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Abstract

Multiple database replication protocols have used replicas supporting the snapshot isolation level.
They have provided some kind of one-copy equivalence, but such concept was initially conceived for
serializable databases. In the snapshot isolation case, due to its reliance on multi-versioned concurrency
control that never blocks read accesses, such one-copy equivalence admits two different variants. The first
one consists in relying on sequential replica consistency,but it does not guarantee that the snapshot used
by each transaction holds the updates of the last committed transactions in the whole replicated system,
but only those of the last locally committed transaction. Thus, a single user might see inconsistent results
when two of her transactions have been served by different delegate replicas: the updates of the first
one might not be in the snapshot of the second. The second variant avoids such problem, but demands
atomic replica consistency, blocking the start (i.e., in many cases, read accesses) of new transactions.
Several protocols of each kind exist nowadays, and most of them have given different names to their
intended correctness criterion. We survey such previous works and propose uniform names to these
criteria, justifying some of their properties.

1 Introduction

Consistency has been thoroughly studied in parallel and distributed systems, mainly in those with shared
memory, generating a set of consistency models [22, 1]. A replicated database can be considered as an
example of such kind of systems, since all replicas hold copies of the same data that should be kept con-
sistent, building thus a specialized kind of logical sharedmemory, although commonly implemented in a
shared-nothing set of nodes.One-copy serializability[7] (a.k.a.1SR) has been the commonly accepted cor-
rectness criterion for replicated databases, since it was enough relaxed for ensuring good performance and
strict-enough for guaranteeing a comfortable replica consistency model for the application programmer.
But this 1SR single concept encompasses two different issues. First, theisolation levelbeing responsible
for the isolation consistency among all concurrent transactions being executed in the system and, second,
thereplica consistency; i.e., the degree of admissible divergence among the statesof all replicas.

In the last twenty years several things have changed that yield some opportunities for revising such
issues. Regarding the first one (isolation), new levels havebeen defined [5, 2], beingSnapshot Isolation
(SI) one of the most important, since it is quite close to the serializable level and it does not need to block
read accesses due to its reliance on multi-versioned concurrency control mechanisms. Multiple DBMSs
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(e.g., Oracle, PostgreSQL, MS SQL Server,. . . ) support the SI level, and even some of them label it as
serializable although there are some isolation anomalies [5] that can not be avoided with SI. Despite this,
with some care [12] a DBMS supporting SI is able to ensure serializable isolation. Considering the second
issue (replica consistency), 1SR is considered [22] equivalent to asequential[20] consistency model, but
some applications might require either stricter models like thelinearizabilitysemantics proposed in [17](or
atomic memory model; we will use this latter term in the sequel, since linearizability is a correctness
condition for objects that enforces a non-blocking behavior and such characteristic might not be achieved
in a database replication system. Some papers, e.g. [9], refer to both concepts as synonyms when they are
applied todistributed shared memory, or DSM, systems.) –providing thus an easier programming model–
or more relaxed models like thecache[14] one, improving thus system performance. So, it is interesting
to analyze how such other replica consistency models could be combined with snapshot isolation in order
to generate newisolation+replica consistencymodels for replicated databases.

Thus, the contributions of this paper consist in surveying different combinations between the snapshot
isolation level and replica consistency models (adding cache and atomic semantics to the traditionally
accepted sequential consistency). Note that such combinations have been already used in previous works
(e.g., both theStrong SIlevel in [10] and theConventional SIof [11] can be considered a combination
between the SI isolation level and the atomic replica consistency model), but using different names in order
to refer to the same things. As a result of this survey, we provide a new taxonomy of combined consistency
models as our second contribution. As a final contribution weshow that this new taxonomy is able to
justify some protocol properties that are difficult to proveotherwise.

The rest of this paper is structured as follows. Section 2 describes the assumed system model, inte-
grating transactions –and, as a result, isolation– in the traditional replica consistency models. Section 3
summarizes the isolation and replica consistency models commonly assumed in modern database replica-
tion protocols. Later, Section 4 presents a new taxonomy of models that combine both isolation and replica
consistencies. Section 5 shows that such taxonomy easily justifies some unproven properties of modern
database replication protocols. Finally, Section 6 concludes the paper.

2 System Model

We consider a distributed system composed by a setN of nodes, interconnected by a network. Each system
node has a local DBMS able to manage thesnapshot isolation(SI) level. Replication is being managed
by a middleware layer using someRead-One Write-All-Available(ROWAA) [7] replication protocol that
should take care of guaranteeing the intended global isolation level and of ensuring some replica consis-
tency model. Modern replication protocols [31] are based onexecuting transactions in a single delegate
replica and propagating later the transaction updates in FIFO total order to all other replicas in the commit
procedure. We assume such behavior in this paper.

Replica consistency models could be any of the traditional DSM ones. It is worth noting that these latter
models have usually been specified considering as relevant events bothreadandwrite operations applied to
a given set of variables shared among multiple processes. Such specifications cannot be trivially migrated
to a system where the reads and updates are made in the contextof transactions, since such transactions
encompass multiple individual operations of that traditional kind. So, in order to discuss such replica
consistency models, we need to adapt the transaction concept to the equivalent sequence of read and write
operations. This is feasible when a strict-enough isolation level is being assumed.

Thus, we will transform transactions into sequences of operations in the following way: each trans-
action read access will be logically advanced till the transaction start time, sharing all read operations the
same logical time, whilst all update accesses will be logically put at the transaction commit time, as a single
multi-variable write operation. Note that only database accesses are being considered here. So, once an
update on a given item has been made, the application programwill be able to know which will be that
item new value, e.g., using local variables to this end, without requiring another physical read access on
the database item. If any of such read accesses is being made in a given transaction, it will be eliminated
in the resulting mapping. As a consequence, such a reordering of read and write events can be made on all
transactions. Note also that only committed transactions need to be considered, since aborted ones do not
have any effect on the database state once they have terminated.
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3 Isolation and Replica Consistency

Although there are multiple isolation levels [5, 2] supported by modern DBMSs, only few of them have
deserved attention in order to implement database replication protocols. Concretely, such isolation levels
are theserializable[7] and thesnapshot[5] ones. Other more relaxed levels have not been widely consid-
ered in research papers. In the best cases, they have been included [5, 2] in order to carefully specify such
levels or for supporting them [6] in order to provide replication transparency.

A similar scenario can be found regarding replica-consistency models. Although there are many models
that could be considered [22, 1], only a few of them (cache, sequential and atomic) have been assumed in
database replication. For instance, strict consistency levels (e.g., the atomic one) ensure consistency in
some kinds of applications where a single client is able to access different copies of a given item in a
short interval, like in three-tiered web applications [24]. In such context, without atomic consistency, the
last client request might be executed before the effects of previous requests were applied in its serving
replica. So, clients could get inconsistent replies. On theother hand, new data management trends [13, 16]
(e.g., in thecloud computingfield) suggest that temporary inconsistencies should be afforded by modern
applications, and that this should be considered a strong requirement when scalability is a must. So, they
advocate for relaxed consistency models based on asynchronous update propagation. As a result, these two
opposite trends show that multiple replica consistency models need to be considered.

Complete specifications of such isolation levels and replica-consistency models can be found in [2] and
[9], respectively. We will summarize them in the following two sections.

3.1 Isolation Levels

In order to specify an isolation level, most works [7, 5, 2] have usedtransaction historiescomposed of a
partial order of transactions’ events and a total order on the committed item versions generated by such
transactions. Taking such histories as a base, adependency[5] or serialization [2] graph is built, us-
ing transactions as its nodes and transaction dependenciesas its edges. Several isolation phenomena are
specified (describing which set of dependencies must exist in the serialization graph for each kind of phe-
nomena). Finally, an isolation level is respected when eachconsidered transaction avoids a given subset of
phenomena.

Thus, following [2]’s conventions, the possible transaction dependencies (Ti → Tj) are:

• Tj directly write-depends onTi (Ti
ww
−→ Tj) whenTi installsXi andTj installsX ’s next version.

• Tj directly read-depends onTi (Ti
wr
−→ Tj) whenTi installsXi, Tj readsXi or Tj performs a

predicate-based read,Xi changes the matches ofTj ’s read, andXi is the same or an earlier version
of X in Tj ’s read.

• Tj directly anti-depends onTi (Ti
rw
−→ Tj) whenTi readsXh andTj installsX ’s next version orTi

performs a predicate-based read andTj overwrites this read.

• Tj start-depends onTi (Ti
s

−→ Tj) whenci < sj ; i.e., when it starts afterTi commits. When start
dependencies are considered, the resulting graph is named astart serialization graph(SSG(H)).

And the phenomena to be considered in order to specify SI are:

• G1a: Aborted Reads. A history H shows phenomenon G1a if it contains an aborted transactionT1

and a committed transactionT2 such thatT2 has read some object modified byT1.

• G1b: Intermediate Reads. A history H shows phenomenon G1b if it contains a committed transaction
T2 that has read a version of objectX written by transactionT1 that was notT1’s final modification
of X .

• G1c: Circular Information Flow. A history H exhibits phenomenon G1c if its serialization graph
contains a directed cycle consisting entirely of dependency (i.e., write-dependencies or read-dependencies)
edges.
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• G-SIa: Interference.A history H exhibits phenomenon G-SIa if SSG(H) contains a read/write-
dependency edge fromTi to Tj without there also being a start-dependency edge fromTi to Tj.

• G-SIb: Missed Effects.A history H exhibits phenomenon G-SIb if SSG(H) contains a directed cycle
with exactly one anti-dependency edge.

A history respects the snapshot isolation level when G1a, G1b, G1c, G-SIa and G-SIb phenomena
are proscribed. This has been ensured in stand-alone database systems using multi-versioned concurrency
control, combined in some cases with write locks.

3.1.1 Transaction Validation Rules

In a replicated setting, a database replication protocol isneeded. As already outlined above (in Section 2),
most of these protocols execute initially the transactionsin a single delegate node, collecting their writeset
when commit is being requested (but before processing such request) and multicasting it to all replicas
(usually, in FIFO total order) [3, 26]. Once such updates aredelivered at their target nodes, a validation
stage is executed. If transactions overcome such validation, they are applied in the underlying database. To
this end, the concurrency control mechanisms commented forstand-alone databases could still be useful;
i.e., they may provide information about conflicts between the transaction whose writeset is being applied
(and that should be committed) and other in-course transactions that might block such writeset application.
If so arises, such local in-course transactions are aborted.

Using this approach, the replication protocol needs only beconcerned with the validation rules followed
in order to guarantee an isolation level. Thus, the validation rules for snapshot isolation [19, 11, 21] con-
sist in detecting write-write conflicts between the transaction being validated and other already-committed
concurrent transactions (considering concurrent those pairs of transactions that do not have a start depen-
dency). To this end, all replication protocol classes need to propagate transaction writesets and the logical
transaction start timestamps. Thus, phenomena G1a, G1b andG-SIa are avoided by the local concurrency
control mechanisms used in each replica, whilst the validation rule prevents phenomena G1c and G-SIb
from appearing, since no cycle of dependencies is allowed bysuch rule.

3.2 Consistency Models

The three replica-consistency models that have been used incommon database replication protocols have
been informally specified [22] as follows:

• Atomic consistency: Operations take effect at some point in an operation interval. Such intervals
divide time into non-overlapping consecutive slots. This implies that when a process has read a
given value (or version) of a concrete item, no other processcould read afterward any of such item’s
previous versions.

We do not demand a strict compliance to the atomic consistency semantics in this paper since they
are difficult to achieve in a practical deployment, but at least that the following property is guaranteed
avoiding thus the problems mentioned in [24]:If a single client forwards a transactionta to a replica
ri and gets the result ofta, any other transactiontb sent later by this same client to any other replica
rj should be able to read the updates caused byta, assuming that no other transaction is submitted
to the system betweenta andtb.

• Sequential consistency: This model was defined in [20] as follows:The result of any execution is
the same as if the operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order specified by its program.
So, it can be implemented using FIFO total order for applyingall write operations in system replicas.

Note that this does not avoid the problem outlined in [24], since sequential consistency ensures
that all updates will be applied following the same sequencein all replicas. However, if replicarj

is overloaded and holds a long queue of pending updates (to beapplied in the database), it might
serve the first read accesses oftb before applying the updates ofta and, of course, before locally
committingta.
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• Cache consistency[14]: This model only requires that accesses are sequentially consistent on a
per-itembasis.

There are some replication protocols (as listed in Section 4.1) that are able to comply with the re-
quirements of this model but provide a consistency slightlyhigher, but that does not correspond to
any already specified model. Such protocols are based on total order update propagation, but they
allow that writeset application breaks such total order when writesets do not conflict (i.e., there are
no write-write conflicts) with any of the previously-delivered but not-yet-committed transactions.
Note that this ensures a per-item sequential consistency (as requested in thecachemodel), but also a
per-transaction-writeset consistency (i.e., we can not commit half of a writesetWSA before writeset
WSB and the other half ofWSA afterward), although not a complete sequential consistency.

Note that some authors [15] only admit theatomicandsequentialconsistency models when talking
about 1-copy-consistency. So, in such context, acachesystem is not allowed. However, we include it in
this paper in order to state that other models more relaxed than the sequential one could make sense if
performance is a must.

4 One-Copy Equivalence

One-Copy Equivalencewas introduced in [7], tailored for the serializable isolation level, as a correctness
criterion for replicated databases. Its aim is to ensure that the interleaved execution of multiple transactions
in a replicated database system were equivalent to a unique (and serial, for that isolation level) execution
in a logical single computer.

Our proposal consists in the extension of such equivalence concept to other isolation levels, consid-
ering also different replica-consistency models. There have been many proposals of this kind, but they
were focused in a single isolation+replica consistency combination. For instance, we can find multiple
definitions [11, 21, 10] of what should be understood as 1C-SI, and none of them does exactly match the
others. So, it seems appropriate to carefully state how suchdifferent kinds of consistency (isolation-related
and replica-related) can be merged, giving neutral names tothe resulting combinations, in order to promote
their acceptance. Our proposal explicitly states which is the actual combination of replica-consistency
model and isolation level when aone-copy equivalenceis being provided. If we only consider the cur-
rently existing SI database replication proposals, the resulting models are summarized in Table 1. Note that
modern database replication approaches are based on FIFO total order update propagation and application
into the replicas. This naturally provides a sequential replica-consistency model. So, we do not consider
mandatory to specify such replica-consistency model when stating a one-copy equivalence model, being it
the default one.

Table 1: One-Copy SI Equivalence Models

Replica-Consistency Model
Cache Sequential Atomic

1C-Cache-SI 1C-SI 1C-Atomic-SI

In Sections 4.1 through 4.3, we survey some of the existing database replication protocols that support
each one of such isolation+consistency models, presentingthe name they associate to such combination of
isolation and consistency. The aim of these sections is to illustrate that, in some cases, a given combination
has received different names in different papers. So, it seems convenient to propose and promote a standard
name for such models.

4.1 1C-Cache-SI Model

Lin et al. [21] proposed a protocol named SRCA-Opt that implements the 1C-Cache-SI model. Note
however that such protocol is not proposed as the main contribution of such paper. Indeed, its aim is to
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propose a valid 1C-SI criterion (that follows also our assumptions and ensures 1C-Sequential-SI) and a
protocol that implements such criterion (its SRCA-Rep one). In its performance evaluation section, they
propose a variant of such SRCA-Rep protocol with relaxed replica consistency, and the authors are aware
of that issue. One of the aims of such evaluation is to comparehow these two kinds of replica consistency
(sequential and cache) are able to cope with increasing workloads. Their results show that with relaxed
replica consistency, and for the benchmark used in such paper with an update-intensive workload, SRCA-
Opt (i.e., the protocol with cache consistency) always provides shorter transaction completion times than
SRCA-Rep (i.e., the variant with sequential consistency),and such differences increase with the load.

Note, however, that in such paper no reference is given to thekind of replica consistency being guaran-
teed by such SRCA-Opt protocol. Indeed, a single comment is given referring to the relaxation provided:

However, in update intensive workloads, SRCA-Opt might be abetter alternative even it does
not provide full 1-copy-SI. This might be comparable with approaches in centralized systems
where at high workloads lower levels of isolation are chosen(e.g., READ COMMITTED) to
speed up performance.

And, it simply compares such performance improvement with that achievable by relaxed isolation
levels; i.e., it indirectly says that, among others, there are two ways for improving performance: to relax
replica consistency and to relax isolation. This confirms that both kinds of consistency (isolation-related
and replica-related) should be considered in order to specify a one-copy equivalencemodel.

4.2 1C-(Sequential-)SI Model

The first SI replication protocols [19, 21, 11] were based on sequential replica consistency, since such
consistency model was already widely accepted for the serializable isolation level as part of its 1SR cor-
rectness criterion. Such protocols used the ROWAA approachand propagated transaction updates in a
single total-order broadcast, eliminating the need of a traditional distributed commit protocol (either two-
phase or three-phase), following the principles of the lastprotocol variant suggested by [3], that was proven
correct for implementing 1SR in [26].

Lin et al. [21] have the merit of being the first providing a sequential specification for SI replication,
and naming it as 1C-SI (as suggested in the current paper), based on the 1SR one given in [7]. Moreover, in
that same paper they propose a 1C-SI protocol named SRCA-Repand analyze its performance, as we have
discussed above. However, they did not explicitly state in any part of their specification that the replica
consistency being assumed was the sequential one.

On the other hand, [11] was the first paper that discussed the differences between the guarantees being
provided by common SI replication protocols and those provided by stand-alone SI databases, since the
notion of latest snapshotis different in those environments. Thus, they identify twoSI variants:

• Conventional Snapshot Isolation(CSI) refers to stand-alone implementations, where it is trivial to
guarantee that suchlatest snapshotbeing used by every starting transaction corresponds to theone
generated by all previously committed transactions. Elnikety et al. [11] do not recommend CSI
for replicated settings, since this might require blockingthe start of new transactions in order to
guarantee that their delegate replicas receive the updatesof all previously committed transactions.

• Generalized Snapshot Isolation(GSI) refers to the common replicated scenario guaranteeing se-
quential replica consistency. In it, the delegate replica where a transaction is executed does not need
to maintain all the updates of all previously committed transactions. This may happen when such
updates are still in transit or buffered in such receiving replica but not yet applied. So, thelatest
snapshotfor a given transaction will be that of its delegate serving replica, but such latest snapshot
does not hold all the updates generated by all transactions committed in the system.

Thus, [11] proposed GSI as a new concept, distinguishing it from CSI, but such paper did not state that
their differences were derived from different consistencymodels (sequential for GSI and atomic for CSI).

Similar differences were identified by [10]. However, such paper proposed other names in order to
refer to similar concepts. Thus, itsGlobal Weak Snapshot Isolationrefers to our 1C-SI model, whilst
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Global Strong Snapshot Isolationrefers to our 1C-Atomic-SI model. Its authors carefully identify the
main problems of both models: usage of past snapshots in 1C-SI and expensive/blocking protocols in
1C-Atomic-SI, agreeing with the proposal of [11]. In order to solve such problems, [10] proposes an
intermediate model:Strong Session Snapshot Isolation, that does only requirestrong SIsemantics among
the transactions of a given session, whilst transactions belonging to different sessions do only requireweak
SI semantics. A session holds the transactions being generated by a given client.

Wu and Kemme [32] provide a thorough description of the database concurrency control needed in
order to implement SI in PostgreSQL. They propose a databasereplication protocol embedded into the
DBMS core, guaranteeing thus a very good performance since transaction validation in the replication
protocol can delegate many of its functions to the original DBMS concurrency control. The paper also
provides a detailed justification about how replica consistency is being guaranteed by such replication
protocol, although it does not mention that the resulting consistency is sequential.

A similar principle was used in [23]; i.e., to delegate conflict evaluation in the certification step to the
underlying DBMS, but implementing the protocol in a middleware layer, enhancing thus the portability
and maintainability of the resulting protocol, without severely compromising its performance.

In [31], a classification of modern database replication protocols based on total order was given. There
are four main classes: active, passive, certification-based, and weak voting. In theactiveone, all transaction
operations need to be delivered to all replicas before such transaction execution is started. Once this is
done, each replica is able to directly execute such sequenceof operations and to commit or abort locally
such transaction without further interaction with other replicas. To this end, the transaction logic should be
deterministic. In thepassivevariant, all transactions are completely executed in a single primary replica that
propagates the transactions’ updates at commit time to all other backup replicas. In thecertification-based
class, a transaction is executed in a single delegate replica (but different transactions may select different
delegates). Once the transaction requests its commit, its writeset is collected and multicast to all replicas in
total order. At delivery time, such writeset is certified against all other delivered and concurrent writesets
(i.e., those belonging to transactions that committed while the transaction being certified was executed).
If a write-write conflict is found, the transaction being certified is aborted. Otherwise, it is committed.
Note that all replicas hold the same historic list of previously delivered writesets. So, they are able to
certify each transaction without exchanging more messageswith other replicas. Finally, in theweak voting
variant, transactions are served by delegate replicas likein thecertification-basedclass, and their writesets
are multicast to all other replicas at commit time, but the conflict evaluation is only done in the delegate
replica. In this case, no historic list of previously delivered writesets is needed. This protocol family is able
to check for conflicts when each one of the remote transactions accepted by the protocol is being committed
in each replica. If such commit is blocked by a local transaction that maintains a write lock on any of the
updated items, such local transaction is immediately aborted. So, when the writeset of a transactionti is
delivered in its delegate replica, ifti has not been aborted by any previously committed remote transaction,
its delegate replica will reliably broadcast acommit(ti) message to all replicas; otherwise, it broadcasts
anabort(ti) one. All replicas act according to such final message in orderto determine the fate ofti.

Most of the protocols cited up to now belong to thecertification-basedclass [19, 21, 11, 32, 23], since it
does not demand a second broadcast in order to certify a transaction. According to [31], bothcertification-
basedandweak votingclasses are able to provide the best transaction completiontime. Theweak voting
class has the advantage of removing the need of a historic list of delivered writesets for certifying transac-
tions. Note that such list could demand a lot of memory in caseof dealing with long transactions, although
this seldom arises. However, it introduces the problem of needing two separate broadcasts for managing
each transaction. Despite this, its usage has been considered in some papers. Thus, the voting protocol
of [28] is a sample of this class and it ensures 1C-SI, since the uniform data storeassumed in such pa-
per was implemented using PostgreSQL, whilst its non-voting protocol belongs to thecertification-based
class. Another example of weak protocol can be found in [18],where three different correctness criteria
are supported: 1C-sequential-SI, 1C-atomic-SI and 1SR [7]. To this end, 1C-sequential-SI is implemented
with the solution presented in the previous paper, and 1C-atomic-SI is supported extending such protocol
with the pessimistic approach of [24] (detailed in Section 4.3). On the other hand, the third criterion is the
traditional 1SR (i.e., 1C-sequential-serializable usingour naming conventions), that can be implemented
extending the 1C-sequential-SI variant with the mechanisms suggested in [12].

Finally, there have been other papers following thepassivereplication protocol class. The Ganymed
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middleware [27] is one of such systems. Its scheduler demands each transaction to be tagged with aread-
only or updatelabel. Depending on its label, transactions should be forwarded to the primary replica (the
update ones) or can be directly served by any secondary replica (read-only transactions). This approach
simplifies concurrency management, since write-write conflicts may only arise in the primary replica and
can be dealt with the underlying DBMS concurrency control mechanisms without requiring any inter-
replica interaction. On the other hand, since read-only transactions are served by secondary replicas, they
do not interfere with the update load service and thus scalability is greatly enhanced. This same architecture
was assumed in [10].

4.3 1C-Atomic-SI Model

As we have seen in Section 4.2, at least two papers have referenced this model: [11] for its CSI, and [10]
for its Strong SI. The former provided an analytical evaluation based on an abstract protocol that added
a blocking starting step to the concrete protocol presentedfor supporting GSI, but none of these papers
presented a complete algorithm that implements 1C-Atomic-SI.

An implementation of this model needs to re-force a 1C-SI protocol in order to support atomic replica
consistency instead of sequential replica consistency, but this is not easy. There have been some general
protocols (independent of the isolation level being supported) able to provide such kind of support. The
first approaches can be found in [24], where two different protocols based on DBSM [25] were described.
Note that DBSM was able to support bothsnapshotandserializableisolations, as described in [34]. Thus,
the first protocol of [24] uses an optimistic evaluation: read accesses are considered in the commit-time
evaluation steps of the protocol, so both read-only and read-update transactions might abort if they have
accessed past versions of their items. In its second protocol a pessimistic approach is used. It is based
on multicasting in total order a transaction START message that ensures that each transaction is able to
get its intended last snapshot; i.e., that all previously finished transactions have delivered their writesets in
the delegate replica of the starting transaction. Let us assume thatri is such delegate replica for a starting
transactionti. This approach is able to approximate atomic semantics, since it ensures that whenti is
allowed to start, all transactions that were in their committing step have been able to deliver their writesets
in ri; i.e., there will not be any transaction being terminated that had their writeset “in transit” and that will
not be known in the snapshot taken byti. Note that such “in transit” transactions might have terminated
in some of the replicas and could be read by other starting transactions. So, their effects need to be present
in the snapshot ofti in order to follow the atomic consistency semantics. However, to precisely implement
this solution we need to delay again the start ofti until all such delivered writesets have been positively
certified and applied inri, and this might imply a long interval in overloaded replicas.

A second paper that ensures 1C-Atomic consistency for replicated databases is [29]. ItsWrite-Consensus
Read-Quorum(WCRQ) protocol is based on read-write quorums, minimizingthus the communication
costs for guaranteeing such kind of replica consistency. Tothis end, writesets are broadcast to all database
replicas, but in order to accept an update transaction, onlya write-quorum of positive acknowledgments is
needed. On the other hand, read-only transactions need to bechecked in a read-quorum of replicas, and
they are accepted when all such replicas return a positive acknowledgment. Let us note that such posi-
tive acknowledgments require that the versions read or written respect all the constraints imposed by the
atomic consistency model; i.e., that the read values correspond to the latest existing item versions, and that
the write order is the same in all replicas.

Another algorithm supporting snapshot isolation and atomic consistency was presented in [30], where
the 1C-Atomic-SI model was namedStrict Snapshot Isolation(SSI). However, instead of using a blocking
step as suggested in [11], this last solution uses an optimistic approach: all transactions are allowed to start
without blocking, although they need to multicast in total order a message in order to find out whether
such starting phase complies with SSI; i.e., when such STARTmessage is delivered, the logical transaction
starting point is set. When the transaction requests commitment, its readset is compared against those
writesets delivered before its START message but not included in its snapshot. If a non-empty intersection
is found, the transaction is aborted. This approach eliminates all the delays presented in our description of
the pessimistic protocol of [24], although at the price of aborting all transactions that need to read any of
the items being updated in such hypothetical blocking interval.

Finally, [33] presents an interesting set of results discussing the overhead implied by supporting several
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correctness criteria in a single protocol, showing that stricter criteria do not always imply any noticeable
overhead. Such work is focused on theserializableisolation level, so it does not explicitly cover the target
of this section (1C-Atomic-SI protocols), but it includes three different correctness criteria forserializ-
ableisolation: 1SR (i.e., 1C-sequential-serializable, following our naming recommendations), 1C-session-
serializable (based on the specifications given in [10]), and strong serializable[8] (that would correspond to
1C-atomic-serializable with our recommendations). The mechanisms needed for assuring the 1C-atomic-
serializable model are similar to those already described above: to multicast in total order a message that
allows the transaction start, even in read-only transactions.

5 Applicability

One of the results of this paper consists in finding two different and complementary issues in the consistency
being ensured by database replication protocols: isolation consistency and replica consistency. Different
papers have given different names to the correctness criteria assumed in their protocols. A first aim of
this paper is to propose a uniform naming for those criteria.We also consider that traditional database
replication protocols ensure sequential consistency and that such fact should be proved. On the other hand,
this also allows to revisit DSM systems, looking for theoretical results that justify some of the properties
exhibited by some database replication variants. These issues are detailed in Sections 5.1 to 5.3.

5.1 Naming

Table 2 summarizes the names given to their assumed correctness criteria in all surveyed papers where some
SI-related database replication protocol is described. Note that in some papers more than one protocol is
proposed or more than one isolation level is being supportedby a single protocol. We only consider
sequential (assumed as default) and atomic (abbreviated as”at”) replica consistency in that table, but we
also add the serializable (abbreviated as SER) isolation level for completeness, since some protocols or
papers also discuss it.

Paper 1C-SI 1C-at-SI 1C-SER 1C-at-SER
Bernstein et al., 1987 [7] – – 1SR –

Daudjee & Salem, 2006 [10] weak SI strong SI – –
Elnikety et al., 2005 [11] GSI CSI – –
Juárez et al., 2007 [18] GSI SI SER –

Kemme & Alonso, 2000 [19] SI – SER –
Lin et al., 2005 [21] 1C-SI – – –

Muñoz-Escoı́ et al., 2006 [23] GSI – – –
Plattner & Alonso, 2004 [27] SI – – –

Salinas et al., 2008 [30] GSI strict SI – –
Wu & Kemme, 2005 [32] SI – – –

Zuikeviči ūtė & Pedone, 2005 [34] SI – 1SR –
Zuikeviči ūtė & Pedone, 2008 [33] – – 1SR strong SER

Table 2: Names given to the correctness criteria.

In such table, GSI stands forGeneralized Snapshot Isolationand CSI forConventional Snapshot Iso-
lation, whilst the well-known 1SR acronym means 1C-serializability.

Note that for theserializableisolation level there is no possible ambiguity since the concept of 1SR
[7] (1C-sequential-serializable) has been widely accepted. On the other hand, whensnapshotisolation is
considered in a replicated context, multiple names have been used and referring only to SI is ambiguous.
The aim of our paper is to avoid such ambiguity, promoting a naming that refers to both kinds of consistency
when a correctness criterion is used.
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5.2 Justification of Some Protocol Properties

An example of such properties is one of the propositions presented (but not proved) in [11] regarding
Conventional Snapshot Isolation(CSI) (i.e., 1C-Atomic-SI). Note that such paper assumed a pessimistic
protocol behavior, and itsProposition 3says:There is no non-blocking implementation of CSI in an asyn-
chronous system, even if database sites never fail.On the other hand, GSI (i.e, 1C-Sequential-SI) does not
demand such blocking implementations. In such scope, “blocking” means that transactions are prevented
from starting for some time. That proposition can be directly proven using some of the results generated in
theatomicreplica consistency model. For instance, [4] proves that ina linearizable(i.e., atomic) replica
consistency model, the minimum worst-case time for a read operation is at leastu/4 whilst the worst-
case time for a write operation is at leastu/2, beingu the uncertainty in the message transmission delay
(u > 0). So, both kinds of operations have a blocking interval in such model. On the other hand, the same
paper proves that in a sequentially consistent system either read or write operations can be immediately
completed, but not both. In practice, in the database replication field, read operations can be immediately
served by the local replica, whilst write operations demanda blocking interval to deliver the updates being
propagated by a total order broadcast. So, such results are able to directly justify the blocking differences
between the GSI and CSI concepts presented in [11].

Note that there may be database replication protocols that overcome such blocking constraint; for
instance, those based on optimistic management [30, 24]. However, this is achieved by transactions that
in their certification phase will be sanctioned to abort if they have violated the replica consistency model
properties; i.e., they do not block at their start, but if they read data from an obsolete snapshot, they will
abort. The blocking behavior of a pessimistic management prevents such kinds of abort from happening,
ensuring always that the adequate snapshot is being read.

5.3 Sequential Consistency

Mosberger [22] states the following referring to the sequential consistency model and one-copy serializ-
ability:

In a sequentially consistent system, all processors must agree on the order of observed effects.

This is equivalent to the one-copy serializability conceptfound in work on concurrency control
for database systems [7].

However, such paper does not prove the second sentence, although such proof is almost immediate (and
have been widely assumed as such) when the 1SR definition is consulted.

Such definition says (Theorem 8.3 in [7, Page 275]):

Let H be an RD history. If H has the same reads-from relationships as a serial 1C historyH1C ,
where the order of transactions inH1C is consistent with SG(H), then H is 1SR.

Given that:

1. An RD history H is acomplete replicated data history[7, Pages 271-272] that includes all the op-
erations executed in every system replica and that maintains the execution order in every transaction
and replica.

2. The RD history definition also compels to maintain the order between conflicting operations being
executed by different transactions. A pair of operations conflict if at least one of them is a write.

3. The 1SR definition uses a logicalH1C history whose transaction order is consistent with that of
H , with the same aim as the ”...in some sequential order...” clause of the sequential consistency
definition; i.e., to define a logical global order that matches the program order of each system process.

. . . such three elements set a clear correspondence between the consistency issues of 1SR and those of the
sequential consistency model, justifying the statements given in [22].
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6 Conclusions

Sequential consistency was assumed in the first one-copy equivalence targeted for replicated databases:
one-copy serializability. Snapshot isolation is another isolation level widely used in modern applications
since it does not need to block read operations and is also able to ensure serializability with some care.
Thus, multiple database replication protocols have supported snapshot isolation in a replicated environ-
ment, but there is no consensus on what should be understood as one-copy equivalence when such isolation
level is used. Almost each paper has given a different name toits assumed correctness criterion.

We have surveyed multiple database replication papers thatprovide such isolation level, and we have
proposed a taxonomy in order to refer to one-copy equivalence. To this end, multiple variants have been
distinguished depending on the assumed replica consistency model. This permits an easy justification of
some protocol properties, since they depend on both the isolation level and the consistency model. Existent
properties in such two fields are able to justify the behaviorof such protocols.
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[31] Matthias Wiesmann and André Schiper. Comparison of database replication techniques based on total
order broadcast.IEEE Trans. on Knowledge and Data Engineering, 17(4):551–566, April 2005.

[32] Shuqing Wu and Bettina Kemme. Postgres-R(SI): Combining replica control with concurrency con-
trol based on snapshot isolation. In21st Intl. Conf. on Data Eng. (ICDE), pages 422–433, Tokyo,
Japan, April 2005. IEEE-CS Press.
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