% update rate

0 50 100 150 200
0

200

400

600

800

1000

1200

TPS issued

R
es

po
ns

e
T

im
e

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

TPS issued

R
es

po
ns

e
T

im
e

25% update rate 50% update rate

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

TPS issued

R
es

po
ns

e
T

im
e

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

TPS issued

R
es

po
ns

e
T

im
e

75% update rate 100% update rate

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

TPS issued

R
es

po
ns

e
T

im
e

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

TPS issued

R
es

po
ns

e
T

im
e

Figure 17: Response time vs. TPS for several update rates

51

25 threads 50 threads

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

Read Update Rate

T
hr

ou
gh

pu
t

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

Read Update Rate

T
hr

ou
gh

pu
t

Figure 18: Maximum throughput vs. update rate

On thex-axis the elapsed time is represented, while in they-axis the log size is depicted. This figure
corresponds with the ones obtained in [47] and [51].

We suppose that the system is object of a constant load oftrs rate transactions per second and that
transactions containop write operations in average. We only consider the scenario where the system is not
saturated; hence, it can handle all the requests. In this situation, the transactions are committed at a fixed
rate and the log grows up linearly:

log sizerep(time) = trs rate · op · time (1)

At a certain moment, indicated withcrashi, processi fails. Hence, in this node the log will not vary
during the outage. When the process recovers, it is transferred the missed updates, while the system is
still object of the same workload. Since the system is not saturated, the recovering replica can commit
transactions at a higher pace than transactions are received in the system, i.e.,log sizemissed(time) >
log sizerep(time).

Once all missed transactions have committed, transactionsreceived in the meantime have also to be ap-
plied. At this point it is where the behavior differs betweenthe certification and the deterministic protocols.
While the deterministic protocol can continue committing transactions at the same rate (it has to do more
or less the same actions that when applying missed transactions), the certification protocol must previously
certify each of these transactions; therefore,log sizedet(time) > log sizecert(time). The result is that
the recovery process will end before in the case of the deterministic protocol, as it is shown in Figure19,
whereRTdet < RTcert.

52

lo
g

 s
iz

e

time

RTdet

RTcert

crash recover
i i

m
is

s
e

d
 t
ra

n
s
a

c
ti
o

n
s

certification

deterministic

Figure 19: Recovery time for processi

53

7 Conclusions

7.1 Summary

In this work, a complete database replication approach, including a recovery mechanism, has been presented
and proved correct. This proposal provides an alternative to the typical replication approaches of primary
copy and certification and is shown to be more suitable for therecovery procedure.

The deterministic protocol is an update-everywhere database replication protocol based on the send-
ing of transactions in an ordered way, which provides a special feature: multicast transactions are always
committed. This particular characteristic has two advantages for the performance of the algorithm: a) trans-
actions that are not going to succeed do not waste resources at every replica but only at their delegate one;
and b) there is no need for additional rounds in the recovery mechanism. The main drawback of this pro-
posal is that the turn mechanism can pose an increment in the latency. However, the experimental results
that have been carried out in this work show that the overheadis not too large with respect to certification
protocols. Moreover, as it will be explained in Section7.2, several strategies could be adopted in order to
increase the performance of the proposed solution.

A detailed correctness proof of the algorithm is provided inthis work. The replication protocol is proved
to be 1CSI, based on the correctness criteria proposed in [3] for the fail-stop model. In the case of executions
where the recovery of processes is allowed, we think that an extension of these criteria can be used when
considering safety. We have also proved that a process whichbegins to recover finishes that procedure if it
does not crash again and some minimal stability assumptionsare satisfied.

7.2 Future Work

In this work, a new replication and recovery solution has been presented and proven to be correct and
promising in terms of performance. However, this work has tobe continued in order to both improve the
algorithm and identify the scenarios were it fits better thanthe previous proposals.

7.2.1 Algorithm Improvements

In this section, several guidelines for the improvement of the algorithm are provided:

Primaries and secondaries:As it was described in [40], hybrid approaches with a variable number of
primary and secondary replicas may adapt themselves betterto different scenarios with higher scala-
bility requirements. The sequence of turns would only pass through the primary nodes, thus reducing
the latency of transactions. Moreover, total order and/or uniformity may be implemented in more
efficient ways taking into account the specific characteristics of the senders.

Uniform multicast: Previous versions of the protocol [31, 30, 40] used uniform reliable multicast without
ordering guarantees to send transactions. Since transactions are ordered according to their associated
turn numbers, total order would not be in principle indispensable. However, recovery complicates
the properties required to the GCS and, hence, a correctnessanalysis should have to be carried out
for this option. Moreover, differences in performance should be studied, provided that the cost of
uniformity and total order is nota priori very different.

7.2.2 Evaluation

The experiments performed so far have allowed to gain an insight into how this protocol behaves with
respect to previous database replication proposals. However, further experiments would be of great help
for a deeper comprehension of its strong and weak points. Furthermore, the expected results in terms of
performance should be contrasted with actual experiments.

Standard benchmarks: In the evaluation of the replication performance,ad hocworkloads have been used
in order to point out the differences between the protocols.However, the use of standard benchmarks,
like TPC-C or TPC-W, would be interesting in the presentation of the performance results.

54

Scalability: It would be very useful to measure the performance of the system on configurations with a
large number of replicas to determine how scalable the protocols are. It is possible that with a higher
amount of replicas the behavior of the protocols be distinct. Furthermore, protocols which behave
worse in the tests performed so far could be the best with these configurations.

Recovery evaluation: No recovery experiments have been carried out so far; hence,the recovery algorithm
should be assessed in a real environment. The evaluation study should include the following results:

• Log size vs. recovery time.

• Recovery time vs. outdatedness.

• Influence of recovery procedures in the system performance.

• Evaluation of the proposed improvements (log compaction, optimized transfer, etc).

55

Acknowledgments

This work has been supported by the Spanish Government underresearch grant TIN2009-14460-C03.

56

References

[1] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized isolation level definitions. InICDE,
pages 67–78, 2000.

[2] Yair Amir. Replication Using Group Communication Over a Partitioned Network. PhD thesis, Hebrew
University of Jerusalem, Israel, 1995.

[3] Jośe Enrique Armend́ariz-Iñigo, Jośe Raḿon Gonźalez de Mend́ıvil, Jośe Raḿon Garitagoitia, and
Francesc D. Mũnoz-Escóı. Correctness proof of a database replication protocol under the perspective
of the I/O automaton model.Acta Inf., 46(4):297–330, 2009.

[4] Jośe Enrique Armend́ariz-Iñigo, Francesc D. Mũnoz-Escóı, J. R. Júarez-Rodŕıguez, Jośe
Raḿon Gonźalez de Mend́ıvil, and Bettina Kemme. A recovery protocol for middlewarereplicated
databases providing GSI. InARES, pages 85–92. IEEE Computer Society, 2007.

[5] Özalp Babaŏglu, Alberto Bartoli, and Gianluca Dini. Enriched view synchrony: A programming
paradigm for partitionable asynchronous distributed systems. IEEE Trans. Comput., 46(6):642–658,
1997.

[6] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton,Elizabeth J. O’Neil, and Patrick E. O’Neil.
A critique of ANSI SQL isolation levels. In Michael J. Carey and Donovan A. Schneider, editors,
SIGMOD Conference, pages 1–10. ACM Press, 1995.

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[8] Michael J. Cahill, Uwe R̈ohm, and Alan D. Fekete. Serializable isolation for snapshot databases. In
SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, pages 729–738, New York, NY, USA, 2008. ACM.

[9] Michael J. Carey and Miron Livny. Conflict detection tradeoffs for replicated data.ACM Trans.
Database Syst., 16(4):703–746, 1991.

[10] Emmanuel Cecchet, George Candea, and Anastasia Ailamaki. Middleware-based database replication:
the gaps between theory and practice. InSIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 739–752, New York, NY, USA, 2008. ACM.

[11] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a com-
prehensive study.ACM Comput. Surv., 33(4):427–469, 2001.

[12] Oracle Corporation. Oracle database 11g: Oracle streams replication. 2007.

[13] Khuzaima Daudjee and Kenneth Salem. Lazy database replication with snapshot isolation. In Umesh-
war Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Ker-
sten, Sang Kyun Cha, and Young-Kuk Kim, editors,VLDB, pages 715–726. ACM, 2006.

[14] Rub́en de Juan-Marı́n, Luis Irún-Briz, and Francesc D. Muñoz-Escóı. A cost analysis of solving the
amnesia problems. InAINA Workshops, pages 230–237. IEEE Computer Society, 2009.

[15] Xavier Défago, Andŕe Schiper, and Ṕeter Urb́an. Total order broadcast and multicast algorithms:
Taxonomy and survey.ACM Computing Surveys, 36:2004, 2003.

[16] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. Database replication using generalized
snapshot isolation. InSRDS, pages 73–84. IEEE Computer Society, 2005.

[17] ESCADA. ESCADA replication server. URL:http://escada.sourceforge.net/, 2008.

[18] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil,Patrick O’Neil, and Dennis Shasha. Making
snapshot isolation serializable.ACM Trans. Database Syst., 30(2):492–528, 2005.

57

http://escada.sourceforge.net/

[19] R. Friedman and R. van Renesse. Strong and weak virtual synchrony in Horus.Reliable Distributed
Systems, IEEE Symposium on, 0:140, 1996.

[20] Jim Gray, Pat Helland, and Dennis Shasha. The dangers ofreplication and a solution. InIn Proceed-
ings of the 1996 ACM SIGMOD International Conference on Management of Data, pages 173–182,
1996.

[21] Jim Gray and Andreas Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1992.

[22] PostgreSQL Global Development Group. PostgreSQL: Theworld’s most advanced open source
database. URL:http://www.postgresql.org/, 2009.

[23] Slony Development Group. Slony-I. URL:http://www.slony.info, 2009.

[24] JoAnne Holliday. Replicated database recovery using multicast communication. InNCA ’01: Pro-
ceedings of the IEEE International Symposium on Network Computing and Applications (NCA’01),
page 104, Washington, DC, USA, 2001. IEEE Computer Society.

[25] JoAnne Holliday, Robert C. Steinke, Divyakant Agrawal, and Amr El Abbadi. Epidemic algorithms
for replicated databases.IEEE Trans. Knowl. Data Eng., 15(5):1218–1238, 2003.

[26] SyBase Inc. SyBase replication server. URL:http://www.sybase.es/products/business-
continuity/replicationserver, 2009.

[27] Emmanuel Cecchet Inria and Emmanuel Cecchet. C-jdbc: amiddleware framework for database
clustering.IEEE Data Engineering Bulletin, 27:9–18, 2004.

[28] Luis Irún-Briz, Hendrik Decker, Rub́en de Juan-Marı́n, Francisco Castro-Company, José Enrique Ar-
mend́ariz-Iñigo, and Francesc D. Muñoz-Escóı. MADIS: A slim middleware for database replication.
In Jośe C. Cunha and Pedro D. Medeiros, editors,Euro-Par, volume 3648 ofLecture Notes in Com-
puter Science, pages 349–359. Springer, 2005.

[29] R. Jiḿenez-Peris, M. Patiño-Mart́ınez, and G. Alonso. Non-intrusive, parallel recovery of replicated
data.Reliable Distributed Systems, IEEE Symposium on, 0:150, 2002.

[30] J. R. Júarez-Rodŕıguez, Jośe Enrique Armend́ariz-Iñigo, Jośe Raḿon Gonźalez de Mend́ıvil, and
Francesc D. Mũnoz-Escóı. A database replication protocol where multicast writesets are always com-
mitted. InARES, pages 120–127. IEEE Computer Society, 2008.

[31] J. R. Júarez-Rodŕıguez, Jośe Enrique Armend́ariz-Iñigo, Francesc D. Mũnoz-Escóı, Jośe
Raḿon Gonźalez de Mend́ıvil, and Jośe Raḿon Garitagoitia. A deterministic database replication
protocol where multicast writesets never get aborted. In Robert Meersman, Zahir Tari, and Pilar Her-
rero, editors,OTM Workshops (1), volume 4805 ofLecture Notes in Computer Science, pages 1–2.
Springer, 2007.

[32] Bettina Kemme.Database Replication for Clusters of Workstations. PhD thesis, ETH Zurich, De-
partement of Computer Science, Switzerland, 2000.

[33] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-R, a new way to imple-
ment database replication. In Amr El Abbadi, Michael L. Brodie, Sharma Chakravarthy, Umeshwar
Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young Whang,editors,VLDB, pages 134–143. Mor-
gan Kaufmann, 2000.

[34] Bettina Kemme and Gustavo Alonso. A new approach to developing and implementing eager database
replication protocols.ACM Trans. Database Syst., 25(3):333–379, 2000.

[35] Bettina Kemme, Alberto Bartoli, and̈Ozalp Babaoglu. Online reconfiguration in replicated databases
based on group communication. InDSN ’01: Proceedings of the 2001 International Conference on
Dependable Systems and Networks (formerly: FTCS), pages 117–130, Washington, DC, USA, 2001.
IEEE Computer Society.

58

http://www.postgresql.org/
http://www.slony.info
http://www.sybase.es/products/business-
continuity/replicationserver

[36] Bettina Kemme, Fernando Pedone, Gustavo Alonso, André Schiper, and Matthias Wiesmann. Us-
ing optimistic atomic broadcast in transaction processingsystems.IEEE Trans. Knowl. Data Eng.,
15(4):1018–1032, 2003.

[37] WeiBin Liang and Bettina Kemme. Online recovery in cluster databases. In Alfons Kemper, Patrick
Valduriez, Noureddine Mouaddib, Jens Teubner, Mokrane Bouzeghoub, Volker Markl, Laurent Amsa-
leg, and Ioana Manolescu, editors,EDBT, volume 261 ofACM International Conference Proceeding
Series, pages 121–132. ACM, 2008.

[38] Yi Lin, Bettina Kemme, Ricardo Jiḿenez-Peris, Marta Patiño-Mart́ınez, and Jośe Enrique Ar-
mend́ariz-Iñigo. Snapshot isolation and integrity constraints in replicated databases.ACM Trans.
Database Syst., 34(2):1–49, 2009.

[39] Yi Lin, Bettina Kemme, Marta Patiño-Mart́ınez, and Ricardo Jiḿenez-Peris. Middleware based data
replication providing snapshot isolation. In FatmaÖzcan, editor,SIGMOD Conference, pages 419–
430. ACM, 2005.

[40] M. Liroz-Gistau, J. R. Júarez-Rodŕıguez, Jośe Enrique Armend́ariz-Iñigo, Jośe Raḿon Gonźalez
de Mend́ıvil, and Francesc D. Mũnoz-Escóı. On extending the primary-copy database replication
paradigm. In Boris Shishkov, José Cordeiro, and Alpesh Ranchordas, editors,ICSOFT (2), pages
99–106. INSTICC Press, 2009.

[41] Francesc D. Mũnoz-Escóı, Jeŕonimo Pla-Civera, Marı́a Idoia Ruiz-Fuertes, Luis Irún-Briz, Hendrik
Decker, Jośe Enrique Armend́ariz-Iñigo, and Jośe Raḿon Gonźalez de Mend́ıvil. Managing transac-
tion conflicts in middleware-based database replication architectures. InSRDS, pages 401–410. IEEE
Computer Society, 2006.

[42] MySQL. MySQL 6.0 Reference Manual, 2009.

[43] University of Minho. GORDA - open replication for databases. URL:
http://gorda.di.uminho.pt/, 2009.

[44] University of Minho. PostgreSQL/G - implementation ofthe GORDA interface in PostgreSQL. URL:
http://gorda.di.uminho.pt/community/pgsqlg/, 2009.

[45] Marta Patĩno-Mart́ınez, Ricardo Jiḿenez-Peris, Bettina Kemme, and Gustavo Alonso. MIDDLE-R:
Consistent database replication at the middleware level.ACM Trans. Comput. Syst., 23(4):375–423,
2005.

[46] Christian Plattner, Gustavo Alonso, and M. TamerÖzsu. Extending DBMSs with satellite databases.
VLDB J., 17(4):657–682, 2008.

[47] Maŕıa Idoia Ruiz-Fuertes, Jerónimo Pla-Civera, José Enrique Armend́ariz-Iñigo, Jośe
Raḿon Gonźalez de Mend́ıvil, and Francesc D. Mũnoz-Escóı. Revisiting certification-based
replicated database recovery. In Robert Meersman and ZahirTari, editors,OTM Conferences (1),
volume 4803 ofLecture Notes in Computer Science, pages 489–504. Springer, 2007.

[48] Rául Salinas-Monteagudo and Francesc D. Munoz-Escoi. Almosttriggerless writeset extraction in
multiversioned databases. InDEPEND ’09: Proceedings of the 2009 Second International Conference
on Dependability, pages 136–142, Washington, DC, USA, 2009. IEEE Computer Society.

[49] A. Udaya Shankar. An introduction to assertional reasoning for concurrent systems.ACM Comput.
Surv., 25(3):225–262, 1993.

[50] TPC. Transaction processing performance council. URL: http://www.tpc.org, 2008.

[51] Ricardo Manuel Pereira Vilaca, José Orlando Pereira, Rui Carlos Oliveira, José Enrique Armendariz-
Inigo, and Jośe Raḿon Gonźalez de Mendivil. On the cost of database clusters reconfiguration. In
SRDS ’09: Proceedings of the 2009 28th IEEE International Symposium on Reliable Distributed
Systems, pages 259–267, Washington, DC, USA, 2009. IEEE Computer Society.

59

http://gorda.di.uminho.pt/
http://gorda.di.uminho.pt/community/pgsqlg/
http://www.tpc.org

[52] Matthias Wiesmann and André Schiper. Comparison of database replication techniques based on total
order broadcast.IEEE Trans. Knowl. Data Eng., 17(4):551–566, 2005.

[53] Shuqing Wu and Bettina Kemme. Postgres-R(SI): Combining replica control with concurrency control
based on snapshot isolation. InICDE, pages 422–433. IEEE-CS, 2005.

60

	Introduction
	Background
	Contributions
	Outline

	Database Replication and Recovery
	Introduction
	Consistency
	Isolation Levels
	Replicated Databases
	Correctness

	Replication Protocols
	Taxonomy
	Putting All Together
	Primary Copy Protocols
	Certification Protocols
	Our Replication Proposal

	Recovery Protocols
	General Ideas
	Online Recovery Protocols
	Our Recovery Proposal

	System Model
	Architecture
	Formalization
	State Transition Systems
	Component Interaction
	Assumptions About The Environment

	Group Communication System
	Introduction
	Signature
	Membership Service
	Communication Service

	Point-to-Point Communication System
	Extended Database System

	Algorithm
	Algorithm Overview
	State Variables
	Signature
	Start Event
	Input events
	Replication Events
	View Management Events
	Recovery Events

	Improvements
	Implementation Issues

	Correctness Proof
	Preliminary Definitions
	Turn Management
	Safety Properties
	Liveness Properties

	Replication Algorithm Correctness
	Safety Properties
	Liveness Properties
	Correctness Criteria

	Recovery Algorithm Correctness
	Safety Properties
	Liveness Properties

	Performance
	Performance of the Replication Protocol
	Experimental Environment
	Workload
	Results

	Performance of the Recovery Protocol

	Conclusions
	Summary
	Future Work
	Algorithm Improvements
	Evaluation

