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Abstract

This paper proposes new protocols for the interconnection of FIF@-cansal-ordered broadcast
systems, thus increasing their scalability. They use several interdtmmicks between systems, which
avoids bottleneck problems due to the network traffic, since messagestaiorced to go throughout a
single link but instead through the several links we establish. Genetalearitires to interconnect FIFO-
and causal-ordered systems are proposed. Failure manageméstd @iseussed and a performance
analysis is given, detailing the benefits introduced by these interconnagimnaches that are able to
easily increase the resulting interconnection bandwidth.

1 Introduction

There have been multiple papers [1, 4, 10, 13, 7, 2] that haotee their attention to the interconnection
of message broadcast systems. Some of them [1, 4, 10, 13 r&]Jfe@ised on causal-ordered systems,
thus reducing both the size of the vector clocks [15] beireglun the broadcast protocols and the amount
of needed messages (since smaller groups were used). Mibstnothave relied on either FIFO intercon-
nection links [1, 10, 7] or on causal broadcast among thedateection servers [4].

The aim of such solutions is to enhance the scalability ofréselting broadcast mechanisms. Such
scalability might be needed in different current distrdaiapplications, like P2P applications or the data
centres being used to implemahbud computingystems.

Other scalability efforts have been focused on other aspdctausal communication, introducing some
principles that have guided the design of the interconoraolutions. One example is the usage of causal
separators [16] that divide the global system into causagdi.e., subgroups) and reduce the size of the
vector clocks needed for guaranteeing causal deliverythfarexample is the solution described in [11],
that also interconnects previously existing systems asdres causal delivery, but without requiring that
all messages were broadcast; i.e., point-to-point comeation among different systems is also consid-
ered. To this end, such global system also relies on a setusataervers, each one from a different
local system, and using vector clocks to ensure causalaiglim such set of servers, whilst system-local
communication does only rely on linear logical clocks or twygical synchronisation.
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Figure 1: Interconnection System.

Similar efforts can be found in order to interconnect FIF@esed systems [10, 2], although in such
case the interconnection is almost trivial, since it onlgaeleds on local information from the sender node.

However none of such papers has proposed any techniquecfeasing the usable bandwidth of such
interconnecting protocols, implementing some techniquei§ing simultaneously several interconnecting
channels able to transmit multiple messages in parallefe @t in most cases, each broadcast system is
deployed over a very fast LAN, whilst the interconnectintké are far slower. In the common case, we
might assume that such solution could be provided by theor&tiayer, using multiple paths between each
pair of interconnected servers, and selecting an apptepuath per message in order to avoid congestion.
But this cannot be assumed in all scenarios. For instaneesahof data centres in a cloud computing
environment might use dedicated inter-centre channels;there will be a single path between each pair
of centres. Thus, we do not obtain any bandwidth improvertrgintg to set up multiple logical paths in
such scenario. So, in some cases, a transport or applidatiehparallelisation of these interconnections
might enhance the overall system performance. This paperssihis alternative, providing interesting
results.

The rest of the paper is organised as follows. In Section 2intveduce our framework for the inter-
connection of message-passing systems. In Section 3, welsiw to interconnect FIFO-ordered systems
by using several interconnection links between system&elttion 4, we introduce the architecture with
which interconnect FIFO-ordered systems. Sections 5 amih@at the same for causal-ordered systems,
whilst Section 7 describes how process failures can be neahadgnally, Section 8 provides a performance
analysis and in Section 9, we present some concluding remark

2 Model

In this paper, we use a model similar to the one in [2]. Fromyasjgal point of view, we consider distributed
systems made up of a setrafdesconnected by aommunication networklhe logical system we consider
consists ofprocessegexecuted in the nodes of the system) which interact by exgihg messagewvith
one another (using the communication network). The interfaetween the processes and the network has
two types of events [3]: by usinigc-seng(m ), process broadcasts the messageto all processes of the
system. Similarly, by usinfc-recy(m), process receives the message

The basic broadcast service specificationf@rocesses consists of sequencdse$end andbc-recy
events0 < ¢ < n — 1. In these sequences, edutrrecy(m) event is mapped to an earliec-send(m)
event, every message received was previously sent, ang enessage that is sent is received once and
only once in each process. For the sake of simplicity, we aésoime that any given message is sent once,
at the most. This assumption does not introduce any newatésty; since it can be forced by associating
a (bounded) timestamp with every send operation [9].

Following, we defind=IFO-orderedsystems, according to the ordering requirements of thedoas
services they implement.

Definition 1. We say that a system lFO-orderedf, for all messagesn; andms and all processesp;
andp;, if p; sendsn, before it sendsns, thenms is not received ap; beforem;.

The definition ofcausally orderedsystems requires us to firstly introduce trappens-beforéenoted



with —) relation between messages. The important property ofabpdns-before relation is that it com-
pletely characterizes the causality relations betweersages.

Given a sequence bic-send andbc-recy events) < i < n—1, messagen; is said tohappen-before
messagens if either:

1. Thebc-recy event form, happens before thac-send event forms.

2. my andmy are sent by the same process andis sent beforen.

Now, we define a causally ordered system as follows.

Definition 2. We say that a system éausally orderedf for all messagesn; andmy and every process
pi, if mq happens-beforew,, thenms is not received ap; beforem, is.

We consider systems in which each message sent must eveit@aeceived in every process of the
system. This is a very natural property (usually knowhigenes$which is preserved by every system that
we have found in the literature. In our terminology it medrat for eactbc-send(m) event, ébc-recy; (m)
event will eventually occur for every proceg the system.

Now, we define what we understand pyoperly interconnectingeveral equally ordered systems.
Roughly speaking, this consists in interconnecting thgstems (without modifying any of them) by using
aninterconnection systefdenotedS), so that the resulting system behaves as a single one aserypes
the same ordering. Such an interconnection system is madkauget ofinterconnecting system processes
(denotedlS processesthat execute some distributed algorithm or protocol. Eafcthese processes re-
ceives all the messages broadcast in its system and cdrbitsaticast new messages received from the
interconnection link, but it cannot generate and broadeast messages on its own. More specifically, a
value broadcast by an application process in some systerontgioe received by an application process
in another system if the interconnecting process of therdaystem broadcasts it. The interconnecting
processes can communicate among themselves via messaggpatowever, they cannot interfere with
the protocol in their original local message-passing systeany way. Figure 1 presents an example of an
IS interconnecting two systems with the above-mentioneditatiare and twdS processes

3 Interconnection of FIFO-Ordered Systems

By using the model introduced in the previous section, [Byjated a simple protocol to properly intercon-
nect FIFO-ordered systems. However, the aim of such a pybigas not focused on having a very efficient
protocol, but on proving that it is in fact possible to int@noect FIFO systems. Therefore, to interconnect
any pair of systems, the protocol used ti8oprocessesClearly, this could generate bottleneck problems,
since all messages must pass throughout the single linkefbioy this pair oflS processesThus, this
raised the question as to whether it is possible or not to egerallS processeper interconnected sys-
tem. In this section, we provide an interconnecting protémoFIFO-ordered systems that uses sevisal
processef each system.

First, we consider the case when there are only two systeatst,lwe will consider the case of several
systems. Let us denote each of the FIFO ordered systeifi$ @gith k£ € {0,1}). The interconnecting
protocol consists of several processes, denisggd(with & € {0, 1} andv denoting thdS processwithin
systemsS*), that are part of each of the two systems. Note that the nuofb8 processemay be different
in % and inS*.

These interconnecting processes are only in charge of taecannecting protocol. It is worthwhile
remarking that eaclsp’ is part of the systens* and, for that reason, can use the communication system
implemented inS*. Note also that the introduction of those processes doesegatre any modification
of the original systems. We consider that the set of prosaissthe resulting syster”' includes all the
processes is? andS*, with the exception of théS processgsvhich are only used to interconnest and
St

Each isp® process executes two concurrent atomic tasks, namelypagate_out(isp?,m) and
Propagate_in(ispt,m) (atomicity is needed in order to avoid race conditions).



. Propagate,out(isd; m) transfers the message issued by a process 'setu(isp(j) to S* (we use
k to denotel — k). Each process in systesf (except for thelS processgsmust be included in
one transfer set (associated with only d8eprocess Furthermore, the transfer of messages from
processes iset, (isp) is performed to a singlES processn S*, denotedink,, (isp?). However, an
IS processnay transfer messages to mdByprocesseand receive transfers from many of them, but
they are not necessarily the same.

Both set, (ispf) andlink,, (isp}) are set up prior to running the protocol.
e Propagate_in(isp, m) forwards the messages received fr6fto within S*. Note that wherspf

receives a transfer, it performs the broadcast to the whatlefgrocesses in systefif, regardless
of the transfer sets these processes belong to.

Propagate,out(isp’,j, m) :: task which is
activated oncéc-recy, (m) is executed

Propagate_in(isp;, m) :: task which is
activated immediately after message

begin
if m was sent by a process set, (isph)
then transfern to link, (isp%)
end

m is received fromS*
begin

be-send, . (m)
end

Figure 2: The interconnecting protocoldsp®

Fig. 2 shows the implementation of tf-opagate_out(isp;, m) and Propagate_in(isp;, m) tasks.

It must be noted that the link between pairsl&fprocessesone in each system, needs to be FIFO-
ordered. However, nothing has been said about how to impilethis. In a practical case, this channel
could be implemented in a number of ways, either by usingesharemory or by using message passing.
Figure 3 shows an illustrative example of how transfer links established between two interconnected
FIFO systems. EaclS process ispis in charge of transferring the messages issued by pracésse
set, (ispf’) to systemS*. There are thre&S processes systemS® and twolS processem systemS?.
Bothisp] andisp) transfer messages tep;, andisp) transfers messages igp;. In turn, isp; transfers
messages tisp] andisp, transfers messages bothisp) andisp).

SO

setq (isp9)
1

Figure 3: Example of the interconnecting protocol for twetsyns.

The following theorem shows that the systéfh, obtained by connecting any two FIFO-ordered sys-
temsS? and.S! by using the above-mentioned interconnecting protocallss FIFO ordered.

Theorem 1. Any two FIFO-ordered systems can be properly interconmHoyeusing the protocol in Fig. 2.

Proof. By contradiction. Assume there are two messagesandms, sent in that order by, say, process
p; in systemSY. Now, assume they are received by, say, propeds systemS? in the reverse order.



SinceS! is a FIFO-ordered systemy, must have been sent by sor® processn S* beforem;.
Therefore, since the two systems are connected by a FIF€@eamitdommunication channel, we have that
mo Must have been transferred by solgrocessn S° beforem;. This implies that, sinc€? is a FIFO-
ordered system systemn,, must have been sent (lpy) beforem;. Thus, we reach a contradiction. O

Note that the same interconnecting protocol can be usedfedy interconnect any number of FIFO-
ordered systems. This can be easily shown by induction omuheber of systems. Le§” denote the
resulting system. Forn = 1 the claim is clearly true, sincé” = S°. Forn = 2 it is immediate from
Theorem 1. Now, assume that we can obtain a FIFO-orderedmys$tby properly interconnecting the
systemss?, S, ..., S"~2. Then, from Theorem 1, we can properly interconngcand S*~! to obtain a
FIFO-ordered syster§i”.

Similarly to what happened with the interconnection protqeroposed in [2], our interconnecting
protocol should not affect theesponse tima process observes when issuing a broadcast operatioa, sinc
its broadcast protocol is not affected by the interconoectiThe latency (i.e., the time until a broadcast
value is visible in any other process) is also the same.

However and contrary to the interconnection protocol psagoin [2], we can now avoid bottleneck
problems due to theetwork traffi¢ since messages are not forced to go through a single linthbuigh
the several links we establish.

4  An Architecture to Interconnect FIFO-Ordered Systems

In this section, we describe a general architecture todoterect FIFO-ordered systems. Such an architec-
ture can be built following these steps:

Step 1: For each procegsn systemS*, choose anS processn systemS*. Call such a processp(p).

Step 2: For eaclsp(p), set up a series of paths to soifseprocesseslenotepathsp). A pathis formed
by a series of subsequent FIFO-ordered links that conneair @flS processesSuch paths should
have only ondS proceser system they interconnect. Note that different pathtbdeifrom the
samelS proces®r not) may share some of their links.

Step 3: Transfer the messages issued by prgcéssother systems) by usingp(p) throughpathgp).

Step 4: When aiS processeceives a transfer, it broadcasts that message to evasggmwithin its own
system.

The correctness proof of the above-mentioned archite@wery similar to the proof of Theorem 1
(only S° and.S* must be changed by two arbitrary pairs of systems,¥agndS*"), and we omit it here.

Note that the protocol proposed in the previous sectionriits the proposed architecture. However,
other interconnection protocols that adhere to the prapasehitecture could be implemented. Fig. 4
shows an illustrative example with four systems and thrdferdint ways of interconnecting them. In
the example, we show the case where tH&@rocessed systemS® (denotedsp}, isp) andisp)) are
respectively used to transfer the messages issued by pespeg andr in S° (i.e.,isp(p) = isp!, isp(¢) =
isp) andisp(r) = isp}). As can be seerisp] sets up three links directly tisp;, isp? andisps (in red).
Moreover,isp) establishes a link tisp;; then, this one establishes another linkgp;, and this one to
ispS (in black). Finally,isp) establishes a link tsp;; then, this one establishes two links, onesig and
another one tésp, (in blue).

5 Interconnection of Causal-Ordered Systems

Contrary to what happens with totally ordered systems, ¢hatnot be interconnected in any way'{2]
and similar to what happens with FIFO ordered systems, dgusaered systems can always be prop-

1This result does not contradict tRéFO forwardingtheorem of [10] that states that total order systems can becimminected with
a FIFO total order interconnecting protocol, since suchoagmol needs to be intrusive; i.e., it needs to modify the lagaehaviour
of the local total order protocol in each system, and suchegegf intrusiveness is not allowed in our system model assongpti



Figure 4: Example of the architecture to interconnect Fi¥@ered systems.

erly interconnected. As in the case of FIFO ordered systémgrder to avoid bottleneck problems it
would be interesting to design an interconnecting protticat uses severd$ processeat each system.
Unfortunately, the next theorem shows than in causallyredisystems this is not possible.

Theorem 2. Any two causally ordered systems cannot be properly intereoted if there is more than one
IS process at each system, and such IS processes are noinaiecd

Proof. By contradiction. Let us now assume the existence of a pobthet properly interconnects two
causally ordered systen$® and S* such that there are two IS procesg andisp; in S° (not coordi-
nated in any form) and two IS proceisg} andisp} in S (not coordinated in any form).

Assume that a procesén S° issues message. Letisp) thelS processhat will transfer such message
toisp;. Now, consider a procegsin S° that receives message and after it, issues messageé that will
be transferred, by meansisf}, to isps.

It could happen thasp) transfers message’ to isp, beforeisp) transfers message toisp!. If isp,
sends message’ beforeisp] sends message, it could happen that some processdh receivesm’
beforem. This breaks causality and we reach a contradiction. O

As a consequence of this theorem, if we want to interconreacsally ordered systems we are forced
to use only ondS procesger system (there are multiple samples of such protocols4103, 11, 2]), or
to coordinate in some way sutB processed et us explore this second alternative.

As shown in the proof of Theorem 2, when multiple intercoriweclinks are used, we need to guaran-
tee that causally related messages are delivered in theatést system in the appropriate order. Concur-
rent messages do not introduce any problem, they can bedediwithout any constraint. At a glance, the



resulting interconnecting protocol should take care ofieng an appropriate delivery order for causally
related messages.

Most causally ordered interconnection protocols basedsingdelS procesper system simply relied
on a single FIFO link in order to implement the interconnae{il0, 4, 2] of two causal systems. If multiple
IS processeare used, with multiple interconnection links, we mightumesthat all such links deliver all
forwarded messages in a global FIFO order (i.e., the messageadelivered in the receiver system in the
same order they were sent from the sender system). Thigllyieinsures that the semantics of Theorem 2
are maintained, and also complies with fH&O forwardingtheorem of [10].

In order to comply with this requirement, the interconnectprotocol presented in Section 3 is taken
as a basis and is extended in the following way:

1. In each systens”, one of itsIS processes selected as a sequencer with a deterministic criterion;
e.g., that with the lowest node identifier. Let us name’,, suchlS processlt maintains the number
of broadcast messages, in a local variatale num, and it will assign a sequence number to each
message broadcast by such system. This follows the samapbeidescribed in [5] in order to
implement the Isis ABCAST protocol (with causal total ordgrarantees) on top of its CBCAST
one (with reliable causal delivery). But there is a big diffece in our approach. We do not want to
extend the underlying causal broadcast protocol being imstiik local system. Instead of this, we
will tag with such sequence numbers the messages beingritedidy thelS processes.e., such
sequence numbers are internally maintained in the inteexxiing protocol, and they are completely
unknown in the causal broadcast protocols being used iniataiconnected system.

2. When a message sent by any process of the local system is delivered in its associdt@grocess
(i.e..isp(pl)), suchisp(p¥) waits untilisp®,, sends tasp(p¥) the appropriate sequence number for
m; i.e., sn(m). Oncesn(m) is known,isp(p¥) sends(m, sn(m)) through its interconnection link
to S*.

3. In the systenSE that plays the receiver role fan, all IS processesalso need to maintain a local
variablereceived that accumulates the amount of received messages$forfio this endyeceived

was initialised to zero, and it is increased each time a ngessaing sent by anf;spg is delivered.

4. Once(m, sn(m)) is received by its associateésgp®, such process will causally broadcastin S*
as soon asn(m) = received + 1 holds inisp;‘-’. This ensures FIFO global delivery of all messages

forwarded through all interconnection links betwegh and S, but they can be propagated in a
parallel way, so the bandwidth of such system interconaeatan be greatly enhanced.

The resulting interconnecting protocol is summarised guFé 5, as a set of four atomic concurrent
tasks.

Sequence_out(ispj,,, m) :: task whichis | Receive(isp,, m) :: task activated
activated oncéc-recy, . (m) is executed| oncem is received from anj,spf
Seq

begin begin
sn(m) =++seq-num received++
send(id(m), sn(m)) to isp(sender(m)) | end

end

Propagate_out(isp;, m) :: task which is Propagate_in(isp}, (m, sn(m))) :: task
activated oncéc-recy, . (m) is executed | activated once messager, sn(m))

begin is received froms*®
if m was sent by a process $et, (isp®) begin
then wait for receivingid(m), sn(m)) wait until sn(m) =receivedf1
transfer(m, sn(m)) to link,, (isp%) bc-send, ,« (m)
end end

Figure 5: The interconnecting protocol §if



The following theorem shows that the systefh, obtained by connecting any two causal-ordered
systemsS? andS! by using this interconnecting protocol is also causal-ade

Theorem 3. Any two causal-ordered systems can be properly intercdedday using the protocol in Fig.
5.

Proof. By contradiction. Assume there are two messagesndm. sent in systen$® and verifying that
m1 — mo. Now, assume they are received by, say, propes systemS? in the ordenny < m;.

Due to taskSequence_out in S°, it is guaranteed by the interconnecting protocol thatif — m.
thensn(m1) < sn(msy). Due to tasksReceive and Propagate_in in S*, no process irf! will be able
to delivermsy beforem; since Propagate_in compels that thésp,i process that receives, does not
broadcast such messagedh until it has deliveredn; (due to their sequence numbers order, and the
management of variableceived in both tasks). If so happens,; — m. also holds inS* and no process
can break such causal order, since it is assumedsthat a causal broadcast system. As a resultSall
processes deliven, before deliveringns and this raises a contradiction with the assumption givehen
previous paragraph, proving thus the theorem. O

6 An Architecture to Interconnect Causal-Ordered Systems

The interconnecting protocol presented in Sect. 5 is ablatevconnect two causal systems. Such in-
terconnection mechanism could be easily extended to nmktipusal systems. Thus, if there is a set of
causal system§S°, S, ..., S"~1} that have been interconnected in order to achieve a globabtarder
systemST, then we can interconnect another systgfnby setting one or several interconnecting links
between itself and one of the systems that belong§’to Note that in case of setting multiple links, such
links can not be set with differerst;, S; systems of5” since this will define cycles in the resulting global
system. When a cycle exists, there will be at least two diffepaths for connecting two different nodes
(i.e., causal-ordered subsystems) in such global sysfiemo Ipaths are available in order to interconnect
two different systems$™ and S7, Theorem 2 arises again, and the implicit coordination betwthelS
processeghosen in the sending system (e4?) disappears, since each message travels along a different
path and the sequence numbers of two causally related nessgasg” is not maintained in the receiver
systemS?. Note that in order to preserve such dependencies in theseguiumbers all messages should
be forwarded along the same path.

These constraints can be formalised in the following LemnhEheorem.

Lemma 1. Given a set of N causal systeri$ = {S°, S, 5% ..., 8"~} interconnected in pairs with
the interconnecting protocol shown in Fig. §7 is properly interconnected if it does not contain any link
cycle.

Proof. By contradiction. Let us assume thgt is a causal-ordered global system and that there exists a
cycle inST, and that at least two of its systerisand.S7 belong to such cycle. If so happens, there are at
least two different FIFO pathsath; andpaths for interconnectings? andS7. At least one of such paths
has a length greater than one link. Note that otherwise batthspvould have been the same (a single link
connecting directlys’ andS7).

Let us assume that processesSirhave sent two different messages andm, causally related in the
following way m; — ms. S0,m; is forwarded taS? beforems, but using a different path. For instance,
my was forwarded alongath, whilst m, was alongpaths. Since both paths are FIFO ordered, but they
are not coordinated in order to ensure a global causal oréeal( that such coordination was ensured for
a single link, but not for different paths of multiple linksat have traversed through different systems), it
is possible thatn, be delivered inS’ beforem, is delivered. This breaks the causal order, and contradicts
the initial assumption of”' being a causal global system. Thus, this proves the lemma.

O

Theorem 4. n causal-ordered systent®, S', ..., S»~1, can be pair-wise interconnected with our causal
IS protocol to obtain a systest’ that is also causal-ordered.



Proof. We use induction om to show the result. Far = 1 the claim is trivially true. Then, if we have
a causal-ordered systeffi by interconnecting systen’, S1, ..., S"~2, then we can interconnest and
S"~1in a pair-wise manner following both Theorem 3 and Lemma 1 the resulting systens” is
causal-ordered, proving this theorem. O

7 Fault Tolerance

The interconnecting protocols previously outlined carnilgdslerate failures. Note that most recover-
able applications (e.g., replicated databases [12]) ddmaiform [8], stable[5] or safe[6] delivery for
broadcast messages. This means that a message is notatklivgil the group communication system
can ensure that it has been received by all message targeisges Moreover, such message can not be
“garbage recycletin the sender process until such stable delivery is ensungd], such uniform delivery
is also taken as the key principle in order to achieve faldrsmce.

The rules to follow are these:

e An IS processsp! does not report the uniform delivery of a messagéroadcast in its systeisi’
until it gets a uniform confirmation from all oth&8 processessp’, to which it previously forwarded
m.

e A messagen that has been forwarded to a systéthis reported as uniform in such systest
following the regular protocol being used #Y. This means that the receiving processispg'u

knows about such message uniformity at that time, and nee@port such issue to its sendep!,
once this step is completed.

e If such receivingsp/, fails, it will be replaced by another processSn that will play suchisp role.
Two different scenarios arise:

— The oldisp’, was able to broadcast all messages received frgin If so happens, the new
ispJ, will be able to report such messages as uniform, using théaegrotocols ofS’. No
problem arises in this case.

— The oldisp’, failed before being able to broadcast all messages reckivedisp: . If so hap-
pens, systens? does not know anything about such messages and thespévwill be unable
to report any of such messages as uniformly delivered. Ifappénsisp’, will forward again
such unreported messages to (the niaw), process, once a given time-out is exhausted. More-
over, in case of interconnecting causal systems, the ¢hprocessem S7 will be blocked
waiting for the delivery of those missed messages, and tfiépevable to tell such newisp?,
which were thesn(m) of such messages. Sp/, will be able to askisp? for the messages

associated to thoss:(m).

- If one of the forwarding sp, nodes crashes, a newp! process will be created. If there were some
forwarded messages not yet reported as uniform, suchiggivprocess knows which were such
messages and it forwards them again and resets their titse ®a, such messages are appropriately
managed.

These rules avoid any message loss, and uniform deliveryrefighat all broadcast messages are
eventually delivered to all their destination processes.ngde failures are easily overcome.

8 Performance Analysis for Causal-Ordered Systems

The usage of FIFO interconnecting links in order to impletaterconnection protocols for two causal
and/or FIFO broadcast systems have been previously profposeveral papers [10, 13, 2]. Note also that

2In modern systems, this constraint is relaxed: the messageecaelivered as soon as it is received and complies with the
intended order semantics. Later on a uniform/stable/saffigation is delivered to the receiver process, indicatimat such message
delivery is already uniform/stable/safe.



the daisy architecture described in [4] also becomes aesH#O link when only two causal systems need
to be interconnected.

However, none of such papers explored the alternative afjusiore than onéS procesgper system.
In most cases, the intra-system links will be far more efficthan the inter-system ones. Imagine, for
instance that each system is deployed in a given laborat@myterprise site, using a fast LAN (e.g., SCl has
a bandwidth of 20 Gbps, and there are also 10Gb Ethernet LANadays, with delays far below one msin
both cases), whilst inter-system links might have the mgohndwidth and delays of a WAN (less than 100
Mbps of bandwidth and more than 50 ms of delay, in most cagesj.result, the interconnecting protocols
and links could be easily overloaded using a negligible ezt in the systems being interconnected, since
the latter are two orders of magnitude faster than the far®erthe parallelisation of such interconnections
is able to multiply the resulting bandwidth without incrigsthe transmission delays. Such benefit is
directly applicable to the protocol described in Sect. 3ddés not need any further analysis, since the
interconnecting protocol does not demand any synchraais@mong theS processesf the systems
being interconnected.

Let us concentrate in the analysis of the causal intercdimmeprotocol described in Section 5, assum-
ing that only two causal-ordered systems need to be intasmiad. To this end, the following parameters
are needed:

e n_isps Number of|S processed the sender system; i.e., number of interconnection livdisig
used. Since there is a single sequencer process neededébrayising alllS processesf such
sender system, and such synchronisation requires a sidditomal message in some cases (when
thelS procesghat forwards the message is not the sequencer), we neqahthimeter in order to set
the probability of requiring such extra message.

e ibw: Intra-system bandwidth (in Mbps).
e id: Intra-system message transmission delay (in seconds).

e sr: The average sending rate at one broadcast system; i.aymhizer of messages sent per time unit
(in seconds).

e ms Message size, in Mb (megabits). So, the produck ms is an expression that provides the
required bandwidth (in Mbps). So, the following should bsweed:

sr < — (1)

e ebw Inter-system link bandwidth (in Mbps). This parameterssat important constraint in the
global system, since the interconnection will usually be lettleneck of such system. Such con-
straint is:

ebw X n_isps
s < W7 NP3 )
ms

e ed Inter-system message transmission delay (in seconds).
Using such parameters, sections 8.1 and 8.2 evaluate timabpiumber of interconnecting links and

compare the performance of our parallelised interconoedtiith the daisy architecture proposed in [4],
respectively.

8.1 Optimal Number of Links

In order to find out which is the optimal number of intercortiveg links, let us explore the time needed for
broadcasting a message in the whole system and how suchejpeads on the number of links. Thus, the
implementation of a global causal-ordered broadcast oedgla a system-local reliable broadcast protocol
complemented with tagging all messages with vector clocksansidering such clocks in the delivery

10



step. Such kind of protocol [5] can be implemented using glsiround of messages; i.e., if there are
nodes in a system, only — 1 messages are needed.

Once each message is delivered in its assocl&pdocesssuch process needs to wait for the sequence
number that should tag such message. This sequence nurabet i/ the sequencer process using a point-
to-point message. Note, however, that the sequencer ismal process So, this additional message is
only needed with a probability of — Mips. Moreover, such message is smaller than all other messages
considered in the next expressions, requiring thus a sma#lasmission time. However, we have not
considered such issue in those expressions.

Later, the message is forwarded through the interconmeditid and re-broadcast in the receiving
system. This implies, again, a single round of messagesif 80,additional workload is considered, the
minimal time needed for receiving a message broadcast bgray$ in a node of systeny; (trans_time)
is:

trans_time = <3 — _1 > X (id+ E) + (ed+ ﬁ) 3)
n_isps ibw ebw

Thus, with a negligible workload, the optimal numbed$fprocesseper system is 1, since this elimi-
nates the need of a synchronisation (intra-system) megsagehat carrying the sequence number), as it
can be seen in expression (3).

However, when workload is considered, we could use a qugueadel [14] in order to represent such
system, but as it is already mentioned in [14, Chapter 5],dn@ueing network we only need to identify
its bottleneck centre in order to set upper bounds to theaglmfstem throughput. In our system, and with
the assumptions given above, such bottleneck centre isitbconnecting channel. In the best case, the
bandwidth of the interconnecting links could be the samé&asgternal bandwidth of each interconnected
system; i.e., constraints (1) and (2) generate the samshiblds whem _isps is 1. If so happens, the
optimal number of sendé® processewill be one, as seen above in (3). Otherwise, we need to seaag m
interconnecting links as given by expression (4):

n_isps = Fbw—‘ (4)
ebw

Note that bothid anded are modeled asdelay centres[14]; i.e., a link can be shared by multiple
messages being forwarded along it, and we do not need a queuger to model such delay. As a result,
they do not appear in expression (4), where only queueingeseneed to be considered. Indeed, such
queueing centres are modelling the bandwidth of each kidohkf They have a service demand &f
seconds in the intra-system communications gffdseconds in the inter-system links. This explains how
expression (4) is derived: its target is to balance the sgriiime of both kinds of servers, and this can be
achieved increasing the number of interconnecting links.

8.2 Comparison with Other Solutions

To our knowledge, no other paper has proposed a paralléliss@donnection of causal-ordered broadcast
systems. However, the technique described in [4] can bedenesl as a close approach. Despite propos-
ing a single interconnecting server for each existing sysierecommends that systems were split into
multiple subsystems when they have grown excessively.h8oistan indirect way of introducing multiple
interconnecting servers in each original system. Morea¥és provides the advantage of reducing the
size of the vector clocks being used in each subsystem farldwal broadcasts. In order to implement
the global interconnection, the daisy architecture bugidsupper-layer causal-ordered system composed
by the interconnecting servers of all broadcast systemsh Eme a message is broadcast in one of the
systems, its interconnecting server re-broadcasts suskage to all other interconnecting servers, who
broadcast again such message to all nodes in their respegttems. So, such global broadcast consists
of three different causal broadcast interactions.

Let us compare the daisy architecture with our solution dlesd in Sect. 5. To this end, let us assume
a global system where there are initially two causal-ordidm®adcast systen’ andS*, with 3n nodes
each one. The intra-system bandwidth and link delaystareandid, respectively, whilst the inter-system
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bandwidth and link delays arw anded, respectively. We also assume thiéty > ebw andid < ed.
Due to the size of such systems, each of them has been diitlethree sets of. nodes per set using
our approach, or into three separate new syste$fl$, (50!, S°2, and S'°, S'!, S12) using the daisy
architecture, again with nodes per system.

In such scenario, the broadcast of a messagent inS° with our solution implies:

e 3n — 1 messages in order to broadcast such messagé&nto

e One additional message (in the worst case) in order to assggguence number to such message
and notify it to the associatd® process

¢ One inter-system message through the interconnecting link

¢ 3n — 1 messages in order to broadcastnto S*.

Globally, this has require, — 1 messages (that might 6e — 2 if the isp being used iV is also the
sequencer process) transmitted through intra-systera &nkl one single message traversing inter-system
(and slower) links. Additionally, it has required three kap the best case, or four, in the worst one.

On the other hand, with the daisy architecture, such bredeseds these messages:

e Let us assume that the sender of messadgelongs taS®. It requiresn — 1 messages in order to
broadcastn into such system.

e As a result,n can be broadcast in the system composed by all intercongesgirvers of the six
newly created broadcast systems. Five messages are neettésl énd. Two of such messages
forward m to other systems that initially belonged $8. So, they are fast messages. On the other
hand, the other three need to use the assumed slow intextomknks.

¢ Into each systemy, — 1 messages are needed to locally re-broadeastince there are five systems
of this kind,5n — 5 messages are needed in this step.

At the end, this architecture needs the same global amoupbiof-to-point messages; i.ép — 1
messages. But in our approach, only one of such messagesonesa the slow links, whilst in the daisy
architecture, three messages have been forwarded thraeghisks. This implies that with additional
workload, such slow interconnecting links will be satudss@oner using the daisy approach. If the differ-
ence between the original intra-system and inter-systerdwiths is important, our solution guarantees
better scalability than a daisy architecture.

On the other hand, the daisy architecture needs only thggeslichops to broadcast a message between
different systems, whilst our approach might need fourdaghops in some cases. However, using our
solution only one hop is needed into each of the initial syst6® and.S* in order to locally broadcast
a given message, whilst the daisy architecture introdulsesthree hops between processes located in
different parts of such original systems.

9 Conclusions

In this paper, we have studied the interconnection of brastdsystems that are either FIFO or causally
ordered. We have provided interconnection protocols thatuse several interconnection links between
systems, which avoid bottleneck problems due to the netwrafiic, since messages are not forced to
go through a single link but throughout the several links wialglish. Furthermore, we have proposed a
general architecture with which to interconnect multiptedzicast systems. The usage of multiple inter-
connection links is specially convenient when scalabitg must and such interconnection links provide
a limited bandwidth (compared to that of intra-system ljnks
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