
A Membership Protocol for Multi-Computer Clusters

Francesc D. Muñoz-Escoı́ Vlada Matena José M. Bernabéu-Aubán
Pablo Galdámez

Technical Report ITI-ITE-98/4

Abstract

Distributed applications need membership services to knowwhich of their components are active or have
failed. The Cluster Membership Monitor (CMM) provides membership services at the machine level. As its
name suggests, the target environment for this membership service is a cluster of computing nodes, where the
CMM checks the current state of all machines that have a CMM instance running on them. All monitors run a
distributed membership protocol with an integrated timer-based failure detector. The aim of these monitors is to
notify all membership changes to a set of software packages that previously requested their services. As a result,
all these packages know about the current configuration of the cluster where they are running and may adapt its
state to this configuration.

The protocol has been used as the basis for the development ofa reliable communication layer and as an
assistance service for the reconfiguration of anobject request brokerwhich provides the remote invocation support
for the object-oriented applications running in the cluster.

1 Introduction

A membership service has to maintain the set of machines or processes that compose a group [9, 15]. When
changes in the membership set arise, the service has to report these changes to the alive group members or to other
system components which depend on the group being monitored.

Several types of groups exist in distributed systems. Groupcommunication toolkits [1, 2, 4, 7, 10, 12, 14, 22]
use the group concept to maintain a set of processes that are interested in the same sequence of incoming messages.
Usually, each group of this kind can be seen as a replicated process. So, group communication toolkits provide a
basis to develop highly available applications.

Other membership services maintain a set of machines as its members [5, 17, 19, 20]. The information provided
by this kind of services can be used to build other services which depend on the set of machines that constitute the
current distributed system.

Our membership service, thecluster membership monitor(CMM), also maintains the current set of machines
that constitute the distributed system. In this case, the user of the membership services is a reliable transport layer.
This transport relies on the information maintained by the membership service to guarantee that all messages that
have been sent are either delivered at their target or an error notification is returned as soon as possible to the sender
if the target node has crashed. Thus, the transport preventsa sender from waiting indefinitely for a response from
a crashed node. Moreover, this transport is the lower layer of an object request broker(ORB) [16] which is also
reported each time a membership change arises.

Since the protocol followed by the CMM is a distributed algorithm that needs a CMM replica in each of the
system nodes, the CMM is also used to guide and synchronize the ORB software placed at each node when a
reconfiguration has to be made. When some membership change is detected, the ORB must follow a series of steps
to rebuild its state. The CMM controls that all the ORB’s havecompleted a reconfiguration step before the next
one is initiated.

The rest of the document is arranged as follows. Section 2 gives an overall description of the environment
where the CMM is integrated and the properties that the protocol must provide. Section 3 explains the Cluster
Membership Monitor protocol and its current implementation. Sections 4 and 5 give some performance values
and some informal correctness arguments. Comparison with related work is given in Section 6. Finally, some
conclusions about this work can be found in Section 7.

1

2 System Requirements

Thecluster membership monitorprovides membership services to an ORB which is used to intercommunicate the
objects that run in a multi-computer cluster. The CMM has to maintain the set of nodes included in the cluster and
must notify the ORB and other system components when some change happens in the membership set, either due
to a new node joining the cluster or due to the failure or departure of a previously running one. To achieve these
functions, the CMM requires that the following properties were satisfied by the system:

• Non-reliable transport services.The CMM uses this kind of services to send messages to other CMM
modules placed in other nodes of the cluster. No additional attempt is made if a message cannot be delivered
to its target node.

• Halting failure assumption[21]. Every node in the system works properly or crashes (stops) without causing
any malfunction to the rest of the system.

This is not so easy as it may seem. An isolated node1 might answer its requests of service having a local
state inconsistent with that of the rest of the system. Thus,an isolated node is providing an incorrect service
to its clients. So, to prevent this situation, isolated nodes must be aborted as soon as possible.

• Full connectivity.Each node in the cluster is connected to any other node, either directly or via intermediate
nodes. The underlying transport has to provide the image that any cluster node is directly accessible from
any other node in the cluster.

• Bound message transmission time.An upper bound in the message transmission time2 must be assumed. So,
if an expected message is not received on time, its target CMMassumes that its sender has not been able to
send it. If several attempts to receive a message from the same sender have failed, the target CMM assumes
the sender has crashed.

• Node addressing. The CMM has to be integrated at a software level (inside the operating system kernel, if
possible) where each node in the cluster must be distinguishable from other nodes. Each node has to use a
different and unique identifier (e.g., its network address).

• Invariable node and member identifiers.Each node in the system has always the same node identifier which
is used by the CMM protocol as an internal identifier when the node is alive and integrated in the membership
set. So, a node does not change its identifier after being aborted or reinitiated.

• The latter property requires theuse of stable storageto save a reconfiguration number associated to any
node. Each time a node takes part in a cluster reconfiguration, it increases asequence number. This number
is required to distinguish obsolete messages sent by some member of the cluster.

Moreover the target distributed system is assumed asynchronous; i.e., all its nodes do not share a global clock
and the message delivery time is not bound.

If the system provides an environment with the characteristics stated above, our protocol has to guarantee the
following requirements:

R1 Each active node in the cluster must maintain the same membership set. When a change in the membership
set is detected, all the active nodes must agree on this change and this agreement can not be deferred.

R2 Only preconfigured nodes can be members of the cluster. If anode was not registered as a possible member
of the group, its requests to join the group are rejected.

R3 A node can be integrated in the membership set at any time. When it requests its integration, the joining
node gets the current membership set and joins the group as soon as possible.

This can be made even if the membership set was being reconfigured due to the joining or failure of other
nodes; i.e., multiple-nodes joins are accepted.

1The termisolated noderefers to a cluster node that is not able to communicate with any other node of its cluster, although it can send or
receive messages from external client nodes or domains.

2The termtransmission timerefers here to the time needed to carry a message from its sender node to its receiver node when no failure
occurs. It is not the same asmessage delivery time, which considers the time needed to deliver a message to its destination, including all
transmission attempts made in case of communication failures.

2

R4 A node is considered faulty when its messages are not received by the rest of the cluster nodes. A faulty
node is removed from the membership set immediately.

When a member node does not receive any message from other cluster members, it is automatically aborted.
This prevents interaction between a “faulty” node and external machines.

R5 Partitions are not allowed. When some members of the current cluster can not communicate with others, the
greater subgroup becomes the new cluster and the nodes in other subgroups must be shutdown. Moreover, a
minimum quorum is required to allow the remaining group to survive. If this quorum is not achieved, all the
nodes are stopped.

These requirements are needed to serve appropriately otherdistributed servers that run in our multi-computer
cluster. As stated above, two of these servers are the reliable transport layer and the ORB. The former needs a
fast notification of membership changes, which can be satisfied if the failure detection mechanism is based on
requirement R4. R4 is needed because the target system is asynchronous, and according to [3] in such a system
theaccuracyandlivenessproperties can not be simultaneously satisfied if the failure detection mechanism reports
failures before the faulty component is restored. In our case, the CMM is notaccurate—so it can notify failures
that never arose— but islive, because all failures are notified by the membership service.

Requirement R2 is needed to guarantee that only the cluster nodes belong to the group. Similarly, requirement
R5 is needed to prevent inconsistencies in the shared state of the distributed applications that run in the cluster
(mainly the ORB).

3 Cluster Membership Monitor

The CMM protocol can be seen as a distributed algorithm that requires a monitor in each one of the machines that
run the algorithm and are included in the membership set. Each one of these monitors runs the same algorithm,
which is divided in three procedures according to the task being done by the membership service. These three
procedures require different intercommunication approaches to deal with their purposes.

The first procedure corresponds to the search of the group of machines that are currently running and is known
as theagreement procedure. All monitors enter this phase when a failure is suspected ora new node is trying to
join the group. In the agreement procedure, all the monitorsexchange information about the group of nodes that
are accessible from their local nodes. Eventually, all nodes reach agreement on the set of nodes that are up and
running. So, as a result of the agreement procedure, an stable membership set is found.

The second procedure is needed to notify other cluster-wideservices about the new membership set found in
the agreement phase. This is thenotification procedureand can be divided in a sequence of steps. In each step, the
membership monitor notifies the new membership set to a different system component. Once the local component
has been notified, all monitors initiate a round of messages to agree on the termination of the current notification
and, if other steps are required, the following one is initiated. At the end of the notification procedure, all system
services that need to know the current membership set have received that information. The arrangement in steps
guarantees that all nodes have done the notifications in the same order and at the same time.

The third procedure is also started when the agreement one isterminated. This is thepolling procedure. In this
procedure periodical messages are sent by the cluster nodesto check the state of the other cluster members. If a
node does not receive some messages of this kind for a given sender, it suspects this sender is faulty and leads all
cluster monitors to theagreement procedure.

This decomposition of the membership protocol in three procedures allows an efficient and robust implemen-
tation of the protocol, integrating failure detection in the resulting algorithm —several membership algorithms
require external failure detectors [12, 13, 19, 18, 6], so the whole cost of their membership solutions depends on
this external service. Also, thenotification procedureof our membership service provides valuable help to other
system services when a change in the membership set has happened. So, the approach followed in this protocol
seems to be practical to satisfy all the membership requirements found in a multi-computer cluster.

The following subsections describe the data structures maintained by the membership monitors, the information
being transferred in membership messages and the algorithms followed in each protocol procedure.

3

3.1 Data Structures

Each membership monitor runs an algorithm based on an automaton. Each automaton state represents a different
protocol phase or a transitory step that modifies part of the data maintained by the monitor. Transitions between
states occur when the tasks associated to the current state have been finished or some external event has been
detected; for instance, a message from a joining member, or atimeout pointing out the failure of another member.

The completion of the tasks needed in each automaton state always requires an agreement among all the current
members on their successful termination. To control the achievement of the agreement, astate matrix is used. This
matrix maintains the current states of all preconfigured cluster nodes as they are known by the local monitor. The
matrix has as many columns and rows as preconfigured members exist, independently of their current state. Each
cell of the matrix holds an integer number that identifies thestate of the node represented by that cell of the matrix.
The possible states are:

START The node is still being initialized. No message has been broadcast by its monitor.

BEGIN The node is executing theagreement procedure. All nodes in this state are exchanging messages to find
out which is the current membership set.

STEP(i) The node is notifying a system component in thei-th step of itsnotification procedure. It has also started
thepolling procedureto check the stability of the new membership set.

END The node has terminated the notification procedure and it is only checking the stability of the current mem-
bership set.

RETURN The node has detected a membership change. It has to notify this situation to the rest of membership
monitors and has to return to theagreement procedure; i.e., it is returning to theBEGIN state.

UNKNOWN The state of this node is uncertain. Some expected messages from this node have not arrived on
time, but some additional time is needed to declare that the node has failed.

DOWN The node does not reply nor send any message. It has failed.

The cellstate[i][j] maintains the state of the nodej as known by the nodei. Each time a monitor A detects a
change in the state of another cluster node B, it modifies theB-th column of the row associated to its local node
(theA-th row) and broadcasts this row to the rest of nodes. When a monitor C receives a message from a remote
monitor A it replaces theA-th row of its local matrix to the one received in the incomingmessage. Also, theA-th
column of theC-th row is changed to the current value of thestate[A][A] cell.

As an example, figure 1 shows how thestate matrix of the node 2 is changed when it receives a message
from node 3. In this example the cluster has only 3 preconfigured nodes. Before arriving the message, the cluster
consists of the nodes 2 and 3, which are both in theEND state; node 1 has not started. When node 1 starts, its
messages have been received only by node 3, which changes to theRETURN state and broadcasts its matrix row.
When this row is received by node 2, this node changes its matrix contents to the ones shown in the second table
of the figure. As a result, row 3 is completely replaced and thestate[2][3] cell is also updated. Later, node 2 will
initiate its transition to theRETURN state, too.

1 2 3
1 UNK UNK UNK
2 DOWN END END
3 DOWN END END

1 2 3
1 UNK UNK UNK
2 DOWN END RET
3 BEGIN END RET

(a) (b)

Figure 1:State matrices of node 2 before(a) and after(b) receiving a message from node 3.

4

To reach agreement on a given state, all the cells associatedto all active nodes3 in the cluster must have the
same state value. When this agreement is achieved, all cluster members transit to the following automaton state.
All possible transitions are depicted in figure 2 and are explained in the following subsections.

State with unstable membership.

State with stable membership.

Suspicion of some node failure.State matrix

re-initialized.

State

matrix

initialized.

Modules

notified.

Modules

notified.

Reconfig-

uration

ended.

START

STATE

STATE

BEGIN STEP(1) STEP(N) END

RETURN

Figure 2: States and some causes of transition in the CMM automaton.

Other important variables in each monitor areseqnum and local id. The seqnum variable maintains the
number of reconfigurations seen by the local monitor; i.e., how many times the monitor automaton has arrived to
theBEGIN state, either due to new nodes joining the cluster or to the failure of some nodes. A copy of this variable
is saved in stable storage each time its value is modified. When the local machine is restarted, its value has to be
read from stable storage and it is used to tag the initial outgoing messages sent by the local membership monitor.

The local id variable maintains the identifier of the local node in the cluster membership set. This identifier is
an integer number lower than the number of preconfigured members and greater than or equal to zero.

Finally, some other variables are needed to maintain the amount of time assigned to each one of the timers that
control the reception or sending of messages. These variables are:

• heartbeat time. Maximum amount of time that may be elapsed between the emission of two different
messages. Once this time has passed, the local monitor must send a message to the other monitors.

• failure time. Maximum amount of time the local monitor is waiting for a message from a remote monitor
before that remote node is considered faulty. If no message has arrived from the intended sender in this time,
that sender is registered asDOWN.

• shutdown time. If the local monitor does not receive any message forshutdown time microseconds, it
shutdowns itself. The lack of messages for this period meansthat the node remains isolated.

Each monitor maintains a set of timers associated to these variables. There are a heart-beat and a shutdown
timers associated to the local node. Theheart-beat timeris re-instantiated each time the local monitor sends a
message. Theshutdown timeris reset each time the local node receives a message from any other monitor.

There is a pair of reception and failure timers for each one ofthe supposedly active remote monitors. The
reception timeris associated to the expected heart-beat messages sent by all other monitors. It is reset each time
a message is received from the expected sender. When this timer detects a reception timeout, the state of the
associated sender is changed toUNKNOWN. Thefailure timer is also reset each time a message is received from
its associated sender monitor.

3.2 Message Contents

The CMM protocol uses two types of messages. The first one is the regularmessage. It is used to transfer the row
of thestate matrix, either in theagreement procedure—to achieve consensus on the current membership set— or
in thepolling procedureto check the stability of the group. The other type is thestepmessage, which is used to
reach agreement on the termination of a notification step.

3A node isactive when no other cluster node suspects it faulty; i.e., it does not appear in theDOWN state in any cell of its associated
column.

5

typedef struct {
node t msg sender;
usectime t msg sendertime;
seqnum t msg seqnum;
node state t msg statevec[MAXNODES];

} message t;

Figure 3: Contents of a regular message.

The contents of a regular message are depicted in figure 3 and are explained below:

• Sender identifier(msg sender). Identifier of the node that sent the message. This identifier is set by the
local monitor when the message was received, translating the network address of the sender to its identifier.
This is done using a table of network addresses for all the preconfigured cluster members. So, machines that
have not been preconfigured as possible cluster members can not be included in the membership set.

• Sender time(msg sendertime). Timestamp set by the sender when the message was sent. Thisallows an
accurate control of periodical message timeouts at the receiver side.

• Reconfiguration sequence number(msg seqnum). This is the number of reconfigurations made by the
sender. It is needed to check if the message is stale or if the receiver node has lost any messages in the
BEGIN state.

• Sender state row(msg statevec). Row of thestate matrix where the sender maintains the states of other
cluster nodes.

typedef struct {
node t msg sender;
boolean t msg is master;
boolean t msg is ended;
unsigned msg step number;
seqnum t msg seqnum;

} messtep t;

Figure 4: Contents of a step message.

Stepmessages maintain the reconfiguration sequence number and the identifier of the sender fields of regular
messages and replace all other fields by a boolean (msg is master) that tells the role its sender is playing in the
synchronization needed at the end of the step, another boolean (msg is ended) which points out if the local node
does not have additional programs to be notified and an integer (msg step number) that holds the step number.
The contents of a message of this type are shown in figure 4.

3.3 Initialization Procedures

In theSTART andRETURN states described in section 3.1, the data structures maintained by the monitor have to
be initialized. This initialization procedure sets the states of all other nodes to theUNKNOWN value in thestate
matrix. Also, in theSTART state, the value of theseqnum variable is read from stable storage. Finally, a set of
timers are installed to check the current state of all preconfigured nodes in the cluster. For each remote node there
are a pair of timers, thereceptionand thefailure ones. Theheart-beatand theshutdowntimers have to be set for
the local node, too. The function associated to each timer has already been described in section 3.1. The steps
followed in this procedure are shown in figure 5.

6

1: procedure initialize;
2: var
3: i, j : nodet;
4: begin
5: for i := 0 to MAXNODES - 1do
6: begin
7: for j := 0 to MAXNODES - 1do
8: state[i][j] := UNKNOWN;
9: if i <> local id

11: then begin
12: reinstalltimer(i, receptiontimer);
13: reinstalltimer(i, failure timer);
14: end;
15: end;
16: reinstalltimer(local id, heart-beattimer);
17: reinstalltimer(local id, shutdowntimer);
18: end;

Figure 5: Initialization procedure run in theSTART state.

Thereinstall timer procedure sets the timer received as the second argument forthe node received as the first
one. Each timer class needs to be set to a different time in thefuture. For instance, the reception and heart-beat
timers are set to the current time plus the value stored in theheartbeat time variable. The failure timer uses the
failure time variable and the shutdown timer theshutdown time one.

3.4 Agreement Procedure

In theagreement procedureall membership monitors cooperate to find a new membership set when new cluster
machines have started or some of the previously running oneshave been stopped or have failed. Also, a new
configurationsequence number, usually the following one in ascending order, is chosen andall messages sent after
the agreement procedure will carry it. This sequence numberis needed to avoid the processing of stale messages
in the membership monitors.

The tasks done in the agreement procedure are outlined in figure 6. Thecheck agreement function checks
if all non-faulty nodes in the localstate matrix have the same contents in their associated state rows. If so, the
agreement variable is set to true. Moreover, if some cell of the row associated to the local node in the state matrix
has changed, theupdated state variable is also set to true. If the agreement has been achieved all membership
monitors do a transition to the following automaton state; i.e., to theSTEP1 state. This is achieved when the state
of the local node is changed in thestate matrix.

Thebcast state function broadcasts a regular message to all preconfigured cluster members. It also reinstalls
theheart-beat timerfor the local node.

Finally, theshutdown function initiates a shutdown of the local node, reporting appropriately all system com-
ponents that have requested this notification. This function is only used when the local node has not received any
message from any other preconfigured cluster member for a given time and this may only happen when this node
becomes isolated.

The main loop of this procedure waits for external events. These events may be the arrival of a message sent
by another monitor or the triggering of a local timer. When a message arrives and its sequence number is equal to
the local one, the reception and failure timers are reinstalled for the message sender. The local shutdown timer is
reprogrammed, too. Later, the state matrix is updated accordingly to the contents of the incoming message and the
resulting state is checked to find out if an agreement has already been achieved. If so, the local automaton goes to
theSTEP1 state, initiating thenotification procedure.

If the sequence number of the incoming message is lower than the one maintained by the local monitor, the
message is discarded. Otherwise, if it is greater than the local one, the monitor has to update itsseqnum variable

7

1: procedureagreement;
2: var
3: m : messaget;
4: n : nodet;
5: begin
6: state[localid][local id] := BEGIN;
7: while state[localid][local id] = BEGIN do
8: wait-for event;
9: caseeventof

10: recv(m):
11: if m.msgseqnum = seqnum
12: then begin
13: reinstalltimer(m.msgsender, receptiontimer);
14: reinstalltimer(m.msgsender, failuretimer);
15: reinstalltimer(local id, shutdowntimer);
16: state[m.msgsender] := m.msgstatevec;
17: state[localid][m.msgsender] := m.msgstatevec[m.msgsender];
18: checkagreement;
19: if agreement
20: then begin
21: state[localid][local id] := STEP1;
22: seqnum := seqnum + 1;
23: end;
24: if updatedstate
25: then begin
26: bcaststate;
27: updatedstate := FALSE;
28: end;
29: else ifm.msgseqnum> seqnum
30: then begin
31: seqnum := m.msgseqnum;
32: state[localid][local id] := RETURN;
33: bcaststate;
34: end;
35: receptiontimeout(n):
36: state[localid][n] := UNKNOWN;
37: bcaststate;
38: failure timeout(n):
39: state[localid][n] := DOWN;
40: bcaststate;
41: heart-beattimeout:
42: bcaststate;
43: shutdowntimeout:
44: shutdown;
45: esac;
46: done;
47: end;

Figure 6: Agreement procedure run in theBEGIN state.

8

and go to theRETURN state to reinitialize its variables.
The timers set for the remote monitors are used to find out which remote nodes are not active. So, when these

timers trigger a timeout event, the state associated to thatremote node is updated in the localstate matrix. To
reduce the time needed to rebuild the membership set when a new member is being added or an old member has
failed, the re-initialization made in theRETURN state is slightly different to the one shown in figure 5. In that
case, the assignment done in line 8, is only made if the current contents of that cell in the matrix are different to the
DOWN value; i.e., faulty or stopped nodes are suspected to remainin that state. Moreover, the timer re-installation
made at lines 12 and 13 is only made for nodes that are not in theDOWN state. If some of these faulty nodes has
been started, when its first messages are received by the other monitors, the appropriate timers are reinstalled. As
a result, the agreement time can be reduced if no timer is initially associated to these nodes.

3.5 Notification Procedure

Thenotification procedureshown in figure 7 is used to report the new membership set to different software com-
ponents in the local node that depend on the current set of cluster machines. Samples of applications of this kind
are the reliable communications layer, the object request broker and several ORB extensions required to provide
high availability support [8].

The programs or objects to be reported about the membership changes have to register themselves when the
CMM is being initialized or when it is already running. Each node may have a different set of applications
registered to be reported in the notification procedure. Each application has to request a different step stage.

At the beginning of the notification procedure, each monitorfinds out if it is the current master of this stage.
To do so, theis master function is used (line 8). This function returnsTRUE if the local monitor has the lowest
identifier among all the current active nodes in the cluster.Once this is done, the main loop of the procedure starts
(lines 11 through 34 in figure 7). Each iteration in the loop isused to advance an step, notifying all instances of
the program registered for this step in each cluster node. The functionregistered checks if there is a program
registered for the current notification step in the local node. If so, thenotify application function is used to
synchronously notify that component about the current membership.

Later, all cluster nodes have to send a step message to the chosen master. When the master has received the
appropriate message from each other monitor, it broadcastsan acknowledgment to all them. When the acknowl-
edgment is received, the monitor updates itsstate matrix accordingly and initiates a transition to the following
automaton state, which can be anotherSTEP message or the finalEND state. In theEND state, the notification
stage terminates and the local monitor only executes thepolling procedure.

Since each monitor may have a different number of applications interested in the membership status and addi-
tional applications may be registered at any time, the number of required steps have to be decided at runtime. To
this end, the step messages carry amsg is ended field. This field, when the message is sent by a non-master node,
points out whether the sender monitor has no other program tobe notified. On the other hand, for the acknowl-
edgment messages sent by the master, a TRUE value means that all monitors have notified all registered programs
and the current one was the lastSTEP needed. Two functions are used to find out the value to be assigned to this
message field. In the master side, thecheck if ended function (in line 17) returns TRUE when the master node
has notified all its registered programs and it has received step messages from all other monitors pointing out that
they also have notified all their programs. In the non-masternodes, thecheck if all notified function (in line 23)
checks if all programs locally registered have been alreadynotified.

3.6 Polling Procedure

Thepolling procedureis started as soon as theagreement procedureis terminated. It checks the stability of the
membership set found in the agreement stage. To do this, at the start of the polling procedure each monitor chooses
two neighbors from the whole membership set, building in this way a logical ring among all current members.
Periodically, each monitor checks the state of its two neighbors, sending a message to them and expecting also a
message from each one of them. This behavior is controlled bythe heart-beat, shutdown, reception and failure
timers, as it was done in section 3.4.

The algorithm followed in this procedure is outlined in figure 8. The first steps (lines 6 through 16) are used
to cancel the timers set in theBEGIN state and to reinstall them for the neighbor nodes in the logical ring being
established.

9

1: procedurenotification;
2: var
3: step : integer := 1;
4: ended : boolean := FALSE;
5: master : boolean;
6: m, n : messtept;
7: begin
8: master := ismaster(localid);
9: m.msgseqnum := seqnum;

10: m.msgis master := master;
11: while not endeddo
12: if registered(step)
13: then notify application(step);
14: if master
15: then begin
16: wait-for reception-of-step-messages;
17: ended := checkif ended;
18: m.msgstepnumber := step;
19: m.msgis ended := ended;
20: bcast(m);
21: end else begin
22: m.msgstepnumber := step;
23: m.msgis ended := checkif all notified;
24: sendto master(m);
25: recvfrom master(n);
26: ended := n.msgis ended;
27: end;
28: step := step + 1;
29: for i in live nodesdo
30: for j in live nodesdo
31: if ended
32: then state[i][j] := END;
33: elsestate[i][j] := STEP(step);
34: done;
35: end;

Figure 7: Notification procedure run in allSTEP states.

10

1: procedurepolling;
2: var
3: m : messaget;
4: n : nodet;
5: begin
6: for n in live nodesdo begin
7: stoptimer(n, receptiontimer);
8: stoptimer(n, failuretimer);
9: end;

10: neighbors := findneighbors;
11: for n in neighborsdo begin
12: reinstalltimer(n, receptiontimer);
13: reinstalltimer(n, failuretimer);
14: end;
15: reinstalltimer(local id, heart-beattimer);
16: reinstalltimer(local id, shutdowntimer);
17: sendstateto neighbors;
18: while state[localid][local id] <> RETURNdo
19: wait-for event;
20: caseeventof
21: recv(m):
22: if m.msgseqnum = seqnum
23: then begin
24: reinstalltimer(m.msgsender, receptiontimer);
25: reinstalltimer(m.msgsender, failuretimer);
26: reinstalltimer(local id, shutdowntimer);
27: if m.msgstatevec[m.msgsender] = RETURN
28: then begin
29: state[localid][local id] := RETURN;
30: bcaststate;
31: end;
32: end else ifm.msgsendernot in neighbors
33: then begin
34: state[localid][local id] := RETURN;
35: bcaststate;
36: end;
37: receptiontimeout(n):
38: state[localid][n] := UNKNOWN;
39: failure timeout(n):
40: state[localid][n] := DOWN;
41: state[localid][local id] := RETURN;
42: bcaststate;
43: heart-beattimeout:
44: sendstateto neighbors;
45: shutdowntimeout:
46: shutdown;
47: esac;
48: done;
49: end;

Figure 8: Polling procedure run in theSTEP andEND states.

11

Later, the local monitor starts the main loop, sending periodically a message to its both neighbors and expect-
ing the arrival of their messages. If some neighbor does not send any message for afailure time interval, it is
considered faulty and the local monitor changes to theRETURN state, broadcasting its associated row to all other
cluster nodes. As a result, once a monitor has detected the failure of another one, all monitors eventually arrive to
theBEGIN state, initiating anotheragreement procedure. Note also that the polling and the notification procedures
may be executed simultaneously. If a failure is detected when both are being executed, the decision taken by the
polling procedure has the highest priority, and the local automaton goes to theRETURN state.

Finally, the lines 32 through 36 are needed to detect the attempts of a new node to join the cluster and they also
lead the local automaton to theRETURN state.

3.7 Isolated Nodes

Section 3.4 outlines a mechanism to halt isolated nodes based on the localshutdown timerthat is reset each time
the local node receives a message from another cluster node.But this timer is only useful when only one node is
isolated from the rest of the cluster, preventing its interaction with cluster clients.

A source of isolated nodes is a cluster partition. A partition arises when some of the active cluster nodes are
not able to communicate with other active nodes in the same cluster. As a result of a partition some subgroups of
machines can be identified. This situation can be considereda problem, since the members of each subgroup can
receive messages from other cluster nodes, but not from all active nodes. As a result, the distributed applications
or services running on the remaining subgroups do not have a state known by all their active components. So, in a
multi-computer cluster environment only one of the resulting subgroups can be allowed to proceed. All other ones
have to be shutdown, but in this case the local shutdown timerbecomes completely unuseful.

For managing partitions, the protocol provides two mechanisms:

• Require a minimum number of nodes in the current cluster. If this number can not be achieved, the nodes
are shutdown. So, if a cluster becomes partitioned, only thesubgroup which exceeds the required population
remains. Obviously, the required minimum must be high enough to avoid two remaining subgroups.

• The local software modules notified in the STEP states are able to request a shutdown of the local or some
remote nodes. These software modules are at kernel level andthey are assumed trustful.

When one of these modules notes that the current membership set is insufficient and the service it is carrying
on is essential for the cluster, it can request the shutdown of its subgroup (which can be the whole cluster).

Anyway, the partition problem seldom arises in a multi-computer cluster. Usually, the cluster nodes are phys-
ically close each other and the interconnecting network canbe easily replicated. With a system of this kind,
communication problems may only arise due to an excessive load which slows down the message delivery time.
So, physical partitions are not frequent.

4 Performance

The cost in messages and elapsed time of a reconfiguration (either a join or a failure) depends mainly on the number
of machines in the resulting cluster (N). Besides this, a joining reconfiguration can be initiated at any time but
a reconfiguration to drop some node is delayed a bit. This sortof reconfiguration is triggered when a period of
failure time microseconds has been elapsed since the last message from the faulty node was received by the other
monitors.

Theoretically, to get the next membership set the followingpoint-to-point messages are needed:

• The node which detects the membership change sendsN messages to the other members. This sending leads
all member nodes to theRETURN state.

• On reception of this message, each other member notifies its local software modules about what is happening,
and eventually arrives to theBEGIN state.

• Once in theBEGIN state, each node broadcasts its local row. That impliesN2 messages.

12

In the best case a node can receive a message from any live nodebefore replying to any of them. In the
worst case, the node receives a message from any other node which implies a change in the row associated
to the local node and broadcasts a message for each one of them; when the node receives a second or later
message from a node, it does not reply to it. Consequently, the BEGIN state ends with an upper bound of
N3 messages.

• Later, in theSTEP andEND states only2N messages are needed at the end of each step or everyheart-
beat time microseconds; i.e., for each round of messages.

So, the cost in messages isO(N3) in a cluster ofN nodes.

5 Correctness

An argument about the accomplishment of the requirements introduced in section 2 is given below. It is not a
formal prove, we only describe the behavior of the algorithmin the situations required in that section.

R1 Each active node in the cluster must maintain the same membership set.

The membership set is built in theBEGIN state. Using thestate matrix, we ensure that each node leaves
theBEGIN state only if each member of the cluster shares the same matrix contents.

When a node monitor detects a variation in its membership set, it goes to theRETURN state and eventually
all cluster members re-initiate aBEGIN state. So, either the membership set is stable and shared by all
cluster members or it is unstable and the active nodes are in theRETURN or BEGIN state, building the new
one.

If the cluster is partitioned, the cluster could be in a situation where more than one membership set has been
built and different active nodes assume different membership sets. In section 3.7 we have shown how this
situation is avoided.

R2 Only preconfigured nodes can be members of the cluster.

We use a configuration file where the network address of each possible cluster member is associated to a
logical identifier. Only machines which appear in this file can be members of the cluster. So, external nodes
can not receive protocol messages and can not take the place of a real cluster member.

R3 A node can be integrated in the membership set at any time.

When a new node tries to join the cluster, it broadcasts a regular message. These messages will lead the
cluster to theRETURN state and in the subsequentBEGIN state, the new node is included in the cluster.

This procedure allows multiple node joins, too. If several nodes are awaken at the same time, they can be
included in the cluster in theBEGIN state of the same reconfiguration.

Moreover, the delay of a (possibly multiple) node join is bounded. The maximum number of messages
which can be exchanged due to a join is known and the time needed to do so is easily predictable.

R4 A node considered faulty is removed from the membership set in a bounded delay.

When a node is faulty, extremely slow or is attached to a faulty link, other nodes detect this situation and
initiate a reconfiguration sequence. In the nextBEGIN step, the node is excluded from the membership set.

The node failure is detected using periodical messages in theSTEP or END states. Its two neighbors in the
logical ring detect the problem. Then a reconfiguration is initiated and the membership set is rebuilt.

R5 Partitions are not allowed.

This is only a consequence of the first requirement.

13

6 Related Work

There has been a lot of work related to membership protocols.The case of a multi-computer cluster as the target
system simplifies some of the problems to be solved. For instance, we can assume that the interconnecting network
is private to the cluster members and their membership monitors are well-behaved. So, our protocol does not have
to worry about malicious failure suspectors, as is the case of the one proposed in [18].

Another property that has to be required in a cluster membership protocol is to avoid partitions. A multi-
computer cluster behaves as a single system and its components share their state. It can not tolerate its division
in two or more subgroups which believe that they are the wholecluster, since this might lead to inconsistencies in
the cluster data or in the responses provided to external clients. Some other systems, for instance [5, 11, 18, 19],
neither tolerate partitions but their way to guarantee thatminor partitions realize they have been excluded from the
group are different. In their case, the dropped members detect that the current group size is not big enough and
leave the group. In our case, this mechanism is aided by a timer which lead to the shutdown of the node in case
of becoming isolated. This stronger guarantee is needed to avoid any communication among the isolated node and
remote clients, as explained above.

Group members can have some degree of centralization. Some systems give any member the same role in
the protocol, as in the algorithms described in [5, 11]. So, the protocol is fully distributed and does not depend
on any centralized authority. On the other hand, [18] and [19] distinguish the figure of a manager node which
controls a two-phase protocol each time a membership changeoccurs. The former alternative has the advantage
that the nodes have not to agree in which is the current leaderor manager of the group, and reconfigurations are
not penalized when this most privileged node fails. However, if a manager node is used, the amount of messages
to be exchanged when the membership set is reconfigured can bereduced extremely. Our protocol is a mixture
of these two approaches. In the reconfiguration stage, it behaves as a decentralized algorithm, and each future
member broadcasts a similar number of messages. No worries are needed to elect a special node at this stage.
So, the protocol is quite sound when a reconfiguration is done. When the membership set has been computed, we
define a subsequent stage to report to other system components about the new members. This task can be done
in a set of sub-stages. So, we need some synchronization among the cluster members (otherwise, an individual
node may become reconfigured before the others and this fact can be dangerous in a system like ours). To achieve
this agreement on the completion of sub-stages, we devise a centralized sub-protocol where a manager is elected.
But the leader election is trivial now. We already know whichmembers belong to the cluster and each member
manages exactly the same information. So, the election can be done locally in each node and no additional message
is required. Finally, when the membership set is already stable, we follow a protocol similar to the third appeared
in [5]. This protocol is also decentralized and requires that each member exchanges messages with another two
members of the cluster. So, we have elected a decentralized algorithm which requires a low number of messages
and guarantees a fast detection of failures. Other approaches, as the use of a token that is passed along a logical
ring ([1], [11] and the second protocol of [5]), require a lower number of messages but the time needed to detect
multiple failures is longer. In a multi-computer cluster, it is very important to detect failures as soon as possible.

The assignment of logical identifiers to the group members also has several flavors. Systems like [19] propose
to assign a different identifier for a node in each of its incarnations. So, when a node is repaired and initiated
again it is considered by the protocol as a different machine. In our case, the use of a dedicated interconnecting
network among the cluster members ensures that the maximum number of nodes and their identity can be known
a priori. To avoid confusion among successive reconfigurations of the same machine, a sequence number is used
and attached to all messages. So, stale messages can be easily discarded.

The use of constant logical identifiers for all nodes simplifies the relationship between the cluster membership
monitor and other components of the distributed operating system.

As we have seen above, the characteristics required to a membership protocol for a multi-computer cluster are
not new. They can be found in some previous works. However, none of these have been appropriately tailored for
a cluster system. In this kind of systems, the abortion of isolated nodes and the time spent to detect some failure
are critical. We believe our algorithm is a reasonable solution to both problems.

7 Summary

We have outlined the requirements that have to be accomplished by a multi-computer cluster membership protocol
and we have described a possible solution for a system of thiskind. Our protocol combines some ideas of previous

14

protocols to achieve its main goals: fast failure detection, avoidance of partitions, assurance of fail stop behavior
and a sound reconfiguration procedure.

Besides solving the membership problem, our protocol provides mechanisms to link the membership monitor
to other operating system’s local components which depend on the membership service. Also, it ensures that the
reconfiguration procedure is highly synchronized among themembership members when the new membership set
has been built, avoiding inconsistencies.

It will be used to provide membership services to the reliable transport layer of the HIDRA architecture. It also
assists in the reconfiguration of the ORB and all their components related to the high availability support being
provided by this architecture.

So, the protocol described in this paper seems to be appropriate to a particular kind of system — multi-computer
clusters —, such as the one introduced here.

References

[1] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. Fast message ordering and
membership using a logical token-passing ring. InProceedings of the 13th International IEEE Conference
on Distributed Computing Systems, pages 551–560, May 1993.

[2] Ö. Babaoğlu, R. Davoli, L. A. Giachini, and M. Baker. Relacs: A communications infrastructure for con-
structing reliable applications in large-scale distributed systems. Technical report, UBLCS-94-15, Dept. of
Computer Science, University of Bologna, Bologna, Italy, June 1994.

[3] K. P. Birman and B. B. Glade. Consistent failure reporting in reliable communication systems. Technical
report, TR93-1349, Dept. of Computer Science, Cornell University, Ithaca, NY, May 1993.

[4] K. P. Birman and R. van Renesse.Reliable Distributed Computing with the Isis Toolkit. IEEE Computer
Society Press, Los Alamitos, CA, 1994.

[5] F. Cristian. Reaching agreement on processor-group membership in synchronous distributed systems.Dis-
tributed Computing, 6(4):175–187, 1991.

[6] D. Dolev, D. Malki, and R. Strong. An asynchronous membership protocol that tolerates partitions. Technical
report, CS94-6, Institute of Computer Science, The Hebrew University of Jerusalem, Israel, March 1994.

[7] D. Dolev, D. Malki, and R. Strong. A framework for partitionable membership service. Technical report,
CS95-4, Insitute of Computer Science, The Hebrew University of Jerusalem, Israel, 1995.

[8] P. Galdámez, F. D. Muñoz-Escoı́, and J. M. Bernabéu-Aubán. HIDRA: Architecture and high availability
support. Technical report, DSIC-II/14/97, Univ. Politècnica de València, Spain, May 1997.

[9] M. A. Hiltunen and R. D. Schlichting. Understanding membership. Technical report, 95-07, Dept. of Com-
puter Science, The University of Arizona, Tucson, AZ, July 1995.

[10] M. A. Hiltunen and R. D. Schlichting. A configurable membership service. Technical report, 94-37A, Dept.
of Computer Science, The University of Arizona, Tucson, AZ,January 1996.

[11] H. Kopetz and G. Grünsteidl. TTP - A protocol for fault-tolerant real-time systems.IEEE Computer,
27(1):14–23, January 1994.

[12] C. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phoenix: A toolkit for building fault-tolerant distributed
applications in large scale. Technical report, Dépt. d’Informatique,École Polytechnique Fédérale de Lau-
sanne, Lausanne, Switzerland, July 1995.

[13] S. Mishra, L. L. Peterson, and R. D. Schlichting. A membership protocol based on partial order. In J. F.
Meyer and R. D. Schlichting, editors,Dependable Computing for Critical Applications, pages 309–331.
Springer-Verlag, Wien, 1992.

[14] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. Budhia, and C. Lingley-Papadopoulos. Totem: A fault-
tolerant multicast group communication system.Communications of the ACM, 39(4):54–63, April 1996.

15

[15] F. D. Muñoz-Escoı́, J. M. Bernabéu-Aubán, and P. Galdámez. The group membership problem and its solu-
tions. Technical report, DSIC-II/8/97, Univ. Politècnica de València, Spain, May 1997.

[16] OMG. The Common Object Request Broker: Architecture and Specification. Object Management Group,
July 1995. Revision 2.0.

[17] R. Rajkumar, S. Fakhouri, and F. Jahanian. Processor group membership protocols: Specification, design and
implementation. InProceedings of the 12th IEEE Symposium on Reliable Distributed Systems, Princeton,
NJ, pages 2–11, October 1993.

[18] M. K. Reiter. A secure group membership protocol. Technical report, AT&T Bell Labs., 1994.

[19] A. M. Ricciardi. The group membership problem in asynchronous systems.Ph.D. dissertation (also available
as TR92-1313), Dept. of Computer Science, Cornell University, Ithaca, NY, page 198 pgs, January 1993.

[20] L. Rodrigues, P. Veríssimo, and J. Rufino. A low-level processor group membership protocol for LANs. In
Proceedings of the 13th International Conference on Distributed Computing Systems, pages 541–50, May
1993.

[21] R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach to designing fault-tolerant systems.
ACM Trans. on Computer Sys., 1(3), August 1983.

[22] R. van Renesse, K. P. Birman, B. Glade, K. Guo, M. Hayden,T. M. Hickey, D. Malki, A. Vaysburd, and
W. Vogels. Horus: A flexible group communications system. Technical report, TR95-1500, Dept. of Com-
puter Science, Cornell University, Ithaca, NY, March 1995.

16

