A Database Replication Protocol with a Straightforward
Recovery Synchronization.
Specification and Correctness Proof.

M. Liroz-Gistau, J.E. Armenatiz-Ifigo, J.R. Jarez-Rodiguez,
J.R. Gonalez de Mentlil, F.D. Mufioz-Escd

Instituto Tecnobgico de Infornatica - Universidad Pokltcnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

m guel .l iroz@navarra. es

Technical Report TR-ITI-SIDI-2010/003

TR-ITI-SIDI-2010/003

A Database Replication Protocol with a Straightforward Beery Synchronization.

M. Liroz-Gistau et al.:

A Database Replication Protocol with a
Straightforward Recovery Synchronization. Specification
and Correctness Proof.

M. Liroz-Gistau, J.E. Armenatiz-liiigo, J.R. Jarez-Rodiguez,
J.R. Gonalez de Mentil, F.D. Mufoz-Esco

Instituto Tecnabgico de Infornatica - Universidad Polcnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

Technical Report TR-ITI-SIDI-2010/003

e-mail:m guel . i roz@mnavarra. es

Abstract

Database replication has been proposed as a solution to achieve bodséwcperformance and high
availability in database systems. To that end, numerous replication piotomee been studied so far.
Nevertheless, only a few have considered scenarios where pesassboth crash and recover.

Among the replication protocols, primary copy and certification are theoagpes which have re-
ceived more attention in the literature. The suitability of a particular optionripen the application
workload and on which aspect is a priority for the system: scalability arfdipeance or high availability.

Recovery proposals have been associated traditionally with certificatsed @otocols and take
advantage of the properties provided by the group communication systetnas virtual synchrony. The
task is simple: transferring the state missed during the outage of faileda®pltowever, performing
such procedure while serving clients is a challenge, which sometimeseaspecial strategies, such as
the use of rounds or compaction, in order to obtain acceptable perioasa

In this context, a new replication protocol has been proposed, forrdadizeé proven correct. This
protocol shares characteristics of both certification and primary copsoaches and features a behavior
particularly suitable for recovery procedures.

The replication algorithm is an update-everywhere protocol based @eiiting of transactions in an
ordered way, which ensures that multicast transactions are alwaysitied. This feature is exploited by
the recovery mechanism, which does not need to use additional rouordier to accelerate the recovery
procedure.

Contents

1

Introduction 6
1.1 Background. 6
1.2 Contributions. e 6
1.3 0utline e 7
Database Replication and Recovery 8
2.1 Introduction. e 8
2.2 CONSISIENCY. o e 8
2.2.1 lIsolationLevels 8
2.2.2 ReplicatedDatabases 9
223 COIrectnesSS o o e 9
2.3 Replication Protocols 10
2.3 1 Taxonomy e e e e 10
2.3.2 Putting All Together. 10
2.3.3 Primary CopyProtocols 11
2.3.4 Certification Protocols 11
2.3.5 OurReplication Proposal. 11
2.4 Recovery Protocols 12
241 Generalldeas. e 12
2.4.2 Online Recovery Protocols. 12
243 OurRecoveryProposal. 13
System Model 14
3.1 Architecture. 14
3.2 Formalization. 14
3.2.1 State Transition Systems. 14
3.2.2 Componentlinteraction. 15
3.2.3 Assumptions About The Environment. 16
3.3 Group Communication System. e 16
3.3.1 Introduction 16
3.3.2 Signature. 16
3.3.3 Membership Service 17
3.3.4 Communication Service 20
3.4 Point-to-Point Communication System o 20
3.5 Extended Database System 21
Algorithm 24
4.1 Algorithm OVerview e 24
4.2 State Variables. e 24
4.3 Signature 25
431 StartEvent. 27
4.3.2 Inputevents 27
4.3.3 ReplicationEvents 27
4.3.4 View ManagementEvents 31
435 RecoveryEvents 32
4.4 IMProvements e 35
4.5 ImplementationIssues L 35

5 Correctness Proof

51
5.2

5.3

54

Preliminary Definitions.
Turn Management. L e
5.2.1 Safety Properties
5.2.2 Liveness Properties.
Replication Algorithm Correctness.
5.3.1 Safety Properties
5.3.2 Liveness Properties. e
5.3.3 Correctness Criteria.
Recovery Algorithm Correctness.
5.4.1 Safety Properties
5.4.2 Liveness Properties. e

6 Performance

6.1

6.2

Performance of the Replication Protocol
6.1.1 Experimental Environment. o
6.1.2 Workload.
6.1.3 Results.
Performance of the Recovery Protocol

7 Conclusions

7.1
7.2

SUMMANY o e
Future Work. e
7.2.1 Algorithm Improvements
7.2.2 Evaluation

List of Figures

O©CoOoO~NOULS, WNPE

System architecture L e 14
GCSssignature 17
Scenario prevented by virtual synchrony. o o oL 18

Scenario delaying aview change forever L. 19

Scenario prevented by TO2. 21
Example of totalorder. 21
PTP Communication System signature 21

EDB; signature 22
Algorithm signature e 26
Startevent 27
Inputevents. e 28
Replicationevents. e 28
Replication algorithmexample 30
View management eVents. 31
System states at procass 32
Recovery events e e 33
Response time vs. TPS for several updaterates. 51

Maximum throughput vs. updaterate 52

Recoverytime forprocesgs 53

List of Tables

Protocol classification
State variables and initial values forprocgss oL
Fixed parameter for protocols comparison
Factors for protocols comparisan. L L

A WN PP

1 Introduction

1.1 Background

Database replication has become very attractive due to@adsing demand for storage systems which
require both good performance and high availability evetha presence of faults. Good performance
manifests on the ability of systems to provide short respdimees to client requests and higher global
throughputs, even if the system is accessed simultanebyslygreat number of users. On the other hand,
high availability implies that the systems are able to smr¥he requests during a high percentage of time,
even if some components of the system fail.

Nevertheless, replication introduces the problem of kegpil the copies of information consistent, so
that the user has the impression of being served by a norrstdray To that end, replication protocols
synchronize the replicas by propagating changes made ic@neto the other copies. This matter has
received a great attention in the last years and, as a rasulige variety of replication techniques has been
developed.

Most of the proposals have focused on the performance aspeslication, sometimes ignoring some
of the challenges that failures can pose to the system. Téslplity of a replica failure is generally ad-
dressed by these proposals; nevertheless, the reconrmettioch failed replicas has received less attention
in the literature. However, this is an essential task in orodensure high availability and implies the design
of mechanisms that allow the reconnecting replicas to recthe state missed during their outage. These
techniques have usually been known as recovery mechanisms.

In general terms, a double classification is made on thecagin protocols. With regard to where
updates are carried out, we distinguish betwgemary copyprotocols §6], which perform all the update
transactions in the same replica, called the masteruaddte everywherprotocols B2, 16|, which allow
clients to perform updates on any copy. The former ones’taymgzation is performed in an straightfor-
ward way, propagating master updates to the secondargasplihe latter ones have to take into account
other issues, such as conflicts between transactions, éuharre flexible and (supposedly) obtain better
performance since, in primary copy replication, the masgplica may be a bottleneck and a single point
of failure.

With regard to when synchronization is done, there are agarapproaches, nameéagerandlazy
[20, 33]. The former perform the synchronization within transactboundaries; the latter propagates
changes after the client receives the transaction comrageEprotocols achieve consistency requirements
as part of their normal execution but introduce a highenlatewhilst lazy ones may lead to inconsistencies,
which have to be resolved later.

Group communication systems have provided a very useftiaadti®on to be employed when designing
update-everywhere replication protocols. As a conseqehe latest proposals have been built on top of
these systems. One of the approaches which have proven affigéncy in dealing with all the require-
ments is certificationd3, 39, 16, 41]. However, this approach has been accused of lack of stigfakhen
compared to other simpler approaches like primary copyopas, which can obtain better performance at
the cost of consistency and durability.

In this context, a new replication protocol has been propofermalized and proven correct. This
protocol shares characteristics of both update-everysvhad primary copy approaches and features a
behavior specially suitable for recovery procedures.

1.2 Contributions

This work presents an eager update-everywhere replicgtiotocol along with its associated recovery
mechanism, which we calleterministic protocolThese are the tasks accomplished in this paper:

e A new replication protocol is presented in a formal way. Tnigtocol exhibits a mechanism which
recalls both certification and primary copy approachesnts feature is that multicast transactions
are never aborted.

e Arecovery mechanism is designed to be included alongsalesihlication protocol.

e A correctness proof is given both for the replication andvecy protocols, based on the properties
provided by the communication and database system andrcassumptions about the stability of
the processes. The correctness criteria proposed] enpure that the protocol satisfies 1C39]

e The replication protocol has been implemented and compaitidcertification and primary copy
implementations. It is shown that its performance lies doaith approaches.

e The recovery mechanism’s performance is predicted to lertbtin the typical approaches followed
for certification protocols.

e A set of guidelines are provided to improve the proposedjetin the future.

1.3 Outline

The rest of the paper is structured as follows. In Secfdhe main concepts of database replication
and recovery are provided and the most important relatef pr@sented. Sectio®formalizes the system
where our algorithm will be deployed, specifying the neaegproperties of the modules that it uses. Then,
in Section4, the replication and recovery protocols are specified apth@ed in detail, and, in Sectid)

their correctness proof is provided. Sect®presents a preliminary performance analysis. In the case of
the replication protocol, an experimental comparison wéttification and primary copy implementations
is made. In the case of the recovery algorithm, a theorejistification is provided. Finally, Section
sums up the content of the document and includes some queddbr the future development of this work.

2 Database Replication and Recovery

This section explains the main concepts of database réiplicand recovery and presents the correctness
criteria to be followed in this work. The goal is to pinpoinhere among all the previous related works
the proposed algorithms fit, in order to identify their cdmitions and improvements. In Secti@rl, the
basic ideas and motivation for database replication arerifbes! and the necessity of recovery mechanisms
revealed. SectioB.2exposes the main consistency models used in the literaiudafabase replication and
introduces the correctness criteria to be used in the priaiegpresented algorithms. Finally, Secti¢h3

and 2.4 describe the basic ideas and proposal of both databaseatiph and recovery and situate our
algorithm in relation to other works.

2.1 Introduction

Database replication consists in keeping multiple copfegata items in different physical locations, so
called replicas, by means of a replicated database manageystem. The motivation is twofold: on
the one hand, since data is stored in more than one physiatida, better fault tolerance is achieved,
leading to high available systems; on the other hand, thempeance can be improved as more resources
are used to perform the requests, which entails lower ressptmes and higher throughputs. Two research
communities have made great efforts to achieve them, baitfeaasing on one of the aspects. The database
community has concentrated on improving the performantereas the distributed system community’s
main objective has been to provide high availability. Thas hesulted in a huge number of solutions, each
one fulfilling a particular set of requirements.

The main issue to deal with in database replication is ctersty. From the user’s point of view, the
system should behave as if it were a single non-replicatéabdae. This implies that transactions that
modify one replica’s data should be reflected on the othdns.fission of a replicated protocol is to keep
replicas consistent by doing so. But things are not so sinipd¢abase consistency is tightly related to the
isolation provided in the system and the former has been ledde many different ways in the literature.
Such variations affect greatly the way in which the replaaprotocols are designed.

Although database replication has received much atteirtitre research community, recovery mecha-
nisms are indispensable to actually achieve high avaitabilhey include both the reincorporation of failed
replicas and the joining of new replicas to the system.

2.2 Consistency

A database management system must guarantee all the ACpenties P1] for each database transaction,
i.e., atomicity, consistency, isolation and durabilityor@istency simply ensures that transactions take the
database from a consistent state to another consisteat statvever, when applying transactions concur-
rently it is not a property easy to maintain and isolationreetn transactions has to be enforced. At this
point is where things complicate, since several distiraaison levels are defined.

2.2.1 Isolation Levels

Isolation is the property which specifies how and when changgde by operations in the database become
visible to other concurrent operations. In the ideal casersiinteract with the database in a serial man-
ner, i.e. only one user at a time can perform a transactiohardatabase. This ensures that a particular
transaction is not affected by the execution of other tretisas; thus, isolation is trivially maintained. Un-
fortunately, this has a great limitation in terms of perfamoe. This situation has led to the appearance of a
great variety of isolation levels, which differ in the lewdlconcurrency allowed and the possible anomalies
that can ariseq].

Serializability[7] is the strongest consistency criterion and avoids alliptesanomalies. An execution
is said to be serializable if it produces the same output asdhie same effect on the database as some serial
execution. Hence, it has been the preferred consisteneyion for a long time. However, more and more
commercial database systems (e.g. Oracle, PostgreSQMiarasoft SQL Server) have adopt&thapshot

Isolation (SI) [6] as the preferred isolation level, though it may generate-serializable execution$].
Even in some cases serializability is not supported.

Transactions executed under S| appear to operate on a pecamy of the database (snapshot), taken
at their beginning. They read data only from that snapshdttheir own writes, so that read operations
are never blocked. When two concurrent transactions molaégame data, only one of them is allowed to
commit, whereas the other has to abort. Depending on thethdeeriterion to decide which one survives
differs: with thefirst-committer-winsule, the first one to request the commit is the one which gasyiwith
thefirst-updater-wingule, it is the first one writing a common item. Actually, thecend criterion is the
one used in all the commercial systems, since it can be exdaasily by using locks for write operations.
In any case, compared to serializability, S| does not avweavrite skewanomaly B] but, on the other hand,
read operations are never blocked and read-only transadi® never aborted.

There are some works which have related Sl with serializdfde instance,]8] provides a set of tools
to transform a database application so that, when runninpmof a database system providing Sl, only
serializable executions are produced. In relation with, tf& shows how Sl concurrency control can be
extended within the database kernel to enforce serializaini an efficient way.

2.2.2 Replicated Databases

In the design of a replicated database system, the aim idodil aspects of data replication from the
user. Hence, the replicated database should behave aifatarsingle database system managing all user
transactions. In this way, when considering serializghifin extended criterion has been proposed, called
one-copy serializablELCS) [7]. It ensures that the interleaved execution of all trarisastin the replicated
system is equivalent to a serial execution of those traimsecon a single database.

With the popularity of SI, an analogous extension was alswickeredone-copy S(1CSI) [39]. The
problem is that, in a replicated database, it is difficultlbdéain the last snapshot of the system, provided that
transactions are applied asynchronously at the diffeeglicas. 6] showed that this can not be achieved
without blocking transactions at their beginning. Hencealter models have been considered. 1],[a
generalization of Sl is presented, call@éneralized Snapshot Isolatig@Sl). In this model, a transaction
is allowed to read from older snapshots, which is equivalerdrtificially setting the start point of the
transaction in the past. A similar concept was also defindd3has weak Sl Although from the client
point of view, these approaches offer a different visionhaf tlatabase than 1CSl, if we consider only the
history of transactions, the behaviors are equivalent.

2.2.3 Correctness

As it has been said before, replication protocols are resplnof maintaining the consistency among the
different replicas of the system. They are usually specdigtitheir correctness proofs given in an informal
way [39, 41, 13, 46, 34, 36, 45, 25]. In order to overcome these situations, some correctriéssia have
been defined so that if a protocol satisfies them, a 1CSI| beh&viensured. These criteria are usually
formulated in terms of sufficient and necessary conditions.

In this work we are going to adopt the criteria proposedirs[nce our model is similar to the one used
in that work. For a replication protocol to be 1CSl it has tbsfg:

e Well-Formedness Conditionshe local behavior of each database replica must be respatthe
system.

o Prefix Order Database Consistencyhe same snapshots must be generated in the system ane, henc
transactions must be committed in the same order in allaapli

e Uniform Termination the decision about a transaction is the same at all replicas
e Local Transaction Progresd ocal progress of transactions must be preserved at ¢oaplicas.

Other works modeling correctness criteria includé][which definePrefix-Consistent-Sand 8],
which is based on th&eneral Isolation Definitioril] to reason about the criteria.

Primary Copy Update-everywhere

Eager | I

Lazy Il v

Table 1: Protocol classification

2.3 Replication Protocols
2.3.1 Taxonomy

A typical classification of database replication protodsisnade in relation to the execution of update
transactionsZQ]. If we take into account where update transactions areutgdctwo approaches can be
differentiated: primary copy and update everywhere. Iffr@ncontrary, we look at when modifications are
propagated to the rest of the replicas, we have again twalplitsss: eager and lazy protocols.

Primary Copy vs. Update Everywhere

In the case oprimary copyreplication, all update transactions are executed in thresserver, which is
called the master. Modifications are propagated to the féiseaeplicas, which are called secondaries. The
secondaries act as back-ups and may execute read-onlgdtimms [L3, 46]. Conflicts between transactions
are handled by the DBMS itself, and the protocol has only tayvabout how to maintain the secondaries
up-to-date. However, the master represents a single pbfatlore and mechanisms have to be designed
to deal with this situation, e.g., promoting a secondary &ster. Moreover, performance problems might
arise if the workload is update-intensive, since all updegasactions are performed in the same replica,
and it could become a bottleneck.

Update everywhergrotocols are more flexible, since update transactions eapebformed in any
replica. Moreover, the failure of any replica is overcomsilga since the replicas are indistinguishable,
clients can be forwarded to another available replica. Nbetess, data consistency has to be handled
globally and protocols are more complex. In this case, parémce might be improved even in the case of
update-intensive workloads, although writesets stillh@vbe applied in all the replicas.

Eager vs. Lazy

Eagerprotocols propagate changes within the boundaries of #msaction, i.e. before the commit is
reported to the client. In such situation, when the clieneiges a successful commit reply, it knowns that
the changes in the database are going to be reflected in tive fut

On the contrarylazy protocols allow the changes to be propagated after the cobrapiy is sent to the
client. If there is a conflict and it is detected after the mes®, one of the transactions involved may be
aborted and the client may not be aware of that situation.iddisly, lazy protocols achieve better perfor-
mance, since the commit response does not need to wait foorifirmation in other replicas. However,
since replicas may diverge in their states, a reconciligtimcess has to take place, and this is a difficult
problem to deal with.

It is worth to be noted that the distinction between eagerlany protocols is not equivalent to the
one made between synchronous and asynchronous protogoishr8nous protocols do not sent back the
commit response until the commit is performed on every cepliOn the other hand, eager protocols can
sent back this reply as soon as they know that the commit wifpérformed on every non-failing replica,
which takes less time. Every synchronous protocol is edggrthe opposite is not necessarily true. The
same differentiation can be made between asynchronousaygiotocols.

2.3.2 Putting All Together

By combining the two mentioned classifications, four difierprotocols can be differentiated, as shown in
Tablel1. The ideal system would be one of type Il since it provides imaxn flexibility and correctness
guarantees, but systems of that kind are usually considereltain poorer results regarding performance
and scalability. In fact, commercial solutions usuallydsn primary copy or lazy update-everywhere
protocols fi2, 23, 26, 12).

10

Taking into account only the four subsets depicted in Tdkik however, a narrow-minded approach.
We think that the limits between these types of protocolsfazey by nature and better results can be
obtained having this idea in mind when designing new onegadt) the workload will determine which
protocol type is the best for each situation. Hence, it wanddnteresting to develop protocols which adapt
themselves in order to achieve better performance.

2.3.3 Primary Copy Protocols

The primary copy approach is the easiest protocol to impttraad to tune. For this reason, a primary
copy replication protocol has been developed for pradyi@lery commercial solution, e.g. Slony23
(PostgreSQL), MySQL Replicatio®] or SyBase Replication Serve?§], even though there is a great
variability among implementations. The research comnyuméis not paid so much attention to primary
copy, except for new non-standard contributions to thequalt[46, 13, 16].

All solutions share one feature: there is an special repliefled the master, which is in charge of
executing all the update transactions. The rest of theaaphre used as back-ups, and usually can perform
read-only transactions. Both eager and lazy approachesads even though there exist some systems that
implement intermediate solutiond€]. As far as transparency is concerned, distinctions camtssmade.

In general, clients have to be aware of which replica is thsteraand which are the secondaries, in order to
direct transactions correctly. Nevertheless, some swistsolve this problem by means of a schedulé}, [
which decides which replica has to execute each transaction

2.3.4 Certification Protocols

Among the eager update-everywhere protoc)®] 16, 39, 41, 34, 53, 36, 45, 25], those based on group
communication system4] have been the most widely used. They typically rely on a ticaat primitive
calledatomicor total order broadcast15], which ensures that messages are delivered reliably atigein
same order in all replicas. Protocols using this primitieg@drbeen proved to obtain better performance
results p2] than those based on distributed locking and, moreovegasg to develop.

Certification protocols, which only exchange one messagé@easaction,$3, 39, 16, 41] are the ones
which obtain better result&p]. They decide whether a transaction can commit or must beteddy
means of a deterministic certification test performed omeaplica. Transactions are executed undeéea
ferred update techniqueach transaction is executed locally at the delegateceeplid when its commit is
requested, itarriteset(the set of modified items and their new values) is total-obleadcast to all replicas
(including the delegate). When delivered, it is compareth wie previously committed transactions, which
are stored on a log. To be accepted for commit, it has to gatiset of rules (certification test). Then, the
writeset has to be applied and committed at the remote eephiehile at the delegate replica it is straightly
committed. If the certification test is not passed, the @atisn must be aborted on the delegate replica,
and discarded on the rest.

The certification test for a given transactionnder GSI or 1CSI checks whether in the interval between
its snapshot time and its certification, a transaction mgitn object that also writes has committed. If
such transaction exists has to be aborted; otherwisgis allowed to commit. In order to implement this
procedure, a log of committed transactions has to be magdai That is one of the weak points of the
certification protocols, since its size could increasefimitely. If a transaction with a very old snapshot is
delivered, the log has to contain all the committed trarigastsince when the snapshot was taken in order
to perform the certification test correctly and that coulgresent a great amount of information.

Finally, another drawback of certification protocols is tiee of the total order broadcast, which is
expensive in terms of latency and can pose some limitatiotise scalability of the systerd§).

2.3.5 Our Replication Proposal

The deterministic protocoB[L, 30, 40] lies amid certification and primary copy protocols. It is@mdate-
everywhere replication protocol where transactions artfieel’ in turns depending on their delegate. This

INote that this certification is not exactly the same as the ortied certification protocols. In the algorithm descriptibwill be
explained in more detail.

11

establishes a total order of transactions, but may be sesewel, as a rotating primary copy protocol,
since at each time, only the transactions of the replica eha® is active can be marked for commitment.
Further details can be found in Sectidn

In comparison with primary copy protocols, it solves thelppeons related with site failures and does
not have a bottleneck for update transactions. In compaxisth certification, it does not need to use total
order (although if recovery is implemented uniformifyl] is required), and does not need to store such
a large log. Moreover, it can be easily extended to hybridigarations with both several primaries and
secondaries.

The main handicap of this proposal is that, since replicae tmwait for their turns, the slowest replica
(in terms of communications) can pose a delay in the turruldton, which may cause more aborts.

2.4 Recovery Protocols
2.4.1 General Ideas

As it has been said before, recovery is an indispensablettapkovide high availability in a database
system. Few attention has been paid to that problem in cosgpeto database replication, but still several
ideas have been proposeb] 24, 29, 4, 47, 37, 51].

In a replicated system, the recovery process is dividedtimtosteps. Upon restart of a failed replica,
the database has to be taken to a consistent state. Thispliedenow asocal recoveryand is carried out
by redoing some transactions committed before the crastuadding the transactions that were aborted
or active at the time of the failuré’[21]. This procedure is the same as the one used when dealing with
single databases; hence, no attention will be paid to iterAfical recovery, a new process, caltgdbal or
distributed recoveryis performed. Its goal is to provide the joining node (eithdailed or a new one) the
current state of the database. This is the stage that iestirihis work.

First replication proposals treated tangentially the vecp mechanisms. Some of them proposétine
proceduresd], i.e., when the recovering of a replica is taking place mms$actions can be processed in
the system. These kind of systems also fail to provide higilability; thus, better mechanisms have to
be used. Online recovery overcomes these limitations by performing thevery of replicas while the
system is executing client operations. However, the smigtiare more complicated, mainly because a
synchronization has to be made so that the recovering esplian incorporate to the normal processing of
transactions with the replication protocol.

In any case, the recovering replica has to receive the nageisormation to reach the state of the other
nodes. To achieve that, two approaches can be taken: trefdara the whole database state, known as
total recovery or the transfer only of the changes that the recoveringa@plas missed during its outage,
which is calledpartial recovery In general, if the database is small or the joining replias ibeen down for
a long time, the total recovery mechanism outperforms thiggb@ane. Conversely, if the database size is
large or the recovering replica has been down for a shorogerfitime, the partial mechanism is preferred.
Finally, when a new replica joins the system, only the ta¢abivery approach can be used.

2.4.2 Online Recovery Protocols

One of the firsts works dealing with online database recowexy [35]. It proposed several recovery tech-
nigues, which have been explored and refined afterwardssdloéons are aimed for replication protocols
based on group communication systerh and use the virtual synchrony property: when a node rejoins
the system, a view change is triggered where the new repéilcmgs to the group. It considers both total
and partial recovery solutions and reasons about the dititatif each option. Moreover, it refines the
partial recovery solution and proposes to transfer onlyldbest data item version, for which a special log
has to be maintained. When analyzed, a problem is noticetle ifdcovery takes a long time, the joining
replica may not be able to store all transactions deliverethd data transfer or to apply them fast enough
to catch up with the rest of the system. To overcome this prabthe utilization of rounds is proposed.
The transfer is split into several stages, each respongititansferring the transactions delivered during
the previous phase.

In parallel, R4] proposed a recovery algorithm for different versions of-@opy serializable replication
protocols. In this case, the messages and view changesmeliat correct replicas are stored in a log. As

12

it would be pointed out afterwards, this solution suffefirthe amnesia problemi4]: a replica may have
delivered a transaction but crashed just before its chawges applied; hence, it is not easy to determine
from which transaction a replica must recover only taking eccount the set of delivered messages.

Based on 35], other works proposed recovery algorithms for differeimids of replication protocols.

In [29], a solution is proposed for a replication protocol baseconflict classes that ensures 1GH)[
A correctness proof is provided, although it is not studiedrieat detail. In the same wa] [proposed a
general solution for 1CSI and provided an outline of a cdness proof.

In [35], it was already pointed out that the usage of enriched vigwelsrony B] could overcome the
problems associated with cascading reconfigurationscbatinued failures of the recoverer process. In
this way, a primary subview was defined, which includes @lgites which can process transactions. Only
processes belonging to this subview can act as recoverefg9|l enriched view synchrony is also used;
however, up to our knowledge, their model does not corredpam have a direct translation to the work
where enriched view synchrony was proposgd [nstead of using structural information of the view, the
joining nodes are provided with the state of processesblasebefore the view change, which simplifies
greatly the recovery process.

All the works considered so far do not include any perfornesaugalysis of the recovery proposals. In
[47], a first evaluation of some of the previously mentioned teghes is provided. In particular, different
improvements to the main ideas are evaluated. It is showtrutiag two rounds in the transfer procedure
the recovery time is reduced. Moreover, a case is preserttedewif rounds are not used, the recovery
procedure never ends. The other proposed improvementsambiiie information to be sent, so that only
the last version of each item is sent. It is shown that thisanbment also diminishes recovery time.

In [37], a hybrid recovery protocol is presented and evaluateavotks on top of Postgres-B§], a
replication protocol providing Sl. The recovery protocelexts whether to use total or partial replication
by an estimation of the cost that would take each approacthelevaluation, they determine when to use
each strategy.

Finally, [51] performs an extensive evaluation of the previously exgditechniques but with large
databases (on the order of 2GB) and standard benchmarks\(@Bad TPC-C $0]). In the survey, the
number of transfer rounds, the participation of more thamrecoverer per recovery process and the control
and reduction of the system throughput are studied. It islodied that none of these parameters except in
one case affect the recovery time. This case correspondie tiase of one transfer round vs. two or more
rounds. With two rounds, the recovery time is reduced; h@wehe inclusion of more rounds has not a
great impact on the recovery procedure.

2.4.3 Our Recovery Proposal

The deterministic protocol that we propose has a partidelature which makes it specially suitable for
recovery: transactions which have been multicast are redwented. Hence, transactions received during
the transfer and application of the missed updates only teeve directly applied. This avoids the necessity
of additional rounds of messages. Moreover, missed tréingacare stored previously to their commit in
the same way as normal replication transactions. Thus,alhttee missed transactions have been received,
they can be combined in a single queue and the replicatiotogybcan take full responsibility of the
execution, which simplifies the synchronization process.

13

Communication modules

'R&Ry| + « . [R&R,

EDB,| . . . |EDB,

Figure 1: System architecture

3 System Model

This section formalizes the environment where the propedgarithms have been developed. Firstly, in
Section3.1, an outline of the system architecture is provided. Theafohmal framework used to specify
the algorithms is described. Finally, Sectid@8, 3.4 and3.5include the formal properties of the group
communication, point-to-point communication and extehdatabase systems, respectively.

3.1 Architecture

The system consists of a fully replicated database systpposting the crash-recovery model. Its architec-
ture is depicted in Figurg. It consists of a set of replicas, each one holding a localete system (EQB
and a replication and recovery process (R&R), which comoairivia message exchange.

LetII = {p1,...,pn} be the set o processes. We assume that there is an initial subset ofgzese
which are initially running, sayl;,;: C II. Processes not included in this set may join the system glurin
normal operation. Moreover, processes may unexpecteath@nd may also recover and rejoin the system.

Processes communicate with each other by means of messawmge through asynchronous quasi-
reliable channels. This exchange can take place in two waysieans of a view-oriented group communi-
cation system (GCS)[] or via point-to-point channels. The former provides bothlticast delivery and
membership primitives, while the latter provides unicasdivéry primitives.

The database at each replica is handled by an extended sasstem (EDB), which provides transac-
tional behavior implementing Snapshot Isolatiéh |t also provides special operations particularly useful
for database replication.

3.2 Formalization

The formal definition of our algorithm follows the specificats presented indP], where a distributed
system is modeled usingstate transition systenBroadly speaking, this formalization is based on a set
of actions that are enabled if the state variables satistgiceconditions. Each action modifies the state of
variables so that other actions may be enabled or disablathdfmore, we define a composition approach
in order to integrate the state transition system with tls¢ oéthe system components, namely the GCS,
the PTPS and the EDBs.

3.2.1 State Transition Systems

Definition 3.1 (State Transition System)A state transition system is defined by:
e Variables(A), a set of state variables and their domains.

e Initial(A), an initial condition onV ariables(A).

14

e Events(A), a set of events.
e Foreach event € Events(A):

— prea(e), precondition ok in A. Itis a predicate i ariables(S) that enables the execution of
e

—effa(e), the effects of event in A. It is a sequential program that atomically modifies
Variables(A). We assume thatf f4 (e) always terminates.

¢ A finite set of fairness requirements.

Each possible value assignmentifariables(A) defines a particular state of the transition systém
Initial(A) specifies a subset of system states, referred to as thé gtatas. We assume that the set of
initial states is non-empty. For each evenits associated preconditigme 4 (¢) and effects: f f 4 (¢) define
a set of state transitions, more formalfy(s, e, t): s, t are system states;satisfiegre4(e); t is the result
of executingef fa(e) in s}.

An execution is a sequence of the form= sg, eq, s1, €3, ...€,, s.... where thes,’s are system states,
thee.’s are eventss is an initial state, and ever._1, e, s.) is a transition ok,. An execution can be
finite or infinite. By definition, a finite execution ends in atet The final state of a finite execution is a
reachable state. Létzecutions(A) denote the set of executions for systdmFEzecutions(A) is enough
for stating safety properties but not for its liveness prtps, because it includes executions where fairness
requirements are not satisfied.

We next define the executions of the system that satisfy disgmequirements. L&t be a subset of
Events(A). The precondition ofZ, denotedvre(E), is defined by3 e € E : pre(e). Thus,FE is enabled
in a states, if and only if some action o¥ is enabled ins,, and E is disabled if and only if no action of
E is enabled ins,. Leta = sp,e1,s1,e€9,...¢,, 5,... be an infinite execution. We say thatis enabled
(disabled) infinitely often inx if E' is enabled (disabled) at an infinite numbersok belonging toa.. We
say thatF occurs infinitely often inx if an infinite number ot ’s belong toFE.

Definition 3.2 (Weak Fairness)An executiona satisfies weak fairness fdr if and only if one of the
following occurs:

e «isfinite andE is disabled in the last state of
e « is infinite and eithe® occurs infinitely often or is disabled infinitely often in

Definition 3.3 (Strong Fairness)An executiona satisfies strong fairness fdf if and only if one of the
following occurs:

e «isfinite andE is disabled in the last state of
e « isinfinite and ifE is enabled infinitely often imy, then it occurs infinitely often ia.

An executiona is fair if and only if it satisfies every fairness requiremefithe system. The set of
all possible fair executions of systerhis sufficient for defining its liveness and safety propertiesour
model, we assume that all events are weak-fair, except éoonles for which it is explicitly stated.

We allow actions to have parameters. This is a convenientofidgefining a collection of actions. For
example, consider an actiefi) with preconditionpre(e(i)) = « = 0 and effectsef f(e(i)) = x= « 1,
wherez is an integer and the parameteanges ovef1, 2, ..., 50}. Evente(i) actually specifies a collection
of 50 different events;(1), e(2), ..., e(50).

Finally, Since we are describing a distributed system, weeaisubscript for each state variable and
event to denote where the state variable belongs to and chvgite the event is executed, respectively.

3.2.2 Component Interaction

In order to model the specification of a system compoungnte give its external interface and a collection
of trace properties. The external interfacebis Fvents(A), that defines the possible events the com-
ponent may engage. A trace is a finite or infinite sequence @ite\belonging tdFvents(A). The set

15

of traces ofA is denoted adraces(A). A finite trace is denoted = ey, eq, ...e;, and an infinite trace

B = e1, e, ...e;...; Wwhereas3|j] stands for a prefix of length (0 < j <| 5 |) of a traces. Properties over
traces are modeled as assumptions. The component satsfiesperties if each possible trace verifies the
set of defined assumptions.

A state transition system is able to interact with other component via executing an event €
Events(A’) of the component as part of effectsa@f f4(e) beinge € Events(A). We do not require’
to be non-blocking but we do require that its execution teatgés. Thus, the eveatis simply a call from
A’s point of view. In the same way, the componetitis able to interact with a state transition systém
via executing an event € Events(A’) which is also an event ofl, ¢/ € Events(A). In this case, it is
required thapre 4 (e') = true. Therefore, the event of A can be considered an upcall fra#i’s point of
view.

3.2.3 Assumptions About The Environment

We model the crash and startup of a replica through events:; andrestart; respectively. We make the
following assumptions:

Assumption 1 (Execution Integrity)
e Eventrestart; is the first event in the executioniof

e If eventcrash; happens, the next event that occurs at prodgesisany, isrestart;. Therefore, no
events occur at a procesdbetween its crash and restart.

3.3 Group Communication System
3.3.1 Introduction

A GCS is a software platform which provides both membershigh @mmunication serviced]]. The
former maintains a list of currently active processes inaugrby means of the notion of views, while the
latter deliver messages to the current view members in daoce with some predefined primitives.

In this work, we are mainly interested in the virtual synety@roperties of the membership service
[19] and in the reliable total order multicastq] provided by the communication service. This provides a
mechanism to reach consensus in the decision about thenseitithe transaction submitted by the clients.
We only consider a primary partition group, to which all iegtion and recovery processes, ilé, belong.

In the next subsections, the particular properties requoehis system are formalized.

3.3.2 Signature

The signature of the GCS is depicted in Fig@e Each action occurs at a unique procgssvhich is
specified in the subscripts. The specification uses thevollptypes:

e II: The set of processes.
e M: The set of messages sent by the application.

e V: The set of views delivered inchg actions isN x 2!, Thus, a view € V is a pair. The elements
in the view can be accessed byid andV.members.

The events are briefly described in the following. Firstierts provided by the communication service
are detailed. In the presented algorithm, only one multipemitives is used, total order reliable uniform
multicast:

e TOMulticast;(m): Process sends message to all the members of the group (includimgwith
total ordering and uniformity guarantees.

e T'ODeliver;(m): Process delivers message: sent previously using @0 M ulticast;(m) event at
some process, possiblyi = j.

16

(input) TOMulticast;(m),i € II,m € M
(output)TODeliver;(m),i € II, m € M

(input) join,, ¢ € 1T
(output)blk;,i € II
(input) flush,;,: € I1
(output)vchg; (V, joined, le ft, activeNodes),
eI,V eV, left C 11, joined, activeNodes C V.members

(input) joinActiveNodes,, i € II
(output)vchgActiveNodes, (V, active Nodes),
i€ I,V € V,activeNodes C V.members

(input) crash;,i € I1

Figure 2: GCS signature

The next set of explained events is related to the regular ef@nge events provided by a GCS imple-
menting strong virtual synchrony:

e join;: Procesg joins the group. This eventually will install a view whergvill be included among
its members.

e blk;: Process receives a block notification indicating that it should ssgmding messages so as a
view change event can take place. As it will be explained latis necessary that processes stop
sending messages to provide some particular propertiestdrghsure progress in the view installa-
tion.

e flush;: Procesg notifies the GCS that no more messages will be sent until staliation of the
next view.

e vchg;(V, joined, left, activeNodes): Process installs a new view/” which addsjoined processes
and removege ft processes from the previous view members. In addition, ikenprocesses be-
longing toactive Nodes as actives. Views installed by the GCS represent the stgteocksses of
the group: members of the installed view are correct anchiaae processes.

In addition, events related to the enriched view synchroong@hare also included in the GCS:
e joinActiveNodes;: Process joins theactive N odes group.

e vchgActiveNodes;(V,activeNodes): Process is notified about a change W.members, which
now marks processes intive Nodes as active.

Finally, the GCS has an input event to be informed about tiéréeof processes:

e crash;: Process crashes. This eventually will install a view wherwill not be included among its
members.

Here, informal descriptions of the events have been includa the next sections, these events are
detailed and the formal properties associated with therseeified.
3.3.3 Membership Service

The membership service of the GCS maintains the set of diy@railable processes. This list may change
whenever a node joins the group or a current member leaves.sdthof currently available processes is
modeled by the notion of view, formally:

Definition 3.4 (View). A view is a tupleV = (id, members), whereid € N andmembers C II. We
say thatid is the view identifier of” andmembers is its membership (set of processes that belong to that
view). Letp € TI be a process and < V' a view; the following terminology is also used:

17

Figure 3: Scenario prevented by virtual synchrony

pisinviewV = (id, members) if p € V.members.

The event by whicly changes its view is called view installation.

The view ofp is V' afterp has installed view” and beforep installs another view.
e Evente € sig(GC'S) occurs orp in view V' if evente occurs while the view op is V.
e View V is the last view op if p does not install any view aftér.

A membership service may be either primary component oitjpardble. In aprimary component
membership service, views installed by all the processéisarsystem are totally ordered. This requires
that for every pair of consecutive views, there is a prodeasdurvives from the first to the second. On the
contrary, in gpartitionableone, views are only partially ordered and, therefore, disjgews may coexist.
Primary component services are the preferred service wlantaming a globally consistent shared state
is a must; hence, we require that property:

Property 3.1 (Primary Component)The GCS provides a primary component membership service.

To provide some delivering guarantees with respect to vietallations, the GCS offers an important
property known asirtual synchrony This requires two processes that participate in two carsecviews
to deliver the same set of messages in the first view; Hentgtisins like the one depicted in FiguBe
are not allowed. With this property, view changes are symmiaation points, in the sense that multicast
messages are ordered with respect to view changes.

Nevertheless, there is still a stronger property which tyesimplifies the information that must be
carried out within the messages and that we demand to our GEi8Im

Property 3.2. (SVD) Sending View Délivery: If some procesp € II delivers message: € M in view
V' € V and some processe II (possiblyp = ¢) sendsn in viewV’ € V, thenV = V.

If this property is satisfied, then the programming modeléaated asStrong Virtual Synchrongnd
requires additional primitives not to discard message® five processesl)]. In particular, the GCS has
to stop sending messages while a view change is taking ptberwise, a situation like the one depicted
in Figure4 could happen and the view change would be delayed forevaukedhere are always messages
in transit. In this way, the GCS provides two special privéi: an output onéjlock, which request the
processes to stop sending messages and an input ¢¥ent, which is called by the processes when all
messages in the old view have been already sent.

In order to simplify the recovery procedure, we consideraeresion of virtual synchrony calleeh-
riched virtual synchrony5]. This model provides an extension of the notion of view|ezhénriched view
(e-view), which allows a further subdivision among the menstof a view insubviewsand the grouping of
several subviews igv-sets That does not mean that partitions are established in ttersy but that pro-
cesses are tagged for specific groups. Since we do not neled@nplexity, our model of GCS is slightly
simplified. We only consider a special subview, denoted@& e N odes, which includes all nodes in the
active staté. Specific events for our system have been used, althougé ihermap with the primitives
proposed in%]:

2See Sectiod for further details on the processes’ states.

18

Figure 4: Scenario delaying a view change forever

e joinActiveNodes;: It maps to the primitiveSubviewMerge(sv-lis) but simply merge process
with active N odes subview.

e vchgActiveNodes;(V,activeNodes): We separate the installation of e-views:hg; only models
view changes wher&.members is modified (regular view changes), whereas this new methmdt m
els the installation of e-views where only the subviews cositipn has changed; in particular, the
composition ofactive N odes.

Then, in the view change, apart from the information aboetvilew members, further information. is
provided:

e left: The list of processes which belonged to the previous viehalginot present in the new view.

e joined: The list of processes which did not belong to the previoeswhut have been incorporated
in the new one.

e activeNodes: The list of active nodes (those that are up-to-date andtiifom the regular way).

The behavior of the GCS with respect to th&ive Nodes subview is detailed through the following
property:

Property 3.3 (active Nodes Subview) LetV, V5 € V be two consecutive views, anddehg; (Vs, joined,
left, activeNodesy) be the view change event which installs Letactive Nodes; be the composition of
the corresponding subview just befdre installation, i.e. there is n@chgActiveNodes; event executed
after that until the new view installation. Theative N odess = Vo.members N activeN odesy.

It simply states that when a new view is installed, only thecpsses that where active in the previous
view and still belong to the new view continue being activeorbbver, we define a special view, called
initial view and denoted’;,,;; which satisfies the following property.

Property 3.4 (Initial View). LetV;,;; be the initial view, for each processe I1,,,;; the first view change
event executed ischg(Vipi, le ft, joined, active N odes) where:

Vinit-id = 1 and V... members = I;,4,

left =0,

joined = 1l;,;; and

activeNodes = 11;,,:.

Finally, in order to ensure liveness in the installation igiws, the GCS provides the following proper-
ties:

Property 3.5 (Crash View Triggering) If the GCS executes input eventish; andi € V.members, then
eventually a new view change event will be delivered wheré”.members and, thus;j € left.

19

Property 3.6 (Join View Triggering) If the GCS executes input methgdn,;, then eventually a new view
change event will be delivered where V.members and, thus;j € joined.

Property 3.7 (Joinactive N odes View Triggering) If the GCS executes input methpdn Active N odes;
in view V', then eventually every_correct processp € V.members will executevchgActive Nodes,(V,
activeNodes), withi € activeNodes.

3.3.4 Communication Service

The communication service of our GCS model provides a pairigfitives, namelyl'O Multicast(m) and
TO Deliver(m), implementing total order reliable uniform multicast. Bgfore specifying the properties
that these primitives satisfy, a notion of process coresdris defined:

Definition 3.5 (v_correct) Consider some view € V with proces® € I1in V. We say thap iSv_correct
if the following properties hold:

e pinstalls viewV, withp € V.
e p does not crash while its view ig.

e If V is not the last view of some processlin then exists view’ € V installed immediately aftev’
by some process i such thap € V.

Definition 3.6 (v_faulty). A process which is not_correct is said to bes_faulty.

This definition is quite intuitive and states that a process.dorrect in a view if it does not crash in
that view and survives to the next one. It is used in the spegifin of the properties of the previously
mentioned primitives.

Property 3.8 (Total Order Reliable Multicast)

e (TOL) Validity: If av_correct procesp in V invokesI'O M ulticast,(m), then it eventually executes
TODelivery(m).

e (TO2) Uniform Agreement: If a processp execute§ O Deliver,(m) in viewV, then every process
g in V which isv_correct eventually executéBO Deliver,(m).

e (TO3) Uniform Integrity: For any message: € M, every procesgin V execute§ O Deliver,(m)
at most once and only if: was sent by a procegs(invoking?' O M ulticast,(m)).

e (TO4) Uniform Total Order: If some proces® in V (whetherv_faulty or v_correct) executes
TODeliver,(ms) in view V' before it execute$'O Deliver,(ms2), then every procesgin view V
execute§ O Deliver,(m2) only after it has executéflO Deliver,(m).

The first property, TO1, ensures that no message coming fromaarect process is lost (reliable).
TO2 ensures that when a process delivers a message, thgrotharprocess will also deliver the message
or will crash (uniform). Hence, it is safe to apply the copasding update. Note in the antecedent every
process is considered. This avoids the presence of falsgemptike in Figurés. TO3, on the other hand,
simply ensures that messages are not duplicated nor spanisly generated.

Finally, TO4 ensures total order ordering guarantees. Mwethis property alone does not assure that
messages sent by a particular process are ordered in theaxsgntieey are sent, but that they are deliver in
the same order everywhere. In Figérthere is an example of total order multicast where this casars.

3.4 Point-to-Point Communication System

The Point-to-Point Communication System (PTPS) modelsctimemunication that takes place between
processes outside the GCS through a pair of primitives, hamiend(p, m) and Deliver(p, m). This
system is used in the communication that takes place dueicgvery between the joining replica and the
recoverer.

The signature of this system is depicted in Figir&he specification uses the following types:

20

P vilo

q |Vi e
3

Vi

Figure 5: Scenario prevented by TO2

Figure 6: Example of total order

e II: The set of processes.

e M: The set of messages sent by the application.

(input) Send; (p, m),i,p € II,m € M
(output)Deliver;(i,m),i € II, m € M
(input) crash;,i € 11

Figure 7: PTP Communication System signature

Send;(p, m) simply represents the sending of messagfeom process to procesp andDeliver; (i, m)
represent the delivering of messageat process. crash; is an input method that notifies the PTPS of the
crashing ofi. The sending primitives satisfy the following properties

Property 3.9 (Point-to-point Channels)

e (PTP1) Channel Validity: If a processg executesDeliver, (g, m), thenm has been sent by some
process by invokingSend, (¢, m).

e (PTP2) Channel Non-duplication: A process; executeDeliver, (g, m) at most once.

e (PTP3) Channel Termination: If a processp executesSend, (g, m) and bothp and¢ do not crash
after that event, then eventually deliversn.

e (PTP4) FIFO Order: If a processp executesSend),(q, m,) before Send,(¢q, m2) and process;
executeDeliver,(q, ma) then it only executes that event after the executiaDdfiver,(q, m1).

3.5 Extended Database System

Each process has an associated extended database system modulgvi#izie it stores a full copy of
the database. This system is an extension of a Snapshatidsobased database system; in particular, it
provides special properties for remote transactions.

An extended database consists of a set of uniquely idenitiiets, denoted by, which can be accessed
by concurrent transactions from the set of all possiblesations? . We first begin defining a transaction:

21

Definition 3.7 (Transaction) A transactiont € 7 is a sequence of read and write operations over the
database items, starting with abeginoperation and ending either withcammitor abort operation.

Our replication protocol is based on the deferred updateigae; hence, for the sake of simplicity, we
do not explicitly specify the write and read operations afteransaction. In fact, only the events relevant
to the replication protocol are considered.

In the model, transactions are treated differently dependin where they have been generated. More
formally:

Definition 3.8 (Site of a transaction)Let i € II be a process antl € 7 a transaction. If the event
ready_to_commit(t) is executed at EDB is said to belelegate sit®f ¢, denotedsite(t) = i. Moreover,
t is said to bdocal ati andremoteat every other process.

Moreover, it is required that a transaction can only reqitegommit once and at its delagate site:

Property 3.10. For every transaction € 7, with site(t) = i € II there is one single execution of
ready_-to_commit(t) in EDB;.

The signature of the EDB module associated te detailed in Figure8. The specification uses the
following types:

e 7: The set of transactions issued to the system.

e [: The set of items that the database consists of.

(output)ready _to_commit(t),t € T, site(t) =i
(input) commit(t),t € 7, site(t) = ¢
(input) apply AndCommit(¢),t € T

Figure 8: EDB signature

Note that, even though the eveniply AndCommit(t) is intended for remote transactions, it is not a
requirement: a local transaction can be multicast but notroitted at process because of a crash, but
later, wheni recovers, it has to be applied and committed from scratch.

The underlaying isolation model in the EDB is Snapshot Emha(Sl1) and it determines which transac-
tions are going to commit and which ones are going to be atbbstehe database. Under this model, when
a transaction begins, it is provided with a snapshot of theldee, from which it will obtain all the read
items. To specify the allowed behaviors, further definigibiave to be specified:

Definition 3.9 (Writeset of a transaction)Lett € 7 be a transaction. The set of items writtentby called
its writesetand denoted bws(t) € I. A transaction is said to baead-onlyif ws(t) = (J; otherwise, it is
called anupdatetransaction.

The differentiation of read-only and update transactiommportant, provided that in Sl, read-only
transactions do not entail any isolation problem. That béliclarified with the following definition:

Definition 3.10 (Conflict). We say that two transactiorist’ € 7 conflictif they both write a common
item, i.e.,ws(t) Nws(t") # 0.

Under Sl, concurrent conflicting transactions cannot bemitted due to isolation issues. When a
set of transactions concurrently write over a common seteofis, only one of them can commit and the
other ones have to be aborted. In our model, we employ theufadter wins rule. That implies that the
first transaction accessing all common items is the one ¢hgtainted the permission to commit. In fact,
transactions have to acquire locks for every item beforg #ne allowed to write them. Other concurrent
transactions have to wait for those locks. If the transadtiolding those locks commits, they are aborted,;
otherwise, locks are reassigned to the waiting transactod the procedure repeats.

A special case, and the reason for considering an extendsbnef the database item, is the man-
agement of remote transactions. When those transactiorepplied throughupply AndCommit, they
instantaneously acquire all the required locks and comiréctly. Transactions holding those locks are
forced to abort. All this detailed behavior is summarizethia following property:

22

Property 3.11. The isolation level provided by the database system is 8lti first updater wins rule,
except in one case: the operatiapply AndCommit(t) aborts all concurrent conflicting transactions and

always commits.

Finally, it has to be noted that botlymmit and apply AndCommit events block the module calling
them until the operation finishes.

23

4 Algorithm

In this section, a formal specification of the replicatiordarcovery algorithms is given. First, in Sec-
tion 4.1, an outline of the protocol is provided. Then, in Sect#o the list of state variables are included,
along with their explanations and initial values. Sectb8is the heart of this section, and includes the
signature of the algorithm and each of the system’s everit@sd events are divided in different groups
in order to ease the understating of the algorithm. Aparhftbe specification, detailed explanations and
examples are provided. Finally, Sectidr includes some direct improvements that can be made to the
basic algorithm and Sectigh5includes some hints of how to implement the protocol.

4.1 Algorithm Overview

The algorithm presented here is an evolution 3, [30] but with support for (re)joining of replicas. In

a nutshell, it is an update-everywhere replication pratedeere processes multicast their transactions in
turns, so that it is ensured that when a transaction is saranitbe safely committed. Processes order
themselves in a circular sequence and multicast theirdriomns in an ordered fashion; hence, the algorithm
can be seen as a sort of round robin based protocol. Howbkearpmmit of transactions is decoupled from
its sending; in this way, the system is not limited by the tigloput of the slower replica. Prior to the
sending of a transaction, it is checked that it will not cantfivith any of the transactions that are pending
to commit, then ensuring that it will not be aborted.

The replication protocol is augmented with a recovery athor which is responsible of transferring
the missed state to the joining replicas, so that they catchith the rest. As it has been said before, the
fact that multicast transactions are never aborted malesettovery procedure easier to synchronize with
the replication protocol, since the application of recditgns is done just in the same way. This avoids the
need for extra rounds in order to accelerate the recoveigepioe.

The algorithm is presented as a state transition systenh iptica holds a replication and recovery
process and an EDB. Processes communicate with each otmeednys of the GCS, when executing the
replication protocol; and by means of point-to-point chaapwhen the recoverer is transferring the missed
state to the joining replica.

4.2 State Variables

Each procesp uses a set of state variables, all of which layt, are volatile, i.e., their values are lost when
p crashes. Tabl2 presents for each state variable at progeisstype and initial value. In the following we
also detail their meaning:

e state,: Process state.

e activeNodes,: The set of nodes in thactive state.

e ptpChannel,: Incoming channel of messages delivered by the PTPS.

e gcsChannely: Incoming channel of messages and view changes delivertueli@CsS.

e blocked,: A boolean variable indicating whether total order messaga be sent or not. It is set to
false by the execution oblock; previously to a view change and changed agaitrue when this
view change effectively takes place.

o lastRcvTurny: The turn number of the last turn delivered by the replicatdgorithm. Up to that
moment, its value i4..

o lastRevTurnSitey: If lastRevTurn, # 0 it represents the process that sent this turn; otherwise,
its value is undefined.

o lastViewTurny,: The turn number of the last turn delivered by the repligatidgorithm in the
previous view.

24

| Variable [Initially |
state, € {crashed, joining, pre_recovering, recovering, alive} crashed
activeNodes, C 11

ptpChannel, : queue of M
gesChannely, : queue of M

blocked, € {true, false}
lastRevTurn, € NU{ L}
lastRevTurnSite, € TTU { L}
lastViewTurn, € NU{L}
myTurn, € {true,false}
trs_tosend, : queue of T

pending, : queue of (N, queue of 7))
logp € (N, queue of T)

recoverer, € ITU {1}

recovering, C 11

lastAppTurn, € N
lastTurnToRecover, € N
lastSentTurn, : array[l,n] of N
recUpper Bounds,, : array[l,n] of N

—~|~l=

—
=
C [~|~
[¢)

| -

_..
=
)
@

—~
~

—~
~

Table 2: State variables and initial values for progess

o myTurny: Indicates whether procegdhas the privilege of sending the next turn.

e trs_tosend)y: Includes the list of transactions that has requested thergbsince the last turn was
sent in processg.

e pending,: Contains the list of transactions delivered by the refilicealgorithm that still have to be
applied.

e log,: Itis the only persistent variable in the system and stdredist of pairs(turn, trs_list) that
have already been applied and committed in EDB

e recoverer,: The process (if any) that is acting as a recoverepfor
e recovering,: The set of processes for whighs acting as a recoverer.

o lastAppTurn,: The greatest turn number of the turns already applied irEbB,,. This variable
only makes sense during a recovery procedure.

o lastTurnToRecover,: The turn number of the last turn to be applied in order to ffitiige recovery
procedure.

o lastSentTurn,: It only makes sense in a recoverer process in the contexteaioavery procedure. It
stores, for each recovering procedure, the turn numbeledési turn sent in the recovery procedure.

o recUpper Boundsy: It only makes sense in a recoverer process in the contextre€@very pro-
cedure. It stores, for each recovering procedure, the tumber of the last turn to be sent in the
recovery procedure.

4.3 Signature

The signature of the algorithm is depicted in Fig@reThe events are classified into five different groups,
which will be later explained in separate sections.

25

Start events {restart; | ¢ € IT}

Input events =

{crash; | i € II} U
{TOMulticast;(m) | i € II,m € M} U
{TODeliver;(m) | i € II,m € M} U
{blk; |1 € II} U
{vchg;(V, joined, left, active Nodes) |

i € ILV € V,left C 11, joined, activeNodes C V.members, V Nleft =0} U
{vchgActiveNodes;(V, activeNodes) |

i1 € IV € V,activeNodes C V.members} U
{Send;(j,m) | i, € II,m € M} U
{Deliver;(j,m) | i,j € II,m € M}}

Replication events =
{ready_to_commit;(t) |i € II,t € T} U
{rcv_msg_rep;((site, turn, trs_list)) | i, site € I, turn € N, trslist C T} U
{send_turn;(turn) | turn € N} U
{process_turn;({turn, trs_list)) | i € II, turn € N, trs_list C T}

View management events =
{initial view; (V, joined, left, activeNodes) |
i1 €I,V €V, joined,left C 11, joined C V.members,V Nleft =0} U
{view_change;(V, joined, left, activeNodes) |
i € ILV € V,left C 11, joined, activeNodes C V.members, V Nleft =0} U
{new-activeNodes;(V, activeNodes) | i € I,V € V, activeNodes C V.members} U
{block;} | i € 11

Recovery events =

{rcv_msg_rec_request;((j, lastAppTurn,lastTurnToRecover)) |
i,j € I, last AppTurn, lastTurnToRecover € N} U

{send_rec_turn;(j,turn) | i,j € Il,turn € N} U

{rcvmsg_recainit;((lastViewTurn, lastViewTurnSite)) |
i,rec, §, lastViewTurnSite € 11, lastViewTurn € N} U

{rcv-msg_rec_turn;({turn, trs_list))} U

{end_recovery; | i € TI}U

{recv_msg_rec_end;(j) | i,j € I}

Figure 9: Algorithm signature

26

restart;
state; < joining;
last AppTurn; «— getLastTurn(log;);
GCS,join,.

getLastTurn(log) = n|V(turn, trs_list) € log : turn < n

Figure 10: Start event

4.3.1 Start Event

The start event is a special event executed whenever a groeeH restarts. It changegate; to joining
and obtains the last applied turn number from the log. Werasghat the rest of variables are initialized to
the values specified in TabR Then it joins the group in order to appear in the next insthlliew.

4.3.2 Input events

The input events map to the output events of the GCS and th& Byflems and are included in Figlre
Itis also included the eventash;, which notifies that processhas crashed and simply changes its state
to crashed.

The input events coming from the communication system appfemmessages and notifications in two
separate queues, namekysChannel; andptpChannel;. This approach aims to simplify the algorithm,
since messages are processed in different events depamditsgype; however, the behavior is exactly the
same. Hence, from now on we are going to consider indisitctth the execution of the processing event
and its actual delivery. The types of messages used in theqaicare the following:

e rep_turn: Contains a tuplésite, turn, trs_list) and represents a replication message sent by total
order, wheresite is the sender of the messagern is the turn number antrs_list is a queue of
transactions.

e rec_request: Contains a tupléi, rec, init, end) and represents the message sent by a joining replica
to the recoverer indicating the turns to recoveis the joining replicayec the selected recoverer,
init is the last applied turn andhd is the last turn to be recovered.

e rec_init: Contains a tupl€lastViewTurn,lastViewTurnSite) and indicates the joining replica
some of the missed state. In particularstV iewTurn is the turn number of the last message re-
ceived before its rejoining andstViewTurnSite the process which sent that message.

e rec_turn: Contains a tupléturn, trs_list) and is a recovery message sent by the recoverer, where
turn is the turn number antts_list is a queue of transactions.

e rec_end: Contains a process jfdand indicates that has finished the recovery procedure.

4.3.3 Replication Events

This section comprises the events that build the replingti@tocol. Its actions are included in Figuk2
It has also been included the input eveatdy_to_commit;(t), which notifies the protocol of the client’s
commit request for transactian

As explained in SectioR, the goal of a replication protocol is to propagate the ckangade in the
database at each particular site to the rest of processesacticonsensus on the ones that will be applied
(because they do not violate the predefined isolation rements) and the ones that have to be discarded.
As opposed to certification, in our proposal, processes @trallowed to multicast transactions whenever
they want, but have to respect a predefined order. This wslienthat transactions that are actually multi-
cast will not violate the isolation requirements, and, lgmman be safely committed.

The algorithm at procesiis notified about the client’s commit request on transactithy means of
the input eventready_to_commit;(t). If the transaction is read-only, i.eys(t) = 0, it is committed

27

crash;
state; < crashed.

TODeliver;(m)
gesChannel; <+ gesChannel; - m.

PTPDeliver;(m)
ptpChannel; — ptpChannel; - m.

blk;
gesChannel; «— gesChannel; - (block).

vchg; (V) joined, left, active N odes)
gesChannel; «— gesChannel; - (view_change, (V, joined, le ft, active Nodes)).

vchgActiveNodes; (V, active Nodes)
gesChannel; — gesChannel; - (new_activeNodes, (V, active Nodes)).

Figure 11: Input events

ready_to_commit, (¢)
if ws(t) = 0 then
EDB;.commit(t);
else
trs_tosend; < trs_tosend,; - t.

rcv_msg.rep, ((site, turn, trs_list))
{pre = head(gcsChannel;) = (rep_turn, (site, turn, trs_list))}
gesChannel; «— tail(gesChannel;);
if last RevT'urn; = L then
lastTurnToRecover; <« turn — 1;
last RevTurn; < turn,;
lastRevTurnSite; «— site;
pending; < pending; - (turn, trs_list)
if predecessor(site, i, active Nodes;) then
myTurn; < true.

send_turn; (turn)

{pre = myTurn; A state; = active A turn = last RcvTurn; + 1 A =blocked; }
trs_tosend; < trs_tosend;\conflicts(pending;, trs_tosend;);
GCS.TOMulticast({rep_turn, (i, turn, trs_tosend;)));
myTurn; «— false.

process_turn; ((turn, trs_list))
{pre = head(pending;) = (turn,trs_list) A state; = active}
while trs_list # 0 do
t «— head(trs-list);
if site(t) # i then
trs_tosend; «— trs_tosend;\conflicts({t}, trs_tosend;);
EDB;.apply AndCommit(t);
else
EDB,;.commit(t)
trs_list — tail(trs_list);
log; < log; U {(turn,t)};
pending; < tail(pending;).

predecessor(p,n, V) = Jsite € I1 : d(n, site) = min{d(n,n’) : n’ € VvV n/ = p} A site = p,
d(n,n’)=(n—n'4+ N)mod N
conflicts(trs_list, trslist’) = {t|t € trslist A3t' € trslist’ : ws(t) Nws(t') # 0}

Figure 12: Replication events

28

straightaway; otherwise, it is stored in thending; queue to be multicast afterwards, since it still has to be
determined whethércan be committed safely.

The replication protocol behaves as follows: at a given tiomdy one process is allowed to multicast
the transactions that have requested commit. We call tbaepgurn master Processes send transactions
in turns according to a predefined sequence; in particutéijeaprocesses are ordered according to their
identifiers and the list is traversed in a circular way.

Turns numbers represent an ordering of the turns; thus,imtiple no special ordering guarantees in
the delivery of messages needs to be required. Neverthélessecovery algorithm requires uniformity in
their delivery, which is as expensive as total order in teofisttency. Therefore, in order to simplify the
algorithm, total order has been used to deliver messagédshtren are received in the correct order and
appended tpending as soon as they are delivered.

Each process determines in the reception of a message (eventsg_rep) if the sender is its prede-
cessor in the previously mentioned sequence. In the affivenaase, it sets its variablayTurn to true,
thus enablingend_turn, which, when executed, multicasts the transactions theg requested their com-
mit at that process. In this way, a chain of receive and seedtevs formed. Theredecessor function is
the responsible for determining if a given turn comes fromphedecessor of the process in the sequence.

As it has been pointed out before, a specific feature of thotopol is that multicast transactions are
never aborted. Let us see how this property works. When a gsaseallowed to multicast its transactions,
it has already received all the transactions that must bevgted prior to them. These transactions are
the only ones that may cause the abort of the transactiong bent. The received transactions which have
been already committed have aborted in their commit proakdéscal concurrent conflicting transactions
because of the behavior of EDBply AndCommit. Moreover, local transactions which had already re-
quested their commit have been also removed ftemiosend in that procedure. Then, the transactions
that have survived inrs_tosend might only be aborted by the transactions that have beerveztéut
not committed yet. However, before local transactiong-intosend are allowed to be multicast, a sort of
small certification is made and the ones that conflict withréeeived transactions that are pending to be
committed (those imending) are also removed fromrs_tosend. That ensures that the transactions that
are finally multicast are never going to be aborted.

Transactions are committed asynchronously with respebitturns processing, by means of the event
process_turn, wWhich processes turns sequentially. For local turns,ritroits the transactions straightfor-
wardly, since their changes have already been applied iddtebase. On the other hand, remote transac-
tions have also to apply their changes, theply AndCommit is used instead (which, moreover, ensures
that local transactions will not block them). Finally, thert is stored in the log as a future aid to the re-
covery protocol. Note that this asynchronous behaviorégéisponsible for requiring transactions that are
going to be sent to be checked for conflicts. If the algorithaited for the received transactions to commit
before processing the next turn, when local transactionddvoe about to be sent, all previous transac-
tions would have been already committed and local conflidiiansactions would have been aborted by the
EDB. However, this behavior would make the system to pragaéshe pace of the slowest replica and the
performance would be compromised.

Figurel3illustrates an example of the replication protocol operafor four active processes. For each
stage, the events executed up to that situation are shovenmore relevant state variables of each process
i are also presented; namelyyTurn;, trs_tosend; andpending;. We assume that transactionsand¢/,
andt, andt), conflict and that every turn up to— 1 has been processed.

To reach stage 1, transactionst, andt| have requested their commit, then they have been appended
to thetrs_tosend queue at their respective processes. In the example, grostats being the turn master,
hencenyTurn,; = true, and the last turn receivedsis-1. Then, it executesend_turn, (n) and dispatches
the transactions in the's_tosend; queue, namely; andt,. Just after the reception of such message at
processes, 2 and4, stage 2 is reached. It can be seen thaiurn; is nowfalse, by the execution of the
sending event, and thatyT'urns = true, by the execution of the reception event. We can also obseate
those processes which have received the turn have appemelé@nsactions to their respectivending
gueues.

To reach stage 3, procedsends a message, in this case with no transactions, prawideds_tosends
contains no transactions. The message is delivered at pvecegss, including, which, by total order
properties, has to deliver the first message before. Prdcappends transactiorts andts to pendings

29

1
1
myTurn, = false
4 | trs_tosend, = ()
pending, = ()
3
3
1
myTurn, = false
4 | trs_tosend, = ()
pending, = ()
3
Events

myTurn, = true
trs_tosend; = (t;,t;)
pending; = ()

myTurn, = false
trs_tosend, = ()

pending, = (ty, t;)

myTurn, = false
trs_tosend, = ()
pending, = ()

myTurn, = false
trs_tosend, = ()
pending, = (t;, t;)

)

myTurn, = true
trs_tosend, = ()
pending, = (t, t;)

myTurn; = false
trs_tosends = (t;")
pendings = ()

myTurn, = false
trs_tosend, = ()
pending; = (t, t;)

myTurn; = false
trs_tosends = (t;)

pendings = ()

myTurn, = false
trs_tosend, = ()
pending; = (t, t;)

myTurn, = false
trs_tosend, = ()
pending, = (t1,t;)

myTurn, = true
trs_tosend, = (t,')
pending, = ()

J 4

myTurn, = false
trs_tosend, = ()
pending, = (ty, t;)

™~

myTurnz = true
trs_tosends = (t;')
pendings = (ty, t;)

9

1. ready-to_.commits(t}), ready_to_.commity (t1), ready_to_.commity (tz2).

myTurns = false
trs_tosends = ()

pendings = (t,t;)

2. send_turni((1,n, (t1,t2))), rcv-msg-repi ({1, n, (¢t1,t2))), rcv-msg-rep2 ({1, n, (t1,t2))),
rcv-msg-reps({(1,n, (t1,t2))).

3. send_turna((2,n + 1, ())), rcv-msg-rep2({(2,n + 1, ())), rcv-msg-repi ((2,n + 1, ())),
process_turng({(n, (t1,t2)), rcv-msg-reps ({1, n, (t1,t2))), rcv_msg-reps((2,n + 1,())),

rcv-msg-reps((2,n + 1,

rcv-msg-repi ((3,n + 2,

")

5. send_turngs((4,n + 3, (t}))).

)
(
. send_turnz((3,n + 2, ())), ready-to_-commits(th), rcv-msgreps((3,n +2,())),
(M), revmsgrepa((3,n 4+ 2,())), rcvmsg_reps({(3,n + 2,))).

Figure 13: Replication algorithm example

30

initial view;(V, joined, left, active Nodes)
{pre = head(gcsChannel;) = (view_change, (V, joined, left, activeNodes)) ANV = Vinit}
gesChannel; — tail(gesChannel;);
state; < active
activeNodes; <— V.members
if (i = min{V.members}) then
myTurn; < true.

blOCkZ‘

{pre = head(gesChannel;) = (block) }
gcsChannel; — tail(gesChannel;);
GCS. flush;;
blocked; < true.

view_change, (V, joined, le ft, active N odes)
{pre = head(gcsChannel;) = (view_change, (V, joined, left, activeNodes)) NV # Vinit }
gesChannel; — tail(gesChannel;);
activeNodes; «— activeN odes;
if (i € activeNodes) then
lastViewTurn; « last RevTurn;;
if predecessor(last RevTurnSite;, i, activeNodes;)V
(lastRevTurn = 0 A i = min{activeNodes}) then
myTurn; < true;
else
if (recoverer; ¢ activeNodes) then
if (state; # recovering) then
state; < pre_recovering
recoverer; < assignRecoverer(activeNodes);
GCS.TOMulticast;(recoverer;, (rec_request, (i, last AppTurn;, lastTurnToRecover;)));
blocked; + false.

new_activeNodes;(V, active Nodes)
{pre = head(gesChannel;) = (new_activeNodes, (V, active Nodes))}
gesChannel; «— tail(gesChannel;),
if (i € activeNodes) then
state; < active;
activeNodes; < activeN odes.

Figure 14: View management events

and changenyTurns to true. Simultaneously, proceskapplies transactiong andt,, removing them
from pending,.

In the transition from stage 3 to stage 4, procesends its turn. As transactioh conflicts with¢; in
pendings, it is removed fromirs_tosends in the execution ofend_turns(n + 2) and not included in the
message. Once the message is delivering, the rest of pescésaot change theirending queues. In
the case of procesk it changesnyTurny to true. In the events sequence it is also shown the next step,
although the state is not depicted in any figure. Note thatesi, begins after the application ¢, i.e.,
they are not concurrent, it is not removed from_tosend, and is included in the message.

Other details in these events concern the recovery algorhd, thus, are not covered here in a deep
manner. Later, when dealing with it, they will be explainaddietail. As a particular case, the definition
of predecessor is slightly more complex than what would be thought only ¢desng the replication
algorithm. It will also be explained later, when more infation about the protocol will be provided.

4.3.4 View Management Events

This group of events includes those related to view changeésee detailed in Figurg4. A distinction has
been made in the installation of the initial view and the oéstiews.

When the initial view is installed, every process is markeaes/e. Moreover, the process with the
minimum identifier is marked as the turn master. Note thalis process crashes before sending a message
or the message is lost because of the failure, in the new vistallation, this condition is checked again

31

initial_view;

l crash;

crash; restartl
—) —)

new_activeNodes; | crash; crash; view_change;
i € activeNodes

recovering)<———(pre_ recoverlng

rcv_msg_rec_ l‘l’ll

Figure 15: System states at proceéss

and the process with the minimum identifier from the onesdhastillactive is selected.

Another special situation that can arise is the case whetuthemaster’s process crashes. To ensure
progress, some other process has to continue the sequehiceis Tonsidered in the view change event,
wherepredecessor function is checked again. This method only considers actades in the sequence;
therefore, the first active process with an identifier gnetitan the last turn master (or the one with the
minimum if the end of the sequence is reached) is the nextmhaster. Note that the function also takes
into account the case when the last received message canrea fron-active process. These considerations
ensure that, even when processes crash, there will be asgratéch will acquire the turn privilege.

As a special requisite of strong virtual synchrony, whenacklevent is executed, the state variable
blocked is set totrue. This variable is present in the precondition of all evenktgere the communication
service of the GCS is used. Moreover, a flush notification ¢ back to the GCS, since it is ensured that
no more messages will be sent until the next view is instal&ten the view change is finally executed,
blocked is changed back tfalse to take up again in the sending of messages.

The rest of the actions that take place in the view changetewa related to the recovery procedure
and, hence, are explained later.

4.3.5 Recovery Events

The recovery algorithm is in charge of transferring misspdates to the crashed processes when they
restart they execution. Broadly speaking, the procedwsiriple: a recovering process chooses a recoverer
among the active nodes and sends a request indicating th@uanber of the last turn applied before its
crash. The recovering process determines which is theuastd recover (the last turn received before its
rejoining) and sends an initial message, so that the reicmyprocess could reconstruct the state. Then, the
recoverer transfers all the missed turns in order one by ndéhe recovering process applies them. When
that procedure is finished, the recovering process askseiagtpart of theuctive Nodes subview. Once
the new e-view is delivered, it becomastive.

The recovery procedure is better understood if we take a &dke states a process passes through
during its computation. The state transition is shown inuFédl5 and explained in the next. A process
begins in thecrashed state, and then, when it executasstart;, it changes its state twining. If it
delivers the initial view, it becomeasctive without further computation. On the other hand, if it detive
another view, it has to recover from the missed updates. ,Titeestate is marked gwe_recovering. This
state is maintained until the recovering process can retbeestate variables, namelyst RevTurn and
last RevTurnSite and knows which is the last missed tulndtTurnToRecover). This is performed in
the processing of theec_init message. After that, it becomescovering and applies in order the turns that
it is being transfered. As explained before, it is not untidelivers an e-view in which it belongs to the
activeN odes subview that it finally becomesctive.

The idea of recovering is, at first glance simple: the redogetask is integrated with the replication

32

rcv_msg_rec_request;((j, rec, last AppTurn, lastTurnToRecovery))
{pre = head(gcsChannel;) = (rec_request, (j, last AppTurn, lastTurnToRecover))}
gesChannel; — tail(gesChannel;);
if rec = i then
recovering; < recovering; U {j};
lastSentTurn;[j| «— lastAppTurn;
recUpper Bounds;[j] < min(lastTurnToRecover, lastViewTurn;);
PTPS.Send; (3, (rec.init, (lastViewTurn;, lastViewTurnSite;))).

send_rec_turn;(j, turn)
{pre = j € recovering A lastSentTurn;|j| < recUpper Bounds;[j] A turn = lastSentTurn;[j] + 1}
trs_list < getNextTurn(log, turn);
PTPS.Send;(j, (rec_turn, (turn, trs_list)))
lastSentTurn;[j] < turn;
if turn = recUpper Bounds;|j] then
recovering < recovering \ {j}.

rcv_msg._rec_init, ((lastViewTurn, lastViewTurnSite))
{pre = head(ptpChannel;) = (rec.init, (lastViewTurn, lastViewTurnSite)) A\ j =i}
ptpChannel; «— tail(ptpChannel;);
if lastRecvTurn; = 1 then
lastTurnToRecover; < lastViewTurn;
last RevTurn; < lastViewTurn;
lastRevTurnSite; «— lastViewTurnSite;
state; < recovering.

rcv_msg._rec_turn,({turn, trs_list))
{pre = head(ptpChannel;) = (rec_turn, (turn,wslist)) A state; = recovering}
ptpChannel; «— tail(ptpChannel;);
if turn = lastAppTurn; + 1 then
while trs_list # () do
t «— head(trs_list);
EDB;.apply AndCommit(t);
trs_list < tail(trs_list)
last AppTurn; < turn;
log; < log; U {(turn,t)}.

end_recovery;

{pre = state; = recovering A last AppTurn; = lastTurnToRecover; A\ —blocked;}
recoverer; «— L;
GCS.joinActiveN odes;.

getNextTurn(log, turn) = {trs_list|(turn, trs_list) € log}

Figure 16: Recovery events

33

protocol, as it just merely consists on applying turns in shene way they would have been applied by
the replication protocol if the process had not failed. Hesveseveral subtle issues have to be taken into
account, as it can be observed in the complexity of the regaxeents in Figurd 6. We will address them
after the whole picture of the normal behavior of the recgyeptocol is presented.

Eventsrcv_msg_rec_request andsend_rec_turn are executed by the recoverer, white»_msg_rec_init,
rcv_msg_rec_turn andend_recovery are executed by the joining process. For the explanatibnsleon-
sider thati is the joining process.

In the first place, wheri restarts, a new view, say, will be eventually installed, so thatis in
V.members. This process detects that it is new in the view because Ithglbng tojoined (see Fig-
ure 14 for the events related to views). It, then, chooses a reeovsayj, from the set ofuctive Nodes
by means of thassignRecoverer function. We have not detailed this function since seveealristics
could be applied and we do not want to restrict those pog&hiil Note that, although a recoverer has been
selected, the request message is sent in total order. Thenréathat, in that way, it is ensured that the
message is received before a new change is installed anddbreerer then could determine safely the last
turn that the recovering process has missed. The procdsseare not marked as the selected recoverer
simply discard the request.

The request message is processed in the eveninsg_rec_request; at the recoverer. The set of turns
that have to be sent are limited by parameters AppTurn andlastTurnToRecover. Note that, when
the joining process has just installed the next view, it doagisknow which was the last received turn in
the system. Thus, it sends as the upper bound of the recovery transference. The lirhitseorecovery
transference are stored in the recoverefdst.SentTurn;[i] and recUpperBound,[i]. Moreover, the
joining replicai is added tarecovering;, thus enabling the transfer event for that process, amd anit
message is sent back to the joining replica; in this case,dans of point-to-point channels.

When the joining replica delivers thec_init message, it executeswv_msg_rec_init;. This event
updates variablela st TurnToRecover;, last RevTurn; andlast RevTurnSite;, if necessary, and sets its
state torecovering. Note that, iflast RcvTurn; is defined, i.e.jast RcvTurn; # L, itis not necessary to
update those variables since, in the executioreofmsg_rep; for the first received turn after the rejoining,
they have been already set.

From that moment on, the recoverer will send turns in ordexuth a point-to-point channel, by means
of the execution okend_rec_turn;, and the joining replica will deliver and apply them by meanfshe
rcv_msg_rec_turn; event. The recoverer will stop sending turns when the uppant is reached; the
joining replica, on the other hand, will enabted_recovery; whenlastTurnToRecover; is reached.
When this last event is executedyill ask for being part of thewctive N odes subview. This will lead to a
new e-view installation andew_active N odes; will be executed, so that the joining replica belongs to the
active N odes subview. Then it will change its state éative, concluding the recovery procedure, and will
continue processing turns as if it has never crashed.

In the previously described procedure setbacks can anigeahése issues are also taken into account
by the proposed algorithm. Firstly, the selected recovewsald crash before sending thec_init message.
That would lead to a view change where the recoverer were grttanleft nodes. In such a case, the
joining replica would have to ask for another recoverer, lsalyy sending anotheec_request message.
The problem is that, during that interval, replication naggs could have been delivered. Then, when the
new recoverer processed the requisttViewTurn; would not reflect the last turn missed by the joining
replica, but a higher one. Nevertheless, when the first afemoessages were received at the joining replica,
it would updatdastTurnToRecover; properly and that value would be included as the upper bautitki
new recovery request message. Moreover, whemgbénit message were received, sinegt RevTurn;
would not be undefined, the variables would not be changetttwriect values.

If the recoverer crashed after the recovery procedure hgdrband theec_init had been processed,
the joining replica would be notified again by a view change&hich the recoverer would be marked as
left. It then would have to select another recoverer anctatdias the lower bound the last turn applied up
to that moment. Note that, since point-to-point messagasot&eep any order with respect to total order
messages and view changes, some turns could still bepifihannel; or arrive later and they would be
duplicated. That is solved irco_msg_rec_turn; event only applying turns corresponding to the next turn
to last AppTurn; (the rest are discarded).

34

4.4

Improvements

The algorithm that has been previously presented is a diewbliersion both to facilitate its understanding
and correctness proof. Nonetheless, several improvencantd®e adopted without varying too much its
operation, in order to increase its performance. Here, \geriee the most important ones:

4.5

Writeset application: For the sake of simplicity, transactions are applied oner®ywithin a turn.
However, a unique transaction containing the combinecdegeit of all the turn’s transactions could
be issued to the database. This improvement could be agmbighdin normal operation and during
recovery (eventgrocess_turn andrcv_msg_rec_turn).

Queues compaction:When transactions are stored in queues for later appligaimme items may
be repeated. Then, to save computation time, only the lasiorecould be applied. It has to be noted
that, if this approach is taken, all transactions stored/éen the first appearance of the data item to be
avoided and its final version should be applied as a unigusadion in order to ensure correctness;
otherwise, intermediate reads could read inconsistetesstd his strategy could be applied both to
thepending queue and thég.

Optimized transfer: The transfer of missed updates could be optimized if turngwent in groups
instead of one by one. In any case, a tradeoff should be studitoo many turns were sent, the
recovering process could stay idle while waiting for thee@®n of the next message.

Total recovery: In the same way as it has been done3i|] a hybrid approach could be taken and
either partial or total recovery could be used dependindnertircumstances. From the point of view
of the algorithm, the result should not differ too much frdme turrent version, since it would only

be necessary to model a new module (or an extension of the &BiBh allowed to both extract and

dump the entire database, and to include an heuristic fumthiat decided which option to take.

Implementation Issues

Sometimes the transition from the formal specification tea implementation is difficult because some
assumptions and simplifications made for the former are metitly applicable in a real environment. In
order to ease this task, some hints are provided:

e Parallelism and atomicity: In the state transition system model, every event is atomil; hence,

its direct translation consists of a unique thread selgabine of the enabled events at a time and
executing it. However, in a real system, this is not feasibieperformance reasons. Consequently,
attention has to be paid to the concurrency of some actioirstlyi-all the group communication
related events should be atomic in order to take full adwntd all the provided properties. This is
usually directly achieved by the group communication layraployed; thus, this should not pose any
difficulty. Queues management should also be synchronzeadid inconsistencies; in particular,
the management of thie's_tosend queue is essential, since it is accessed for the inclusiorewf
elements (when a commit request is received), the removiietements (when a turn is applied in
the database) and querying (when conflicts have to be checlado multicast).

Writeset extraction and application: In order to send the changes made by local transactions and
apply them in the remote replicas, their writesets must liaioéd from the database. Several ap-
proaches have been explored in the literature, mainly édvidito two groups: implementation of

a special module within the databas8[46, 43] or an independeniiddlewareimplementation

[46, 10, 28]. When the first approach is employed, better performancebeapbtained at the cost

of high coupling. In the latter case, several proposals Ihaen studied with different performance
trade-offs: the use of triggerd6, 28], the inclusion of a middle layer which captures SQL operai

[46, 27] and other mechanisms based on views offered by the DBASE |

Transaction progress: If the database replication protocol is implemented witthiea DBMS, no
special actions have to be taken in order to ensure rematgeitiions progress: the internal concur-
rency control mechanisms can be used for transaction mandHowever, if it is implemented in a

35

middleware layer, some problems may arise: a remote traosamuld be blocked by a conflicting
local transaction. To solve this problem, these conflictstine detected and the local transactions
forced to abort from outside the DBMS. A possible solutioprissented in41, 39].

Flow control: One of the handicaps of the presented protocol is that, dwargh no transactions
were issued to the system, empty messages would still hdxegent to ensure turn progress, which
might saturate the network. A solution to that problem cdwddo implement a flow control mech-
anism which, when no transactions were issued, decelettaedrn circulation by imposing delays
on the processes. The magnitude of these delays is sométhitngeeds further exploration in order
to find the appropriate heuristics for the optimum perforogan

Log implementation: The log is an essential structure for the recovery, sincesexdisransactions
are obtained from it. Two goals have to be met when implemgrdilog: the minimization of the
overhead that the log update imposes in the normal operafitime replication protocol, and the
minimization of the log management cost when a recoverdstaining the missed information to be
transferred. The problem is that both goals are incompathbl a trade-off has to be made. Then,
to find an optimum solution, an experimental evaluation &hdwe carried out for each particular
scenario. However, still some hints can be pointed-out:

— If atotal/partial hybrid recovery approach is taken, tHemlbg could be limited to the maximum
size that it could reach when using the partial recovery @ggr (when using the total recovery
approach, no log is needed). For instance, a practicalisolubuld be to limit the log size to a
given threshold; if all missed updates were stored in thedqgartial recovery procedure would
be used; otherwise, the total recovery approach would lentak

— As it has been explained in the previous section, only thieviasion of each data item could
be stored. Then the log could be compacted periodicallydog@repeated items.

— If all replicas are active and exchange information aboatdbmmitted turns, all log entries
corresponding to turns committed at every replica couldepeoved.

— If the log is updated within the transaction boundariesc@stent would correspond exactly
with the durable version of the database. If, on the othedhiris updated outside the trans-
action boundaries, a mismatch might occur and it may be reduiat the writeset application
were idempotent to ensure correctness. Note that, alththegfist option is safer, it imposes
an overhead on the transactions latency. To minimize théshmad, a hybrid approach can
be taken: inside the transaction boundaries, only infaonmatlentifying the last committed
transaction is stored, while the associated writesets ateewafter the transaction returns its
commit.

36

5 Correctness Proof

In this section we provide the correctness proof for the quoit specified in the previous section. The
correctness proof uses the properties of the modules faradkhin Section3 and needs some additional
assumptions for some particular results. As the protoasgmted is basically a distributed algorithm, both
safety and liveness properties are required. A safety ptpgépulates that nothing "bad” will happen,
ever, during the execution of a system. On the contraryemésgs property specifies that something "good”
will eventually happen.

In order to prove the correctness of the algorithm we do ot §bm the scratch, but use the correctness
criteria proposed inJ. This work proves that, if these specific criteria are $igis a 1CSI behavior is
ensured. Since these criteria are proposed for a model wecegses can crash but not recover, they can
only be safely applied to the replication algorithm and oriysidering executions were processes do not
incorporate to the system (SectibrB). However, we think that the extension to a crash-recovergeh
should not pose too many variations in some of the criterii haence, we extend them to prove the safety of
our algorithm (Sectios.4). In that section we also prove that, under certain asswmgtia process which
begins a recovery procedure ends it and continues the n@noegssing of transactions as if it had never
crashed. Nonetheless, before these proofs are providee defimitions and previous results are provided
in Sections.1and5.2 respectively.

5.1 Preliminary Definitions

In this section some terminology that is going to be consttaised throughout all correctness proofs is
defined.

To ease the explanations we are going to introduce someigapbns when referring to the processes’
states. In this way, when we say that processsstate, in fact we are expressing thatate; = state. For
instance, a procegsss active if state; = active. Furthermore, we introduce another term:

Definition 5.1 (Alive process) A process is said to beallive if state; # crashed.

The execution of the algorithm at a particular procegasses through different states that change with
the executions of some events, as explained in the prevexi®a. In particular, there is a special phase
that we denote as recovery procedure, which representstioasthat a process has to execute in order to
recover the missed state, more formally:

Definition 5.2 (Recovery Procedure)A recovery procedurat a recovering processe II is the com-
putation that takes place between the execution of the vieange event where it incorporates to the
group, i.e.,view_change;(V, joined, left, activeNodes), with i € joined, and the first execution of
eithernew_activeNodes(V, activeNodes), with i € activeNodes, or crash; after that event. If the last
event of the recovery procedurerisw_active Nodes(V, active Nodes), it is said that the recovery proce-
dure has beenuccessfulif, on the other hand, the last eventdsush;, the recovery procedure is said to
have beeminsuccessful

Note that just before a recovery procedure begins at pracesge; = joining and just after it finishes,
eitherstate; = active if the procedure has been successfulstarte; = crashed otherwise. Moreover,
within the computation that takes place during the recopeogedurestate; is set topre_recovering, and
then, when theec_init message is received, tecovering.

In the next result we specify the events that can only be @gdowithin the boundaries of a recovery
procedure. Hence, these events should not affect the nesmalition of the replication protocol.

Proposition 1. rec_msg_rec_init;, rcv_msg_rec_turn; and end_recovery; can only be executed during
a recovery procedure taking place at processII.

Proof.

1. rec_.msg_rec_init;: This event is only enabled by the delivering ofex_init message, which can
only be sent by the execution ofv_msg_rec_request; at a recoverer procegs= II. This last event
is only enabled by the delivering ofrac_request message coming frorand sent at the beginning

37

of its recovery procedure. Hence, farv_msg_rec_init; to be enabled it is necessary that a recovery
procedure ai has begun. We also have to prove that it is impossible thatewent be executed
before the recovery procedure has finished. A recovery pguoeeat: is finished when aec_end
message coming fromis received; a message which can only be seatdf recovery; is enabled.
For that to happenstate; = recovering, which is only set to that value just by the execution of
rec-msg-rec_init;.

2. rev_msg_rec_turn;: This event can only be enabledtiute; = recovering, which is only set to that
value by the execution ofec_msg_rec_init;, which, by 1, is only possible if a recovery procedure
ati has begun but not ended. Now, we have to prove that this eeemtdruted before the recovery
procedure has finished. But this is clear, since when a regguecess is endestate; is again
different torecovering, then disabling this event.

3. end_recovery;: This event can only be enabledsfate; = recovering, which is only set to that
value in the execution afec_msg_rec_init;, which, by 1, can only occur within a recovery proce-
dure; thusend_recovery can only be executed if a recovery procedurélas begun. We also have
to prove that it is impossible that this event be executedreehe recovery procedure has finished.
Again, when the recovery process is endedye; is again different taecovering, then disabling
this event.

O

On the other hand, to maintain the correctness of the algoriduring recovery, the application of
transactions received within regular replication messagalisabled in the recovering process. This is
formally stated as a proposition:

Proposition 2. During a recovery procedure at process I1 neitherprocess_turn; nor send_turn; can
be executed.

Proof. When a recovery procedure beginsgte; is set topre_recovering. During the procedure it can
only be changed toecovering and only at the end of a recovery procedure it is seadtive. Hence,
neithersend_turn; norprocess_turn can be enabled. O

Finally, we define two useful functions that are going to bed.is the correctness proof:

Definition 5.3 (Turn of a Transaction)Let¢ € 7 be a committed transactioturn(t) represents the turn
numberturn of the turn{turn, trs_list) where this transaction was included; hence,trs_list.

Definition 5.4 (Set of a Sequence)et seq = (s1,...,5,). set(seq) denotes the set made up by all the
elements irseq.

5.2 Turn Management

As it has been explained previously, turns play an essertialin the execution of the replication and
recovery algorithm for two reasons: they determine whiabcpss is allowed to certify and multicast its
transactions at a given time and they order committed trioses in the log, which facilitate a possible
recovery. In this section, we prove some results concetthiegnanagement of turns in the protocol, which
will be used later in the correctness proof. We divide theltesn two groups: safety properties will show
the restriction in the management of turns and livenessastigs will show that turns allow the system to
progress.

5.2.1 Safety Properties

Firstly, we will prove that only one process at a time canifyettansactions, which is expressed in the
Proposition5. However, we need some previous results on the conditianadguiring the certification
and sending privilege. In the first result, it is shown thatacpss can only acquire such privilege after
the reception of a replication message and that it only lastisthe sending of its transactions, except for
the initial turn, which is a special case. Then we show thdy aiith this privilege a process can send
replication messages.

38

Proposition 3. For a process € I1 to havemyTurn; = true it is necessary that:

1. it previously executeetv_msg_rep;({j, turn, trs_list)) or no replication message has been received
andi = min{active Nodes} (initial turn) and

2. it has not executestnd_turn; (turn + 1) yet.
Proof.

1. Leti € II be a process; initiallymyTurn; = false. If no replication message has been received,
lastRevTurn; = 0. Then, either in the initial view installation or in subseqts installations, only
if i = min{activeNodes}, myTurn; is set totrue. Apart from that case, the only events where
myTurn; is settdrue are a receive or a view change; thus, if a proéesdisfiesnyTurn; = true it
necessarily has executedv_msg_rep; ({j, turn, trs_list)) or view_change;(V, joined, le ft, acti-
veNodes). If the former case happens the result holds trivially. la tdase of a view event, by
definition of predecessor, the only way it can be satisfied is thatst RevTurnSite € II, which
does not hold until a message has been received, satishenglte result.

2. Whensend_turn;(turn + 1) is executednyT urn; is set tofalse.

O

Proposition 4. For a process € II to executesend_turn;(turn), with turn > 1, it is necessary that it
previously executetcv_msg_rep;({j, turn — 1,trs_list)).

Proof. To enablesend_turn;(turn) with turn > 1 it is necessary thalust RcvTurn; > 0. This last
variable is initialized td); hence, the only way its value can be greater thas that a receive event has
been executed. In fact, feend_turn;(turn), with turn > 1, to be enabledast RevTurn; = turn — 1,
which can only be set by the executiomeb_msg_rep; ((j, turn — 1, trs_list)). O

Proposition 5. It is not possible that the same process € 1II executes two events
rev-msg-rep;({sitey, turn, tlsty)) andrcv_msg_-rep;({sites, turn, tlsty)) for the same turn numbernrn
e N.

Proof. Let us prove the result by induction ovsr

e Base caseThe first sent turn has turn numbesn = 1. We prove the result by contradiction. Let
sitey, sites € II be two processes and suppaése II executes-cv_msg_rep;({sitey, 1,tlst1)) and
rcv_msg_rep;((sites, 1,tlsts)). Then, by (TO3),send_turng;t., (1) and send_turng;.,(1) have
been previously executed, which implies thaylurnsi., = true andlastRcvTurnsite, = 0
when send_turng;.e, (1) was executed and thatyTurng;., = true andlast RevTurngie, = 0
when send_turns;z., (1) was executed. Without loss of generality, assume shatl_turng;ze, (1)
was executed beforend_turnge,(1). At that precise momenhyTurns;., = true; hence; =
min{activeNodes} in the last view change event, and no other active procedsl satisfy that,
since every subsequent view change is executed after tiveyedf (siteq, 1, tlst1) by Sending View
Delivery property. Therefore, no other message is sent(aiid;, 1,tlst;) is the first replication
message delivered at every site, includiites, which then setast RcvTurng., to 1. Hence, it
can not executeend_turns;t., (1), contradiction.

e Induction step: Assume that the result holds for turn numbers umte 1. Let us prove that it
holds forturn = n > 1. Itis proved by contradiction in a similar way as the basescalset
siteq, siteo € II be two processes and suppose I executes-cv_msg_rep;({site1, n, tlst;)) and
rev_msg-rep;((sitea, n, tlsta)). Then, by (TO3)send_turngite, (n) and send_turng;.,(n) have
been previously executed. By Propositlysite; executed-cv_msg_repsite, ({(previ,n — 1,tlsty))
andsites executed-cv-msg-repsite, ({(preve, n—1, tlsty)) before, but by induction hypothesis there
is only a single receive event for turn— 1; henceprev; = prevy = prev. Without loss of gen-
erality, assume thatend_turns;., (n) was executed beforgend_turngiie,(n). At that moment

3In the case has the initial turnfurn is considered to be 0.

39

myTurng;te, = true; thus,predecessor(prev, siter, activeNodesg;.,) Was satisfied either at the
processing of cv_msg_repg;te, ((prev,n — 1, tlst1)) or in the last view change before the execution
of send_turnsi., (n). No other node could satisfy that, provided thative Nodes, is changed
consistently in evenactive processp. Therefore, no other message is sent aside;, n, tist;)

is the first replication message delivered at every siter dfftat, includingsites, which then set
last RevTurngite, t0on. Hence, it can not executend_turng;.,(n), contradiction.

O

Finally, we establish a connection between the order in lwhicns are received and their associated
turn numbers. This result will be important in the recovelgoaithm correctness proof, since it allows to
obtain transactions in an order consistent with their aagcommitment order (decided by the replication
algorithm).

Proposition 6. If event rcv_msg_rep;({sitey,turny,trslist;)) is executed before
rev_msg_rep;({sites, turns, trs_listy)) and no other replication message is delivered in betweesn th
turny = turng — 1.

Proof. By (TO3), if rcuv_msg_rep;((sites, turns, trs_lists)) is executed, themites has previously exe-
cutedsend_turn(turns). For that to happen, it is required thdtes had also executettv_msg_repsite,
(site, turny —1, trs_list)) before, but, by Propositidh, only one message is received per turn; thus, =
sitey andtrs_list. Uniform Total Order property ensures thatite, delivers(sitey, turny — 1, trs_listy)
and then(sites, turns, trs_lists), then every process does the same. Therefarey; = turny, — 1. O

Corollary 0.1. If event rcuvmsg_rep;({site,turny,trs_list;)) is executed before
rev_msg_rep;({sites, turng, trs_lists)), thenturn, < turnas.

Proof. By repetition of Propositios. O

5.2.2 Liveness Properties

As important as ensuring that two processes can not certfysactions simultaneously is to guarantee
some progress in the turn privilege, i.e., that processéewantually have the opportunity of certifying
and multicasting their transactions. That can only be estswith the following assumption

Assumption 2. Eventually, a process € II for which send_turn; is enabled will execute that event and
the corresponding message will be received by some otheegso

Note that this assumption is not very strong; we are requitirat some processes be stable for the
sufficient amount of time to complete successfully a messagding. A system which can not assure that
is not very useful for any distributed computation.

Proposition 7. Leti € II be anactive process; eventuallyryTurn; = true unlessi crashes'.

Proof. Assume that there is a procegse II, with myTurn; = true, (it is safe to assume that since at
least at the beginningryTurn; = true). If i = j the result holds trivially; otherwise, there is a sequence
seq = (81, 2, ..., Sm) Of processes such that = j ands,,, = 4, that, in order, sethyTurn;, totrue. Let

S = set({s1,...,sm)). We are going to proof that statement by considering thriferdnt scenarios with
increasing generality:

e Case 1:Consider that there are no view changes aftdve N odes,, with p € S, is unchanged (in
factactiveNodes, = S Vp). Consequently, by Proper8/5, no process crashes and no process be-
comesactive. The referred sequeneeq will satisfy thatVsy, sp11,1 < k < m : predecessor sy,
sk+1,5). By weak fairness, procegs = s; will eventually executesend_turn;(turn) and, by
(TO1,TO2,TOA4), every procegsc S will receive the message and in the same order with respect
to other messages. By constructionsef;, in processs,, predecessor(sy, s2,.5) will hold and
myTurns, will be set totrue. Then, the succession continues ustjl = i receives the message
from s,,, 1, settingmyTurn; to true.

4Whenever the restriction “unlessrashes” is used in the formulation of a result, we do not ctershe cases whetecrashes
since then the result holds trivially and in that way proafs greatly simplified.

40

e Case 2:Consider now that there are no view changes but at a giveretipneces® becomesctive,
i.e., it has finished the recovery procedure. By total orddivery, everyv_correct process will
receive the activation message (that with the_end tag) in the same order with respect to other
replication messages; therefopeedecessor will always be executed with the same parameters at
every site. If, when that message is receiveg urn,, = true, with 1 <[< m, a new sequence of
active processeseq’ = (s, Si11, ..., Sm = ¢) can be built, and by Case iy Turn; will eventually
be set tarue.

e Case 3:Finally, consider that view changes occur and see how tHegtahe reasoning on Case 2.
During view change events, processes can both join or lé&vgroup. Let us consider both cases:

— Joining processesDuring the view change everngredecessor is checked again but with the
same parameters as in its previous execution; hence, thematwill be the same. Note that,
by (SVD), messages are delivered in the same view that they lbeen sent; hence, when the
view change event takes place there is no message in pragrdgso process can obtain the
turn again illegally.

— Leaving processeduring the view change eveni¢tive N odes variable will be changed con-
sistently at everyctive process. There are two possible situations

x There is at least one replication message that has beemrmeliv Suppose that process
p was the one for whiclpredecessor function was satisfied the last time. If that pro-
cess is stillalive, predecessor will return the same outcome as in the last execution at
every process. Conversely, jifis one of the leaving processes, i.g..c left, it will
not appear imuctiveNodes variable. Then, the firsictive process in the sequence will
satisfy predecessor; in fact, every leaving process will be removed from the seme.
Assumption2 ensures that eventually, some process satisfygnedecessor will execute
successfullysend_turn.

x No replication message has been already delivered. Theegmtbcesdp € IT with the
minimum identifier will setmyTurn,, to true. Then, new sequenceq” = (s7,...,s.),
wheres] = p ands! = i can be built. Assumptio prevents the system to infinitely
create new sequences without sending a message. Henctyadlyea message will be
sent and, by the previous situationyTurn; will be set totrue.

O

5.3 Replication Algorithm Correctness

So far we have considered all events in the system. In thifoseee do not consider events only executed
in the context of a recovery procedure, since our attentitirbesfocused on the regular replication mecha-
nism. Hence, by Propositiohy actions executed within eventsc_msg_rec_init, rcv_msg_rec_turn and
end_recovery are not taken into account. Actually, only the actions ideldi inrcv_msg_rec_turn could
affect somehow the results presented in this section. Témoreis that the claim which says that the only
event where a transaction could be committegriscess_turn would be false. However, this only affects
Lemmal, and the result still holds, since for a transaction to berodtad inrcv_msg_rec_turn it has to be
logged in other process, which requires that it had beeriqusly committed there by eveptocess_turn.

In this section, the results are directed to satisfy theeotness criteria proposed i8] [for the system
to be 1CSl. In the final subsection, a mapping from the mosbitapt results to the criteria is provided.

5.3.1 Safety Properties

As for safety, the most important results are formulatedoinmf of theorems. Theorer2 simply states
that transactions do not appear spontaneously in the sy$ignin response to a client commit request.
Theorem3 proves an important feature of the system, which statesntldticast transactions are never
going to be aborted. Finally, Theorehis the main result, since it ensures that states of the diiter
databases are consistent.

41

In order to establish a consensus, update transactionstbide multicast before being committed.
Recall that in our SI model, read-only transactions can bectly committed without affecting the system
correctness.

Lemma 1. An update transaction € 7 is only allowed to commit if it has been previously total arde
delivered.

Proof. Leti € II be a process wheiteis committed { can be either local or remote at that process). For
that to happen, an eveptocess_turn;({turn, trs_list)), whereturn is a turn number and € trs_list,

has been executed previously, which is only possibleifn, trs_list) € pending;. That turn can be only
appended tpending; if an eventrcv_msg_rep;({site, turn, trs_list)) had been executed, which can have
only been enabled by the delivering @fite, turn, trs_list) by process. O

Theorem 2. A transactiont € 7 can only commit if a client has requested its commit.

Proof. By Lemmal, ¢ can only commit if it has been previously delivered. By (TOBhas been total
order delivered if it has been previously total order malsic which can only occur by the execution of the
eventsend_turn;(turn) for some process with site(t) = 4, and turn numbeturn. For transactior

to be multicast it has to belong tos_tosend;, which can only happen if the everdady to_commit;(t)
has been previously executed, which is enabled by the coneqtest for transactiohissued by some
client. O

Theorem 3. A transactiornt € 7 that has been delivered at some processlI will never abort.

Proof. Let us assume that a client has issued the commit requestaftsactiont and that processg €
IT has executedteady_to_commit;(t), hencet € pending;. By Property3.11of the database system,
transactions can only abort if, while being active, anottmrflicting transaction commits. Moreover, it
is not possible for two conflicting transactions to beia_tosend;. Thus, only transactions belonging to
other turns can abott

If a turn with turn numbeturn,; coming from processis delivered, it is necessary that it has been pre-
viously multicast, which requires thatnd_turn;(turn,) had been previously executed. By Proposiion
only the processcan multicast turn numbetrn, ; therefore, no othercv_msg_rep; ({sites, turns, trs_lists))
can be executed. In fact, by (TO4), which ensures total atdivery of the replication messages, the next
receive event to be executed:awill be rcv_msg_rep;({i, turny, trs_list;)). Hence, transactions which
can cause the abort of any of the transactions-eftosend;, which includet, had been already appended
to pending;. For every evenprocess_turn;((turn, trs_list)) for which there are transactionsdns_list
of that kind, conflicting transactions ipending; will be removed in the event execution. Finally, when
send_turn;(turny) is executed, transactions bfs_tosend; that are going to be aborted during the appli-
cation of transactions ipending; are removed frontars_tosend;. Thus, ift is delivered, it is never going
to be aborted. O

Corollary 3.1. A transactiont € 7 which has been multicast by process 11 will never abort unless
crashes.

Proof. By (TO1), if process does not crash, then eventually its sent messages will beedsd and, by
Theorem3, will never be aborted. O

Lemma 4. The order in which turns are processed is the same as the dandetich they have been
delivered.

Proof. Let (site, turn, trs_list) be a delivered turn at process II. Its processing is represented by the
execution of the eventrocess_turn; ({(turn, trs_list)), which applies (if it has been generated at other pro-
cess) and commits its transactions in the correspondingy.ofdirns are sent through the Total Order Uni-

form Multicast service; thus, its delivery is modeled by éxecution of the everftO Deliver; ({rep_turn, (site, turn,
trs_list))), which appends the message to fieChannel, queue. Messages in that queue are pro-
cessed sequentially; therefore, they reach its head inaime @rder in which they have been appended.
When that happensiead(gesChannel;) = (rep_turn, (site, turn, trs_list)); thus, enabling the event
rev_msg_rep;((site, turn, trs_list)). The execution of this event appen@dsrn, trs_list) to the queue

42

pending;. Again, the sequential processing of turns in that queueagtiees that the order is maintained.
Hence,(turn, trs_list) reaches the head pénding; in the same order in which it has been delivered, and,
since that enables the evantocess_turn;({(turn, trs_list)), it is processed in the same order in which it
has been delivered. O

Theorem 5. The order in which transactions are committed is the sameexrtygrocess € V;,,;;.members
up to their first crash.

Proof. By Lemmal a transactiort committed at processhas been total order delivered previously by
that process. (TO4) ensures that every process that deliyedoes it in the same order. Since turns
are processed in the order in which they are delivered (byrhad), and transactions within a turn are
processed sequentially, thus maintaining the order, anerradorted (Theorer), the commit order will
be consistent at every correct process. O

5.3.2 Liveness Properties

The main result in reference to the progress of the systeamisiflated in Theorei and states that a client
which has requested a commit will finally obtain a responisieeea commit or abort notification or a report
of a crash event in its local site.

Lemma 6. A transactiont € 7 delivered at process< 11 is eventually committed unlessrashes.

Proof. Lett € 7 be a transaction delivered at procéss II. By Theorem2, it will never be aborted.

Its delivering is modeled by the execution B0 Deliver;({rep_turn, (site, turn, trs_list))), with t &

trs_list. The result is the appending @fep_turn, (site, turn,trs_list)) in gesChannel;. By means

of weak fairness assumptions, previously appended messdgesChannel; are consumed and finally
head(gcsChannel;) = (rep_turn, (site, turn, trs_list)), then enablingcv_msg_rep;({site, turn, trs_list)).

Eventually, this event executes aftdrn, trs_list) is appended tpending;. Again, previously appended

pairs are consumed afitlirn, trs_list) becomes the head pénding;. Then, by weak fearnegsocess_turn;({turn, trs_list))
executes, resulting in the commit of all transactiongrisnlist, which includet. O

Theorem 7. A transactiont € 7 which has issued a commit request at an active pro¢esdl, hence
site(t) = 4, will eventually commit or abort unlegsrashes.

Proof. When a commit for a transactionis issued at procegsby weak fairness, eventualtyady _to_com-
mit;(t1) is executed, then appendingto pending;. By Proposition7, eventuallymyTurn; = true, then
activating send_turn;(turn) for some turn numbeturn,. By weak fairness, this event will eventually
execute. If, between the execution of the ready and the sgradients, there is a tutmrn, which has
been processed and contained a transaction will be aborted. It will also be aborted if, when executing
send_turn;(turn) there is a turnturng in pending; containing a conflicting transaction; otherwise a mes-
sage containing the transaction will be sent. dbes not crash, by (TO1), it will deliver that message, and
by Lemmaé its transactions, which include, will eventually commit. O

5.3.3 Correctness Criteria

As it has been said in Secti@i2.3 we adopt the correctness criteria formulated3jt$ ensure correctness
of the replication protocol. Here we link the results obéaipreviously with each of the criteria.

e Well-Formedness Conditionk [3], three conditions have to be satisfied:
(a) Every behavior of the replication protocol has to respeetilehavior of each EDBnodule It
is satisfied by execution @irocess_turn.

(b) The first event of a transactianmay only be a begin at its delegate sitand thent is local
at that process and remote at every other procéss satisfied by Propert@.10and Defini-
tion 3.8

(c) Every behavior of the replication protocol has to respee& tiehavior of each EDBmodule
By Theorem?2 spontaneous creation of remote transactions is avoided.

43

e Prefix Order Database Consistendyis satisfied by Theorerb, since if transactions are always com-
mitted in the same order at every replica, for every pair pficas, either the sequence of snapshots
generated at one replica is a prefix of the other or vice-versa

e Uniform Termination Two conditions have to be satisfied:

(a) If a transaction is committed at one site, then it is commditieevery correct siteTheoremé
ensures that delivered transactions will be committedasniiee process crashes and Lenima
ensures that only delivered transactions can commit. Heheeondition is satisfied.

(b) Either if a transaction is aborted at one site it is abortecesery site that does not crash or if it
is aborted at its delegate site then no one of the remote a@tiens has been programmelth
our system, only the second part of the consequent can ondus aatisfied by Theoref

e Local Transaction ProgressThe behavior of our system is slightly different from th&{8]. In our
case no requirements about the progress of started traorsaist made, but only for those that have
requested their commit; hence, the criterion satisfied i€ractly the same. Theorefensures this
progress condition.

5.4 Recovery Algorithm Correctness

When dealing with recoveries we have to extend the resultggoutions where processes can crash and
later recover several times. Up to our knowledge, there aréefined criteria for systems with the crash-
recovery model. As for safety, we have extendedRhefix Order Database Consistencsiterion to pro-
cesses that crash and then recover, i.e. the ordering &faittions applies also to these processes. With
respect to liveness, we demand that processes which (réfjeisystem could recover the missed changes
and reach a state where transactions were processed bylicatien protocol as if the process had never
crashed.

5.4.1 Safety Properties

The main result to be proven with respect to safety is thagmadnprocess recovers from a crash, it has to
apply missed transactions in the same order that they haredgplied in a correct process and then, that
the replication algorithm continues applying transactibaginning from the next transaction to the last one
missed. To reach that result, we first prove that only missetsactions are transferred and applied. Then,
we prove that these transactions are applied in the corrdet.o

Lemma 8. During a recovery procedure taking place at process 11, only turns from the last applied
turn in 4 up to the last turn received before its rejoining are tramesfd from the selected recoverers.

Proof. Let us consider a successful recovery procedure (for uesstd procedures a prefix of the follow-
ing sequence is executed). The recovery procedure is@tdtiaith the eventiew_change;(V, joined, le ft,
activeNodes), wherei € joined. In therec_request messageqo is set as the upper bound and the
last applied turn as the lower bound in the recovery trapsies, since bothustTurnToRecover; and
lastAppTurn; are initialized in such a way in the restart event. We assuragjt< II is the selected
recoverer. We consider the two possible cases:

e Case 1: A rec.init message is received from the intended recoverer. It imghiglsj has executed
rev-msg-rec.request;(i, j, last AppTurn;, co) and then answered withrac_init message. In the
execution of the mentioned eventcU pper Bounds;[i] is set to the last turn received before the view
change and sent back iqco is the neutral element fanin). Then, in therec_init message, that
value is sent back tg which, during its processing, sdisstTurnT oRecover; to the last message
received before its rejoining. It may also happen that dutire mentioned procedure or after it, a
replication message be received. ThestTurnToRecover; would also be changed; however, it
would also be set to the last message received before iiairgjo

44

e Case 2:Norec_init message is received from the intended recoverer. By (PTR¥8s crashed, but
then, by Property.5, a view change wherg € [e ft will be triggered. Then has to ask again for a
recoverer in that view change. The process is the same as@IC@&xcept in one circumstance: let
the new selected recoverer be I1. If replication messages have been received before the iesw v
changelastViewTurny do not reflect the last turn thahas missed, but a higher one. Nevertheless,
this situation is prevented because in that situatiould have modifiedastTurnT oRecover; and
in therec_request message it would be indicated as the upper bound. Henceyith@perator ak
will return that value.

If, for any reason, the recoverer replieac < II, crashes while the recovery procedure is taking place, a
new recoverer has to be chosen. Nevertheless, in the congisyy request message an upper bound to the
transferred messages is sent with the valukefl'urnToRecover;. Then, the last turn the recoverer will
transfer will continue being the last message receivedrbéf® rejoining. O

Lemma 9. Lett;,t, € 7 be two committed update transactions#;lfis committed before, at process
i € II, thenturn(t1) < turn(ta).

Proof. If turn(t1) = turn(ty) the result holds trivially. Suppos@urn,,tlsty), with t; € tlst;, and
(turng, tlsty), with 2, € tlst; be the turns wheré; andt¢, were included and consider processA
transaction can only be committed by the execution of twaesrecv_msg_rec_turn; andprocess_turn;.
Let us consider all possible orderings:

o rcv_msg-_rec_turn;({(turny,tlsty)) < rcv_msg-rec_turn;({turns,tlsta)): By (PTP1), the deliv-
ery of the point-to-point messages enabling these evepteégded by its sending, which takes place
at the execution of eventend_rec_turn(j, turny) and send_rec_turn(j, turns) respectively at a
recoverer procesg € 11. Messages of this kind are sent in an order consistent wéthuitm number
contained within them. By (PTP4), messages are deliver&tH® order; henceurn; < turns.

o process_turn;({turny, tlist1)) < process_turn;({turns, tlisto)): By Lemmal the processing of
a turn is consistent with the order in which it has been dedideand, by Corollary.1, it is also
consistent with its turn number. Henc¢ayn, < turns.

e process_turn;({turny,tlsty)) =< rev_msg-_rec_turn;((turng, tlsts)): By Proposi-
tion 2, the first event can not be executed during a recovery proeeshd, by Propositiod, the
second event can only be executed during a recovery praeeti@nceprocess_turn; is executed
beforei leaves the group andcv_msg_rec_turn, after it rejoins the group. When the first event
is executed{turny,tlst;) is added to the log; thus, any subsequent cafletastTurn(log;) will
return turn numbeturn;, > turn;. When the recovery procedure associated with the second even
begins,turn,, is sent to the recoverer as the lower bound for the missed ttansference, which in
order will send turns beginning withurn,;, + 1. Hence turns > turn;, > turn;.

o rcv_msg-_rec_turn;((turny,tlst1)) < process_turn;({turna,tlsty)): By Proposition® andl, the
second event is executed when the recovery procedure atsbtorcv_msg_rec_turn; has fin-
ished. By LemmaB, lastTurnToRecover; will be set to the turn number of the last message re-
ceived before the rejoining, sayrn;,,.. Hence, the first message that will be appendegttaiing;
will have a turn number greater thanrn;,.. Then, process_turn;({turns,tlsts)) will satisfy
turng > turng,.. On the other hand, in the recovery procedure only turns twith number less or
equal toturng, will be sent; thus-cv_msg_rec_turn;({turny, tlst1)) will satisfy turn, < turn,.
Consequently, it holds thatirn, < turng, < turns.

O

Corollary 9.1. Lettq,t; € 7 be two committed update transactionsidin(t,) > turn(ts), thents is
committed before, at every process e 1I.

Proof. By negation of Lemma@&. O

45

Theorem 10. The order in which transactions are committed is the sameeatyeprocess (even for recov-
ered processes).

Proof. We first show that transactions belonging to the same turexaeuted in the same order and then
that transactions belonging to different turns are alsorndtad in the same order.

e Consider two transactions, t; € 7 such thaturn(t;) = turn(tz). There is a turfturn, trs_list)
such thatt;,to € trs_list. In fact, sincetrs_list is a sequence of transactions, either< ¢, or
to < t1. That turn is processed either@atocess_turn or atrcv_msg_rec_turn. In both events,
trs_list is consumed in the same way in every process. Hence, botatttons are committed in
the same order at every process.

e Consider two transactions, to € 7 such thaturn(t;) > turn(tz). By Corollary9.1, ¢, is com-
mitted before; at every process.

O

5.4.2 Liveness Properties

Intuitively, the result to be proven in recovery is that, whe process recovers, it catches up with the
rest of processes. Nevertheless, it is difficult to definenmég@rocess reaches the other ones, given the
asynchronous nature of the replication protocol. Hencehaxe defined the concept of aip-to-date
process, which will be our objective in the recovery procedu

Definition 5.5 (Up-to-date) A processi € II is said to beup-to-dateif for every turn (turn, trs_list)
delivered by some process from the beginning of the exetutpto the last message delivered in the
previous view, either:

e it has committed every transactior ¢rs_list or
e it maintains a copy of it in any of the process’ data structure

The sense of that definition is that a process is up-to-da@itlcan continue processing transactions
just like a process which has never crashed (it could be asi®y. The problem with recovery is that it
may be possible that the recovering replica did not applyrttssed updates fast enough to catch up with the
rest of the system. However, with this definition, it doesmatter, since our single worry is that the missed
updates were applied. Nevertheless, this simplificatimoignough to ensure that the procedure eventually
ends. Firstly, we need to guarantee that there will always pecess from which another joining process
can recover. This is expressed in the following assumption

Assumption 3. There is always a majority view in the systdii.(nembers| > [n/2]) and at least one of
its members isctive.

Moreover, we have to require some stability in the systenthabthe recovery procedure can progress.
This is the minimal assumption that has to be taken in ordensuire progress in the recovery procedure:

Assumption 4. Eventually one of the selected recoverers (heactye) will sent at least one recovery
message.

With this last assumption we ensure that, given that thérjgiprocess only has to recover from a finite
number of missed transactions, if there are recovererstiost the recovering process to carry on with the
procedure, it will eventually finish.

Lemma 11. If a recovering process € 11 chooses as recoverers a set of up-to-date processes 11 and
completes its recovery procedure successfully, it becomes-date.

5In fact it can only be stored on the receiving queues, namedy’ hannel; andptpChannel;; or in pending;.
6This is not an extraordinary requirement since in other witrissalso assume®p.

46

Proof. When the recovery procedure beging,dhe last applied turn number is obtained and, by LerBma
every previous transaction has been already applied (héglessred). During the recovery, every turn
missed at, i.e., turns from the following turn to the last applied ughe last turn received in the previous
views beforei’s rejoining, are transferred (by Lemn&. Every subsequent turn is also received, in this
case by the normal execution of the replication algorithimer&fore, every turn from the beginning of the
execution is received ands up-to-date. O

Lemma 12. If a process € Il is in theactive state, then it is up-to-date.

Proof. A processi can only beactive either if it has never crashed, since in the initial view afistion
state; is set toactive; or if it has completed a successful recovery procedureesimits final step (execu-
tion of new_Active N odes;) state; is also set tactive. In the former case, the node is trivially up to date
by properties of Uniformity Agreement and Sending View Dety. In the latter, a recovery procedure has
to take place. Since a recoverer assigneddan be a previously crashed process, the proof is presented b
induction over the successful recovery procedures:

e Base case:Suppose that is the first process to recover. The ordgtive processes in the sys-
tem, say{corri,...,corry,, } C II, are up-to-date. Ifj is a recoverer assigned to thenj <
{corry, ...,corrpy, }, i.€., it has never crashed; hengés up-to-date. Since processs in theactive
state, it has completed the recovery. Then, by Leridpdt becomes up-to-date

¢ Inductive step: Assume that then,. first successful recovery procedures, associated to eses
{reciy,...,rec,} C II have been completed and that the processes that have nasbedrin the
system arg{corry, ...,corry,, } C II. Then, letact C II be the set ofctive processes in the
system,act C {corri,...,corry, } U {reci,...,rec,}. By induction hypothesis, every of these
processes is up-to-date. We have to prove that in the nexteeg procedure, associated to process
1,1 becomes up-to-date. But since a recovgregin only be one of thactive processes; € act, and
these processes aaetive, by Lemmall, it also becomes up-to-date.

O

Lemma 13. If a process € II multicasts aec_request message, then it eventually is assigned a recoverer
j € I andstate; = recovering.

Proof. Leti be a process which has multicasea_request message. Therefore, it execute@dw _change(
V,left, joined, activeNodes) and selected a recoverer. By Assumpt®ructiveNodes # §); then, by
definition ofassignRecoverer, a procesg € Il is always selected as the recoverer. If that process crashes
by Property3.5, a new view change is triggered anwvill ask again for a recoverer. By Assumptidna
recoverer, sayec € 11, that stayslive the sufficient amount of time to respond is finally selected! tuen

i receives aec_init message, which enablesy_msg_rec_init;. By weak fairness, this event is eventually
executed settingtate; to recoverer. O

Lemma 14. A crashed process € II which restarts, then invokingestart;, eventually reaches the
recovering state and is assigned attive recoverer unless it crashes again.

Proof. Wheni restarts it executes everitstart;, where it callsjoin; to become part of the group. By Prop-
erty 3.6, eventually a view/ is installed withi € V.members. In fact, the eventiew_change;(V, joined,
left,activeNodes) will be executed, with € joined. In the processing of that everittotal order mul-
ticasts arec_request message. By Lemm&3 it eventually is assigned a recoveree II andstate; =
recoverer U

Lemma 15. A process in therecovering state will eventually becomnaetive unless it crashes.

Proof. Leti € 11 be a process witktate; = recovering, last AppTurn; = turn;, andlastTurnToReco-
ver; = turny,.. LetturnsToRecover denote the number of turns thiatnissed during its last outage that
have not been received and applied yet. ConsequénihysToRecover; = turngy, — turn,,. We prove
the result by induction oveturnsToRecover:

47

e Base case:Suppose thaturnsToRecover = 0; then,lastTurnToRecover; = lastAppTurn;
and end_recovery; is enabled. By weak fairness, it is eventually executed aasks for joining
the active Nodes subview. By Propertys.7, eventuallynew_active N odes(V, active Nodes), with
i € activeNodes is executed, settingtate; to active.

e Induction step: Assume that ifturnsToRecover = n — 1, i eventually becomeactive. Let us
prove the result foturnsToRecover = n. If a message from is delivered, by weak fairness,
rcv_msg-rec_turn; is executed antist AppTurn,; decreases in one unit. ConsequetlynsTo-
Recover = n—1 and, by induction hypothesiseventually becomesctive. Conversely, ifj crashes,
by Property3.5, view_change;(V, joined, left, active Nodes), with j € le ft, will be eventually ex-
ecuted. Then will ask for another recoverer by sendingex_request message. By Lemm&3, ¢
is eventually assigned a new recovetet I1. That is the same situation as before, but, by Assump-
tion 4, eventually one of the assigned recoverers will completesénding of a turn andwill deliver
it. Then, by weak fairnesscv_msg_rec_turn; is executed antiurnsToRecover decreases to—1,
which, by induction hypothesis, implies thiabecome up-to-date.

O

Theorem 16. A crashed processe 11 which restarts, then invokingestart;, will eventually be up-to-date
unless it crashes.

Proof. By Lemmal4 a process < 11 which restarts will eventually change its stateéoovering. Then,
by Lemmalbs it will eventually becomeactive. Finally, by Lemmal2, if it becomesactive, then it is
up-to-date. Hence the result holds. O

48

Workload parameters DB parameters
Reads size 50 | Table number 10
Update operations 1 | Number of items 2000000
Threads number 25,50 | DB size 2GB
Hot spot ratio 0%

Table 3: Fixed parameter for protocols comparison

6 Performance

In this section we provide an experimental comparison ofptteposed protocol with versions of the cer-
tification and primary copy protocols when the system is afpeg in normal mode (replication). We also
provide a theoretical background to justify the perforneimprovements that our protocol offers in the
recovery procedure.

6.1 Performance of the Replication Protocol

We have implemented a prototype of the replication part efgfoposed algorithm and compared it with
implementations of the certification and primary copy pcols. The objective of the experiments is to find
the scenarios where the three protocols behave distirttitis way, the parameters and factors (variables
varied throughout the tests) have been selected spe@allgint out these differences.

6.1.1 Experimental Environment

The experimental environment consists of a set of computensected in a 100 Mbps switched LAN.
Variable configurations of one to four computers have beed tshold the database replicas. Each machine
was equipped with an Int@ PentiunR) 4 at 3.4 GHz, 2 GB of RAM and a 250 GB hard disk. All of them
run the Linux distribution OpenSuse 10.2 (kernel versidr52.8.8-0.3).

The replication protocols have been implemented in the H3&8ystem [L7], a middleware replication
framework. ESCADA is built upon th&orda Programming Interfac6GAPI) [43], which consists of a set
of interfaces providing useful methods for database rafita by means of reflection mechanisms. In this
way, the DBMS management is abstracted while keeping theepging efficient, since GAPI allows close
coupling to the DBMS internals.

As an intermediate layer amid the ESCADA system and the tsliean scheduler has been placed to
redirect the transactions to the appropriate replica. éncthse of update-everywhere protocols, a simply
random mechanism is used; for primary copy protocols, @ttansactions are redirected to the primary
replica while the read-only transactions’ delegate iscteterandomly.

The DBMS used in the experimental evaluation is Postgre SQ44], a version of PostgreSQL2p]
implementing the GAPI natively. This implementation is ieeled by means of a set of patches, a trigger
library and a standalone Java process exposing the GAPldoge The standard PostgreSQL configuration
has been used, except when the connection limit has had t@bi#ied in order to test the system under a
specific number of clients.

6.1.2 Workload

In this section, a primary copy protocol, a certificationtpoml and the proposed deterministic protocol
are compared. The metrics used have been the typical onggnuoma throughput and response time. The
parameter used as the independent variable has been the tiagigactions rate.

The experiment fixed parameters are shown in T&8bl&or reads size and update operations, lower
values have been selected not to saturate the system. \§ftarhialues, the primary copy approach would
behave even worse. It is possible that greater differenoelsl e obtained for the certification and deter-
ministic protocols, but the behavior is not so distinct. Tate has been issued varying the time between
transaction submissions. Hence, the number of threadsdtasgreater impact, except for different levels
of response times; however, the proportion remains the same

49

Factor Levels

Update rate 0, 10, 25, 50, 75, 100 (%
TPS issued 10 - 200
Number of replicas 1,2,4

Table 4: Factors for protocols comparison

The update transactions rate is the main factor for the cdsgra The issued rate has been also varied.
In this way, we can observe how the response time evolvesthitincrease in the load and determine
at which point the system saturates. The number of replieasbleen also varied, although it has not
been possible to perform tests with more than 4 replicass iBhalso an interesting factor since different
replication protocols do not scale in the same way. Besides;an compare how much the performance
increases with the addition of more replicas (scale-up).

6.1.3 Results

In Figure17, the response times of the three protocols are shown degendithe issued transactions per
second for various update rates. The results correspondderario with 50 clients and are only depicted
until the system saturates.

For a read-only scenario, the three protocols behave indime svay, although sometimes the primary
copy protocol obtains slightly worse response times. Asiit be seen, the system scales almost linearly
according to the number of replicas: for a single replica, aximum throughput of almost 45 TPS is
obtained, whereas for 2 and 4 replicas 90 and 165 TPS araebtegspectively.

Scenarios with a small quantity of updates already caugereélifces between the primary copy protocol
and the update everywhere ones. The former approach stiféeoserhead posed by all the update transac-
tions being executed on the same replica. The way in whicedheduler has been designed does not favor
this protocol because, despite the master receiving allpkdate load, it is not lightened from the read load,
which is assigned in equal measure to all the replicas.

For medium update loads, the deterministic protocol bemitehave a bit worse than the certification
protocol. For 25% of update transactions the results are gimilar, but in the 50% scenario it suffers
an important degradation. The protocol may have a worseviiwtfar heavy loads, but we do not discard
implementation problems since we have used a prototype.fadtehat no behavior difference manifests
until 50% of update rate supports this hypothesis. We alsemie that from 25% of update rates on,
the certification protocol with 2 replicas obtains even dretesults than the primary copy approach for 4
replicas, and at 50% it obtains similar results than therdetestic protocol.

For heavy loads, the tendencies which appeared for the mediads, are confirmed. All the primary
copy configurations have the same results, since no mateanumber of replicas, all the operations are
performed in a single one. Despite the fact that certificatibtains better results, in this case the system
does not scale very well. The improvement obtained by thed?4areplicas configurations are approxi-
mately of 135 and 165% respectively (the perfect scalgbiivuld imply 200 and 400% of improvement
respectively).

In Figure 18 the maximum throughput reached on each configuration igsepted, although, in this
case, both scenarios with 25 and 50 threads are includean be seen how all the primary copy protocols
converge in the same maximum throughput with the increaseeofipdate rate, as it has been mentioned
before. It can also be seen that the deterministic protobtdins the same results than the certification
protocol for lower update rates, but there is a point beyohéitkvit behaves worse; and eventually its
maximum throughput lies amid the certification and the prinepy protocols.

6.2 Performance of the Recovery Protocol

No experimental results have been obtained yet for the ezg@rotocol; however, a theoretical justification
of the new protocol performance in terms of recovery timeravjged. Figurel9 represents how a failed
and later recovered node may evolve both with the certiicaind the deterministic recovery protocols.

50

0% update rate

1200

1000

800

Response Time

400 -

200 -

600 -

i
100
TPS issued

25% update rate

200

2500

2000

[
a
=]
S

1000

Response Time

500

TPS issued

75% update rate

3500

3000

2500

N
o
S
=}

Response Time
=
o
o
o

1000

500

TPS issued

10% update rate

1400

1200

1000 -

600

Response Time

TPS issued

50% update rate

120

2500

2000

i
a
=]
=]
T

Response Time
=
o
[}
o
:

500

TPS issued

100% update rate

60

3500 T

3000

2500

N
=}
S
=}
T

Response Time
=
o
(=3
o
T

1000

TPS issued

—&— protocol = single
—4&— protocol = certification2
—@— protocol = certification4
—— protocol = pc2

—>—— protocol = pc4

— ¥ protocol = deterministic2
—— protocol = deterministic4

Figure 17: Response time vs. TPS for several update rates

51

40

25 threads 50 threads

180 T T T T 180

Throughput
Throughput

i i i i i i i i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Read Update Rate Réad Update Rate
—&— protocol = single ——%—— protocol = pc4
—4&— protocol = certification2 — ¥ protocol = deterministic2
—@— protocol = certification4 —¥— protocol = deterministic4
—A— protocol = pc2

Figure 18: Maximum throughput vs. update rate

On thez-axis the elapsed time is represented, while in gkexis the log size is depicted. This figure
corresponds with the ones obtained4][and [51].

We suppose that the system is object of a constant loadsofate transactions per second and that
transactions contaiop write operations in average. We only consider the scendneraithe system is not
saturated; hence, it can handle all the requests. In thiatgn, the transactions are committed at a fixed
rate and the log grows up linearly:

log_size,ep(time) = trs_rate - op - time Q)

At a certain moment, indicated withrash;, procesg fails. Hence, in this node the log will not vary
during the outage. When the process recovers, it is traesfehe missed updates, while the system is
still object of the same workload. Since the system is nairaged, the recovering replica can commit
transactions at a higher pace than transactions are redcieivtbe system, i.elog_size,isseq(time) >
log_size,ep(time).

Once all missed transactions have committed, transaatimesved in the meantime have also to be ap-
plied. At this point it is where the behavior differs betweka certification and the deterministic protocols.
While the deterministic protocol can continue committingnsactions at the same rate (it has to do more
or less the same actions that when applying missed traoeayitthe certification protocol must previously
certify each of these transactions; therefdtg, sizege. (time) > log_size e +(time). The result is that
the recovery process will end before in the case of the détéstic protocol, as it is shown in Figurks,
whereRT jo; < RTvert.

52

log size

—— certification
—— deterministic

RTcert :

RTget :

missed transactions

crash;

recover;

Figure 19: Recovery time for process

53

time

7 Conclusions

7.1 Summary

In this work, a complete database replication approachydimtg a recovery mechanism, has been presented
and proved correct. This proposal provides an alternativtee typical replication approaches of primary
copy and certification and is shown to be more suitable foréhevery procedure.

The deterministic protocol is an update-everywhere datbeplication protocol based on the send-
ing of transactions in an ordered way, which provides a sppéeature: multicast transactions are always
committed. This particular characteristic has two advgesdor the performance of the algorithm: a) trans-
actions that are not going to succeed do not waste resouregsrg replica but only at their delegate one;
and b) there is no need for additional rounds in the recovesghanism. The main drawback of this pro-
posal is that the turn mechanism can pose an increment imtiecy. However, the experimental results
that have been carried out in this work show that the overigendt too large with respect to certification
protocols. Moreover, as it will be explained in Sectibg2, several strategies could be adopted in order to
increase the performance of the proposed solution.

A detailed correctness proof of the algorithm is providethia work. The replication protocol is proved
to be 1CSI, based on the correctness criteria proposé&ifior[the fail-stop model. In the case of executions
where the recovery of processes is allowed, we think thaixemnsion of these criteria can be used when
considering safety. We have also proved that a process wleigims to recover finishes that procedure if it
does not crash again and some minimal stability assumpdiensatisfied.

7.2 Future Work

In this work, a new replication and recovery solution hasnbpeesented and proven to be correct and
promising in terms of performance. However, this work habeaontinued in order to both improve the
algorithm and identify the scenarios were it fits better ttignprevious proposals.

7.2.1 Algorithm Improvements

In this section, several guidelines for the improvemenhefalgorithm are provided:

Primaries and secondaries:As it was described in40], hybrid approaches with a variable number of
primary and secondary replicas may adapt themselves betédferent scenarios with higher scala-
bility requirements. The sequence of turns would only plassugh the primary nodes, thus reducing
the latency of transactions. Moreover, total order andféfoumity may be implemented in more
efficient ways taking into account the specific charactessif the senders.

Uniform multicast: Previous versions of the protoc@1, 30, 40] used uniform reliable multicast without
ordering guarantees to send transactions. Since traossaetie ordered according to their associated
turn numbers, total order would not be in principle indisgavie. However, recovery complicates
the properties required to the GCS and, hence, a correcamedgsis should have to be carried out
for this option. Moreover, differences in performance dtddae studied, provided that the cost of
uniformity and total order is na priori very different.

7.2.2 Evaluation

The experiments performed so far have allowed to gain aghibsnto how this protocol behaves with
respect to previous database replication proposals. Hawawther experiments would be of great help
for a deeper comprehension of its strong and weak pointshé&umore, the expected results in terms of
performance should be contrasted with actual experiments.

Standard benchmarks: In the evaluation of the replication performanad,hocworkloads have been used
in order to point out the differences between the protoddtsvever, the use of standard benchmarks,
like TPC-C or TPC-W, would be interesting in the presentatibthe performance results.

54

Scalability: It would be very useful to measure the performance of theegysin configurations with a
large number of replicas to determine how scalable the potgare. It is possible that with a higher
amount of replicas the behavior of the protocols be distietrthermore, protocols which behave
worse in the tests performed so far could be the best wittetbesfigurations.

Recovery evaluation: No recovery experiments have been carried out so far; hémeegcovery algorithm
should be assessed in a real environment. The evaluatidy siwuld include the following results:
e Log size vs. recovery time.
e Recovery time vs. outdatedness.
e Influence of recovery procedures in the system performance.
e Evaluation of the proposed improvements (log compactiptinozed transfer, etc).

55

Acknowledgments

This work has been supported by the Spanish Government westearch grant TIN2009-14460-C03.

56

References

[1] Atul Adya, Barbara Liskov, and Patrick E. O'Neil. Genkzrad isolation level definitions. IICDE,
pages 67-78, 2000.

[2] Yair Amir. Replication Using Group Communication Over a PartitioneztWork PhD thesis, Hebrew
University of Jerusalem, Israel, 1995.

[3] Jos Enriqgue Armendriz-lfigo, Jog Randbn Gonalez de Mendil, Jos Randn Garitagoitia, and
Francesc D. Miloz-Escd. Correctness proof of a database replication protocotutite perspective
of the 1/0 automaton modeRActa Inf, 46(4):297-330, 2009.

[4] Jo Enrique Armendriz-lfigo, Francesc D. Mioz-Escd J. R. Jarez-Rodiguez, Jos
Ranbn Gonalez de Mendil, and Bettina Kemme. A recovery protocol for middlewaeplicated
databases providing GSI. IRRES pages 85-92. IEEE Computer Society, 2007.

[5] Ozalp Babaglu, Alberto Bartoli, and Gianluca Dini. Enriched view symony: A programming
paradigm for partitionable asynchronous distributedesyst IEEE Trans. Comput46(6):642—658,
1997.

[6] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melt&lizabeth J. O’'Neil, and Patrick E. O’Neil.
A critique of ANSI SQL isolation levels. In Michael J. CaregcaDonovan A. Schneider, editors,
SIGMOD Conferencepages 1-10. ACM Press, 1995.

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Gaaal Concurrency Control and Recovery in
Database System#ddison-Wesley, 1987.

[8] Michael J. Cahill, Uwe Bhm, and Alan D. Fekete. Serializable isolation for snapdatabases. In
SIGMOD '08: Proceedings of the 2008 ACM SIGMOD internaticcanference on Management of
data, pages 729-738, New York, NY, USA, 2008. ACM.

[9] Michael J. Carey and Miron Livny. Conflict detection temdfs for replicated data. ACM Trans.
Database Syst16(4):703—-746, 1991.

[10] Emmanuel Cecchet, George Candea, and Anastasia Aldlamiadleware-based database replication:
the gaps between theory and practice. SIEGMOD ’'08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of dgtages 739-752, New York, NY, USA, 2008. ACM.

[11] Gregory Chockler, Idit Keidar, and Roman Vitenberg.o@® communication specifications: a com-
prehensive studyACM Comput. Sury33(4):427-469, 2001.

[12] Oracle Corporation. Oracle database 11g: Oraclersiseaplication. 2007.

[13] Khuzaima Daudjee and Kenneth Salem. Lazy databaseatph with snapshot isolation. In Umesh-
war Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonsay®1. Lohman, Martin L. Ker-
sten, Sang Kyun Cha, and Young-Kuk Kim, editov6 DB, pages 715-726. ACM, 2006.

[14] Ruken de Juan-Man, Luis Irin-Briz, and Francesc D. Mioz-Escd. A cost analysis of solving the
amnesia problems. IAINA Workshopspages 230-237. IEEE Computer Society, 2009.

[15] Xavier Déefago, Andée Schiper, and &er Urkan. Total order broadcast and multicast algorithms:
Taxonomy and surveyACM Computing Survey86:2004, 2003.

[16] Sameh Elnikety, Willy Zwaenepoel, and Fernando Peddbatabase replication using generalized
snapshot isolation. IBRDS pages 73—-84. IEEE Computer Society, 2005.

[17] ESCADA. ESCADA replication server. URIt t p: / / escada. sour cef or ge. net/, 2008.

[18] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’NeRatrick O’Neil, and Dennis Shasha. Making
snapshot isolation serializabl&CM Trans. Database SysB80(2):492-528, 2005.

57

http://escada.sourceforge.net/

[19] R. Friedman and R. van Renesse. Strong and weak vignahsony in Horus.Reliable Distributed
Systems, IEEE Symposium 6140, 1996.

[20] Jim Gray, Pat Helland, and Dennis Shasha. The dangeepltitation and a solution. Im Proceed-
ings of the 1996 ACM SIGMOD International Conference on Mgmaent of Datapages 173-182,
1996.

[21] Jim Gray and Andreas Reutfiransaction Processing: Concepts and Techniqisrgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1992.

[22] PostgreSQL Global Development Group. PostgreSQL: Whed’s most advanced open source
database. URLht t p: / / www. post gresql . or g/, 2009.

[23] Slony Development Group. Slony-I. URht t p: / / www. sl ony. i nf o, 2009.

[24] JoAnne Holliday. Replicated database recovery usingficast communication. IINCA '01: Pro-
ceedings of the IEEE International Symposium on NetworkpZiimg and Applications (NCA'01)
page 104, Washington, DC, USA, 2001. IEEE Computer Society.

[25] JoAnne Holliday, Robert C. Steinke, Divyakant Agrawahd Amr El Abbadi. Epidemic algorithms
for replicated databased=EEE Trans. Knowl. Data Eng15(5):1218-1238, 2003.

[26] SyBase Inc. SyBase replication server. URLL p: / / ww. sybase. es/ product s/ busi ness-
continuity/replicationserver, 2009.

[27] Emmanuel Cecchet Inria and Emmanuel Cecchet. C-jdbaiidaleware framework for database
clustering.IEEE Data Engineering Bulletir27:9-18, 2004.

[28] Luis Irtn-Briz, Hendrik Decker, Ru#n de Juan-Méan, Francisco Castro-Company, édsnrique Ar-
mendariz-lihigo, and Francesc D. Mioz-Escd. MADIS: A slim middleware for database replication.
In Jo€ C. Cunha and Pedro D. Medeiros, editd&gro-Par, volume 3648 oLecture Notes in Com-
puter Sciencepages 349-359. Springer, 2005.

[29] R. Jimenez-Peris, M. Pdib-Marfinez, and G. Alonso. Non-intrusive, parallel recovery qfli@ated
data.Reliable Distributed Systems, IEEE SymposiunDabb0, 2002.

[30] J. R. J@rez-Rodiguez, Jod Enrique Armendriz-liigo, Jog& Randn Gonalez de Mendil, and
Francesc D. Miioz-Escd. A database replication protocol where multicast writesee always com-
mitted. INARES pages 120-127. IEEE Computer Society, 2008.

[31] J. R. Jarez-Rodiguez, Jos Enrique Armendriz-liigo, Francesc D. Mioz-Escd Jo®
Ranbn Gonalez de Mendil, and Jog& Randn Garitagoitia. A deterministic database replication
protocol where multicast writesets never get aborted. IneRdVieersman, Zahir Tari, and Pilar Her-
rero, editorsOTM Workshops (1)volume 4805 ofLecture Notes in Computer Sciengages 1-2.
Springer, 2007.

[32] Bettina Kemme.Database Replication for Clusters of Workstatiori®hD thesis, ETH Zurich, De-
partement of Computer Science, Switzerland, 2000.

[33] Bettina Kemme and Gustavo Alonso. Don't be lazy, be iant: Postgres-R, a new way to imple-
ment database replication. In Amr El Abbadi, Michael L. BegdSharma Chakravarthy, Umeshwar
Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young Whaaigtors,VLDB, pages 134—-143. Mor-
gan Kaufmann, 2000.

[34] Bettina Kemme and Gustavo Alonso. A new approach toldgigg and implementing eager database
replication protocolsACM Trans. Database Sys5(3):333-379, 2000.

[35] Bettina Kemme, Alberto Bartoli, an@zalp Babaoglu. Online reconfiguration in replicated dasais
based on group communication. DSN '01: Proceedings of the 2001 International Conference o
Dependable Systems and Networks (formerly: FT@&)es 117-130, Washington, DC, USA, 2001.
IEEE Computer Society.

58

http://www.postgresql.org/
http://www.slony.info
http://www.sybase.es/products/business-
continuity/replicationserver

[36] Bettina Kemme, Fernando Pedone, Gustavo Alonso, &&thiper, and Matthias Wiesmann. Us-
ing optimistic atomic broadcast in transaction processiygfems.|EEE Trans. Knowl. Data Eng.
15(4):1018-1032, 2003.

[37] WeiBin Liang and Bettina Kemme. Online recovery in ¢krdatabases. In Alfons Kemper, Patrick
Valduriez, Noureddine Mouaddib, Jens Teubner, MokranezBghioub, Volker Markl, Laurent Amsa-
leg, and loana Manolescu, editoEDBT, volume 261 ofACM International Conference Proceeding
Seriespages 121-132. ACM, 2008.

[38] Yi Lin, Bettina Kemme, Ricardo Jiémez-Peris, Marta Pat-Marfinez, and Jds Enrique Ar-
mendariz-lfigo. Snapshot isolation and integrity constraints iniogéd databasesACM Trans.
Database Syst34(2):1-49, 2009.

[39] Yi Lin, Bettina Kemme, Marta Pdib-Marinez, and Ricardo Jiemez-Peris. Middleware based data
replication providing snapshot isolation. In Fat@acan, editorSIGMOD Conferencepages 419—
430. ACM, 2005.

[40] M. Liroz-Gistau, J. R. Jarez-Rodiguez, Jo8 Enrique Armendriz-lhigo, Jog& Randn Gonalez
de Mendvil, and Francesc D. Mioz-Escd. On extending the primary-copy database replication
paradigm. In Boris Shishkov, Je<Cordeiro, and Alpesh Ranchordas, editd&SOFT (2) pages
99-106. INSTICC Press, 2009.

[41] Francesc D. Miioz-Escd, Jebnimo Pla-Civera, Maa ldoia Ruiz-Fuertes, Luis (in-Briz, Hendrik
Decker, Jos Enrique Armendriz-lfigo, and Jos Randn Gonalez de Mendiil. Managing transac-
tion conflicts in middleware-based database replicatichitectures. I'BRDS$pages 401-410. IEEE
Computer Society, 2006.

[42] MySQL. MySQL 6.0 Reference Many&i009.

[43] University of Minho. GORDA - open replication for datades. URL:
http://gorda. di . um nho. pt/, 2009.

[44] University of Minho. PostgreSQL/G - implementationtbé GORDA interface in PostgreSQL. URL:
http://gorda. di.um nho. pt/community/pgsql g/, 2009.

[45] Marta Patiio-Martnez, Ricardo Jirenez-Peris, Bettina Kemme, and Gustavo Alonso. MIDDLE-R:
Consistent database replication at the middleware 16%€IM Trans. Comput. SysR3(4):375-423,
2005.

[46] Christian Plattner, Gustavo Alonso, and M. Tarfsu. Extending DBMSs with satellite databases.
VLDB J, 17(4):657—682, 2008.

[47] Maria Idoia Ruiz-Fuertes, Jemimo Pla-Civera, J& Enrique Armendriz-liigo, Jo&
Ranbn Gonalez de Mentil, and Francesc D. Mipz-Escd. Revisiting certification-based
replicated database recovery. In Robert Meersman and Zahir editors,OTM Conferences (1)
volume 4803 oL ecture Notes in Computer Scienpages 489-504. Springer, 2007.

[48] Rall Salinas-Monteagudo and Francesc D. Munoz-Escoi. Alriragierless writeset extraction in
multiversioned databases.MEPEND '09: Proceedings of the 2009 Second Internationaif€@nce
on Dependabilitypages 136—-142, Washington, DC, USA, 2009. IEEE Computeie§o

[49] A. Udaya Shankar. An introduction to assertional re@sg for concurrent systemsACM Comput.
Surv, 25(3):225-262, 1993.

[50] TPC. Transaction processing performance council. URL p: / / www. t pc. or g, 2008.

[51] Ricardo Manuel Pereira Vilaca, J®rlando Pereira, Rui Carlos Oliveira, 8dsnrique Armendariz-
Inigo, and Jog Randn Gonalez de Mendivil. On the cost of database clusters recoraigur. In
SRDS '09: Proceedings of the 2009 28th IEEE Internationahi®sium on Reliable Distributed
Systemgpages 259-267, Washington, DC, USA, 2009. IEEE Computeie§o

59

http://gorda.di.uminho.pt/
http://gorda.di.uminho.pt/community/pgsqlg/
http://www.tpc.org

[52] Matthias Wiesmann and AnéiSchiper. Comparison of database replication technigassoon total
order broadcastEEE Trans. Knowl. Data Engl17(4):551-566, 2005.

[53] Shuging Wu and Bettina Kemme. Postgres-R(SI): Connginéplica control with concurrency control
based on snapshot isolation. IlBDE, pages 422-433. IEEE-CS, 2005.

60

	Introduction
	Background
	Contributions
	Outline

	Database Replication and Recovery
	Introduction
	Consistency
	Isolation Levels
	Replicated Databases
	Correctness

	Replication Protocols
	Taxonomy
	Putting All Together
	Primary Copy Protocols
	Certification Protocols
	Our Replication Proposal

	Recovery Protocols
	General Ideas
	Online Recovery Protocols
	Our Recovery Proposal

	System Model
	Architecture
	Formalization
	State Transition Systems
	Component Interaction
	Assumptions About The Environment

	Group Communication System
	Introduction
	Signature
	Membership Service
	Communication Service

	Point-to-Point Communication System
	Extended Database System

	Algorithm
	Algorithm Overview
	State Variables
	Signature
	Start Event
	Input events
	Replication Events
	View Management Events
	Recovery Events

	Improvements
	Implementation Issues

	Correctness Proof
	Preliminary Definitions
	Turn Management
	Safety Properties
	Liveness Properties

	Replication Algorithm Correctness
	Safety Properties
	Liveness Properties
	Correctness Criteria

	Recovery Algorithm Correctness
	Safety Properties
	Liveness Properties

	Performance
	Performance of the Replication Protocol
	Experimental Environment
	Workload
	Results

	Performance of the Recovery Protocol

	Conclusions
	Summary
	Future Work
	Algorithm Improvements
	Evaluation

