HIDRA: Architecture and High Availability Support

Pablo Galdamez Francesc D. Muioz-Escoi José M. BernabéuwAuba

Technical Report ITI-ITE-98/6

Abstract

This paper describes Hidra, a complete architecture tomstipipe development of highly available applica-
tions in distributed systems. The components of this agchite are: first, a group membership protocol that
continuously computes the valid set of nodes that are cerwidto belong to the system. Second, a message
transport level offers reliable message passing amongdtesusing the membership services. On top of this
transport layer, an Object Request Broker (ORB) providestésic object services, which include object invo-
cation and object reference counting. Finally, replicasopport is provided as the approach to increase service
availability in the case of domain and node failures.

This paper focuses on the object and service replicationtifmmelity provided by our architecture, where
replicated objects are supported by the ORB with the helpufesextra software components. Central issues are
replicated object invocations which, using a kind of traniges called light weight transactions (LWT), ensure
that modifications made by those invocations on the objedte stare either made at every object replica or at
none of them. Checkpoints are used to send the state moidifisdtom the object replica that receives an object
invocation to the rest of the object replicas. Also, a lowtcasd mostly asynchronous concurrency control
mechanism, serializes invocations made over objects gelgrio a service to maintain consistency among the
replicas state.

1 Introduction

Distributed systems are a good basis to support highly availablécappns. In a distributed system there are
multiple nodes which have independent behavior when failures arisahiedailure of one of the nodes does not
mean the failure of the others. So, if some support is given by tidenlying system, applications can be made
highly available decomposing them in components, and placing replicé®®¢ tomponents into independent
nodes. In the rest of the paper we use the teemviceto refer to the replicable software unit, considering a highly
available application to be formed by a set of replicated services. In thes®mments, system support has to
cope with failures that affect highly available services in order to guardhttehose services continue to serve
their clients as long as some of the replicas survives the failures.

Several architectures (e.g. [3, 1, 8, 15]) have been proposed to suppatetelopment of highly available
applications in distributed environments. Properties such as thegmmuging model offered for application devel-
opment, the replication scheme imposed by the architecture, the compataiommunication and storage cost
incurred by the system to tolerate failures, the kinds of failures hielegated and the level of concurrency allowed
inside highly available applications, characterize those distinct agpes.

This paper describes Hidra, an architecture for the development of highilplale, object oriented distributed
applications. The programming model offered to applications is thecblgjriented paradigm promoted in dis-
tributed systems by the Object Management Group with the CORBA spedifid20]. In Hidra, like in some of
the most recent distributed environments [23, 15, 12], services alteabuiollections of objects which transpar-
ently access other objects that may reside in different nodes, by means of an Réyjeeist Broker (ORB). The
ORB abstracts client objects of the location of the server objects thelanawaking possible to apply those design
and implementation techniques, successfully used over the last years onipethgstems to the development of
distributed applications.

But the ORB itself does not suffice for the development of highlylataée services. The system has to offer
some extra functionality to detect failures and recover the affected sernvicastfiem. This support should abstract
clients of services from partial systems failures, making that clientsrmoatio access them, provided that some
service replica survives the failures. Further, all this extra fumetiity should overhead the system as little as

possible and should degrade the concurrency within services asbtpessible. To achieve system availability,
some approaches (e.g. [8]) use a passive replication scheme [9], whesttbaeservice replicas is a special one,
called the primary and the rest are its secondaries. A request made to the semlways processed and served
by the primary which checkpoints its state to its secondaries beforeimgply the client, maintaining this way
consistency among the replicas’ state. In the case the primary failsf time secondaries is promoted to primary,
receiving subsequent requests made to the service. Other approaches usesplitaton [22]. This scheme
makes that every replica receives and process every single request made twittee S8Broup communication
toolkits like [2, 5, 16, 24] are often used to preserve certain ordexingng the requests received by the replicas,
and relying on their deterministic behavior, all of the replicas comtiraly maintain the same state.

With passive replication, if the service operations are expensive fnstef computational cost, the primary
replica becomes a bottleneck because it has to process every request made tadée ldewever, for services
whose operations need few computations, or simply where load casitrot an issue, its low communication cost
makes it to be a satisfactory proposal . On the other hand, active repticasimg a pessimistic approach, wastes
computation resources given that every replica has to process every requegbrtfaservice and also, the group
communication protocols they use tend to be expensive in terms ofdthcconsumption. Its principal advantage
is the little time needed for failure recovery given that the required adsigust to remove the failed replicas from
the service group. In contrast, passive replication schemes requiressigitienal protocols to resume the service
activity after primary failures.

To overcome the major drawbacks of both approaches, Hidra allows servibesconfigured with an inter-
mediate replication scheme [14] structured with a coordinator-cohateir@]. With this strategy, each request is
served by a single replica, called the coordinator of that request, which abietkfhe state modifications made
by the request to the rest of the replicas, called the cohorts for that te@ees number of primary replicas exist
for a service, but just one of them act as the primary for each request. Facesewith expensive operations,
this structure, distributes the load among the primary replicas, dengeastably the service response time and
increasing its availability. To provide even more flexibility ftwetrange of services that may be targeted to Hidra,
we allow a number of secondary replicas to be added to the service, resalsegvices that may be configured
as pure passive replicated ones, as pure coordinator-cohort ones or assernth any number of primary and
secondary replicas.

One of the drawbacks of our replication model, that we believe isfigdtby the increase in the overall
system performance produced by the coordinator-cohort scheme, is theenegnt of a distributed concurrency
control mechanism. Having that several replicas may receive different recatetsts same time, it should be
prevented that clients could observe an inconsistent service state. dmadljtj two-phase locking [10] has been
applied as the general mechanism to preserve consistency. Even within Ri2AQfdoposal, concurrency control
mechanisms have been described for distributed systems [21], whichugdpors nested transactions [17]. In
Hidra, exploiting the object oriented model offered to applicationspregose a different, lower cost and mostly
asynchronous concurrency control mechanism which borrows some ofrthequts presented in [6]. In our system,
when installing a service, the programmer has to provide a compatiiitrix, to express which object operations
may proceed in parallel and which ones should proceed sequentially. Requests maileen replica are allowed
to proceed provided there does not exist any incompatible operatiorogrgss within the whole service. One
of the advantages of this mechanism is that concurrency control is madeeateipgtansparent to the service
programmer.

Finally, the service replicas have to maintain a consistent state evenseng of them fail in the middle
of processing a request. CORBA services [21] propose transactions asrikguction to modify the system
state atomically. State modifications made by transactions are ensuredampéketely made or to be completely
discarded. Our approach in Hidra is to use a kind of transactions, thealleght weight transactions (LWT), at-
tached to every request made to a replicated service. Thus, our concern is ffit dogeneral purpose transaction
construction as the one specified by CORBA, but to offer transactionstoethat each request made to a service
is completed or its effects are completely discarded. Our approach while lessgéneral than the CORBA one, is
notably less expensive and suffices to provide an environment for edoghenent of highly available applications.

The rest of the paper is structured as follows. Section 2 briefly outlimeddidra architecture. Section 3
describes the Hidra ORB focusing on the support given for replicatgditsh Section 4 introduces the Hidra ORB
support for checkpoint objects. In section 5, we present the light wéighsactions, describing the concurrency
control mechanism in section 6. Section 7 explains how the architecturenpeelsn the previous section tolerates
different node and domain failures. In Section 8, we outline the é&urntbork we have initiated to complete and

improve our high availability support and finally, section 9 givesiaftstummary and some conclusions about this
work.

2 Architecture outline

As shown in figure 1, Hidra is composed by several layers each one malgraf tiee lower ones and providing
services to the upper ones. The lowest level is a datagram transport layprdliides unreliable message transfer
among all the nodes in the system.

Service
Manager SSe_r\/li_ce ger_vilc_:e o Sser_/ici_e
. erializef Serializer erializer
Object Request Broker agent [agent | Agent Agent

Reliable Message Transport Layer

Group Membership Protocol

Unreliable Message Transport Layer

Figure 1: The Hidra code architecture

On top of this layer a group membership protocol [19] continuousinitorizes the nodes in the system to keep
distributed agreement on the set of nodes that are considered to be up aimg)rdrhis protocol while providing
the fail-stop [] failure model used in Hidra, serves for two other basigoses. First, when a node is computed
out of the membership, every ORB in the system is notified to recorfigself as required. Reconfiguration is
done synchronously by the ORB’s of all the surviving nodes in ssbeesteps of reconfiguration triggered by
the protocol. And second, the protocol also notifies the upper trangger of node failures to help it implement
reliable message transfers. Each time the system reconfigures, a new incanuatber is set to the surviving
nodes as the current incarnation number, this way, orphan messages ardiriesalirces that belong to failed
nodes can be promptly detected.

The reliable message transport layer uses the group membership protasiect node failures in order to
abandon communications in course with the failed nodes. It providégtogper layers reliable message passing,
where messages communications are retried until they complete or wn¢ihttpoint node is computed out of the
membership. Therefore, in addition to node crashes, our failure modetaésates low level message losses.
Further, reliable messages are not guaranteed to reach their destinationsaamhénerder as they were sent.

On top of the reliable transport layer, an ORB based on the one descrilj}d provides object invocation
services, and object references counting. Object invocation uses the relialdagmemssing provided by the
transport layer, providing object invocation requests that return speifieptions when the destination node
fails. Those exceptions are sent upwards to the client object implenwentaat made the request or may be
intercepted by the ORB itself to retry the invocation over different obijepticas if the destination object was
replicated. The second main function of the ORB, is to count how many nadéseferences that point to each
object implementation. The goal of this reference counting is to delivereferenced notification to those object
implementations that do not have references pointing to them in thensy3tis mechanism allows to dispose the
resources used by those objects when they cannot be accessed any more.

Two other distributed components complete the Hidra architectureseihvice manageand theservice seri-
alizer. Theservice managefSM) provides all the administrative service operations which incltlkdesreation
and destruction of services. It also knows where each service replica is lobated,involved thus, on replica
registration, replica de-registration, promotion of replicas fiwenondary to primary, degradation of replicas from
primary to secondary, participating also in the protocols run to recower feplica failures. Second, there exist a

service serialize(SS) entity for each service installed in Hidra. This componentimplenaecascurrency control
mechanism to serialize the requests made to a service.

The service manager is itself a replicated service. To replicate it, thers exisach node service manager
agent(SMA) with the same interface as the SM. Some of the SMA's are primepljaas of the SM, some others
are secondary replicas and some others are not SM replicas, but all of theimg Ha same interface, serve
as the entry point for the local node operations about service managemach. SMA besides acting as the
local representative of the SM at each node and possibly as one of its repbcisms any service management
operations that could be resolved locally inside a node. For instanogpiptimary replicas are placed into
the same node, failures that affect one of these replicas does not requ®ltiiervention, sufficing the local
knowledge maintained by the SMA to reconfigure the service.

Figure 2 shows the stdtestored by the Hidra service manager and the service manager agents of tmae Hid
nodes that maintain replicas for two services. Service 1 is configured todhaage 2 one primary replica and
one secondary replica, and two additional primary replicas placed at node &eS2is built with two primaries
at node 1 and two other primary replicas at node 2.

Serviceld Nodeld ReplicaType Service 2 Service 2
1 5> Priman Primary Primary
3 Primar)): Replica Replica
2 Secondary f /\)
2 1 Primary Qerviceld ReplicaType
2 Primary 2 Primary
Service Manager Primary

Service Manager Agent
Hidra core at node 1

Service 2 Service 2 Service 1 Service 1 Service 1 Service 1
Primary Primary Primary Secondary Primary Primary
Replica Replica Replica Replica Replica Replica

f - N f

Serviceld ReplicaT@ Qarviceld ReplicaType
1 Primary 1 Primary
Secondary R Primary

2 Primary
Primary
Service Manager Agent Service Manager Agent
Hidra core at node 2 Hidra core at node 3

Figure 2: The service manager and the service manager agents

At each Hidra node with primary replicas for a particular service, therdeaservice serializer ager{fSSA)
to manage the concurrency control needs of its local service primaries. ltioadadne of the service SSAs
also acts as theervice serializermanaging the global service concurrency control requirements. Thel8S ho
the operations compatibility matrix of the service, having this matplicated among a number of the SSAs.
However, there is just one SS and no other one acts as a SS replica. Agitdltiie SS is achieved reconstructing
its dynamic state about non-terminated operations running a ditgdiprotocol among the surviving SSAs. To
reduce the communication overhead required to contact the SS at each serviceop@tompatibility matrix
may be partitioned in sub-matrixes, placing each sub-matrix at the node=vite operations are requested most
frequently

3 The Object Request Broker

The Hidra ORB follows a similar design to the ORB described in [4jefiy domain in an Hidra node has access to
the ORB services, where a special, trusted domain, also hosting theaterffidra components, translates object
references when inter-domain or inter-node invocations are requestededtref the domains, being untrusted,
contain a reduced ORB structure, requiring the trusted domain inteovetttiaccess objects placed outside their
address space. To increase system availability, we place the Hidra coreopetiaéing system kernel which will
be also the trusted domain. This results in the accomplishment of gtiraeinteresting properties. For instance,
any operating system service such as device drivers or file systems, may adoessaat the object services and

IThe Serviceld is a plain number that uniquely identifies aidr&iservice, having the service manager assigned thecgého.

the high availability support provided by Hidra. And further liettrusted domain fails, we have that every local
domain also immediately fails, reducing to complexity that would otleeveppear if the trusted domain fails
having the rest of the node still working.

Untrusted domain A Untrusted domain B

Object

Object o S
Implementatior Proxy Implementatior Proxy

Server Client Server Client

Handler Handler Handler Handler
Server| Client Serve Client
gated | gated gated gated
xdoor | xdoor xdoor xdoor

o —

Object
Implementation

Client Server
Handler Handler

: Proxy :

Server Server Server Client
xdoor xdoor xdoor xdoor

Trusted kernel domain

Figure 3: The Hidra Object Request Broker

The ORB structure, depicted in figure 3 shown the relationships anfanpandler layer and the reference
layer on a Hidra node with two untrusted domains besides the trusteelkdomain. The handlers level holds
client and server handlers. Each server handler is attached to one object implenestdle client handlers
are connected to proxy representations of the server object. Object referencestapmifters to either the
object implementation or any of its proxies, which sharing the samefanterhide the actual object location to
the object reference users. Handlers are responsible for marshalingaiigoements, sending them to the object
implementation, waiting for a reply, and unmarshaling the outputraemis. To provide object implementors with
different marshaling, unmarshaling or exception handling procedunesinder of handlefsexist in our ORB.
For instance, for objects whose marshaled representation includes adaignsif data, there exists a specialized
handler providing marshaling and unmarshaling methods that avoidsmghaknecessary copies of the marshal
stream. Other simple objects just require the object identifier to betsehe destination, while some others
run a distributed protocol to count how many object references thereiaxisé system pointing to the object
implementation.

Each handler is connected to an xdoor from the reference layer. Server handlensregeted to server xdoors
while client handlers to client xdoors. Xdoors serve as the communitatidpoints for object invocation. The
state of client xdoors contain the location of the server xdoor theyl$tanredirecting invocations to them when
invocations over client handlers are requested. Xdoors are included inugted domain, while in the rest of
the domains, an implementation-reduced version of them, called gatedsxgoovide the attachment from the
object handlers to the xdoors residing at the kernel level. Similathatallers, a number of xdoor classes provide
different marshaling and unmarshaling procedures. The most commonm &g@ois the standard xdoor, which
running a distributed protocol, counts the object references sent tdgerades. The reference counting protocol
is responsible for delivering a unreferenced notification to the objeatlagmwhen no external references point to
the object implementation. This protocol built with asynchronoussagss, ensures two basic properties:

¢ LivenessEventually, after the number of external references drops to zero, theeoemegd notification is
delivered to the object handler.

e Safety The unreferenced notification is only sent when the number of externaérefes actually drops to

2See [4] for the complete description of the kinds of objectdiers that are provided by the ORB.

Zero.

To give support for object replication as the basic construction tacagel services, we make use of the ex-
tensibility mechanism provided by our ORB. We implement a new typadobr and a new type of handler that
implement new marshaling, unmarshaling and invocation processing pressibr replicated objects. The new
handler type is called the replicated object handler (ROhandler). When thdtehaeceives the standard CORBA
exception raised when the invocation destination fails, the invocatisimiply retried. The new type of xdoor,
called the replicated object xdoor (ROxdoor), is responsible for chgasnh adequate target node for each invo-
cation it starts. The ROxdoor closely interacts with the SMA to access thentiservice configuration, allowing
a quick redirection of invocations to living object replicas in case of fasu The close relationship among ROx-
doors and the SMA also allows to block and resume all the object replicataatiien processing any of the
protocols that modify the service configuration.

The rest of this section further describes the replicated object suppuided by our ORB, showing how
replica objects can be created and how are they identified, how we guaranteavbey @éitheunr ef er enced
notification to every replica object, and finally, how the object invocati@thanism enables selecting any of the
primary object replicas as the invocation destination incurring in véthg ixtra cost.

3.1 Replicated Object References

In our ORB, borrowing the concept from [4], object references are implesdest pointers to C++ objects. Ob-
ject references within the same domain where the object implementation rasidesinters to the actual object
implementation, whereas object references at any other domain are pointergy@bpjects. However, for repli-
cated objects, object references are always pointers to proxy objects attachechtodiR®sh For replicated object
references within the same domain where a primary object replica residapadsing the ROhandler allows these
requests to be serialized, calling the service serializer before allowirigubeation to be expedited to the replica
implementation.

3.2 Replicated Object Handlers

Server ROhandlers differ among other things from the other types oésbandlers in that they may receive
invocations from both the underlying xdoor and the proxy object kictv they are also connected. When an
invocation is requested from the proxy object, no argument is marshaletharidvocation is expedited to the
object replica implementation, as soon as the service serializer allows thestdq proceed. Both server and
client ROhandlers when receiving invocations from their proxies, also lggat weight transactions to increase
reliability of the service requests. Those transactions are explainséction 5 while the concurrency control
mechanism implemented by the serializer is commented in section 6.

The other difference between ROhandlers and the rest of the Hidra ORBehaiglthe server ROhandler
release operation. When releasing a non-replicated object reference placed at thdoszaire as the object
implementation, the domain just loses the pointer to the implementatid a counter stored at the server handleris
decremented. This counter stores how many local references are valid insidevéred®main. When this counter
drops to zero, the unreferenced notification will be sent to the implenientaide as soon as the underlying server
xdoor detects that its external reference counter also drops to zero. This the&tie server xdoor does not need
to know whether there exist or not valid object references inside the sgoweain. As explained in section 3.7,
ROxdoors do need to know whether there exist or not valid object referensiele ireplica domains. For this
reason the release operation provided by server ROhandlers is not sonjdggrement the local counter of local
references but also to inform the attached server xdoor when this countsrtdrogro.

For the sake of clarity, in the rest of the paper, we represent the kngevlR@xdoors have about the presence
of valid object references within a domain, with a label over the attachmenebatROxdoors and ROhandlers.
The label values can b#ient, if the ROhandler domain contains valid object referenpegary if the domain is
a primary replica for the service asgcondarys the domain is a secondary replica.

3As in Spring [11], we retry failed invocations at the handrel. Replication in Spring is made at the subcontractsl leshich is similar
to our handlers level.

3.3 Replicated Object Xdoors

ROxdoors differ from the rest of the ORB xdoors in the way client BQors point to the location of the server
ROxdoor.

For non-replicated object xdoors, the client one stores the full latatidhe server xdoor. Specifically, the
client xdoor stores the node number and the incarnation number of ther sexde plus the server port number
and the server port version number. The server port number is the Ineeltiere the server xdoor is placed at the
server node, and the server port version number represents the numheesthie port number has been used at
the server node to store an xdoor. Invocations made from clients tersealy succeed if the receiving node finds
in the incoming invocation stream the same port version number as ¢hstored in the indicated server port and
the incarnation number of the server node is the same as the one inalutiedrivocation stream. This one-to-one
relationship solves satisfactorily invocations between clients and eglicated servers where the only concern is
to assure that both client and server agree on both the incarnation numbermafdes and on the version number
of the xdoor.

For replicated objects, we find ourselves in the case that we need suppaptdty choose different destina-
tion nodes when invocation requests fail due to primary crashes. To tjsckent ROxdoors do not store the
destination node number, but the node chosen to serve a particulartrisqelested, with cooperation of the local
SMA, just before invocations are sent out of a node. To fully idemtifiych object should be the target for client
invocations, client ROxdoors store the object identifier (Objectldheftarget replicated object, together with the
Serviceld of the service that contains that replicated object implementati@nObjectld is used at the receiving
node to lookup the server ROxdoor, returning an specific exceptiberiiétdoes not exist a primary replica for that
object. Therefore, while being a little bit more expensive to findsteer ROxdoor at the server node, we allow
the client side, to interchangeably choose any of the nodes with primdigagfor that object at invocation time.

Server ROxdoors also differ from non-replicated object server xdootsirthey may serve as the entry point
for a number of object replicas placed at the same node. So, server ROxdumeg i the kernel, may be attached
to a number of server ROhandlers. The local SMA will be responsibletioosing which of the local primary
replicas will serve each invocation received by those server ROxdoors.

Finally, server ROxdoors are never released unless the replicated object cefeoemting protocol described
in section 3.7 decides that there are no valid object references pointingtptloated object in the whole network.
For instance if a number of primary replicas exist for a particular objedtjast one of them holds a reference
to the replicated object, the server ROxdoors attached to each replica will e awtil this last object reference
is released. This is required given that a valid reference placed at a replica domaohbe sent to some client
domain, and this domain could choose to send the invocation to any pfithary replica domains through their
server ROxdoors.

3.4 Object Identification

The cluster-wide object identifier for highly available objects is the (Serviceld, Objectld). Serviceld is the
service identifier to which the object belongs and Obijectld is an identifighunique among the objects created
by this service. The Objectld identifies the highly available object, sentifies any of its replicas. To guarantee
the uniqueness of object identifiers we build the Objectld as the &-fiNuideld, LocalOid, IncNumb#&y, where
Nodeld is the node identifier of the node that created the first replidaeobbject, IncNumber is the incarnation
number of this node when creating this first object replica, and LocalOlttisdunter of objects created by this
node during the current cluster reconfiguration.

The Objectld is just used as a unique identifier for replicated objectsntatts which node created the first
replica of the object, but even in the case that node crashes, changingeadsduth of the current cluster reconfig-
uration, the other object replicas will continue to use the previdyje€ld as the replicated object identifier. Thus,
the Objectld as the 3-tuple (Nodeld, LocalOid, IncNumber) does not rexilgsmean that there exist a primary
object replica at the node identified by Nodeld.

4To guarantee the uniqueness of the Objectld, both the Lédald@ the IncNumber should never overflow, choosing thutheisinternal
representation very long integer variables. For instaniti, 64-bit representations, we allaf 4 node crashes during the system lifetime and
264 objects to be created at each node between two consecusiersgrashes

3.5 Replicated Object Creation

A primary replica, as part of any of its operation semantics may require to caeatbject. As it occurs for any
operation, before returning control to the operation requester, thizegeplica must checkpoint the modifications
made by the operation to the rest of the service replicas. Given that gha sfate modifications was the creation
of an object, a reference to the object should be included into the checkpaination, in order to allow the other
service replicas to create a replica for the newly created object.

Sending the checkpoint invocation, produces the newly created object tarshated, and in consequence, the
server ROxdoor to be created. This is the point where the Objectld isatedeiThe Objectld is generated locally
by the SMA and stored together with the Serviceld into the ROxdoag.sté call this server ROxdoor, the main
server ROxdoor, which is the first server ROxdoor created in the systetnefoeplicated object. The main server
ROxdoor plays a distinguished role on the replicated object referencéicgymotocol described in section 3.7.

When a replica domain receives a replicated object reference (for instance, as pareokpoint invocation),
the kernel ROxdoor, a client ROhandler and the proxy are created if thayodigreviously exist. The ROxdoor
includes in its state the Objectld and the Serviceld. The attachment madeeldtve ROxdoor and the ROhandler
is labeled with &l i ent labeP. If the receiving domain wishes to become a replica for the object, it crazes t
implementation object specifying that this new implementation objectepléca. As a result a server ROhandler
will substitute the previously created client ROhandler, and the SMAbe& contacted to start the registration
process of the new object replica. This process consists on subsfitbhgénclient ROxdoor of the kernel for a
server ROxdoor. This substitution is only required in the case tt@eROxdoor actually was a client ROxdoor.
Note that the ROxdoor could already exist as server ROxdoor if soner ptimary replica domain exists in
the node. The second step in the replica registration process consistdabeling the attachment between the
ROxdoor and the ROhandler with both thei mar y andclientlabels. At this point the replica domain has a valid
object reference to the object while it also holds a replica of the impleatientobject.

3.6 Replicated Object Marshaling and Unmarshaling

As mentioned before, the first time a replicated object is marshaled frataritgin, the first replica object creation
process is started. This process includes creating a server ROxdoor, datbeliattachment between the object
ROhandler and the ROxdoor with both tblgent and theprimary labels, and generating the Objectld that will be
stored into the ROxdoor state. This ROxdoor is the main server R@xdbere is only one main server ROxdoor
for each replicated object, thus the other server ROxdoors will be gligiterent of this main one.

When a replicated object reference is sent to a different node, the marshabfuofcthe ROxdoor attached to
the reference is called. This function places in the marshal stream the yge@mftROxdoors and the Objectld plus
the Serviceld contained in the ROxdoor. Also the Nodeld where the reamrisROxdoor lives, is also placed into
the marshal stream. The location of the main server ROxdoor is used bgpleated object reference counting
protocol explained in section 3.7. The unmarshal function follovesréverse process. When the ROxdoor type
is found in the incoming stream, the ROxdoor unmarshal functionvisked, which extracts the Serviceld, the
Objectld and the Nodeld of the node where the main server ROxdoor reditteslocal SMA is then called to
lookup the ROxdoor. If the ROxdoor is not found, then it is createsigning the received object identifier to
it. Once the ROxdoor is located, a client ROhandler is created for the dameeiving the reference and the
attachment made between xdoor and handler is labeled witbrd label.

3.7 Replicated Object Reference Counting Protocol

This protocol ensures thatumreferencedotification will be eventually delivered to every object replica imple-
mentation of the object, some time after there is not any valid object refegointing to the replicated object.
The protocol works counting the object references as they travel aroenmetivork. To this end, ROxdoors, ei-
ther server or client, have a counter, caltetcountwith the property that the addition of the refcount’s of every
ROxdoor for a given replicated object is, at any time, greater than or equag touttmber of nodes with at least
one object reference pointing to that object. Initially every ROxdefrountvalue is zero. The protocol works as
follows:

5At this point, there is no knowledge of the replica intenttorcreate a replica of the object, and the reference sentitotiten considered
as any other client object reference sent to a domain.

e Each time a replicated object reference is sent out of a node the ROxdooewseter or client, adds one
to itsrefcount

¢ When a node receives a replicated object reference that results in the creationeoit &€ xdoor, (there
were no previous references to the object in the node and there doesstaraxbbject replica), it sends a
INC message to the main server ROxdoor and waits fok@H message. When it receives th€K it sends
aDEC message to the domain that sent to it the reference in the first place.

e When a domain receives a replicated object reference it already had (there existsdooR®@hether client
or server for that object), it send€EC message to the sender.

¢ When a ROxdoor receivesZEC message, it subtracts one fromrigfcount
¢ When a server ROxdoor receivesI&iC message, it adds one to fefcountand sends aACK to the sender.

e When the last client attachment between a server ROxdoor (not the main sexagd®and its ROhandlers
is removed, that is, when the last object reference is released, the serverd®@Gedds &DEC message to
the main server ROxdoor.

e When the last attachment between a client ROxdoor and its ROhandlers is rethatésl when there does
not exist neither client nor servers for the replicated object in that noB&&@message is sent to the main
server ROxdoor.

This protocol ensures that some time after there are no valid referencdmgdima replicated object, the
refcountvalue of the main server ROxdoor drops to zero and there only exist SR@satoors for that object in the
network. When this occurs, and also the last object reference local to the enaém ROxdoor is released (the last
attachment between the main server ROxdoor and its ROhandlers labeledievitlis removed), the main server
ROxdoor contacts the local SMA to lazily sentN®REFmessage to every other server ROxdoor. Then the main
server ROxdoor invokes thereferenceaperation of its server ROhandlers and removes itself. The same process
is followed by the other server ROxdoor when they receivNiREFmessage.

On node failures, a reference counting reconstruction protocol is rtimb®RB before new object invocations
are allowed to proceed. These object invocation blocking is made as thetdpsofssystem reconfiguration
synchronized by our group membership protocol[19, 18]. Before lihgobbject invocation requestsnreferenced
notifications are disabled.

The replicated object reference reconstruction protocol works as follows:

e Each node checks which of its ROxdoors contain as the main server ROxddetd\ithe identifier of the
failed node. For those ROxdoors a new main server ROxdoor is electesl.elHation process consists of
selecting as the new main server ROxdoor node, the node that containiimgaaypreplica for the object
(and thus a server ROxdoor), has as Nodeld, the smallest one among dieNselelds which are bigger
than the previous main server node, if any. Otherwise, if the pre\genser node had the biggest Nodeld
among all their replicas, then the smallest one among the remaining sedes isacchosen.

¢ Those references for which there does not exist a server replica, are markedlasand will raise an
exception when used.

¢ Once main server ROxdoors are elected, every ROxdoor segfdtsuntvalue to zero.

¢ Every surviving node sends a list MC messages to every other node, where the li$Na@f messages sent
from one node to another, contains INC message for each object that having a valid object reference at
the sender node, has the main server ROxdoor placed at the message desiirtaion

e ROxdoors receivindNC messages increase thegfcount

After the reconstruction protocol completesyreferencedhotifications are enabled, and then, object invoca-
tions are allowed to proceed.

3.8 Object invocation

When invoking a replicated object, the ROxdoor before sending ountleeation contacts its SMA. The SMA
selects a node with a primary replica for the service and then the Servicglith@r®bject Id are placed into the
invocation stream. The invocation then is sent to the selected node. Thengd@RB extracts the Serviceld and
the Objectld from the incoming stream and invokes a method of the SNiFotap the ROxdoor associated to the
received object identifier. Once the ROxdoor is found, the stream wilblsseqw to it and the ROxdoor will process
it.

Our replicated object invocation scheme facilitates the task of changing fotism@node the destination node
where invocations are to be sent. Invocations retries due to replicaefaitake advantage of this simple way of
changing the invocation destinations.

4 Checkpoint Support

Hidra services should use checkpoints to maintain consistency amoserthee replicas’ state. To this end, repli-
cas have to implement a checkpoint interface. Checkpoint messages are semdrmpliza to another invoking
some operation of the checkpoint interface. Our checkpointing scheme,dfuises the service programmer
to define the checkpoint operations, their arguments and to implement tAhough the support we give is
somehow more difficult to use than approaches like the one describe}] ini@l probably be less band-width
consuming and less memory and CPU time wasting. Checkpoint processogneffimay be improved by the
service programmer who can take advantage of the service semantics he imp|esaeding on each checkpoint
invocation the minimal amount of information required to maintainestansistency among the replicas.

In order a replica to initiate a checkpoint, it has to hold a reference to a phatlobject. Invocations made
over this reference will be multicasted to every other replica for the seiithe cluster. To provide this function-
ality, we make use again of the extensibility mechanism provided b@fB. We introduce a new type of handler
(Chkhandler) and a new type of xdoor (Chkxdoor) that basically piewiulticasting services. However, we do
not use group communication protocols for this purpose but wenigg message transfers among nodes when
possible. For instance, if a checkpoint message has to be sent from aotwde réplicas that are placed at some
other remote node, just one message is sent through the network.

Another basic difference between replicated objects and checkpoint object, chétkpoint objects do not
expect to receivenreferenceahotifications. Thus checkpoint object implementations will be active g &s the
replica itself is active. We have that in this respect, Chkxdoors are vmilas to the simple xdoorslescribed in
[4], that are never removed and allow clients of those objects to compmitédbation. Thus, to access a Chkxdoor,
a remote node does not need to receive a reference to that object, but jusd fodouthe-fly before accessing it.

4.1 Checkpoint Objects Creation and Identification

A replica, before becoming active for a service, has to create and register a cimdigect. Further, all check-
point objects defined by the replicas of a particular service must sharaneiaterface.

Similarly to the process followed for replicated objects, creation of a cha@okpbject results in the creation
of a server Chkhandler attached to a proxy object which is invoked when spenatimn of the checkpoint object
has to be invoked.

On server Chkhandler creation, the checkpoint object is registered witBNt%& which associates to it a
special Objectld. This checkpoint object identifier is just the Serviceld.checkpoint object registration starts a
protocol to add the new replica to the service as a secondary replica. Thalaghiled description of this protocol
is out of the scope of this paper, basically the effect it produces in ttersyis three fold. First, the local SMA
and possibly the SM, will reflect in their state the replica addition. 8dcthe new replica will receive a dump of
the most recent service state and third, after the protocol finishesgptiea will receive any further checkpoint
invocations initiated by service replicas.

4.2 Checkpoint Multicasting

When a replica wishes to initiate a checkpoint, it invokes the referendestohteckpoint object it received when
it created the checkpoint object. The server Chkhandler, instead of loophablignrequest to the checkpoint

10

object implementation, just gives the invocation stream to the Chikxdde Chkxdoor will ask the local SMA to
know how many nodes in the system hold replicas for the service and epeiving this information, proceeds to
marshal the invocation stream for each destination node. To improvecamtltig, each checkpoint message is sent
by a different operating system thread. For synchronous checkpointdtivas, an acknowledgment is awaited
for each message sent, and for asynchronous checkpoint messages contr@dsiteimnreturned.

The first bytes of the invocation stream contain the Chkxdoors typdten8erviceld. Nodes receiving such
invocations identified by the leading Chkxdoor type, lookup the @ik they hold for the indicated service and
the invocation stream is given to it to be further processed. A Chkxdemmiving an invocation, sends copies
of the stream to the distinct server Chkhandlers that may reside at thdgr r8erver Chkhandlers when receiv-
ing checkpoint invocations, do not immediately invoke the attached chedkplects but instead allocate local
buffers to store the checkpoint streams. Checkpoints are stored atkhar@her for each light weight transaction,
until every checkpoint made to complete that transaction arrives to thea@ldker. When this happens all invo-
cations are delivered in order to the replica implementation and the replisartnay update its state accordingly.
This checkpoint buffering facilitates to rollbatkperations given that service replicas will not receive checkpoint
invocations until the operation terminates.

4.3 Checkpoint Invocations Synchrony

Checkpoint interfaces may contain synchronous or asynchrérualis. They should be used by service pro-
grammers to specify as synchronous, what we icédintion checkpointand the other checkpoints, callsthte
checkpoint@s asynchronous. Intention checkpoints require that the checkpoint texqeeives an answer from
each node that receives the checkpoint message before the requester retuahsocthrrservice replica domain.
In a checkpoint of this type, a primary replica transmits to the othdraapits intention to modify shared state
that is not volatile. So, all replicas must know about this before theahapdate is made. Then, if some failure
arises and the primary replica that was serving the request crashes, tica welpich is elected to restart the op-
eration can check the persistent share state to find out if the intended wadatempleted. Intention checkpoint
acknowledgments are replied at the receiving Chkxdoors before tramgmigpiwards the incoming stream, but
after every preceeding checkpoint has arrived to the node. This way, somegyaisichieved in the checkpoint
message response time and further, checkpoint messages ordering aremsiyedhat each intention checkpoint
message. Having every checkpoint received by a node up to an intention chetetjowis replicas to be confident
that they will receive every replica state modifications up to the imtartheckpoint message in case the operation
coordinator fails.

On the other hand, state checkpoints only send updates made by a opexatézhls/ a primary replica in its
local state. This type of checkpoint are asynchrofious

In case of primary service replica failures, the primary replica elected tameshose interrupted operations
that were started over the failed replica, restarts them from the last recetesdiam checkpoint. Every replica
discards from their temporal buffers, any state checkpoint received afteatitaniention one.

For this reason, service programmers, besides providing checkpoitimmes; have to provide code to resume
operations after each intention checkpoint the operation makes.

5 Light Weight Transactions

We structure highly available objects invocations as light weighsaations which are a kind of transactions that
ensure that the state modification made by operations requested ovecatezpierviced, are completed and their
state modification are made at every service replica, or their effects complestedyaed. In the rest of the section,
for the sake of brevity, we use the term transactions meaning liglght/giansactions.

If a node or a domain receiving an invocation over a replicated object faile wtocessing the invocation, the
operation will be automatically reinitiated over a different replica withclient intervention. This is achieved by
the transaction structure that we impose on each replicated object invoc@itemsactions are identified during
their lifetime using a small object called TID. TID’s are used to reissiled invocations over different replicas of
the same obiject.

6The rollback is simply to discard the temporal buffers whitietransaction checkpoint messages are stored.
7Asynchronous calls are specified byewayoperations.
8The sequence of asynchronous checkpoints are synchraatizedte on the light weight transaction termination.

11

To structure invocations as transactions we benefit from the facilignddy our replicated objects references to
change in run-time the destination node for an invocation. We also béoefitheunr ef er enced naotification
to asynchronously synchronize the transaction termination. Also chedkare used by transactions to maintain
updated the local state of any service replica, reducing the network load infoaapdicas placed at the same node.

®
CLIENT REPLICA

\ ()
Client w Server Chkhandler

ROhandler 7 ROhandler
CINVAVAS o o ©
Chkxdoor
SSA

)

REPLICA
© @
Q Chkhandler o
(1)
© ®

Figure 4: An example of light weight transaction

Figure 4 shows an example of a transaction initiated over a servicewdtiptimaries placed at two distinct
nodes, having the client at another node.

Step 1 A client initiates a transaction when invoking a replicated object refereStep 2 The ROhandler
creates a TID object to identify the current transaction marshaling it as & angument of the request. After
this, the invocation reaches the destination server ROharstégr §. Step 4 the ROhandler creates a small object
called theconfirmation objecthat is used to signal the transaction terminat®tep 5 This server ROhandler sends
a serializing request to the local SSA (The procedure followed by thet8Sarialize the request is explained in
section 6) including as additional arguments the TID and the confirmaliject Step §. The local SSA will block
the request until the operation is allowed to proceed. The SSA besidekzaegi the request, internally stores the
transaction context composed by the 3-tuple (TID, confirmation objeansNumbel). Once the serializing
request returns from the SSAtép 7, the replica implementation code is invokesiep § with the TID as an
additional argument. The replica implementation may emit a number of chietkpeocations until the operation
terminates. Each checkpointinvocation includes the TID as an additional anguiine Chkxdoor, when receiving
an invocation stream from any of its ChkhandleBep 9, contacts the SSA to know how many checkpoint
messages have been delivered for the current Bieg 10. If the current checkpoint message is found to be the
first one, the transaction context stored at the SSA is also piggybadkdtécheckpointinvocation stream. In any
case the sequence number of the current checkpointis also included intedbation stream. ThiSheckNumber
is used by the receiving replicas to order the checkpoint messages they reanehgt the transport layer does
not guarantee ordered message transfers. Also, the last checkpoint seligfdarweight transaction needs to be
identified, this time using a special checkpoint operation argument sethelgplica domain. It is important to
detect the last checkpointin order to terminate the transaction.

9The TransNumber is part of the information returned by thet@&Serialize the request. How this number is generated ikiequl in
section 6.

12

Theconfirmation objec(CObj) is a replicated object created by the transaction coordinator and wdpigas
are created by the cohort nodes (and the secondary replgtap)X} and by the serializer as soon as they receive
the transaction context. The request cohorts (and the secondary repicaiserthe transaction context with the
first operation checkpoint message. The serializer immediately releases thismoefeand the cohort nodes will
release it when they receive the last transaction checkpstiep (12. The coordinator will release the reference
when it replies to the client. Each cohsignals the transaction terminatigeimilar to a commit request) invoking
the transaction TIDStep 13, passing to it a reference to the confirmation object and then releasingfénernce
to the confirmation object they hold. The coordinator replies to trentland releases its confirmation object
reference $tep 13 (signaling this way the transaction terminati$h The client synchronizes the transaction
termination releasing the confirmation object reference it receBtp(14, as soon as it has received as many
transaction termination signals as nodes with replicas there are in therkdstep 10, excluding the operation
coordinator node. We call this transaction termination synchronizalietransaction committed signalThis
release, makes that every service replica will receive on the confirmation olmplgmentation ainreferenced
notification Gtep 1% which is used to remove the transaction context stored at each replica.tidsserializer
will receive that natification, that it will use to remove the associatadgaction from the set of “in-progress”
transactions.

Most of the messages sent around during a light weight transaction arehaggous, allowing thus a higher
degree of concurrency while processing a number of requests. Theymitlyrenous calls are the client invocation,
the serializing request (equivalent to acquiring a lock) and any requitedtion checkpoints

6 Concurrency Control Mechanism

For each service, the concurrency control requirements are implementedsbyitse serializer The function of
the SSis to give order to the invocations received by all the objects thgt@se the service, taking into account
incompatibilities among the service operations. Two operations arédawad incompatible if they access shared
state and at least one of them modifies it.

Each time a transaction arrives to a primary replica domain, the receivingrsg®©handler makessgrializing
requesto the local service serializer agent (SSA) to find out which in progressddions should terminate before
allowing the current one to proceed. The SSA may be unable to locallyt@iys request, redirecting in this case
the request to the SS. The serializing request carriegtleation contextogether with the confirmation object
and the TID. The invocation context consists of enough informati@haracterize the requested operation, and is
used by the SSA (and possibly by the SS) to find incompatible igfpas transactions. The invocation context is
composed by the method number, the Objectld and the object class of #ut lobing invoked. The CObj is used
by the SS to be notified when this transaction finishes releasing at tmentdhe state stored for that transaction.

The SSA may require the SS to serialize the request. This call is alwaghkreyrous and its results are returned
as soon as the SS computes which in-progress transactions are incoenpttilthe requested one. The arguments
returned are, the TransNumber that will identify the current transacioththe list of TransNumbers that identify
all the transactions that must terminate before the current could proceckvdr, the serializing request will not
return from the SSA to the ROhandler that made it, until the listrefipcessor transactions terminate.

The SMA's maintain the dependencies established among the current actsactians, blocking transactions
until every predecessor transaction terminates.

In case of failure of the serializer, the data maintained by the SSA's reting reconstruction of the dynamic
state — the list of active transactions — of this serializer. To this en#ogol is run among the living SMA's,
first elects a new SS among the SSA's and second, each SSA gives to the mewi§®f in-progress transactions.

To maintain the order provided by the serializer, the SSA has to knoauthient state of all transactions, either
terminatedor active A transaction is consideradrminatedwhen the SSA has seen its last checkpoint and the
invocation which carried this last checkpoint has been processed by the lodehse@dtherwise, the transaction
is considered stilactive When the SMA realizes that a transaction has terminated it removes its TraubgKu
from the list of preceding TransNumbers for the blocked transactidrsonhe of these lists becomes empty, its
transaction is unblocked and it starts the operation execution.

The SSA has to maintain also a list with the TransNumbers of the tatedrtransactions. This list is needed
to deal with the situation of an incoming transaction incompatible gatime that are being terminated at the same

10Similar again to a transaction commit request.

13

time. Due to the asynchrony in the transaction termination signaliogegplure, the serializer can include the
TransNumbers of some transactions that have terminated or will terrimatediately in the list of predecessors
for the current one. If the serialization request returns after thoseatttioas have terminated in the local node,
and the list of terminated transactions is not maintained, the jusedrtiansaction never will be unblocked, since
part of the TransNumbers it waits for, already have been processed antiéorgo

Each TransNumber maintained by the SMA's in the list of terminated trainsads definitively released when
the serializer knows that all transactions that have this TransNumbeeiinlist of preceding TransNumbers have
terminated. When this is detected, the serializer piggybacks the TransNtoriiereleased in the response for
the following serializing request made by each SMA.

Finally, the SS may decide at any given time, to send a sub-matrix of ta@tpns compatibility matrix to
any SSA that makes serializing requests. Sub-matrixes are granted to Skisanbig number of closely related
operations are being requested by a particular SMA. This is a quite ititey@soperty when applied to an object
oriented environment like ours. It is usual to have a client domain acapasilosely related set of objects from
some service, and given that the client starts invocations at one sirdgethe client SMA tends to select the same
primary replica as the invocation destinations. Thus, if that selecteitaeploes not require to access the global
SS, an important performance improvement is achieved. However, othasdler access operations included in
the granted sub-matrix, have first to access the SS and then, the SSAthdstd-matrix resides incurring then
in worse performance if those additional client accesses are frequent.

This concurrency control system provides some advantages when it is gty other concurrency control
methods, mainly with distributed locking. First, it does not proe deadlocks if the transactions only include an
operation, as is the case presented here. A concurrency control system bagetlilmutetl locks might have
similar characteristics if a two-phase locking protocol is used and alklack acquired following a pre-specified
order and released at the transaction’s commit point. However, locks raustahaged by the programmer of
the highly available service, who has to know when they are needed and whielf lock must be used and
where must be placed, while our support manages itself all the concurcentipl problems. In our model, the
application programmer only has to provide the appropriate compgtibihtrix. So, our solution offers an easier
programming model. Second, the dynamic information maintained byehalizer is easily recollectable in case
of failures. A fault-tolerantimplementation of distributed locks regsia greater amount of messages to acquire or
release a lock. In our solution, moreover, the messages used to release aadaghlyavailable object are also
shared to communicate the transaction’s termination. So, our concuigentipl introduces a minimal overhead
in the communication costs, always lower than the communication costistiiduted lock solution.

7 Failure Recovery

This section describes how failure recovery is achieved for either nodenmiderashes. Sometimes the replicated
service will need to rollback accessing code the programmer has to provilieivthe most cases, or either the
rollback is transparent to programmers, or transactions are ensured todg¥m

To detect node failures, we use a group membership protocol. To deteicardphain failures, on replica
registration, the SMA creates an object that will receive an unreferenced nagifieagtsoon as the replica crashes.
To this end, the only reference to this dummy object will be given talttraain on replica registration.

Once a failure is detected, some actions are required to reconfigure the affectimes and to achieve termi-
nation of the interrupted transactions. For the sake of clarity we anédylmees in terms of the actions required
to recover one particular transaction that was running when the failure.aFas this interrupted transaction, we
study the failure of each component and each set of components that take partransaction processing.

7.1 Client Failure

If only the client fails, no matter if just the domain or the whole apdo additional action is needed. The
transaction will terminate, and the client failure will only be detected wihenservice replicas invoke the TID,
but nonetheless, the transaction will be committed by the last replieddasing its reference to the confirmation
object.

On client failure thus, no extra failure recovery action is required, aadsimply allow orphan transaction
processing.

14

7.2 Cohort Failure

In either case, failures of a cohort replica domain or node crashes invavaaort node, the required action
is to update the SMA state and possibly the SM state to reflect the neigeseonfiguration. Also, if the failed
cohort was the only service replica in its node, or the failure affecteavti@e node, the coordinator will send
an invocation to the TID object with the confirmation object, to allowdhent, which is waiting for a number of
transaction termination signals, to receive the correct number of thosage=also after failures arise.

7.3 Coordinator Failure

If the coordinator fails before contacting the serializer, no extra a@icgguired; the client node will just select the
new coordinator. If the serializer received the serializing request but narcdid receive any of the transaction’s
checkpoint invocations, the serializer will send a notification to all tHeods to unblock any transaction whose
serial order was set to depend on the failed transaction. Once those tramsactioinblocked, the client node will
be allowed to select a new coordinator.

If some cohort received a checkpoint invocation from the failed coordipatiisome of the replicas did not
receive an intention checkpoint, the buffered checkpoint invocations witliscarded and the serializer will then
perform the same recovery action as before.

If every cohort received at least one intention checkpoint, let be checkigaihé last intention checkpoint
received by every replica, then every replica will be forced to process the chiatkpmuests up to that checkpoint
k, to upgrade their state. Any other buffered checkpoint message is safedydbs. After this is made, the client
node will be allowed select a new request coordinator and the new coadiegtica will resume the operation
execution from the point identified by the last intention checkpoint.

7.4 Serializer Failure

The static serializer state is replicated among a number of the SSAgshiynamic state is not. Thus, before
allowing any further transaction processing on the service, the dynamadiser state must be reconstructed and
one of the SSA's placed at the same node as one of the primary repliche wlkbcted as the new serializer for the
service.

To rebuild the serializer dynamic state, every SSA contacts the new serigiiaeg to it all the in-progress
transaction processing information it holds.

Since the serializer is an object placed in the high availability ORB suppoiserializer domain exists. The
serializer only may crash if the node where it is running fails.

7.5 Multiple Failures

Basically, multiple failures are handled the same way as if the failures securentially. The only difference is
given when both the client node and the transaction coordinator failtegdn these case, the transaction has to
be rolled back. To this end, first the operation is rolled back, secondetiiedizer will send a notification to all the
surviving primary replicas to unblock any transaction whose serial avesiset to depend on the failed transaction
and third, every replica will release the transaction context objects.

If no intention checkpoints were received by every other replica, the rollpaskedure is just to discard
any checkpoint buffers held at each replica for the transaction. Otherwiseephiea rollback operation will
be called. This is the only case where an expensive rollback operation loedtttced for service consistency.
Nevertheless this kind of rollbacks can be avoided if the programmer digréésigns the service to with operation
implementations with just one intention checkpoint being the last clodckfor the operation.

To prevent the extremely grave case that arises when the whole services;tghservice programmer has to
carefully design it, to enable recovery from state saved to secondary stifridigse failures have to be tolerated.
Recall that this kind of external accesses should be done in the contextarfsaction being preceded by an
intention checkpoint.

15

8 Further Work

The design shown in this paper has to be extended to improve some a§iectsa highly available service may
request the services of other highly available services, support foedhéstinsactions [17] is required. We are
currently exploring how to extend our concurrency control mechanisprdwide this support. Moreover, inter-
service requests introduce a new problem that has to be solved. Thismprs deadlock detection [13], that will
require distributed protocols to be run among every service serializer.

At first glance, the role of the serializers should be extended to managsrteensactions. Also, each seri-
alizer should know which service originated each request made over its seraitsfetring this information to
an external object, which could search for cycles in the path followed byipteutransactions that share some
services. Once the deadlock is detected a transaction victim can be chosen tecbback.

We are also exploring several distinct ways to decompose the comipatibdtrix in sub-matrixes to reduce
as much as possible the network traffic produced by the concurrency botcbanism.

Finally, to complete our high availability support we have to ddezéill the service reconfiguration protocols.
We have in mind protocols to create a service, remove a service, add a secapli@eyto a service, promote a
secondary replica to a primary one, degrade a primary replica to a secoretaoye a secondary replica from a
service and to freeze a service.

9 Conclusions

Starting with an implementation of a CORBA-compliant Object Requesk@tave have presented a set of ex-
tensions to provide high availability support in object-orientetributed programming environment. Since the
ORB taken as a basis is part of the distributed operating system ketisedugiport for high availability services is
usable by user-level applications and also for the development of gtkesiting system components.

There have been other attempts to provide high availability suppaiisiributed systems, either provided by
the operating system kernel itself or by user level libraries. Only sonmpart of them offer support for different
types of replication. Usually, when the support is given at system,lewyy passive replication is offered [1, 8]
since the image of the primary process or replica is copied to its backageimThis is not as efficient as our
solution, since the amount of data to be transferred when the statedidied may have a considerable size and
can not be controlled by the application’s programmer. On the other ifahd,support is given at user level, it is
usually based on group communication protocols [2, 5, 16, 24] whichigee message ordering to all the replicas
that receive the same sequence of requests and process them concurrentlyth&ocase, active replication is
the immediate solution, although some toolkits offer solutisinsilar to ours, as the coordinator/cohort model
introduced by Isis. Our alternative allows the use of secondary repledsib not process directly any client
request to the highly available object. Moreover, due to the use ads&$ebject and the compatibility matrix,
multiple compatible requests can be served concurrently. In our sojdtie number of replicas and their type are
easily configurable.

Only another architecture for high availability exists offering als&BDservices [15]. Its solution has been
developed on top of group communication protocols, developing fRB Qsing group support. It also supports
several types of replication models; in particular the coordinator/¢ahadel offered by Isis, which is very similar
to ours. But our approach is different for the light weight transactiore use, the lower communication cost
required by our system and thereferencedacility our ORB provides for both replicated and non-replicated
objects.

As we have seen, our architecture for high availability offers a set obcheristics that has not been provided
by any other system or toolkit. Transactions to increase operation regliasility, the low cost incurred by the
system to process them and the ability to to process multiple requestsoaada service at a time are its most
outstanding properties. On the other hand, our architecture offersRBB&ike object oriented programming
model for application development, where programmers just have ascmdditasks, compared to non highly
available application development, the design of checkpoint interfacesngiiementation of those interfaces and
the specification of the operation compatibility matrix for replicated ises: We believe that this extra cost is
affordable, comparing it with the benefits provided by our support.

16

References

[1] J. E. Allchin. An architecture for reliable decentralized systems. Teehnmeport, TR-GIT-ICS-83/23,
Georgia Institute of Technology, Atlanta, Sept. 1983.

[2] O. Babaoglu, R. Davoli, L. A. Giachini, and M. Baker. RELACS: A comigations infrastructure for
constructing reliable applications in large-scale distributed syst&@eshnical report, UBLCS-94-15, Dept.
of Computer Science, University of Bologna, Bologna, Italy, June 1994

[3] J. Bartlett. A nonstop kernel. IRroceedings of the 8th ACM Symposium on Operating System Principles
Dec. 1981.

[4] J. Bernabéu, V. Matena, and Y. Khalidi. Extending a traditional O8guebject-oriented techniques. In
USENIX Association, editor2Znd Conference on Object-Oriented Technologies & Systems (COOTS), June
17-21, 1996. Toronto, Canadpages 53-63, Berkeley, CA, USA, June 1996. USENIX.

[5] K. P.Birman. Replication and fault-tolerance in the ISIS systenRroteedings of the 10th ACM Symposium
on Operating System Principles, Orcas Island, Washingtages 79-86, Dec. 1985.

[6] K. P. Birman, T. Joseph, and T. Raeuchle. Concurrency control irieesibbjects. Technical report, TR
84-622, Dept. of Computer Science, Cornell Univ., Ithaca, NY, July 1984

[7] K. P. Birman, T. Joseph, T. Raeuchle, and A. El-Abbadi. Implemerfany-tolerant distributed objects.
IEEE Transactions on Software Engineerifid(6):502-508, June 1985.

[8] A.Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault tolramder UNIX.ACM Transactions
on Computer Systems(1):1-24, Feb. 1989.

[9] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The pnatsckup approach. In S. J. Mullender,
editor, Distributed Systems (2nd editiompages 199-216. Addison-Wesley, Wokingham, England, 1993.

[10] Jim Gray and Andreas Reutéfransaction Processing: Concepts and Technigidsrgan Kaufmann, San
Mateo, 1993.

[11] Graham Hamilton, Michael L. Powell, and James J. Mitchell. Subcontraitéx#ble base for distributed pro-
gramming. In Barbara Liskov, editdProceedings of the 14th Symposium on Operating Systems Principles
pages 69-79, New York, NY, USA, December 1993. ACM Press.

[12] Y. A. Khalidi, J. M. Bernabéu, V. Matena, K. Shirriff, and M. Thada®olaris MC: A multi computer OS. In
USENIX Association, editoRroceedings of the USENIX 1996 annual technical conference: Janua622
1996, San Diego, California, USAISENIX Conference Proceedings 1996, pages 191-203, Berkeley, CA,
USA, January 1996. USENIX.

[13] E. Knapp. Deadlock detection in distributed databa&&i Computing Survey$9(4):303-328, Dec. 1987.

[14] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing héghilability using lazy replicationACM
Transactions on Computer Systerh8(4):360-391, Nov. 1992.

[15] S. Maffeis.Run-Time Support for Object-Oriented Distributed ProgrammPigD thesis, Dept. of Computer
Science, University of Zurich, Febr. 1995.

[16] C. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phoenix: A tablér building fault-tolerant distributed
applications in large scale. Technical report, Dépt. d’'Informatidiesle Polytechnique Fédérale de Lau-
sanne, Lausanne, Switzerland, July 1995.

[17] J. E. Moss. Nested transactions: An approach to reliable distdbabmputing. Technical report,
MIT/LCS/TR-260, MIT Laboratory for Computer Science, 1981.

[18] F. D. Mufoz-Escoi, J. M. Bernabéu-Auban, and P. Galdamez. Rkanllling in distributed systems with
group membership services. Technical report, ITI-ITE-98/5, Univt€atica de Valencia, Spain, September
1998.

17

[19] F. D. Mufioz-Escoi, Vlada Matena, J. M. Bernabéu-Auban, and R&Bsz. A membership protocol for
multi-computer clusters. Technical report, ITI-ITE-98/4, Univ. Badhica de Valéncia, Spain, September
1998.

[20] OMG. The Common Object Request Broker: Architecture and Specifica@daject Management Group,
July 1995. Revision 2.0.

[21] OMG. CORBAservices: Common Object Services Specificatdinject Management Group, Nov. 1995.
Revised Edition.

[22] F. B. Schneider. Replication management using the state-machine apprioagh J. Mullender, editor,
Distributed Systems (2nd editiopages 166—197. Addison-Wesley, Wokingham, England, 1993.

[23] lona Technologies. The orbix architecture. Technical report, lonaridobies, Nov 1996.

[24] R. van Renesse, K. P. Birman, B. Glade, K. Guo, M. Hayden, T. M. HjdReWalki, A. Vaysburd, and
W. Vogels. Horus: A flexible group communications system. TechnicartepR95-1500, Dept. of Com-
puter Science, Cornell University, Ithaca, NY, March 1995.

18

