On the Cost of Prioritized Atomic Multicast Protocols

Emili Miedes, Francesc D. Mwz-Esco

Instituto Tecnobgico de Infornatica
Universidad Policnica de Valencia
46022 Valencia (SPAIN)

{emiedes,fmunyoz@iti.upv.es
Technical Report ITI-SIDI-2009/002

ITI-SIDI-2009/002

On the Cost of Prioritized Atomic Multicast Protocols

E. Miedes, F. D. Mioz-Esc

On the Cost of Prioritized Atomic Multicast Protocols

Emili Miedes, Francesc D. Mwz-Esco

Instituto Tecnobgico de Infornatica

Universidad Policnica de Valencia
46022 Valencia (SPAIN)

Technical Report ITI-SIDI-2009/002
e-mail: {emiedes,fmunydz@iti.upv.es

February 2009

Abstract

A prioritized atomic multicast protocol allows an application to tag messagesanttiority that
expresses their urgency and tries to deliver first the ones with a higleeityp For instance, such a
service can be used in a database replication context, to reduce theticanahort rate when integrity
constraints are used. We present a study of the three most importantetirknown classes of atomic
multicast protocols in which we evaluate the cost imposed by the prioritizatemhamisms, in terms of
additional latency overhead, computational cost and memory use.sithig reveals that the behavior
of the protocols depends on the particular properties of the setting (mwohhedes, message sending
rates, etc.) and that the extra work done by a prioritized protocol dateisitnoduce any additional la-
tency overhead in almost all of the settings evaluated. This study is alsdoarmpance comparison of
these classes of total order protocols and can be used by systenmedesigrhoose the proper prioritized
protocol for a given setting.

KEYWORDS: Broadcast protocols, atomic broadcast, total orderdoas, priority management

NOTE: This report supersedes the previous TR-ITI-ITE-08/10rep

1 Introduction

A group communication service (GCS) is a middleware compbtiet provides a set of services that can
be used as building blocks to design and build distributestiesys. A GCS usually offers an atomic (i.e.,
total order) multicast message delivery service which ksadin application to send messages to a set of
destinations such that they are delivered in the same avd=adh destination. Group communication and
total order topics have been studied for more than two decfade both a theoretical [4, 6] and a practical
[3, 7, 12, 1] point of view. A useful additional guarantee a &@ay offer is priority-based delivery
[16, 15, 13], which allows a user application to prioritibe tsending and delivery of certain messages.
Such a service can be used in a scenario like the followingisi@er an application that runs on top
of a database replication system and is physically digegbhamong several sites. Such systems usually
follow a constant interactiomodel [18], according to which, updates made by a trangaetie broadcast
in total order to all the database replicas at the end of #ies#iction, using a single message. The order
in which a set of messages corresponding to different tdioses are delivered by the replicas determines
the final order in which a set of transactions are applied ¢aditabase. This order has a deep impact on
the evaluation of the integrity constraints defined in thealbase. The idea is to alter the order in which
transactions are committed for achieving a favorable camtevaluation, thus reducing the transaction
abort rate. Note that the database replication protocoblis & know which database tables and fields

have been accessed by a given transaction, and it is able teuagh information for assigning priorities.
To do so, the replication protocol should be also aware o&mantic integrity constraints defined in the
database schema. MADIS [8] is an example of database réplhiaaiddleware where all these issues can
be managed. A transaction implementation based on stooeégbures is another alternative for providing
all the information needed by the replication protocol idlarto assign priorities (accessed tables and
fields, values being used in the updates, etc.).

Non-prioritizing total order broadcast policies have besgdfely studied, while, as far as we know, only
a few studies exist for priority-based protocol variants.[15] and [13], two priority-based total order
protocols are presented. Low priority messages may sufievegion if too many high priority messages
are sent. The problem of message starvation is dealt wittifggaly in [14]. In [2, 17] another common
problem of this kind of protocols, known asiority inversion is addressed.

We studied recently atomic multicast prioritization frootf a theoretical and a practical point of view.
In[11] we presented some techniques to modify existing twter broadcast protocols to take into account
message priorities. We also showed how these techniqudsecapplied to existing total order protocols
and identified which technique is the most suitable for ed¢heoclasses of total order broadcast protocols
presented in [6]. Then, in [10] we proved that total ordeoptization is able to reduce transaction abort
rates in replicated databases, thus showing the utilittah& multicast prioritization. In this paper we
show that atomic multicast prioritization techniques dé ingpose a significant overhead on the latency
of the multicast messages. As a result, this reinforcessb&iiness of this approach, since its advantages
proved in [10] do not introduce any performance degradation

The paper is organized as follows. In Section 2 we describesyistem we use in this experimental
work. In Section 3 we present some experimental work we hawe tb show that the overhead added by
the prioritization techniques is not significant. Finallye conclude the paper in Section 4. Sections 1 to
4 are included in a paper that we are going to send to a comferén Appendix A we include additional
results that could not be included in that paper, due to siyadations.

2 System Description

The system is composed of a set of processes that commutticatglh message passing. Each process
has a multilayer structure, whose topmost level is a uselicgion that accesses a replicated DBMS,
which in turn uses the services offered by a group communitatystem. The latter is composed of one
or more group communication protocols, which use the ugtgrinetwork’s services to send and deliver
messages. In Section 3.1 we provide additional informattated to the physical environment we used.

Processes run on different physical nodes and the driftésvtiwvo different processors is not known.
The time needed to transmit a message from one node to ansthennded but the bound is unknown.
In practice, the system does not need more synchrony thawoffeeed by a conventional network which
offers a reasonably bounded message delivery time. Préaiba®s and network partitions may occur.
However, since we are focusing on the comparison of priatitbn techniques, we do not address failure
handling (which can be realized by mechanisms such as grewpbership services and fault-tolerance
protocols).

3 Experimental Work

In this section, we present the experimental work we haves dorobserve the performance of the total
order protocols and evaluate the cost overhead of theirifizied versions. First of all, we describe the
testbed, including the physical setting. Then, we deschibgarameters and the methodology used to run
the tests and finally we present and discuss the results.

3.1 Testbed

To evaluate the prioritization techniques, we implemertkede total order protocols: a sequencer-based,
a privilege-based and a communication history one. We atgpdeimented their corresponding prioritized

versions, according to the techniques proposed in [11]. nMadyae the performance of the total order
protocols, we use a test application that uses the servicagaial order protocol which in turn uses a
reliable transport layer.

The experiments have been conducted in a system of eighs magttean Intel Pentium D 925 proces-
sor at 3.0 GHz and 2 GB of RAM, running Debian GNU/Linux 4.0 &wh JDK 1.5.0. The nodes are
connected by means of a 24-port 100/1000 Mbps DLINK DGS-I2Z24itch that keeps the nodes isolated
from any other node, so no other network traffic can influeheerésults.

3.2 Methodology

To evaluate the performance of the prioritization techa&un each node, the application broadcasts a
series of messages to all the nodes in the system, by meanwiafl arder protocol. The messages are
broadcast at a uniform sending rate which is constant dahiegvhole test. As explained below, we have
performed tests with different sending rates. Besideswashave no other flow control mechanism neither
in the application nor in the total order protocols.

Each message is tagged with a uniformly-distributed rangddority which is an integer number. As
discussed later, prioritized total order protocols use Waiue to prioritize the delivery of some messages
over others.

The length of the messages is not fixed, but depends on thetsesaled in them by the total order
protocols. Nevertheless, in all the cases it is less thaMfid of the network we are using (1500 bytes),
so all the application messages fit into one wire-level packe

Each message is totally ordered and delivered by all thesimdihe system. To evaluate the perfor-
mance of a given protocol, we measure tledivery timeof each message, i.e., the time observed by the
application in a given node, between the moment in whichaatcasts the message and the moment in
which it receives back the message, once totally ordered.

For each message we have a delivery time and for each nodewsealseries of delivery times, cor-
responding to all the messages sent by that node. If we mértieealelivery times from all the nodes,
we can compute a global mean and median delivery time. Sudkaa median) time expresses the mean
(median) time needed by messages to get totally ordered.

This testis run with different total order protocols andaisth their corresponding prioritized versions.
With these values we analyze the dispersion of the serieslivedy times. A significant difference between
the mean and the median values, especially when the medianés than the mean, implies that there is
a number of (low priority) messages that have a high delitieng, which means that the prioritization
mechanism is working as expected and has been able to eocaithumber of messages. Nevertheless,
the mean value of the test should not exceed some bound. &ssxely high value for the mean delivery
time implies that too many messages are being delayed adalay is extending their delivery times. In
this case we say that the protocol becaatirated

In order to get more trustworthy results, we discard the 8200 messagésecorded in each node.
These values correspond to delivery times of message®dadivduring a period of time in which the total
order protocol is being initialized so the system is not ped steady-state regime.

During the execution of these tests we also analyzed twdiaddl indicators: a) the processing time
employed by the prioritization mechanisms and b) the memsegy In Section 3.4 we provide additional
details.

3.3 Parameters

The considered parameters are the class of total ordergoiptbe number of nodes and the sending rate
at which the test application broadcasts messages. Theskeseribed in the following subsections. We
also include a discussion about the number of messages #liberdd by each node.

1This number has been chosen empirically, after analyzingehawor of the data structures managed by the total ordenqobt
implementations.

Protocol type. We have implemented three non-prioritized total ordergmols and a prioritized version
for each. The&/ B protocol is an implementation of the UB sequencer-based dotler algorithm proposed
by [9]°. TheTR protocol implements a token ring-based algorithm. It isiksinto the ones of [12] and
[1] and theT R protocol implemented in [11] but there is a significant diffiece. In theT'R protocol,
when a node receives the token, it broadcasts just a messaigg 5], instead of broadcasting a number of
messages, as in [12] and [1]. Finally, ther protocol is an implementation of the causal history aldonit
in [6].

The corresponding prioritized versions @re,,.., T Ry, andC H,,;,, respectively. They have been
implemented according to theiority sequencingpriority sendingandpriority deliveringtechniques pro-
posed in [11], respectively.

Number of nodes. The application has been run with 4 and 8 nodes, each nod@nguima different
physical node of the cluster.

We decided not to evaluate bigger systems for several reagarst of all, we must consider our base
context. The system is a replicated database environmdrdiarfinal goal is to have proper tools that ease
data replication and offer a high degree of data availgbilit such a context, the use of more than three or
four data node replicas is questionable. On the other haatilslity is not a concern of this paper. We are
only interested in the overhead being introduced by therifidgation techniques and such overhead does
mainly depend on the behavior of the total order protocaeds its basis.

Sendingrate. In each test, a node broadcasts messages using a uniformgeaté. \We have run tests
with 4 and 8 nodes and sending rates of 10, 40, 60, 80 and 108agessent per second and node. Note
that this generates maximum global sending rates of 400snasgl 800 msg/s, in systems with 4 and 8
nodes, respectively.

Number of messages delivered by each node. To ease the comparison, in each test, each node receives
the same sequence of messages. This sequence has 3200fasieagast ends when all the nodes deliver
those messages.

To ensure a stable operation of the protocols during a tash rode sends more messages than those
strictly necessary. For instance, in a test with 4 nodes) sade would only need to send 8000 messages.
In practice, as the nodes deliver messages at a rate lowethbaending rate, there is a final period of
time in a test in which the system is no longtgible because the queues of the protocols are getting empty
and this may affect the measuring of the delivery times. Meeg the difference between the sending
rate and the delivery rate is different in each test, and migpbasically on all the parameters (the protocol
used in the test, the number of nodes and the sending rdf dise this poses additional difficulties to the
protocol comparison.

To solve this issue, each node sends as many messages ad, rteegiesure a continuous flow of
messages during the whole test. This approach also solgdadk of liveness shown by theH and
CH,., protocols, as described in [6].

3.4 Cost Evaluation

To evaluate the cost employed by the prioritization medranj for each original protocol and its cor-
responding prioritized version we measure the time empldgeun certain parts of both protocols. We
call this time theprioritization time The sections measured are semantically equivalent, seawget
comparable measures.

For instance, to evaluate the sequencer-based protocelseasure the time lapse between the time
when the sequencer starts to handle a message and the timeitwiteadcasts the message, once se-
guenced. The corresponding prioritized protocol has alvalgmt section, in which prioritization takes
place. Measuring the time needed to run both sections angaamg both times, we can get a very tight
approximation of the time needed by the prioritization neagbm applied by the prioritized protocol.

2UB stands fotUnicast-Broadcastas in [6].

UB [UBprio| TR T Rprio|[CH [CHprio
4 nodes
mean| 1.45 1.25 6.69 6.33 76.77 77.00
10 1stq| 1.20 1.08 0.89 0.89 65.13 65.16
msg/s med] 1.28 118 1.26 1.28 81.10 81.35
3rdg.| 1.36 1.26 9.30 7.52 93.38 93.44
mean| 1.50 1.46 1.29 1.27 17.77 17.86
40 1stq{ 1.11 1.09 0.72 0.72 13.13 13.10
msg/s med| 1.24 131 1.02 1.02 17.12 17.01
3rdqg.| 1.34 1.54 1.27 1.27 20.84 20.84
mean| 1.30 151 1.70 1.70 12.22 11.95
60 1stq| 0.97 1.09 0.75 0.76 8.83 8.77
msg/s med|{ 1.09 1.32 1.07 1.08 12.60 12.61
3rdqg.| 1.24 1.53 1.32 1.35 12.88 12.91
mean| 3.43 2.20 2.36 2.75 9.13 9.29
80 1stq| 1.17 127 0.87 0.77 4.97 4.96
msg/s med] 1.27 1.42 1.20 1.09 8.66 8.62
3rdg.| 1.53 1.70 151 1.37 8.98 8.96
mean| 134.25 487.36 4.85 26.14 7.10 6.71
100 1stq| 1.12 1.35 0.83 0.83 4.62 4.59
msg/s med| 1.28 1.6 117 1.18 4.84 4.83
3rdqg.| 1.79 2.75 1.51 1.52 5.14 5.20
8 nodes
mean| 1.89 11.35 2.05 2.08 90.33 90.96
10 1stq| 1.34 153 1.37 1.39 85.21 85.40
msg/s med| 1.53 173 1.86 1.87 97.62 94.21
3rdg.| 1.70 1.92 2.39 2.4 101.79 101.74
mean| 3.84 221.37 7.85 7.60 23.62 23.20
40 1stq| 1.40 1.65 1.53 1.50 20.76 20.74
msg/s med] 1.62 1.93 2.19 217 21.18 21.17
3rdqg.| 2.04 2.86 291 2.86 21.89 21.68
mean| 190.82 670.48 75.53 151.49 17.09 17.22
60 1stq| 1.42 1.72 1.68 1.69 12.96 12.98
msg/s med| 1.86 2.51 2.54 2.53 13.28 13.27
3rdqg.| 3.65 9.94 3.69 3.60 17.07 17.05
mean| 6718.52| 13608.62 | 460.35 750.16 86.96 136.80
80 1stq|6373.32 13.32 2.24 221 9.02 9.18
msg/s med| 6660.33 604.56 3.8 3.70 9.88 13.80
3rd q.| 6882.63| 24776.30 | 340.26 34.26 65.51 237.24
mean|20102.49 25264.85 |5477.03] 5148.22 100.05 125.82
100 1stq|14290.9 104.60 [5119.25| 5.14 5.78 5.70
msg/s med|18435.5(0 17349.36 |5517.79 65.87 9.27 9.64
3rd q.|23159.84 47670.92 |5891.15| 6908.98 58.16 145.75

Table 1: Delivery times (ms) with 4 and 8 nodes

These measures are only comparable between a given pratodals corresponding prioritized ver-
sion. For other protocol families, the parts of the proteaminsidered are different.

For each test, we measure the prioritization time in eackehdthen we compute the mean prioritization time
as the mean for all the nodes. These numbers are presentezhirdgtail in Appendix A and summarized
in Section 3.5.

To evaluate the memory use, we analyzed how much of the totaliat of memory available by the
Java Virtual Machine is being used during each test by eadh.rna Appendix A we graphically represent
this evolution in several settings (in systems of differgmes, with different protocols and sending rates,
as explained in 3.3). Moreover, for each test, we count threlbmu of times the Java garbage collector
has been run in each node and with all of them, we compute tlam me&nber of garbage collection runs.
These numbers are summarized in Section 3.5.

3.5 Results

For each test we computed a global mean and median deliveey &is explained above, and the corre-
sponding first and third quartile, as well. The results ararsarized in Table 1 and discussed in Section
3.6.

In Tables 2 and 3 we show the mean prioritization time and teammumber of garbage collection
runs, computed as explained in Section 3.4.

3.6 Discussion

In Table 1 we show the mean and median global delivery tirme®1§), as well as the first and third quartiles
in systems with 4 and 8 nodes, respectively, at differendiegrrates.

3We also discard the first 3200 messages, as explained in $8c#io

In a system with 4 nodes, thieéB andU B,,.;, protocols perform well at sending rates up to 80 msg/s.
At 100 msg/U B still shows low median delivery times but their dispersisthigh, because the protocol
is getting saturated.

TheTR andTR,.:, Yield better performance numbers, even at 100 msg/s. At Hstike mean is
slightly higher than the expected although in these cakegqrbtocols are not saturated. When the sending
rate is low, it may happen that the node which receives a tdkes not have any message to broadcast.
In this case, it simply forwards the token to the next nodenaring. If a message is then broadcast by
the application in the first node, then it will have to waitilitiie token arrives again to that node, thus
increasing the delivery time of that particular messageasd the mean delivery time. As this happens
only to some messages, the delivery time of the rest of thesages is low (due to the low sending rate
and the low contention accessing to the network). At higleedmg rates this problem no longer arises.
At 100 msg/s the dispersion ihR,,.;, is slightly higher as a side effect of the prioritization rhanism, as
iNn UBprio.

Regarding theeH andCH,;,, we can see that at low sending rates, the delivery time is big it
decreases noticeably as the sending rate is increased.eSlgnaf theC' H protocol forces an unordered
message received by a node to wait until messages are rédeive the other nodes. Then, the order
is locally (and deterministically) decided without any ethmessage exchange. As the sending rate is
increased, messages are forced to wait less time thus ngdilne global mean and median delivery time.
On the other hand, we can see that the dispersion is kept l@all the cases and more or less similar
regardless of the sending rate. The reason of the delayierped by the messages is mainly because
ensuring the causal property imposes a delay on each mesigagiantly greater than the delay imposed
by the prioritization mechanism. As the delay imposed byctagsal ordering is similar for all the messages
sent at a given sending rate, the dispersion of the deliwemgstis kept low.

In Table 1 we can see that, in a system with 4 nodes, at sendteg up to 60 msg/s, the mean
delivery time of any original (non prioritized) protocolpsactically equal to the mean delivery time for the
corresponding prioritized protocol, which means that therjtization mechanisms are not imposing any
overhead. Something similar happens to the median deltiegs. Above 60 msg/s the numbers diverge
because the load starts to be too high and then the respgoeeddeon each particular protocol.

In a system with 8 nodes, we can see tha&,..., T R,-.. andC H,,;, offer good median delivery times
at sending rates up to 40 msg/s. Moreover, this numbers arparable to the ones for their corresponding
original (non prioritized versions). At sending rates ab®0 msg/s, all the protocols get saturated, in
varying degrees, and the delivery times start to get unisedct

Moreover, we can compare the results from a 4 node systemra8aade system. In general, we can
say that the system scales well when the sending rate is nohigh (around 40 msgs/s, as stated above).
TheU B andUB,;, protocols are the ones that offer the worst scalability dsieentralized nature. The
token-ring and communication history protocol familiesseto stand better the increase in the number of
nodes.

We can also analyze the dispersion in the values and thet dffe@rioritization techniques have on
it. For instance, consider the results of the 4 node systedf)@msg/s. Regarding theB protocol, the
difference among the mean delivery time (134.25 ms) and théiam (1.28 ms) and third quartile (1.79
ms) shows that there is a significant dispersion in the sefiealues, caused by the high sending rate. The
high dispersion found iw/ B, is caused by the high sending rate and by the prioritizatieshranism
itself. Some messages are delivered very quickly and sohee (those with lower priorities) are forced to
wait for a while, thus increasing the dispersion in the seoiiedelivery times.

Something similar happens with? andTR,.;, at 100 msg/s. The dispersion between the mean and
the median witll'R,,.;,, is bigger than the corresponding wittk. Moreover, in this case, the values of the
median, first quartile and third quartile are almost the sam®th protocols, but the difference between
the mean values is bigger than the one observed with the segubased protocols, which means that
the prioritization mechanism used ihR,.;, yields, as a side effect, a bigger dispersion in the series of
delivery times than the one got with the prioritization maeism used i B,.;,. This conclusion can also
be drawn observing the results with the 8 node system, at&@een at 80 msg/s.

Nevertheless, this effect is less significant in thd andCH,.;,. In a system with 4 nodes, they do
not show a high dispersion. In a system with 8 nodes, the digpeis moderated at sending rates up to 60
msg/s. At higher sending rates, the dispersion increatiesugih the increment is lower than that showed

nodeg msg/g UB U&mjo TR TRprio CH CH rio
10 [4115.69| 13898.33 |4477.71| 5297.12 [76773257.3476738635.95
40 [4034.83| 9834.17 |4255.10[3504.76 |16619838.8¢ 16654534.45
4 60 |3263.09| 9257.53 |[3515.73| 3170.59 |10946781.95 10845508.47
80 |3520.73| 9834.97 |[3717.57| 2175.87 | 7666576.22| 8495415.76
100 | 3376.18| 11431.22 [3315.10| 2030.31 | 5510957.86| 6682313.85
10 |3741.39| 14105.03 |4527.08] 5180.52 |89185553.61 88805093.97
40 |3547.92| 12120.56 |5129.58| 4833.16 |21456109.1121234605.63
8 60 |3685.69| 16840.87 [4877.57| 3589.27 |15693311.47 15131756.34
80 |3644.65| 15255.28 [4794.20| 5024.31 |66149667.4270668213.08
100 | 4063.65| 15217.12 |5750.73| 9411.88 [112708468.6893970320.05

Table 2: Mean prioritization times (ns)

by the other protocols.

As a conclusion we can say that the dispersion mainly dependke length of the queues used by
the ordering mechanisms of the protocols. The number of\odihe system and the sending rate have a
direct influence on such lengths.

Regarding theprioritization timespresented in Table 2, we can analyze the differences amang th
values of the conventional (non-prioritized) protocolsl &ime prioritized ones. The bigger differences can
be found when comparing theB and theU B,,..;, protocols at any sending rate and with 4 or 8 nodes in the
system. At a first glance it seems that the prioritization ma@isms inU B, is introducing a significant
load to the original protocol. Nevertheless, we can seeithatl cases, the overhead is around a few
microseconds, which compared to the full delivery time ie brder of milliseconds) is negligible.

In the case of th&' R andT R,.;, protocols, the differences are smaller, and again, cordgarthe full
delivery times, are negligible. Moreover, we cannot say ¢ime of the protocols yield better prioritization
time numbers than the other in all cases.

Finally, theC H andC H,,.;, protocols deserve a close analysis. On one hand, the absalues of the
prioritization times are several orders of magnitude biggan those for the other protocols. The reason
is that the part of th€ H andCH,,;, protocols considered for taking the measures is basidadlycode
executed to fully handle each incoming mes$agowever, in this case the differences among the values
for CH,,., and those forC H are negligible by themselves.

Regarding the memory use and the numbers represented sm3afé can observe that in general, there
are no big differences between the figures forftlieandC H protocols and the ones for their corresponding
prioritized versions. Some notable differences exist h@yeamong the numbers of garbage collection
runs for theU B and those fol/ B,...,. The reason of these differences is basically the memorsheeel
suffered by the sequencer node which typically uses moreangetan the rest of the nodes of the system

In Appendix A, we depict the evolution of the amount of freemnoey available for the Java Virtual
Machine during each test under different settings. Thedigpresented in Table 3 can be contrasted against
those graphical representations.

4For delivering a message to the application, one node mustreaeéred at least one message from all nodes in the system, in
order to learn about thelogical clocksand properly order the incoming message respect other mes3dgeforced pause actually
imposes a significant delay, comparable in order of magnitutteetdelivery delay itself.

5As stated in Section 3.2, these mean numbers are got from theemsifiob all the nodes in the system, including its sequencer in
case of thd/ B andU By, protocols.

f# nodeg msg/g UB UBp'rio TR TRp»,-io CH CHprio
10 | 43.50 54.25 975.75 985.00 51.00 51.00
40 | 27.00 30.75 62.00 62.50 41.25 42.00
4 60 | 18.50 22.25 39.25 39.50 20.50 19.75
80 | 17.25 26.25 31.50 30.75 17.00 15.75
100 | 17.50 22.75 23.75 23.50 17.00 15.75
10 | 35.50 41.62 228.00 230.25 52.75 53.00
40 | 18.62 25.12 25.00 24.75 18.62 18.87
8 60 | 19.87 24.87 21.00 21.75 17.37 18.00
80 | 2212 25.50 19.87 20.12 18.00 18.37
100 | 23.00 27.00 19.00 19.87 18.00 18.12

Table 3: Mean numbers of garbage collection runs

3.7 Final summary

To summarize the experimental study, we can compare therpgahce of the conventional protocols and
relate it with the performance and overhead of the corredipgnprioritized protocols. In this section,
we are using global sending rates instead of per-node sgmdias; i.e., we are considering how many
messages per second have been actually sent by all systes nod

The U B protocol yields very good performance numbers when theajlegénding rate is not very high
(up to 320 msg/s). When the volume of concurrent messages isigh (due to a high sending rate or
because there are too many nodes concurrently broadcastdegages), then the protocol starts to get
saturated, and the performance decreases. The main rdabansaturation problem is that the sequencer
(which also acts as a regular node that broadcasts and atessages) suffers a very high overhead and
it is not able to manage and sequence a very high number oficemt messages.

TheTR protocol also shows very good performance results, witkdisgrrates up to 480 msg/s, i.e. it
is able to scale better than thiez andU B,,,.;, protocols.

The CH protocol does not perform as the other protocols but is treetbat best handles high loads
(even 800 msg/s). The reason of the lower performance ishigprotocol also offers causal delivery
guarantees and some messages are forced to wait until lyapissdedent messages are delivered, thus
increasing the mean (and median) delivery time.

Moreover, we have studied tipeioritization timeand can conclude that no overhead is imposed by the
prioritization mechanisms. Regarding the memory use, wecoaclude that the prioritization mechanisms
used in thel'R andC H protocols are notimposing any memory overhead (when cozdpaith theT' R,
andCH,.;, protocols, respectively). On the other hand, the resutt&vghat thel B,,.;, protocol needs an
additional amount of memory, compared with the original-poioritized U B protocol.

To sum up, we can say that, in general, performance res@tsimilar to those got with the original
non-prioritized protocols. In other words, we can confirratttihe prioritization techniques presented and
tested are not imposing a significant overhead on the otigha#ocols.

4 Conclusions

In this work we continue our study of priority managementdtat order broadcast protocols we started
with a proposal of several techniques to add priority maneeg to total order protocols [11] and a study
of how those techniques can be applied in a realistic agmitand their effectiveness [10].

We have presented an experimental study in which we showtheatrioritization techniques do not
impose an important overhead (in terms of message deliaggndy, processing time and memory use) on
the original total order protocols, thus proving that, besibeing easy to understand and implement (as
shown in [11]) and being useful for replicated database mament (as shown in [10]), the techniques are
affordable in terms of performance. The main conclusiohas prioritized total order broadcast protocols
are a valuable building block that can be used to improve #eigd and implementation of distributed
applications and their performance, as well.

As a second contribution this experimental study can be alseras a performance comparison among
conventional non-prioritized total order protocols. Tlesults of this comparison show that sequencer-
based and privilege-based protocols offer a comparabferpance when the number of nodes is small (4
or 8) and the sending rate is not too high (around 60 msg/s)héaumber of nodes or the sending rate is
increased the sequencer-based protocols start to gettgat@nd the communication history improve their
performance. At higher sending rates communication higiostocols are the ones that can stand the load,
although the performance is not the best.

A Graphicresults

In this appendix we show some graphic results obtained flatdsts we have performed. In Section A.1
we present some results related to the prioritization timigige Section A.2 analyses the memory use.

A.1 Prioritization time analysis

To evaluate the cost of the prioritization mechanisms aggh theU B,,.o, TR0 andCH,,.;, protocols

we have recorded the prioritization time of each messagexgigined in Section 3.4. These values can
be used to get an idea of how expensive are the prioritizatiechanisms. The values are grouped in sets
of 1000 values. The mean value of each set is computed andi#dpcted in a single curve. Each curve
plotted represents the evolution of the prioritizationdsyof a given test. To ease the comparison, related
curves are plotted in the same figure.

In Section A.3 we show the graphic representation of theritidation times, in systems with 4 and 8
nodes, with different conventional and prioritized toteder protocols, at different sending rates.

We can see in Figures 1 and 2 that the prioritization timesHertests with thé/B,,.;, protocols are
higher (worse) than the corresponding tests with. For instance, in Figure 1 the prioritization times of
the tests withU B,,;, are more than twice the corresponding times with. Nevertheless, as explained in
Section 3.6, by comparing these times against the corrésppuelivery times we can see that the extra
cost observed in the tests withs,,..;, is negligible.

Regarding the token-based protocols, we can see in Figued 8 that th&'R,,..;, protocol needs more
time than thel' R protocol to manage the first messages but it needs less timartage thénal messages.
These results suggest that in a system with a constant spradé) the prioritized’R,;, protocol behaves
even better than the originalr protocol. Nevertheless, again the differences among thatpration times
fortheT R and theT'R,,.;, protocols are negligible when compared against the cavrefipg delivery times
(as shown in Table 1).

Finally, Figures 5 and 6 show that there are no significafédihces among the results for the conven-
tional C H protocol and the prioritized H,,.;, protocol, in systems with 4 and 8 nodes, respectively.

A.2 Memory useanalysis

To evaluate the cost of the prioritization mechanisms imgof memory use, during each test we have
recorded the values of three indicators: the total, freeraagimum amount of memory available to the
Java Virtual Machine. During a given test, each time a messageceived by the test application, the
values of these indicators are recorded. The figures in@ect.4 and A.5 show the evolution of these
indicators for different nodes in different settings, witland 8 nodes, respectively.

In the case of th& B andU B,..., protocols, we show two figures for each test, one for the sempre
node (usually the first node) and another for a non-sequerachs (typically the second node). As shown
in the figures, a sequencer node has different memory reqgeires than the rest of the nodes. For the rest
of the protocols, we only show the figure corresponding toder(typically the first one).

A.21 System with 4 nodes

In Figures 7 to 46, we show the evolution of the memory usecatdrs in a system with 4 nodes, with a
sending rate ranging from 10 msg/s to 100 msg/s, with diffepeotocols, in different nodes.

For instance, in Figures 7 and 8 we show the results fovthgrotocol in the first node (the sequencer)
and the second. At a first glance, there are some significiatatices between both figures. The most
important is related with theee memongurve. In Figure 7, the curve shows a cyclic behavior. We have
contrasted these results against those obtained from taegdabage collector, which allows us to draw
some conclusions. During a short period of time, the amotifree memory deeply decreases. After a
minor garbage collectiosome memory is recovered and the amount of free memory sesedn such a
minor garbage collection, (typically small) short-livedjects are collected. This cycle is repeated many
times, until the Java Virtual Machine is close to run out ofhmogy. Then, amajor garbage collectiols
ran. This collection is able to recover a high amount of mgmeouorresponding to long-lived objects that
are no longer used. After such a collection, this cyclicdldwor is repeated.

In Figure 8 we show the corresponding curve for the secone@ imothe system. The behavior is, in
essence, similar to the one of the first node. An importafedince is that the garbage collections are not
so frequent than in Figure 7. The main reason is that the fadé is the sequencer and needs to allocate

and use much more memory than the rest of the nodes. For ttersaison, the amount of free memory
available to the Java Virtual Machine in the second nodeadsers more slowly than in Figure 7.

This behavior is also found in Figures 15 and 16 (40 msg/s)ar&B24 (60 msg/s), 31 and 32 (80
msg/s) and 39 and 40 (100 msg/s). These figures have smaltatiffes regarding Figures 7 and 8, due
to the higher sending rates. The most notable differendeeideingth of thesteps(as the sending rate is
increased, the amount of memory released by the garbageolin each collection is slightly bigger).
Moreover, thetotal memorycurve shows that increasing the sending rate causes sagh® (licrease in
the total amount of memory managed by the Java Virtual Machin

These results can be compared against the corresponditieféB,,.;, protocols, in Figures 9 and 10
(10 msg/s), 17 and 18 (40 msg/s), 25 and 26 (60 msg/s), 33 a(@D3#sg/s) and 41 and 42 (100 msg/s).
Although particular differences can be found, we can saty thgeneral, the behavior observed in a system
with a conventional (non prioritized) protocol under a giveetting is similar to that of the corresponding
system with its prioritized protocol version. There arejeréheless some differences regarding the number
of garbage collections performed in a system running tieprotocol and the corresponding system with
UByprio, s pointed out in Section 3.6. We can see that in the teskstw#,,, the number of garbage
collections is higher than in the corresponding tests with, which means that/ B,...,, under a given
setting, needs more memory thei under the same setting.

In Figures 11, 19, 27, 35 and 43 we show the behavior ofrtReprotocol in a 4 node system at a
sending rate of 10, 40, 60, 80 and 100 msg/s, respectivelf)LOAhsg/s (Figure 11), we can see that the
system is performing really well. First of all, thetal memorycurve shows a slightly decreasing tendency
that finally seems to stabilize. Moreover, the higgnsityof the free memorycurve shows that there are
a lot of short-lived objects that are being successfullyeotéd by means of minor garbage collections,
which actually means that no heavy major garbage collestwa usually needed.

As the sending rate is increased, the behavior gets mortasimithe behavior of the sequencer-based
protocols. Basically, the garbage collections becomeftesgient but the amount of memory recovered in
each collection is increased. We can also see that the totalst of memory needed lyR also increases
(respect to that depicted in Figure 11).

In Figures 12, 20, 28, 36 and 44 we show the behavior of thespanding prioritized R,,.;, protocol
at 10, 40, 60, 80 and 100 msg/s, respectively. As can be de=behavior is very similar to the behavior
of the conventional (non-prioritized) R protocol, which clearly shows that the prioritization mantsm
applied inT R,.;, is not imposing any overhead on the memory use.

In Figures 13, 21, 29, 37 and 45 we show the behavior ofctieprotocol in a 4 node system at a
sending rate of 10, 40, 60, 80 and 100 msg/s, respectivelhoAgh there are some minor differences,
the behavior is basically similar. As the sending rate iséased the frequency of the garbage collections
decreases and the amount of memory recovered increasesttiNgess, the tendency of tfree memory
andtotal memorycurves show that the system evolves in a very controlled eratfigures 14, 22, 30, 38
and 46 show the results for the corresponding settings Witlv'#,,,.;, protocol. As we can see, the results
are very similar to the ones from the origiraif protocol in the corresponding settings, which again means
that no memory overhead is imposed by the prioritizationhraaeésm used by th€ H,,.;, protocol.

A.2.2 System with 8 nodes

In Figures 47 to 86, we show the evolution of the memory usiatdrs in a system with 8 nodes, with a
sending rate ranging from 10 msg/s to 100 msg/s, with diffigpeotocols, in different nodes.

In general, we can see that the results are similar to th@septed in Section A.2.1, for systems with
4 nodes. We can note, nevertheless some differences betwgesn test in a setting with 4 nodes and the
corresponding test with 8 nodes. For instance, the sequande of thel/ B protocol at 10 msg/s shows a
significantly different behavior in systems with 4 and 8 r&des shown in Figures 7 and 47. In the system
with 8 nodes the global load stood by the sequencer is twiedotd in the system with 4 nodes. For this
reason, the sequencer of the 8 node system tends to run owmdm sooner than the sequencer in the
4 node system. In both cases, the garbage collector seenwwkqovoperly, recovering a big amount of
unused memory. The behavior of the sequencer irttBg.;, protocol, also at 10 msg/s, show a similar
difference in systems with 4 and 8 nodes. On the other hardyehavior of the non-sequencer nodes in
theU B andU B, protocols is also similar in systems with 4 and 8 nodes.

10

Regarding the token-based protocols, we can see that thand TR,,.;, protocols show a similar
behavior in both systems, with 4 and 8 nodes. The main diffege lie in the frequency with which the
garbage collector is activated to perform minor collection

Something very similar happens to the communication higtootocols. In some cases, besides these
differences in the garbage collection activation freqyeiitcis possible to find small differences in the
guantity of memory recovered. In any case, we consider ket differences are negligible.

11

A.3 Prioritization time plots

Time (ns)

Time (ns)

30000

25000

20000

15000

10000

5000

30000

25000

20000

15000

10000

5000

T

ub, 10 msg/s
ub_prio, 10 msg/s
ub, 40 msg/s
ub_prio, 40 msg/s
ub, 60 msg/s
ub_prio, 60 msg/s
ub, 80 msg/s
ub_prio, 80 msg/s
ub, 100 msg/s

ub_prio, 100 msg/s

0 5000 10000 15000
Message

Figure 1: Prioritization timesi(B andU B,:,), 4 nodes

20000

25000

30000

T

ub, 10 msg/s
ub_prio, 10 msg/s
ub, 40 msg/s
ub_prio, 40 msg/s
ub, 60 msg/s
ub_prio, 60 msg/s
ub, 80 msg/s
ub_prio, 80 msg/s
ub, 100 msg/s

ub_prio, 100 msg/s

0 5000 10000 15000
Message

Figure 2: Prioritization timesi(B andU B,,), 8 nodes

12

20000

25000

30000

Time (ns)

Time (ns)

9000

8000

7000

T
fasttr, 10 msg/s
fasttr_prio, 10 msg/s
fasttr, 40 msg/s
fasttr_prio, 40 msg/s
fasttr, 60 msg/s
fasttr_prio, 60 msg/s
fasttr, 80 msg/s
fasttr_prio, 80 msg/s
fasttr, 100 msg/s
fasttr_prio, 100 msg/s

-

6000 B
5000 1
4000 i
3000 B
2000 B
1000 Il Il Il Il
0 5000 10000 15000 20000 25000 30000
Message
Figure 3: Prioritization timesKi{R andT R,.), 4 nodes
12000 T
fasttr, 10 msg/s —+—
fasttr_prio, 10 msg/s ——<—
11000 fasttr, 40 msg/s —*—
fasttr_prio, 40 msg/s —=—
fasttr, 60 msg/s
L fasttr_prio, 60 msg/s i
10000 fasttr, 80 msg/s —e—
fasttr_prio, 80 msg/s —=—
9000 fasttr, 100 msg/s —— |
fasttr_prio, 100 msg/s —<—
8000 1
7000 1
6000 B
5000 B
4000
3000 1
2000 Il Il Il i
0 5000 10000 15000 20000 25000 30000
Message

Figure 4: Prioritization timesK{R andT R,..), 8 nodes

13

Time (ns)

Time (ns)

1.4e+08

1.2e+08

1e+08

8e+07

6e+07

4e+07

2e+07

Figure 5: Prioritization timesdH andC H,,), 4 nodes

5e+08

4.5e+08

4e+08

3.5e+08

3e+08

2.5e+08

2e+08

1.5e+08

1e+08

5e+07

Figure 6: Prioritization times{H andC H,,..,), 8 nodes

Cl

T
ch, 10 msg/s
ch_prio, 10 msg/s
ch, 40 msg/s
ch_prio, 40 msg/s
ch, 60 msg/s
ch_prio, 60 msg/s
ch, 80 msg/s
ch_prio, 80 msg/s
ch, 100 msg/s
h_prio, 100 msg/s

10000

15000
Message

20000

30000

Cl

T
ch, 10 msg/s
ch_prio, 10 msg/s
ch, 40 msg/s
ch_prio, 40 msg/s
ch, 60 msg/s
ch_prio, 60 msg/s
ch, 80 msg/s
ch_prio, 80 msg/s
ch, 100 msg/s
h_prio, 100 msg/s

10000

15000
Message

14

20000

25000

30000

A.4 Memory usegraphicresultsin a system with 4 nodes

Bytes

Bytes

Total

Free
Max
1e+09 |
8e+08 |-
-E——
6e+08 |

-« A

2e+08

0 5000 10000 15000 20000 25000 30000

35000
Message
Figure 7:UB, 10 msgs/s, nodel (sequencer)
' ' ' ' ' Tlotal
Free
Max
1e+09 4
8e+08 |]
6e+08 |]
—— —
2e+08 | \ \\ \
0 0 5600 10600 15600 20600 25600 30600 35000

Message

Figure 8:UB, 10 msg/s, node2

15

Bytes

Bytes

1e+09

8e+08

6e+08

1e+09

8e+08

6e+08

4e+08

2e+08

T
Total +

Free =
Max *
‘
1 1 1 1 s . 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 9:UB,..,, 10 msg/s, nodel (sequencer)

Total +

Free <
Max *

- - '-"-:-ﬁIl - e

a\\\\\\\\\\\ \\\\ AWMy
| \\'Y

0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 10:U Bpri0, 10 msg/s, node2

16

T T T T T T
Total +
Free x
Max *
1e+09 | 1
8e+08 |- B
)
=3 6e+08 |- B
[s1]
4e+08]
2e+08 1
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 11:TR, 10 msg/s, nodel
T T T T T T
Total +
Free <
Max *
1e+09 | 1
8e+08 |- 1
4]
=3 6e+08 |- 1
e

4e+08

2e+08

0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 12:TR,.,, 10 msg/s, nodel

17

Bytes

(%}
2 6e

>
[

Ge:

4e+

2e+

leH

8eH

de+

2e

e+09

e+08 [

+08

0

®

08

0

09 |-

08 |-

+08

0

@

+08

0

—
it kY

R LV oo

1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000
Message

Figure 13:CH, 10 msg/s, nodel

35000

i
-
l-----l N e

1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000
Message

Figure 14:CH,,;,, 10 msg/s, nodel

18

35000

Bytes

Bytes

1e+09

8e+08

6e+08

4e+08

2e+08

1e+09

8e+08

6e+08

4e+08

2e+08

Al

0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 15:U B, 40 msg/s, nodel (sequencer)
' ' ' ' ' Total -
Free <
Max *
MM
0 5600 10600 15500 20500 25500 30600 35000
Message

Figure 16:UB, 40 msg/s, node2

19

Bytes

Bytes

1e+09

8e+08

2e+08

1e+09

8e+08

6e+08

4e+08

2e+08

T
Total +
Free =

Max *

l

=

-

f-’f-‘!ﬂh-__--__\

Figure 18:UByi,, 40 msg/s, node2

20

0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 17:U B,..., 40 msg/s, nodel (sequencer)
' ' ' ' ' Total -
Free <
Max *
S
- e 4-;-:-., ==
0 5000 10000 15000 20000 25000 30000 35000
Message

Bytes

Bytes

T T T T T T
Total
Free
Max
1e+09 | 1
8e+08 |- B
v
- - .-
6e+08 | fmﬁh—-\ B
4e+08 @ \\\\\\]
2e+08 | 1
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 19:TR, 40 msg/s, nodel
T T T T T T
Total
Free
Max
1e+09 | 1
8e+08 |- 1
6e+08 |- 1
4e+08 &ig \\\\\ 4
2e+08 1
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 20:TR,.:,, 40 msg/s, nodel

21

0
888888

T
TTTTTT
eeeee

llllll

888888

S I B e
- e g
e X

44444 a\\\\\\“i\i\\\\\\\\\\\G\\\\\\\\\\\\\\\\\x |

22222

! ! !
000000000000000

T
TTTTTT
eeeee

111111

888888

GGGGG o

000000000000000000000000000000

Figure 22:CH,,, 40 msg/s, nodel

22

Bytes

Bytes

' ' ' ' ' Total -+
Free X
Max ¥
1e+09 | B
8e+08 - B
e oy
6e+08 5<X 4
4e+08 é% \ B
2e+08 | B
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 23:U B, 60 msg/s, nodel (sequencer)
' ' ' ' ' Total -
Free <
Max *
1e+09 | B
8e+08 |- B
T e S—
6e+08 - — g
P
ws AW\ \ \\\\\ |
2e+08 | B
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 24:U B, 60 msg/s, node2

23

Bytes

Bytes

Tlotal
Free
Max

1e+09

8e+08 |-

:ﬁ\ T

0 ! ! ! ! ! !

SRR

+

0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 25:UB,.,, 60 msg/s, nodel (sequencer)
' ' ' ' ' Total -
Free <
Max *
1e+09 | B
8e+08 |- B
- -
6e+08 |- — i
2e+08 | \ \
0 0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 26:U Bi,, 60 msg/s, node2

24

llllll

SSSSSS

0
8888888

44444

222222

111111
888888

8
eeeeeee

88888

ZZZZZZ

T
TTTTTT

eeeee

Figure 27:TR, 60 msg/s, nodel

Total +

eeeee

Figure 28:TR,.:,, 60 msg/s, nodel

25

Bytes

Bytes

1e+09

8e+08

6e+08

4e+08

2e+08

1e+09

8e+08

6e+08

4e+08

2e+08

Tlotal
Free
Max

&

JONFTEFTRNR

+

0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 29:CH, 60 msg/s, nodel
' ' ' ' ' Total -
Free <
Max *
L £ T ‘--;...ﬁ...;.lli...:lll:...r..ﬁ...r.‘
0 5000 10000 15000 20000 25000 30000 35000
Message

Figure 30:CH,:,, 60 msg/s, nodel

26

Bytes

Bytes

' ' ' ' ' Total -+

Free X

Max *
1e+09 | i
8e+08 - B
6e+08 -:%% B
4e+08 éé% \\ \\\\\ i
2e+08 | \\ i

0 0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 31:U B, 80 msg/s, nodel (sequencer)

' ' ' ' ' Total -

Free <

Max *
1e+09 | B
8e+08 |- B

I -
6e+08 |- — g
J—
= \\‘ |
2e+08 | i
0 0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 32:U B, 80 msg/s, node2

27

Bytes

Bytes

Tlotal +
Free X
Max *

1e+09 -

8e+08 -

w...ll—...-

6e+08 -H-__—h._____'

B éa \ \ \ \ \\\\\\\\\\

2e+08 |- \\\\\\\\\

0 0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 33:UB,..,, 80 msg/s, nodel (sequencer)

Total +
Free <
Max *

1e+09 |

8e+08 |-

E
- - -— N
6e+08 |- 1
—
4e+08 %\ \ \ \\ % g
2e+08 1
%o 5000 10000 15000 20000 25000 30000 35000

Message

Figure 34:UByi,, 80 msg/s, node2

28

Bytes

Bytes

Tlotal +
Free =
Max *

1e+09 |

8e+08 |-

_ -
6e+08 %
2e+08 |
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 35:TR, 80 msg/s, nodel

Total +
Free <
Max *

1e+09 |

8e+08 |-

6e+08 |- . -

—
4e+08 &(\\\ \\\\\\\\\
2e+08
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 36:TR,.,, 80 msg/s, nodel

29

Bytes

Bytes

1e+09

Tlotal
Free
Max

8e+08 |-

6e+08 |-

2e+08 |

E IS

5000 10000 15000 20000
Message

25000 30000

Figure 37:CH, 80 msg/s, nodel

35000

1e+09 |

Total
Free
Max

8e+08 |-

6e+08 |-

2e+08

?
4e+08 &2

M

5000 10000 15000 20000
Message

25000 30000

Figure 38:CH,,:,, 80 msg/s, nodel

30

35000

Bytes

Bytes

T
Total +

Free =
Max *
E——
1e+09
8e+08 |-

6e+08

5\\&\\\\\\\\\\\\\\\\\)

2e+08

0 ! ! !

0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 39:U B, 100 msg/s, nodel (sequencer)
' ' ' ' ' Total -
Free <
Max *
1e+09 | B
8e+08 |- B
6e+08 |- B
[
rosct g\\\ \]
2e+08 | B
0 0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 40:U B, 100 msg/s, node2

31

Total +
Free =
Max %
E 3
1e+09
8e+08 |-
" e Tl
” e - e .. %
Q -
2 6e+08 % % % §% ¥ § .
% ¥
4e+08 % %% %% X
i i
2e+08
0 0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 41:U B,.,, 100 msg/s, nodel (sequencer)
Total -+
Free <
Max *
1e+09
8e+08 [
E
» — -— —
g 6e+08 L b
9
p—
2e+08 1
0 0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 42:U B,.i,, 100 msg/s, node2

32

Bytes

Bytes

' ' ' ' ' Total -+
Free ~
Max *
1e+09 | B
8e+08 |- 4
S s .
-— o e
6e+08 - — g
4e+08 &\\.\ \\\\\\\\\\\\\\ i
2e+08 | i
0 0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 43: TR, 100 msg/s, nodel
' ' ' ' ' Toa
Free <
Max *
1e+09 1
8e+08 [1

- ﬂ\i\\\\i\i\W\\@

2e+08 1

0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 44:TR,.;,, 100 msg/s, nodel

33

Bytes

Bytes

T
Total

Free
Max
1e+09
8e+08 |-
6e+08 |- %
_

4e+08 %

TR

2e+08 | 1
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 45:CH, 100 msg/s, nodel
T T T T T T
Total +
Free <
Max *
1e+09 | 1
8e+08 |- 1
-— -_ﬁ
6e+08 |- 1
p— \
4e+08 fiyg \ E
2e+08 1
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message

Figure 46:CH,.;,, 100 msg/s, nodel

34

A.5 Memory usegraphicresultsin a system with 8 nodes

Total +

Free <
V]
ax__ *
1e+09 | — 1
o
B2
-
8e+08 - '; |
4]
=3 6e+08 | 1
)
4e+08 1
2e+08 1
0
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 47:U B, 10 msg/s, nodel (sequencer)
T T T T T T
Total +
Free ~
Max *
1e+09 B
8e+08 |- 1
3
=3 6e+08 | 1
[s1]

----”l

PN

2e+08 | 1

0 ! ! ! ! ! !
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 48:U B, 10 msg/s, node2

35

Bytes

Bytes

1e+09

8e+08

6e+08

4e+08

2e+08

1e+09

8e+08

6e+08

4e+08

2e+08

Free ~
Max *
P T
3 —— R

0 5000 10000 15000 20000 25000 30000 35000
Message

Figure 49:UB,.,, 10 msg/s, nodel (sequencer)

Total +

Free <
Max *

W

\\\\\\\\\\\\\\\\\\\\\\

0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 50:U Byri0, 10 msg/s, node2

36

T T T T T T
Total +
Free x
Max *
1e+09 | 1
8e+08 |- B
)
=3 6e+08 |- B
[s1]
4e+08]
2e+08 1
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 51:TR, 10 msg/s, nodel
T T T T T T
Total +
Free <
Max *
1e+09 | 1
8e+08 |- 1
4]
=3 6e+08 |- 1
e

4e+08

2e+08

0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 52:TR,.,, 10 msg/s, nodel

37

Bytes

Bytes

tal

Free
Max

1e+09

8e+08

6e+08 |-

e
4e+08 &1\\\\\\\\\

LT —

2e+08
0 0 SOIOO 10;)00 15;)00 ZOIOOO 25;)00 30;)00 35000
Message
Figure 53:CH, 10 msg/s, nodel
Tou
Max
1e+09
8e+08
6e+08 |-
T T e e T
LT —-
2e+08 |
0 0 5(;00 10I000 15;)00 20;)00 25I000 30:.')00 35000

Message

Figure 54:CH,,;,, 10 msg/s, nodel

38

Bytes

Bytes

1e+09

8e+08 |-

6e+08

4e+08 |: -

2e+08

0 0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 55:U B, 40 msg/s, nodel (sequencer)
' ' ' ' ' Total
Free
Max
1e+09 | B
8e+08 |- B
6e+08 |- * g
N el
%
4e+08 &\\\ B
2e+08 | B
0 0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 56:U B, 40 msg/s, node2

39

Bytes

Bytes

Tlotal
Free
Max

1e+09

8e+08 |-

6e+08

4e+08

2e+08

0 0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 57:U B,.., 40 msg/s, nodel (sequencer)
' ' ' ' ' Total
Free
Max
1e+09 | B
8e+08 |- B
6e+08 |- B
—x_
- \\\\\\ |
2e+08 | B
0 0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 58:U Byi,, 40 msg/s, node2

40

Bytes

Bytes

1e+09

8e+08

6e+08

4e+08

2e+08

1e+09

8e+08

6e+08

4e+08

2e+08

Tlotal
Free
Max

SN

0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 59:TR, 40 msg/s, nodel
' ' ' ' ' Toal -
Free <
Max *
— f--
L ff’- 4
0 5000 10000 15000 20000 25000 30000 35000
Message

Figure 60:TR,.:,, 40 msg/s, nodel

41

Bytes

Bytes

' ' ' ' ' Total +
Free X
Max ¥
1e+09 | g
8e+08 | g
E 3
-w —
6e+08 |- el i |
-
4e+08 %g \\\\ |
2e+08 | B
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 61:CH, 40 msg/s, nodel
' ' ' ' ' Toal -
Free <
Max *
1e+09 | B
8e+08 |- B
3}
6e+08 | S g
_—
2e+08 | B
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 62:CH,,,, 40 msg/s, nodel

42

Bytes

Bytes

Tlotal
Free
Max

1e+09

8e+08 |-

2e+08

0 ! ! ! ! ! !

0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 63:U B, 60 msg/s, nodel (sequencer)
' ' ' ' ' Total -
Free <
Max *
1e+09 | B
8e+08 |- B
E__________J — S
6e+08 |- B
4e+08 Q;\\ \\\\\\ i
2e+08 | B
0 0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 64:UB, 60 msg/s, node2

43

10000 15000 20000 25000 30000 35000

5000

60 msg/s, nodel (sequencer)

Figure 65:U By,

8% s—
.WHM \
,\.\\\i
\
\1\\
\
i...\l\a
zt\\\l
\\\.\l
\\-\\
—
\1\
i\\z\...
\\\
—
i\\l‘a
|Z

10000 15000 20000 25000 30000 35000

5000

0, 60 Msg/s, node2

Figure 66:U B,

44

Bytes

Bytes

1e+09

8e+08

6e+08

4e+08

2e+08

1e+09

8e+08

6e+08

4e+08

2e+08

Tlotal
Free
Max

I

+

0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 67:TR, 60 msg/s, nodel
' ' ' ' ' Total -
Free <
Max *
- —
ol %
AN _
0 5000 10000 15000 20000 25000 30000 35000
Message

Figure 68:TR,.,, 60 msg/s, nodel

45

Bytes

Bytes

T T T T T T
Total +
Free x
Max *
1e+09 | 1
8e+08 |- B
- -
-
6e+08 B
4e+08 o] \\\\\\ \ 1
%
2e+08 | 1
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 69:CH, 60 msg/s, nodel
T T T T T T
Total +
Free <
Max *
1e+09 | 1
8e+08 |- 1
- - E 4 n
6e+08 |- 1
x®
=% %
4e+08 % i 1
2e+08 1
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 70:CH,,:,, 60 msg/s, nodel

46

1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message

Figure 71:U B, 80 msg/s, nodel (sequencer)

Total +

1e+09 |

TR

1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message

8e+08

4]
=3 6e+08
e

4e+0

@®

2e+08

0

Figure 72:U B, 80 msg/s, node2

47

Bytes

Bytes

T
Total +
Free =

Max *

1e+09

8e+08 |-

6e+08

4e+08

2e+08 |

! ! ! ! ! !
0 5000 10000 15000 20000 25000 30000 35000

Message
Figure 73:UB,.:,, 80 msg/s, nodel (sequencer)
T'otal +
Free <
Max *
1e+09 |
8e+08 |-
6e+08 - T — g
4e+08 Q\\\\\\\\\\\\\\\\\\ \ i
2e+08 | \ B
0 0 5600 10600 15600 20500 25500 30600 35000

Message

Figure 74:UByri0, 80 msg/s, node2

48

Bytes

Bytes

1e+09

Tlotal
Free
Max

8e+08 |-

SR

2e+08 - |
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 75:TR, 80 msg/s, nodel
' ' ' ' ' Toal
Free X
Max *
1e+09 B
8e+08 |- B
ki
6e+08 |-
-J— X
4e+08 &‘\ \\ g
2e+08 | B
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 76:TR,.,, 80 msg/s, nodel

49

Bytes

Bytes

T
Total

Free X
Max ¥
1e+09 | |
8e+08 | |
6e+08 | ?i Bg x % & x % |
X X A
AR EL Y \
4e+08 ‘i % B; }; X\\\ i
2e+08 |- B
0 0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 77:CH, 80 msg/s, nodel
' ' ' ' ' Toul -
Free X
Max *
1e+09 B
8e+08 |- B
S &
6e+08 |- 3% % % ¥ E
- 2 % . i”@
syt \ 1LY
4e+08 % % k ”5; 2 - R
2e+08 | B
0 0 5000 10000 15000 20000 25000 30000 35000
Message

Figure 78:CH,,:,, 80 msg/s, nodel

50

Bytes

Bytes

1e+09

8e+08

2e+08

1e+09

8e+08

6e+08

4e+08

2e+08

.-#'l'-l
- .--""'-\
S .
el

RREELI L :

0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 79:U B, 100 msg/s, nodel (sequencer)
' ' ' ' ' Total -
Free <
Max *
[e
0 5000 10000 15000 20000 25000 30000 35000
Message

Figure 80:U B, 100 msg/s, node2

51

Bytes

Bytes

1e+09

8e+08

1e+09

8e+08

6e+08

2e+08

T
Total +
Free =

Max *

10000 15000 20000 25000 30000 35000
Message
Figure 81:U B,..,, 100 msg/s, nodel (sequencer)
' ' ' ' ' Total -
Free <
Max *
L — i
—J—
4e+08 QX\\\\ \ \\\\\\\ x i
0 5000 10000 15000 20000 25000 30000 35000
Message

Figure 82:U B,ri0, 100 msg/s, node2

52

Bytes

Bytes

' ' ' ' ' Total +
Free x
Max *
1e+09 | 1
8e+08 |- B
6e+08 |- 4
4e+08 &\\ \\\\\\ i
2e+08 | i
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 83:TR, 100 msg/s, nodel
' ' ' ' ' Toal
Free <
Max *
1e+09 | 1
8e+08 |- 1
-
- S
6e+08 |- 1
| \
4e+08 QX\\ \ g
2e+08 1
0 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 84:TR,.:,, 100 msg/s, nodel

53

Bytes

Bytes

T
Total +
Free =

1e+09 1

8e+08

6e+08 |- % 5 § ;% § ->< - - i

SEREE LN LT .
.,,“31’5 AR gx ‘* \
TSR wh%\i%\ \i‘i\ |

2e+08 |- 4
0 0 5000 10000 15000 20000 25000 30000 35000
Message
Figure 85:CH, 100 msg/s, nodel
' ' ' ' ' Total -+
Free X
Max *
1e+09 B
8e+08 |- B
6e+08 |- i & - % ® x B
KA B \
ALER qt
A * % i
4e+08 & % 2 Y
% % % 1
2e+08 | B
0 0 5000 10000 15000 20000 25000 30000 35000

Message

Figure 86:CH,;,, 100 msg/s, nodel

54

References

[1] Yair Amir, Claudiu Danilov, and Jonathan Robert Stant@nlow latency, loss tolerant architecture
and protocol for wide area group communicationDIBN pages 327-336, 2000.

[2] T. Baker. Stack-based scheduling of real-time proceskmurnal of Real-Time Systen8{1):67-99,
1991.

[3] Kenneth P. Birman and Thomas A. Joseph. Reliable comaation in the presence of failureBCM
Transactions on Computer Systerngl):47—76, 1987.

[4] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Gvacommunication specifications: a com-
prehensive studyACM Computing Survey83(4):427-469, 2001.

[5] Xavier Defago, Andé Schiper, and &er Urtan. Comparative performance analysis of order-
ing strategies in atomic broadcast algorithmiEICE Trans. on Information and Systents86-
D(12):2698-2709, 2003.

[6] Xavier Défago, Ande Schiper, and &er Urkan. Total order broadcast and multicast algorithms:
Taxonomy and surve}ACM Computing Survey86(4):372—-421, 2004.

[7] Danny Dolev and Dalia Malki. The Transis approach to hayilability cluster communication.
Communications of the ACN89(4):64—-70, 1996.

[8] Luis IrGn-Briz, Ruten de Juan-Méan, Francisco Castro-Company, Enriqgue Armanztliigo, and
Francesc D. Miloz-Escé. MADIS: A slim middleware for database replication. European Con-
ference on Parallel and Distributed Computing (Euro-Pa8) pages 349-359, Lisbon, Portugal,
Sept. 2005.

[9] M. Frans Kaashoek and Andrew S. Tanenbaum. An evaluafitite amoeba group communication
system. Inl6th IEEE International Conference on Distributed CompgtSystems (ICDCS '96)
pages 436-448, Washington, DC, USA, 1996. IEEE Computdefoc

[10] Emili Miedes, Francesc D. Mwz, and Hendrik Decker. Reducing transaction abort ratdswi-
oritized atomic multicast protocols. Buropean Conference on Parallel and Distributed Computing
(Euro-Par 2008) pages 394-403, Las Palmas de Gran Canaria, Spain, 2008.

[11] Emili Miedes and Francesc D. Nioz-Esc@. Managing priorities in atomic multicast protocols. In
ARES: Intl. Conf. on Availability, Reliability and Secyripages 514-519, Barcelona, Spain, 2008.

[12] Louise E. Moser, P. Michael Melliar-Smith, Deborah Ag@wal, R.K. Budhia, and C.A. Lingley-P
apadopoulos. Totem: a fault-tolerant multicast group comigation system.Comm. of the ACM
39(4):54-63, 1996.

[13] Akihito Nakamura and Makoto Takizawa. Priority-basetal and semi-total ordering broadcast
protocols. In12th Intl. Conf. on Dist. Comp. Sys. (ICDCS 92ages 178-185, 1992.

[14] Akihito Nakamura and Makoto Takizawa. Starvationyeneted priority based total ordering broad-
cast protocol on high-speed single channel netw ork2nid Intl. Symp. on High Performance Dist.
Comp, pages 281-288, 1993.

[15] Luis Rodrigues, Paulo ViEssimo, and Antonio Casimiro. Priority-based totally amtemulticast. In
3rd IFAC/IFIP workshop on Algorithms and Architectures Real-Time Contrgl1995.

[16] Alan Tully and Santosh K. Shrivastava. Preventingestidtergence in replicated distributed programs.
In 9th Symposium on Reliable Distributed Systgmages 104-113, 1990.

[17] Yun Wang, Francisco Brasileiro, Emmanuelle AnceauRadola Greve, and Michel Hurfin. Avoid-
ing priority inversion on the processing of requests byvacteplicated servers. IDependable Sys-
tems and Networkpages 97-106. IEEE Computer Society, 2001.

55

[18] Matthias Wiesmann, Anér Schiper, Fernando Pedone, Bettina Kemme, and Gustavosdlon
Database replication techniques: A three parameter fitaggn. INSRDS pages 206—-215, 2000.

56

