
HIDRA: Architecture and High Availability Support

Pablo Galdámez Francesc D. Muñoz-Escoı́ José M. Bernabéu-Aubán

Technical Report ITI-ITE-98/6

Abstract

This paper describes Hidra, a complete architecture to support the development of highly available applica-
tions in distributed systems. The components of this architecture are: first, a group membership protocol that
continuously computes the valid set of nodes that are considered to belong to the system. Second, a message
transport level offers reliable message passing among the nodes using the membership services. On top of this
transport layer, an Object Request Broker (ORB) provides the basic object services, which include object invo-
cation and object reference counting. Finally, replication support is provided as the approach to increase service
availability in the case of domain and node failures.

This paper focuses on the object and service replication functionality provided by our architecture, where
replicated objects are supported by the ORB with the help of some extra software components. Central issues are
replicated object invocations which, using a kind of transactions called light weight transactions (LWT), ensure
that modifications made by those invocations on the object state, are either made at every object replica or at
none of them. Checkpoints are used to send the state modifications from the object replica that receives an object
invocation to the rest of the object replicas. Also, a low cost and mostly asynchronous concurrency control
mechanism, serializes invocations made over objects belonging to a service to maintain consistency among the
replicas state.

1 Introduction

Distributed systems are a good basis to support highly available applications. In a distributed system there are
multiple nodes which have independent behavior when failures arise, i.e., the failure of one of the nodes does not
mean the failure of the others. So, if some support is given by the underlying system, applications can be made
highly available decomposing them in components, and placing replicas of those components into independent
nodes. In the rest of the paper we use the termserviceto refer to the replicable software unit, considering a highly
available application to be formed by a set of replicated services. In those environments, system support has to
cope with failures that affect highly available services in order to guaranteethat those services continue to serve
their clients as long as some of the replicas survives the failures.

Several architectures (e.g. [3, 1, 8, 15]) have been proposed to support the development of highly available
applications in distributed environments. Properties such as the programming model offered for application devel-
opment, the replication scheme imposed by the architecture, the computational, communication and storage cost
incurred by the system to tolerate failures, the kinds of failures beingtolerated and the level of concurrency allowed
inside highly available applications, characterize those distinct approaches.

This paper describes Hidra, an architecture for the development of highly available, object oriented distributed
applications. The programming model offered to applications is the object oriented paradigm promoted in dis-
tributed systems by the Object Management Group with the CORBA specification [20]. In Hidra, like in some of
the most recent distributed environments [23, 15, 12], services are built as collections of objects which transpar-
ently access other objects that may reside in different nodes, by means of an ObjectRequest Broker (ORB). The
ORB abstracts client objects of the location of the server objects they invoke, making possible to apply those design
and implementation techniques, successfully used over the last years on centralized systems to the development of
distributed applications.

But the ORB itself does not suffice for the development of highly available services. The system has to offer
some extra functionality to detect failures and recover the affected services from them. This support should abstract
clients of services from partial systems failures, making that clients continue to access them, provided that some
service replica survives the failures. Further, all this extra functionality should overhead the system as little as

1

possible and should degrade the concurrency within services as littleas possible. To achieve system availability,
some approaches (e.g. [8]) use a passive replication scheme [9], where oneof the service replicas is a special one,
called the primary and the rest are its secondaries. A request made to the service is always processed and served
by the primary which checkpoints its state to its secondaries before replying to the client, maintaining this way
consistency among the replicas’ state. In the case the primary fails, one of the secondaries is promoted to primary,
receiving subsequent requests made to the service. Other approaches use active replication [22]. This scheme
makes that every replica receives and process every single request made to the service. Group communication
toolkits like [2, 5, 16, 24] are often used to preserve certain orderingamong the requests received by the replicas,
and relying on their deterministic behavior, all of the replicas continuously maintain the same state.

With passive replication, if the service operations are expensive in terms of computational cost, the primary
replica becomes a bottleneck because it has to process every request made to the service. However, for services
whose operations need few computations, or simply where load control is not an issue, its low communication cost
makes it to be a satisfactory proposal . On the other hand, active replication, using a pessimistic approach, wastes
computation resources given that every replica has to process every request made to the service and also, the group
communication protocols they use tend to be expensive in terms of bandwidth consumption. Its principal advantage
is the little time needed for failure recovery given that the required action is just to remove the failed replicas from
the service group. In contrast, passive replication schemes require someadditional protocols to resume the service
activity after primary failures.

To overcome the major drawbacks of both approaches, Hidra allows services to be configured with an inter-
mediate replication scheme [14] structured with a coordinator-cohort model [7]. With this strategy, each request is
served by a single replica, called the coordinator of that request, which checkpoints the state modifications made
by the request to the rest of the replicas, called the cohorts for that request. So, a number of primary replicas exist
for a service, but just one of them act as the primary for each request. For services with expensive operations,
this structure, distributes the load among the primary replicas, decreasing notably the service response time and
increasing its availability. To provide even more flexibility for the range of services that may be targeted to Hidra,
we allow a number of secondary replicas to be added to the service, resulting in services that may be configured
as pure passive replicated ones, as pure coordinator-cohort ones or as services with any number of primary and
secondary replicas.

One of the drawbacks of our replication model, that we believe is justified by the increase in the overall
system performance produced by the coordinator-cohort scheme, is the requirement of a distributed concurrency
control mechanism. Having that several replicas may receive different requestsat the same time, it should be
prevented that clients could observe an inconsistent service state. Traditionally, two-phase locking [10] has been
applied as the general mechanism to preserve consistency. Even within the CORBA proposal, concurrency control
mechanisms have been described for distributed systems [21], which also support nested transactions [17]. In
Hidra, exploiting the object oriented model offered to applications, wepropose a different, lower cost and mostly
asynchronous concurrency control mechanism which borrows some of the concepts presented in [6]. In our system,
when installing a service, the programmer has to provide a compatibility matrix, to express which object operations
may proceed in parallel and which ones should proceed sequentially. Requests madeto a given replica are allowed
to proceed provided there does not exist any incompatible operation in progress within the whole service. One
of the advantages of this mechanism is that concurrency control is made completely transparent to the service
programmer.

Finally, the service replicas have to maintain a consistent state even whensome of them fail in the middle
of processing a request. CORBA services [21] propose transactions as theconstruction to modify the system
state atomically. State modifications made by transactions are ensured to becompletely made or to be completely
discarded. Our approach in Hidra is to use a kind of transactions, that wecall light weight transactions (LWT), at-
tached to every request made to a replicated service. Thus, our concern is not to offer a general purpose transaction
construction as the one specified by CORBA, but to offer transactions to ensure that each request made to a service
is completed or its effects are completely discarded. Our approach while being less general than the CORBA one, is
notably less expensive and suffices to provide an environment for the development of highly available applications.

The rest of the paper is structured as follows. Section 2 briefly outlinesthe Hidra architecture. Section 3
describes the Hidra ORB focusing on the support given for replicated objects. Section 4 introduces the Hidra ORB
support for checkpoint objects. In section 5, we present the light weight transactions, describing the concurrency
control mechanism in section 6. Section 7 explains how the architecture presented in the previous section tolerates
different node and domain failures. In Section 8, we outline the further work we have initiated to complete and

2

improve our high availability support and finally, section 9 gives a brief summary and some conclusions about this
work.

2 Architecture outline

As shown in figure 1, Hidra is composed by several layers each one making use of the lower ones and providing
services to the upper ones. The lowest level is a datagram transport layer that provides unreliable message transfer
among all the nodes in the system.

...
Agent Agent

Service

Agent

Service

Agent

Service

Object Request Broker

 Reliable Message Transport Layer

 Group Membership Protocol

Unreliable Message Transport Layer

Service

Manager
Serializer Serializer Serializer

Figure 1: The Hidra code architecture

On top of this layer a group membership protocol [19] continuously monitorizes the nodes in the system to keep
distributed agreement on the set of nodes that are considered to be up and running. This protocol while providing
the fail-stop [] failure model used in Hidra, serves for two other basicpurposes. First, when a node is computed
out of the membership, every ORB in the system is notified to reconfigure itself as required. Reconfiguration is
done synchronously by the ORB’s of all the surviving nodes in successive steps of reconfiguration triggered by
the protocol. And second, the protocol also notifies the upper transport layer of node failures to help it implement
reliable message transfers. Each time the system reconfigures, a new incarnation number is set to the surviving
nodes as the current incarnation number, this way, orphan messages and invalid resources that belong to failed
nodes can be promptly detected.

The reliable message transport layer uses the group membership protocolto detect node failures in order to
abandon communications in course with the failed nodes. It provides to the upper layers reliable message passing,
where messages communications are retried until they complete or until the endpoint node is computed out of the
membership. Therefore, in addition to node crashes, our failure model also tolerates low level message losses.
Further, reliable messages are not guaranteed to reach their destinations at thesame order as they were sent.

On top of the reliable transport layer, an ORB based on the one described in[4], provides object invocation
services, and object references counting. Object invocation uses the reliable message passing provided by the
transport layer, providing object invocation requests that return specific exceptions when the destination node
fails. Those exceptions are sent upwards to the client object implementation that made the request or may be
intercepted by the ORB itself to retry the invocation over different objectreplicas if the destination object was
replicated. The second main function of the ORB, is to count how many nodeshold references that point to each
object implementation. The goal of this reference counting is to deliver a unreferenced notification to those object
implementations that do not have references pointing to them in the system. This mechanism allows to dispose the
resources used by those objects when they cannot be accessed any more.

Two other distributed components complete the Hidra architecture: theservice managerand theservice seri-
alizer. Theservice manager(SM) provides all the administrative service operations which includesthe creation
and destruction of services. It also knows where each service replica is located,being involved thus, on replica
registration, replica de-registration, promotion of replicas fromsecondary to primary, degradation of replicas from
primary to secondary, participating also in the protocols run to recover from replica failures. Second, there exist a

3

service serializer(SS) entity for each service installed in Hidra. This component implementsa concurrency control
mechanism to serialize the requests made to a service.

The service manager is itself a replicated service. To replicate it, there exists at each node aservice manager
agent(SMA) with the same interface as the SM. Some of the SMA’s are primary replicas of the SM, some others
are secondary replicas and some others are not SM replicas, but all of them, having the same interface, serve
as the entry point for the local node operations about service management. Each SMA besides acting as the
local representative of the SM at each node and possibly as one of its replicas,performs any service management
operations that could be resolved locally inside a node. For instance, if two primary replicas are placed into
the same node, failures that affect one of these replicas does not require theSM intervention, sufficing the local
knowledge maintained by the SMA to reconfigure the service.

Figure 2 shows the state1 stored by the Hidra service manager and the service manager agents of three Hidra
nodes that maintain replicas for two services. Service 1 is configured to haveat node 2 one primary replica and
one secondary replica, and two additional primary replicas placed at node 3. Service 2 is built with two primaries
at node 1 and two other primary replicas at node 2.

Replica
Primary

Service 2

1 2 Primary
 3 Primary
 2 Secondary
2 1 Primary
 2 Primary

ServiceId NodeId ReplicaType

Replica
Primary

Service 2

Replica
Primary

Service 2

Replica
Primary

Service 2 Service 1
Secondary
ReplicaReplica

Primary
Service 1

ServiceId ReplicaType

Hidra core at node 2

ServiceId ReplicaType

 Primary

Replica
Primary

Replica
Primary

Hidra core at node 3

Hidra core at node 1

ServiceId ReplicaType

2 Primary
 PrimaryService Manager

2 Primary
 Primary

Service Manager Agent Service Manager Agent

Service Manager Agent

1 Primary

Service 1Service 1

1 Primary
 Secondary

Figure 2: The service manager and the service manager agents

At each Hidra node with primary replicas for a particular service, there exists aservice serializer agent(SSA)
to manage the concurrency control needs of its local service primaries. In addition, one of the service SSA’s
also acts as theservice serializer, managing the global service concurrency control requirements. The SS holds
the operations compatibility matrix of the service, having this matrix replicated among a number of the SSA’s.
However, there is just one SS and no other one acts as a SS replica. Availability of the SS is achieved reconstructing
its dynamic state about non-terminated operations running a distributed protocol among the surviving SSA’s. To
reduce the communication overhead required to contact the SS at each service operation, the compatibility matrix
may be partitioned in sub-matrixes, placing each sub-matrix at the node where its operations are requested most
frequently

3 The Object Request Broker

The Hidra ORB follows a similar design to the ORB described in [4]. Every domain in an Hidra node has access to
the ORB services, where a special, trusted domain, also hosting the complete Hidra components, translates object
references when inter-domain or inter-node invocations are requested. The rest of the domains, being untrusted,
contain a reduced ORB structure, requiring the trusted domain intervention to access objects placed outside their
address space. To increase system availability, we place the Hidra core at theoperating system kernel which will
be also the trusted domain. This results in the accomplishment of someother interesting properties. For instance,
any operating system service such as device drivers or file systems, may access atlow cost the object services and1The ServiceId is a plain number that uniquely identifies any Hidra service, having the service manager assigned the ServiceId 0.

4

the high availability support provided by Hidra. And further, if the trusted domain fails, we have that every local
domain also immediately fails, reducing to complexity that would otherwise appear if the trusted domain fails
having the rest of the node still working.

Client
Handler

Proxy

Client
Handler

Proxy

Client
Handler

Proxy

Server
xdoor

Server
xdoor

Server
gated
xdoor

Client
gated
xdoor

Server
xdoor

Untrusted domain BUntrusted domain A

xdoor

xdoor

Client

Client
gated
xdoor

Server
gated

Trusted kernel domain

Implementation

Server
Handler

Implementation

Server
Handler

Object Object

Implementation

Server
Handler

Object

Figure 3: The Hidra Object Request Broker

The ORB structure, depicted in figure 3 shown the relationships among the handler layer and the reference
layer on a Hidra node with two untrusted domains besides the trusted kernel domain. The handlers level holds
client and server handlers. Each server handler is attached to one object implementation while client handlers
are connected to proxy representations of the server object. Object references are C++ pointers to either the
object implementation or any of its proxies, which sharing the same interface, hide the actual object location to
the object reference users. Handlers are responsible for marshaling inputarguments, sending them to the object
implementation, waiting for a reply, and unmarshaling the output arguments. To provide object implementors with
different marshaling, unmarshaling or exception handling procedures, anumber of handlers2 exist in our ORB.
For instance, for objects whose marshaled representation includes a big stream of data, there exists a specialized
handler providing marshaling and unmarshaling methods that avoids making unnecessary copies of the marshal
stream. Other simple objects just require the object identifier to be sentto the destination, while some others
run a distributed protocol to count how many object references there existin the system pointing to the object
implementation.

Each handler is connected to an xdoor from the reference layer. Server handlers are connected to server xdoors
while client handlers to client xdoors. Xdoors serve as the communication endpoints for object invocation. The
state of client xdoors contain the location of the server xdoor they stand for, redirecting invocations to them when
invocations over client handlers are requested. Xdoors are included in the trusted domain, while in the rest of
the domains, an implementation-reduced version of them, called gated-xdoors, provide the attachment from the
object handlers to the xdoors residing at the kernel level. Similarly tohandlers, a number of xdoor classes provide
different marshaling and unmarshaling procedures. The most common xdoor type is the standard xdoor, which
running a distributed protocol, counts the object references sent to remote nodes. The reference counting protocol
is responsible for delivering a unreferenced notification to the object handler, when no external references point to
the object implementation. This protocol built with asynchronous messages, ensures two basic properties:� Liveness: Eventually, after the number of external references drops to zero, the unreferenced notification is

delivered to the object handler.� Safety: The unreferenced notification is only sent when the number of external references actually drops to2See [4] for the complete description of the kinds of object handlers that are provided by the ORB.

5

zero.

To give support for object replication as the basic construction to replicate services, we make use of the ex-
tensibility mechanism provided by our ORB. We implement a new type ofxdoor and a new type of handler that
implement new marshaling, unmarshaling and invocation processing procedures for replicated objects. The new
handler type is called the replicated object handler (ROhandler). When this handler receives the standard CORBA
exception raised when the invocation destination fails, the invocation is simply retried3. The new type of xdoor,
called the replicated object xdoor (ROxdoor), is responsible for choosing an adequate target node for each invo-
cation it starts. The ROxdoor closely interacts with the SMA to access the current service configuration, allowing
a quick redirection of invocations to living object replicas in case of failures. The close relationship among ROx-
doors and the SMA also allows to block and resume all the object replica activity when processing any of the
protocols that modify the service configuration.

The rest of this section further describes the replicated object support provided by our ORB, showing how
replica objects can be created and how are they identified, how we guarantee the delivery of theunreferenced
notification to every replica object, and finally, how the object invocationmechanism enables selecting any of the
primary object replicas as the invocation destination incurring in very little extra cost.

3.1 Replicated Object References

In our ORB, borrowing the concept from [4], object references are implemented as pointers to C++ objects. Ob-
ject references within the same domain where the object implementation residesare pointers to the actual object
implementation, whereas object references at any other domain are pointers to proxy objects. However, for repli-
cated objects, object references are always pointers to proxy objects attached to ROhandlers. For replicated object
references within the same domain where a primary object replica resides, interposing the ROhandler allows these
requests to be serialized, calling the service serializer before allowing theinvocation to be expedited to the replica
implementation.

3.2 Replicated Object Handlers

Server ROhandlers differ among other things from the other types of server handlers in that they may receive
invocations from both the underlying xdoor and the proxy object to which they are also connected. When an
invocation is requested from the proxy object, no argument is marshaled andthe invocation is expedited to the
object replica implementation, as soon as the service serializer allows the request to proceed. Both server and
client ROhandlers when receiving invocations from their proxies, also start light weight transactions to increase
reliability of the service requests. Those transactions are explained insection 5 while the concurrency control
mechanism implemented by the serializer is commented in section 6.

The other difference between ROhandlers and the rest of the Hidra ORB handlers is the server ROhandler
release operation. When releasing a non-replicated object reference placed at the samedomain as the object
implementation, the domain just loses the pointer to the implementation and a counter stored at the server handler is
decremented. This counter stores how many local references are valid inside the server domain. When this counter
drops to zero, the unreferenced notification will be sent to the implementation code as soon as the underlying server
xdoor detects that its external reference counter also drops to zero. This meansthat the server xdoor does not need
to know whether there exist or not valid object references inside the serverdomain. As explained in section 3.7,
ROxdoors do need to know whether there exist or not valid object references inside replica domains. For this
reason the release operation provided by server ROhandlers is not simply to decrement the local counter of local
references but also to inform the attached server xdoor when this counter drops to zero.

For the sake of clarity, in the rest of the paper, we represent the knowledge ROxdoors have about the presence
of valid object references within a domain, with a label over the attachment between ROxdoors and ROhandlers.
The label values can beclient, if the ROhandler domain contains valid object references,primary if the domain is
a primary replica for the service andsecondaryis the domain is a secondary replica.3As in Spring [11], we retry failed invocations at the handlerlevel. Replication in Spring is made at the subcontracts level which is similar
to our handlers level.

6

3.3 Replicated Object Xdoors

ROxdoors differ from the rest of the ORB xdoors in the way client ROxdoors point to the location of the server
ROxdoor.

For non-replicated object xdoors, the client one stores the full location of the server xdoor. Specifically, the
client xdoor stores the node number and the incarnation number of the server node plus the server port number
and the server port version number. The server port number is the location where the server xdoor is placed at the
server node, and the server port version number represents the number of times the port number has been used at
the server node to store an xdoor. Invocations made from clients to servers only succeed if the receiving node finds
in the incoming invocation stream the same port version number as the one stored in the indicated server port and
the incarnation number of the server node is the same as the one included in the invocation stream. This one-to-one
relationship solves satisfactorily invocations between clients and non-replicated servers where the only concern is
to assure that both client and server agree on both the incarnation number ofthe nodes and on the version number
of the xdoor.

For replicated objects, we find ourselves in the case that we need support to rapidly choose different destina-
tion nodes when invocation requests fail due to primary crashes. To this end, client ROxdoors do not store the
destination node number, but the node chosen to serve a particular request is elected, with cooperation of the local
SMA, just before invocations are sent out of a node. To fully identifywhich object should be the target for client
invocations, client ROxdoors store the object identifier (ObjectId) ofthe target replicated object, together with the
ServiceId of the service that contains that replicated object implementation. The ObjectId is used at the receiving
node to lookup the server ROxdoor, returning an specific exception if there does not exist a primary replica for that
object. Therefore, while being a little bit more expensive to find theserver ROxdoor at the server node, we allow
the client side, to interchangeably choose any of the nodes with primary replicas for that object at invocation time.

Server ROxdoors also differ from non-replicated object server xdoors in that they may serve as the entry point
for a number of object replicas placed at the same node. So, server ROxdoors placed in the kernel, may be attached
to a number of server ROhandlers. The local SMA will be responsible forchoosing which of the local primary
replicas will serve each invocation received by those server ROxdoors.

Finally, server ROxdoors are never released unless the replicated object reference counting protocol described
in section 3.7 decides that there are no valid object references pointing to thereplicated object in the whole network.
For instance if a number of primary replicas exist for a particular object and just one of them holds a reference
to the replicated object, the server ROxdoors attached to each replica will be active until this last object reference
is released. This is required given that a valid reference placed at a replica domain, could be sent to some client
domain, and this domain could choose to send the invocation to any of theprimary replica domains through their
server ROxdoors.

3.4 Object Identification

The cluster-wide object identifier for highly available objects is the pair (ServiceId, ObjectId). ServiceId is the
service identifier to which the object belongs and ObjectId is an identifier that is unique among the objects created
by this service. The ObjectId identifies the highly available object, so it identifies any of its replicas. To guarantee
the uniqueness of object identifiers we build the ObjectId as the 3-tuple (NodeId, LocalOid, IncNumber4), where
NodeId is the node identifier of the node that created the first replica of the object, IncNumber is the incarnation
number of this node when creating this first object replica, and LocalOid is the counter of objects created by this
node during the current cluster reconfiguration.

The ObjectId is just used as a unique identifier for replicated objects. It contains which node created the first
replica of the object, but even in the case that node crashes, changing also the value of the current cluster reconfig-
uration, the other object replicas will continue to use the previous ObjectId as the replicated object identifier. Thus,
the ObjectId as the 3-tuple (NodeId, LocalOid, IncNumber) does not necessarily mean that there exist a primary
object replica at the node identified by NodeId.4To guarantee the uniqueness of the ObjectId, both the LocalOid and the IncNumber should never overflow, choosing thus, astheir internal
representation very long integer variables. For instance,with 64-bit representations, we allow264 node crashes during the system lifetime and264 objects to be created at each node between two consecutive system crashes

7

3.5 Replicated Object Creation

A primary replica, as part of any of its operation semantics may require to createan object. As it occurs for any
operation, before returning control to the operation requester, the service replica must checkpoint the modifications
made by the operation to the rest of the service replicas. Given that part ofthe state modifications was the creation
of an object, a reference to the object should be included into the checkpointinvocation, in order to allow the other
service replicas to create a replica for the newly created object.

Sending the checkpoint invocation, produces the newly created object to be marshaled, and in consequence, the
server ROxdoor to be created. This is the point where the ObjectId is generated. The ObjectId is generated locally
by the SMA and stored together with the ServiceId into the ROxdoor state. We call this server ROxdoor, the main
server ROxdoor, which is the first server ROxdoor created in the system for the replicated object. The main server
ROxdoor plays a distinguished role on the replicated object reference counting protocol described in section 3.7.

When a replica domain receives a replicated object reference (for instance, as part of acheckpoint invocation),
the kernel ROxdoor, a client ROhandler and the proxy are created if they didnot previously exist. The ROxdoor
includes in its state the ObjectId and the ServiceId. The attachment made between the ROxdoor and the ROhandler
is labeled with aclient label5. If the receiving domain wishes to become a replica for the object, it creates the
implementation object specifying that this new implementation object is areplica. As a result a server ROhandler
will substitute the previously created client ROhandler, and the SMA will be contacted to start the registration
process of the new object replica. This process consists on substituting the client ROxdoor of the kernel for a
server ROxdoor. This substitution is only required in the case that the ROxdoor actually was a client ROxdoor.
Note that the ROxdoor could already exist as server ROxdoor if some other primary replica domain exists in
the node. The second step in the replica registration process consists on re-labeling the attachment between the
ROxdoor and the ROhandler with both theprimary andclient labels. At this point the replica domain has a valid
object reference to the object while it also holds a replica of the implementation object.

3.6 Replicated Object Marshaling and Unmarshaling

As mentioned before, the first time a replicated object is marshaled from itsdomain, the first replica object creation
process is started. This process includes creating a server ROxdoor, labeling the attachment between the object
ROhandler and the ROxdoor with both theclient and theprimary labels, and generating the ObjectId that will be
stored into the ROxdoor state. This ROxdoor is the main server ROxdoor. There is only one main server ROxdoor
for each replicated object, thus the other server ROxdoors will be slightly different of this main one.

When a replicated object reference is sent to a different node, the marshal function of the ROxdoor attached to
the reference is called. This function places in the marshal stream the xdoor type of ROxdoors and the ObjectId plus
the ServiceId contained in the ROxdoor. Also the NodeId where the main server ROxdoor lives, is also placed into
the marshal stream. The location of the main server ROxdoor is used by thereplicated object reference counting
protocol explained in section 3.7. The unmarshal function follows the reverse process. When the ROxdoor type
is found in the incoming stream, the ROxdoor unmarshal function is invoked, which extracts the ServiceId, the
ObjectId and the NodeId of the node where the main server ROxdoor resides. The local SMA is then called to
lookup the ROxdoor. If the ROxdoor is not found, then it is created,assigning the received object identifier to
it. Once the ROxdoor is located, a client ROhandler is created for the domainreceiving the reference and the
attachment made between xdoor and handler is labeled with aclient label.

3.7 Replicated Object Reference Counting Protocol

This protocol ensures that aunreferencednotification will be eventually delivered to every object replica imple-
mentation of the object, some time after there is not any valid object reference pointing to the replicated object.
The protocol works counting the object references as they travel around the network. To this end, ROxdoors, ei-
ther server or client, have a counter, calledrefcountwith the property that the addition of the refcount’s of every
ROxdoor for a given replicated object is, at any time, greater than or equal to the number of nodes with at least
one object reference pointing to that object. Initially every ROxdoorrefcountvalue is zero. The protocol works as
follows:5At this point, there is no knowledge of the replica intentionto create a replica of the object, and the reference sent to it, is then considered
as any other client object reference sent to a domain.

8

� Each time a replicated object reference is sent out of a node the ROxdoor whether server or client, adds one
to its refcount.� When a node receives a replicated object reference that results in the creation of a client ROxdoor, (there
were no previous references to the object in the node and there does not exist any object replica), it sends a
INC message to the main server ROxdoor and waits for anACKmessage. When it receives theACK it sends
a DECmessage to the domain that sent to it the reference in the first place.� When a domain receives a replicated object reference it already had (there exists an ROxdoor whether client
or server for that object), it sends aDECmessage to the sender.� When a ROxdoor receives aDECmessage, it subtracts one from itsrefcount.� When a server ROxdoor receives anINC message, it adds one to itsrefcountand sends anACK to the sender.� When the last client attachment between a server ROxdoor (not the main server ROxdoor) and its ROhandlers
is removed, that is, when the last object reference is released, the server ROxdoor sends aDEC message to
the main server ROxdoor.� When the last attachment between a client ROxdoor and its ROhandlers is removed, that is, when there does
not exist neither client nor servers for the replicated object in that node, aDEC message is sent to the main
server ROxdoor.

This protocol ensures that some time after there are no valid references pointing to a replicated object, the
refcountvalue of the main server ROxdoor drops to zero and there only exist serverROxdoors for that object in the
network. When this occurs, and also the last object reference local to the main server ROxdoor is released (the last
attachment between the main server ROxdoor and its ROhandlers labeled withclient is removed), the main server
ROxdoor contacts the local SMA to lazily send aNOREFmessage to every other server ROxdoor. Then the main
server ROxdoor invokes theunreferencedoperation of its server ROhandlers and removes itself. The same process
is followed by the other server ROxdoor when they receive theNOREFmessage.

On node failures, a reference counting reconstruction protocol is run bythe ORB before new object invocations
are allowed to proceed. These object invocation blocking is made as the first step of system reconfiguration
synchronized by our group membership protocol[19, 18]. Before blocking object invocation requests,unreferenced
notifications are disabled.

The replicated object reference reconstruction protocol works as follows:� Each node checks which of its ROxdoors contain as the main server ROxdoor NodeId, the identifier of the
failed node. For those ROxdoors a new main server ROxdoor is elected. This election process consists of
selecting as the new main server ROxdoor node, the node that containing a primary replica for the object
(and thus a server ROxdoor), has as NodeId, the smallest one among the setof NodeIds which are bigger
than the previous main server node, if any. Otherwise, if the previousserver node had the biggest NodeId
among all their replicas, then the smallest one among the remaining server nodes is chosen.� Those references for which there does not exist a server replica, are marked as invalid and will raise an
exception when used.� Once main server ROxdoors are elected, every ROxdoor sets itsrefcountvalue to zero.� Every surviving node sends a list ofINC messages to every other node, where the list ofINC messages sent
from one node to another, contains anINC message for each object that having a valid object reference at
the sender node, has the main server ROxdoor placed at the message destinationnode.� ROxdoors receivingINC messages increase theirrefcount.

After the reconstruction protocol completes,unreferencednotifications are enabled, and then, object invoca-
tions are allowed to proceed.

9

3.8 Object invocation

When invoking a replicated object, the ROxdoor before sending out the invocation contacts its SMA. The SMA
selects a node with a primary replica for the service and then the ServiceId and the Object Id are placed into the
invocation stream. The invocation then is sent to the selected node. The receiving ORB extracts the ServiceId and
the ObjectId from the incoming stream and invokes a method of the SMA tolookup the ROxdoor associated to the
received object identifier. Once the ROxdoor is found, the stream will be passed to it and the ROxdoor will process
it.

Our replicated object invocation scheme facilitates the task of changing from aclient node the destination node
where invocations are to be sent. Invocations retries due to replica failures take advantage of this simple way of
changing the invocation destinations.

4 Checkpoint Support

Hidra services should use checkpoints to maintain consistency among theservice replicas’ state. To this end, repli-
cas have to implement a checkpoint interface. Checkpoint messages are sent from one replica to another invoking
some operation of the checkpoint interface. Our checkpointing scheme, thus requires the service programmer
to define the checkpoint operations, their arguments and to implement them.Although the support we give is
somehow more difficult to use than approaches like the one described in [8], it will probably be less band-width
consuming and less memory and CPU time wasting. Checkpoint processing efficiency may be improved by the
service programmer who can take advantage of the service semantics he implements, sending on each checkpoint
invocation the minimal amount of information required to maintain state consistency among the replicas.

In order a replica to initiate a checkpoint, it has to hold a reference to a checkpoint object. Invocations made
over this reference will be multicasted to every other replica for the service in the cluster. To provide this function-
ality, we make use again of the extensibility mechanism provided by theORB. We introduce a new type of handler
(Chkhandler) and a new type of xdoor (Chkxdoor) that basically provide multicasting services. However, we do
not use group communication protocols for this purpose but we optimize message transfers among nodes when
possible. For instance, if a checkpoint message has to be sent from a node, to two replicas that are placed at some
other remote node, just one message is sent through the network.

Another basic difference between replicated objects and checkpoint objects, is that checkpoint objects do not
expect to receiveunreferencednotifications. Thus checkpoint object implementations will be active as long as the
replica itself is active. We have that in this respect, Chkxdoors are very similar to thesimple xdoorsdescribed in
[4], that are never removed and allow clients of those objects to compute their location. Thus, to access a Chkxdoor,
a remote node does not need to receive a reference to that object, but just to build it on-the-fly before accessing it.

4.1 Checkpoint Objects Creation and Identification

A replica, before becoming active for a service, has to create and register a checkpoint object. Further, all check-
point objects defined by the replicas of a particular service must share the same interface.

Similarly to the process followed for replicated objects, creation of a checkpoint object results in the creation
of a server Chkhandler attached to a proxy object which is invoked when some operation of the checkpoint object
has to be invoked.

On server Chkhandler creation, the checkpoint object is registered with theSMA, which associates to it a
special ObjectId. This checkpoint object identifier is just the ServiceId. The checkpoint object registration starts a
protocol to add the new replica to the service as a secondary replica. Thougha detailed description of this protocol
is out of the scope of this paper, basically the effect it produces in the system is three fold. First, the local SMA
and possibly the SM, will reflect in their state the replica addition. Second, the new replica will receive a dump of
the most recent service state and third, after the protocol finishes, the replica will receive any further checkpoint
invocations initiated by service replicas.

4.2 Checkpoint Multicasting

When a replica wishes to initiate a checkpoint, it invokes the reference to the checkpoint object it received when
it created the checkpoint object. The server Chkhandler, instead of loopbacking this request to the checkpoint

10

object implementation, just gives the invocation stream to the Chkxdoor. The Chkxdoor will ask the local SMA to
know how many nodes in the system hold replicas for the service and upon receiving this information, proceeds to
marshal the invocation stream for each destination node. To improve multicasting, each checkpoint message is sent
by a different operating system thread. For synchronous checkpoint invocations, an acknowledgment is awaited
for each message sent, and for asynchronous checkpoint messages control is immediately returned.

The first bytes of the invocation stream contain the Chkxdoors type andthe ServiceId. Nodes receiving such
invocations identified by the leading Chkxdoor type, lookup the Chkxdoor they hold for the indicated service and
the invocation stream is given to it to be further processed. A Chkxdoorreceiving an invocation, sends copies
of the stream to the distinct server Chkhandlers that may reside at their node. Server Chkhandlers when receiv-
ing checkpoint invocations, do not immediately invoke the attached checkpoint objects but instead allocate local
buffers to store the checkpoint streams. Checkpoints are stored at the Chkhandler for each light weight transaction,
until every checkpoint made to complete that transaction arrives to the Chkhandler. When this happens all invo-
cations are delivered in order to the replica implementation and the replica thus, may update its state accordingly.
This checkpoint buffering facilitates to rollback6 operations given that service replicas will not receive checkpoint
invocations until the operation terminates.

4.3 Checkpoint Invocations Synchrony

Checkpoint interfaces may contain synchronous or asynchronous7 calls. They should be used by service pro-
grammers to specify as synchronous, what we callintention checkpointsand the other checkpoints, calledstate
checkpointsas asynchronous. Intention checkpoints require that the checkpoint requester receives an answer from
each node that receives the checkpoint message before the requester returns control to the service replica domain.
In a checkpoint of this type, a primary replica transmits to the other replicas its intention to modify shared state
that is not volatile. So, all replicas must know about this before the actual update is made. Then, if some failure
arises and the primary replica that was serving the request crashes, the replica which is elected to restart the op-
eration can check the persistent share state to find out if the intended updatewas completed. Intention checkpoint
acknowledgments are replied at the receiving Chkxdoors before transmitting upwards the incoming stream, but
after every preceeding checkpoint has arrived to the node. This way, some gaining is achieved in the checkpoint
message response time and further, checkpoint messages ordering are synchronized at each intention checkpoint
message. Having every checkpoint received by a node up to an intention checkpoint allows replicas to be confident
that they will receive every replica state modifications up to the intention checkpoint message in case the operation
coordinator fails.

On the other hand, state checkpoints only send updates made by a operation served by a primary replica in its
local state. This type of checkpoint are asynchronous8.

In case of primary service replica failures, the primary replica elected to resume those interrupted operations
that were started over the failed replica, restarts them from the last received intention checkpoint. Every replica
discards from their temporal buffers, any state checkpoint received after that last intention one.

For this reason, service programmers, besides providing checkpoint operations, have to provide code to resume
operations after each intention checkpoint the operation makes.

5 Light Weight Transactions

We structure highly available objects invocations as light weight transactions which are a kind of transactions that
ensure that the state modification made by operations requested over a replicated serviced, are completed and their
state modification are made at every service replica, or their effects completely discarded. In the rest of the section,
for the sake of brevity, we use the term transactions meaning light weight transactions.

If a node or a domain receiving an invocation over a replicated object fails while processing the invocation, the
operation will be automatically reinitiated over a different replica without client intervention. This is achieved by
the transaction structure that we impose on each replicated object invocation. Transactions are identified during
their lifetime using a small object called TID. TID’s are used to reissue failed invocations over different replicas of
the same object.6The rollback is simply to discard the temporal buffers wherethe transaction checkpoint messages are stored.7Asynchronous calls are specified byonewayoperations.8The sequence of asynchronous checkpoints are synchronizedat once on the light weight transaction termination.

11

To structure invocations as transactions we benefit from the facility given by our replicated objects references to
change in run-time the destination node for an invocation. We also benefit from theunreferenced notification
to asynchronously synchronize the transaction termination. Also checkpoints are used by transactions to maintain
updated the local state of any service replica, reducing the network load in caseof replicas placed at the same node.

Client
ROhandler

Server
ROhandler

SSA
Chkxdoor

Chkhandler

obj. ref.obj. ref.

Object
REPLICACLIENT

Chkhandler
SS

TID

TID CObj

inv. ctx

chk
object

TID

CObj

tr. ctx

CObj

REPLICA

1

2

3

4 5

6
6

7

8

9

10

11

12

13

13

14
15

15

15

Figure 4: An example of light weight transaction

Figure 4 shows an example of a transaction initiated over a service with two primaries placed at two distinct
nodes, having the client at another node.

Step 1: A client initiates a transaction when invoking a replicated object reference.Step 2: The ROhandler
creates a TID object to identify the current transaction marshaling it as an extra argument of the request. After
this, the invocation reaches the destination server ROhandler (step 3). Step 4: the ROhandler creates a small object
called theconfirmation objectthat is used to signal the transaction termination.Step 5: This server ROhandler sends
a serializing request to the local SSA (The procedure followed by the SSAto serialize the request is explained in
section 6) including as additional arguments the TID and the confirmationobject (Step 6). The local SSA will block
the request until the operation is allowed to proceed. The SSA besides serializing the request, internally stores the
transaction context composed by the 3-tuple (TID, confirmation object,TransNumber9). Once the serializing
request returns from the SSA (step 7), the replica implementation code is invoked (step 8) with the TID as an
additional argument. The replica implementation may emit a number of checkpoint invocations until the operation
terminates. Each checkpoint invocation includes the TID as an additional argument. The Chkxdoor, when receiving
an invocation stream from any of its Chkhandlers (Step 9), contacts the SSA to know how many checkpoint
messages have been delivered for the current TID (Step 10). If the current checkpoint message is found to be the
first one, the transaction context stored at the SSA is also piggybacked into the checkpoint invocation stream. In any
case the sequence number of the current checkpoint is also included into the invocation stream. ThisCheckNumber
is used by the receiving replicas to order the checkpoint messages they receive, given that the transport layer does
not guarantee ordered message transfers. Also, the last checkpoint sent fora light weight transaction needs to be
identified, this time using a special checkpoint operation argument sent bythe replica domain. It is important to
detect the last checkpoint in order to terminate the transaction.9The TransNumber is part of the information returned by the SSto serialize the request. How this number is generated is explained in
section 6.

12

Theconfirmation object(CObj) is a replicated object created by the transaction coordinator and whosereplicas
are created by the cohort nodes (and the secondary replicas) (step 11) and by the serializer as soon as they receive
the transaction context. The request cohorts (and the secondary replicas) receive the transaction context with the
first operation checkpoint message. The serializer immediately releases this reference, and the cohort nodes will
release it when they receive the last transaction checkpoint (step 12). The coordinator will release the reference
when it replies to the client. Each cohortsignals the transaction termination(similar to a commit request) invoking
the transaction TID (Step 13), passing to it a reference to the confirmation object and then releasing the reference
to the confirmation object they hold. The coordinator replies to the client and releases its confirmation object
reference (Step 13) (signaling this way the transaction termination10). The client synchronizes the transaction
termination releasing the confirmation object reference it receives (Step 14), as soon as it has received as many
transaction termination signals as nodes with replicas there are in the network (step 10), excluding the operation
coordinator node. We call this transaction termination synchronization the transaction committed signal. This
release, makes that every service replica will receive on the confirmation object implementation aunreferenced
notification (Step 15) which is used to remove the transaction context stored at each replica. Also,the serializer
will receive that notification, that it will use to remove the associated transaction from the set of “in-progress”
transactions.

Most of the messages sent around during a light weight transaction are asynchronous, allowing thus a higher
degree of concurrency while processing a number of requests. The only synchronous calls are the client invocation,
the serializing request (equivalent to acquiring a lock) and any requiredintention checkpoints.

6 Concurrency Control Mechanism

For each service, the concurrency control requirements are implemented by itsservice serializer. The function of
the SS is to give order to the invocations received by all the objects that compose the service, taking into account
incompatibilities among the service operations. Two operations are considered incompatible if they access shared
state and at least one of them modifies it.

Each time a transaction arrives to a primary replica domain, the receiving server ROhandler makes aserializing
requestto the local service serializer agent (SSA) to find out which in progress transactions should terminate before
allowing the current one to proceed. The SSA may be unable to locally replyto this request, redirecting in this case
the request to the SS. The serializing request carries theinvocation contexttogether with the confirmation object
and the TID. The invocation context consists of enough information to characterize the requested operation, and is
used by the SSA (and possibly by the SS) to find incompatible in-progress transactions. The invocation context is
composed by the method number, the ObjectId and the object class of the object being invoked. The CObj is used
by the SS to be notified when this transaction finishes releasing at this moment the state stored for that transaction.

The SSA may require the SS to serialize the request. This call is always synchronous and its results are returned
as soon as the SS computes which in-progress transactions are incompatible with the requested one. The arguments
returned are, the TransNumber that will identify the current transaction,and the list of TransNumbers that identify
all the transactions that must terminate before the current could proceed. However, the serializing request will not
return from the SSA to the ROhandler that made it, until the list of predecessor transactions terminate.

The SMA’s maintain the dependencies established among the current active transactions, blocking transactions
until every predecessor transaction terminates.

In case of failure of the serializer, the data maintained by the SSA’s permits the reconstruction of the dynamic
state — the list of active transactions — of this serializer. To this end a protocol is run among the living SMA’s,
first elects a new SS among the SSA’s and second, each SSA gives to the new SS the list of in-progress transactions.

To maintain the order provided by the serializer, the SSA has to know thecurrent state of all transactions, either
terminatedor active. A transaction is consideredterminatedwhen the SSA has seen its last checkpoint and the
invocation which carried this last checkpoint has been processed by the local replicas. Otherwise, the transaction
is considered stillactive. When the SMA realizes that a transaction has terminated it removes its TransNumber
from the list of preceding TransNumbers for the blocked transactions. If some of these lists becomes empty, its
transaction is unblocked and it starts the operation execution.

The SSA has to maintain also a list with the TransNumbers of the terminated transactions. This list is needed
to deal with the situation of an incoming transaction incompatible withsome that are being terminated at the same10Similar again to a transaction commit request.

13

time. Due to the asynchrony in the transaction termination signaling procedure, the serializer can include the
TransNumbers of some transactions that have terminated or will terminate immediately in the list of predecessors
for the current one. If the serialization request returns after those transactions have terminated in the local node,
and the list of terminated transactions is not maintained, the just arrived transaction never will be unblocked, since
part of the TransNumbers it waits for, already have been processed and forgotten.

Each TransNumber maintained by the SMA’s in the list of terminated transactions is definitively released when
the serializer knows that all transactions that have this TransNumber in their list of preceding TransNumbers have
terminated. When this is detected, the serializer piggybacks the TransNumberto be released in the response for
the following serializing request made by each SMA.

Finally, the SS may decide at any given time, to send a sub-matrix of the operations compatibility matrix to
any SSA that makes serializing requests. Sub-matrixes are granted to SMA’s when a big number of closely related
operations are being requested by a particular SMA. This is a quite interesting property when applied to an object
oriented environment like ours. It is usual to have a client domain accessing a closely related set of objects from
some service, and given that the client starts invocations at one single node, the client SMA tends to select the same
primary replica as the invocation destinations. Thus, if that selected replica, does not require to access the global
SS, an important performance improvement is achieved. However, other clients that access operations included in
the granted sub-matrix, have first to access the SS and then, the SSA wherethe sub-matrix resides incurring then
in worse performance if those additional client accesses are frequent.

This concurrency control system provides some advantages when it is compared with other concurrency control
methods, mainly with distributed locking. First, it does not produce deadlocks if the transactions only include an
operation, as is the case presented here. A concurrency control system based on distributed locks might have
similar characteristics if a two-phase locking protocol is used and all locks are acquired following a pre-specified
order and released at the transaction’s commit point. However, locks must be managed by the programmer of
the highly available service, who has to know when they are needed and which type of lock must be used and
where must be placed, while our support manages itself all the concurrencycontrol problems. In our model, the
application programmer only has to provide the appropriate compatibility matrix. So, our solution offers an easier
programming model. Second, the dynamic information maintained by theserializer is easily recollectable in case
of failures. A fault-tolerant implementation of distributed locks requires a greater amount of messages to acquire or
release a lock. In our solution, moreover, the messages used to release access toa highly available object are also
shared to communicate the transaction’s termination. So, our concurrencycontrol introduces a minimal overhead
in the communication costs, always lower than the communication costs of adistributed lock solution.

7 Failure Recovery

This section describes how failure recovery is achieved for either node or domain crashes. Sometimes the replicated
service will need to rollback accessing code the programmer has to provide while in the most cases, or either the
rollback is transparent to programmers, or transactions are ensured to terminate.

To detect node failures, we use a group membership protocol. To detect replica domain failures, on replica
registration, the SMA creates an object that will receive an unreferenced notification as soon as the replica crashes.
To this end, the only reference to this dummy object will be given to thedomain on replica registration.

Once a failure is detected, some actions are required to reconfigure the affectedservices and to achieve termi-
nation of the interrupted transactions. For the sake of clarity we analyzefailures in terms of the actions required
to recover one particular transaction that was running when the failure arose. For this interrupted transaction, we
study the failure of each component and each set of components that take part in the transaction processing.

7.1 Client Failure

If only the client fails, no matter if just the domain or the whole node, no additional action is needed. The
transaction will terminate, and the client failure will only be detected whenthe service replicas invoke the TID,
but nonetheless, the transaction will be committed by the last replica inreleasing its reference to the confirmation
object.

On client failure thus, no extra failure recovery action is required, and we simply allow orphan transaction
processing.

14

7.2 Cohort Failure

In either case, failures of a cohort replica domain or node crashes involvinga cohort node, the required action
is to update the SMA state and possibly the SM state to reflect the new service configuration. Also, if the failed
cohort was the only service replica in its node, or the failure affected thewhole node, the coordinator will send
an invocation to the TID object with the confirmation object, to allow theclient, which is waiting for a number of
transaction termination signals, to receive the correct number of those message also after failures arise.

7.3 Coordinator Failure

If the coordinator fails before contacting the serializer, no extra actionis required; the client node will just select the
new coordinator. If the serializer received the serializing request but no cohort did receive any of the transaction’s
checkpoint invocations, the serializer will send a notification to all the cohorts to unblock any transaction whose
serial order was set to depend on the failed transaction. Once those transactions are unblocked, the client node will
be allowed to select a new coordinator.

If some cohort received a checkpoint invocation from the failed coordinator, but some of the replicas did not
receive an intention checkpoint, the buffered checkpoint invocations will be discarded and the serializer will then
perform the same recovery action as before.

If every cohort received at least one intention checkpoint, let be checkpointk, the last intention checkpoint
received by every replica, then every replica will be forced to process the checkpoints requests up to that checkpoint
k, to upgrade their state. Any other buffered checkpoint message is safely discarded. After this is made, the client
node will be allowed select a new request coordinator and the new coordinator replica will resume the operation
execution from the point identified by the last intention checkpoint.

7.4 Serializer Failure

The static serializer state is replicated among a number of the SSA’s, but its dynamic state is not. Thus, before
allowing any further transaction processing on the service, the dynamic serializer state must be reconstructed and
one of the SSA’s placed at the same node as one of the primary replicas willbe elected as the new serializer for the
service.

To rebuild the serializer dynamic state, every SSA contacts the new serializergiving to it all the in-progress
transaction processing information it holds.

Since the serializer is an object placed in the high availability ORB support, no serializer domain exists. The
serializer only may crash if the node where it is running fails.

7.5 Multiple Failures

Basically, multiple failures are handled the same way as if the failures occursequentially. The only difference is
given when both the client node and the transaction coordinator fail together. In these case, the transaction has to
be rolled back. To this end, first the operation is rolled back, second, theserializer will send a notification to all the
surviving primary replicas to unblock any transaction whose serial orderwas set to depend on the failed transaction
and third, every replica will release the transaction context objects.

If no intention checkpoints were received by every other replica, the rollbackprocedure is just to discard
any checkpoint buffers held at each replica for the transaction. Otherwise, thereplica rollback operation will
be called. This is the only case where an expensive rollback operation couldbe forced for service consistency.
Nevertheless this kind of rollbacks can be avoided if the programmer carefully designs the service to with operation
implementations with just one intention checkpoint being the last checkpoint for the operation.

To prevent the extremely grave case that arises when the whole service crashes, the service programmer has to
carefully design it, to enable recovery from state saved to secondary storage,if those failures have to be tolerated.
Recall that this kind of external accesses should be done in the context of atransaction being preceded by an
intention checkpoint.

15

8 Further Work

The design shown in this paper has to be extended to improve some aspects. Since a highly available service may
request the services of other highly available services, support for nested transactions [17] is required. We are
currently exploring how to extend our concurrency control mechanism toprovide this support. Moreover, inter-
service requests introduce a new problem that has to be solved. This problem is deadlock detection [13], that will
require distributed protocols to be run among every service serializer.

At first glance, the role of the serializers should be extended to manage nested transactions. Also, each seri-
alizer should know which service originated each request made over its service, transferring this information to
an external object, which could search for cycles in the path followed by multiple transactions that share some
services. Once the deadlock is detected a transaction victim can be chosen to be rolled back.

We are also exploring several distinct ways to decompose the compatibility matrix in sub-matrixes to reduce
as much as possible the network traffic produced by the concurrency control mechanism.

Finally, to complete our high availability support we have to describe all the service reconfiguration protocols.
We have in mind protocols to create a service, remove a service, add a secondaryreplica to a service, promote a
secondary replica to a primary one, degrade a primary replica to a secondary,remove a secondary replica from a
service and to freeze a service.

9 Conclusions

Starting with an implementation of a CORBA-compliant Object Request Broker, we have presented a set of ex-
tensions to provide high availability support in object-oriented distributed programming environment. Since the
ORB taken as a basis is part of the distributed operating system kernel, this support for high availability services is
usable by user-level applications and also for the development of other operating system components.

There have been other attempts to provide high availability support in distributed systems, either provided by
the operating system kernel itself or by user level libraries. Only a minor part of them offer support for different
types of replication. Usually, when the support is given at system level, only passive replication is offered [1, 8]
since the image of the primary process or replica is copied to its backup image. This is not as efficient as our
solution, since the amount of data to be transferred when the state is modified may have a considerable size and
can not be controlled by the application’s programmer. On the other hand,if the support is given at user level, it is
usually based on group communication protocols [2, 5, 16, 24] which provide message ordering to all the replicas
that receive the same sequence of requests and process them concurrently. So, inthat case, active replication is
the immediate solution, although some toolkits offer solutionssimilar to ours, as the coordinator/cohort model
introduced by Isis. Our alternative allows the use of secondary replicas that do not process directly any client
request to the highly available object. Moreover, due to the use of theSS object and the compatibility matrix,
multiple compatible requests can be served concurrently. In our solution, the number of replicas and their type are
easily configurable.

Only another architecture for high availability exists offering also ORB services [15]. Its solution has been
developed on top of group communication protocols, developing the ORB using group support. It also supports
several types of replication models; in particular the coordinator/cohort model offered by Isis, which is very similar
to ours. But our approach is different for the light weight transactions we use, the lower communication cost
required by our system and theunreferencedfacility our ORB provides for both replicated and non-replicated
objects.

As we have seen, our architecture for high availability offers a set of characteristics that has not been provided
by any other system or toolkit. Transactions to increase operation requestreliability, the low cost incurred by the
system to process them and the ability to to process multiple requests made over a service at a time are its most
outstanding properties. On the other hand, our architecture offers a CORBA-like object oriented programming
model for application development, where programmers just have as additional tasks, compared to non highly
available application development, the design of checkpoint interfaces, the implementation of those interfaces and
the specification of the operation compatibility matrix for replicated services. We believe that this extra cost is
affordable, comparing it with the benefits provided by our support.

16

References

[1] J. E. Allchin. An architecture for reliable decentralized systems. Technical report, TR-GIT-ICS-83/23,
Georgia Institute of Technology, Atlanta, Sept. 1983.

[2] Ö. Babaoğlu, R. Davoli, L. A. Giachini, and M. Baker. RELACS: A communications infrastructure for
constructing reliable applications in large-scale distributed systems.Technical report, UBLCS-94-15, Dept.
of Computer Science, University of Bologna, Bologna, Italy, June 1994.

[3] J. Bartlett. A nonstop kernel. InProceedings of the 8th ACM Symposium on Operating System Principles,
Dec. 1981.

[4] J. Bernabéu, V. Matena, and Y. Khalidi. Extending a traditional OS using object-oriented techniques. In
USENIX Association, editor,2nd Conference on Object-Oriented Technologies & Systems (COOTS), June
17–21, 1996. Toronto, Canada, pages 53–63, Berkeley, CA, USA, June 1996. USENIX.

[5] K. P. Birman. Replication and fault-tolerance in the ISIS system. InProceedings of the 10th ACM Symposium
on Operating System Principles, Orcas Island, Washington, pages 79–86, Dec. 1985.

[6] K. P. Birman, T. Joseph, and T. Raeuchle. Concurrency control in resilient objects. Technical report, TR
84-622, Dept. of Computer Science, Cornell Univ., Ithaca, NY, July 1984.

[7] K. P. Birman, T. Joseph, T. Raeuchle, and A. El-Abbadi. Implementingfault-tolerant distributed objects.
IEEE Transactions on Software Engineering, 11(6):502–508, June 1985.

[8] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault tolerance under UNIX.ACM Transactions
on Computer Systems, 7(1):1–24, Feb. 1989.

[9] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary-backup approach. In S. J. Mullender,
editor,Distributed Systems (2nd edition), pages 199–216. Addison-Wesley, Wokingham, England, 1993.

[10] Jim Gray and Andreas Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San
Mateo, 1993.

[11] Graham Hamilton, Michael L. Powell, and James J. Mitchell. Subcontract: Aflexible base for distributed pro-
gramming. In Barbara Liskov, editor,Proceedings of the 14th Symposium on Operating Systems Principles,
pages 69–79, New York, NY, USA, December 1993. ACM Press.

[12] Y. A. Khalidi, J. M. Bernabéu, V. Matena, K. Shirriff, and M. Thadani. Solaris MC: A multi computer OS. In
USENIX Association, editor,Proceedings of the USENIX 1996 annual technical conference: January 22–26,
1996, San Diego, California, USA, USENIX Conference Proceedings 1996, pages 191–203, Berkeley, CA,
USA, January 1996. USENIX.

[13] E. Knapp. Deadlock detection in distributed databases.ACM Computing Surveys, 19(4):303–328, Dec. 1987.

[14] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing highavailability using lazy replication.ACM
Transactions on Computer Systems, 10(4):360–391, Nov. 1992.

[15] S. Maffeis.Run-Time Support for Object-Oriented Distributed Programming. PhD thesis, Dept. of Computer
Science, University of Zurich, Febr. 1995.

[16] C. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phoenix: A toolkit for building fault-tolerant distributed
applications in large scale. Technical report, Dépt. d’Informatique,École Polytechnique Fédérale de Lau-
sanne, Lausanne, Switzerland, July 1995.

[17] J. E. Moss. Nested transactions: An approach to reliable distributed computing. Technical report,
MIT/LCS/TR-260, MIT Laboratory for Computer Science, 1981.

[18] F. D. Muñoz-Escoı́, J. M. Bernabéu-Aubán, and P. Galdámez. Faulthandling in distributed systems with
group membership services. Technical report, ITI-ITE-98/5, Univ. Politècnica de València, Spain, September
1998.

17

[19] F. D. Muñoz-Escoı́, Vlada Matena, J. M. Bernabéu-Aubán, and P. Galdámez. A membership protocol for
multi-computer clusters. Technical report, ITI-ITE-98/4, Univ. Politècnica de València, Spain, September
1998.

[20] OMG. The Common Object Request Broker: Architecture and Specification. Object Management Group,
July 1995. Revision 2.0.

[21] OMG. CORBAservices: Common Object Services Specification. Object Management Group, Nov. 1995.
Revised Edition.

[22] F. B. Schneider. Replication management using the state-machine approach. In S. J. Mullender, editor,
Distributed Systems (2nd edition), pages 166–197. Addison-Wesley, Wokingham, England, 1993.

[23] Iona Technologies. The orbix architecture. Technical report, Iona Technologies, Nov 1996.

[24] R. van Renesse, K. P. Birman, B. Glade, K. Guo, M. Hayden, T. M. Hickey, D. Malki, A. Vaysburd, and
W. Vogels. Horus: A flexible group communications system. Technical report, TR95-1500, Dept. of Com-
puter Science, Cornell University, Ithaca, NY, March 1995.

18

