A Membership Protocol for Multi-Computer Clusters

Francesc D. Muiioz-Escoi Vlada Matena José M. Bern#héan
Pablo Galdamez

Technical Report ITI-ITE-98/4

Abstract

Distributed applications need membership services to kmbich of their components are active or have
failed. The Cluster Membership Monitor (CMM) provides mesrghip services at the machine level. As its
name suggests, the target environment for this membersimjice is a cluster of computing nodes, where the
CMM checks the current state of all machines that have a CMitaite running on them. All monitors run a
distributed membership protocol with an integrated tirnased failure detector. The aim of these monitors is to
notify all membership changes to a set of software packdgggpteviously requested their services. As a result,
all these packages know about the current configurationeo€lilster where they are running and may adapt its
state to this configuration.

The protocol has been used as the basis for the developmentediible communication layer and as an
assistance service for the reconfiguration obaject request brokexhich provides the remote invocation support
for the object-oriented applications running in the cluste

1 Introduction

A membership service has to maintain the set of machinesaegses that compose a group [9, 15]. When
changes in the membership set arise, the service has td tepse changes to the alive group members or to other
system components which depend on the group being monitored

Several types of groups exist in distributed systems. Gompmunication toolkits [1, 2, 4, 7, 10, 12, 14, 22]
use the group concept to maintain a set of processes thataredted in the same sequence of incoming messages.
Usually, each group of this kind can be seen as a replicatetkps. So, group communication toolkits provide a
basis to develop highly available applications.

Other membership services maintain a set of machines agitdxars [5, 17, 19, 20]. The information provided
by this kind of services can be used to build other servicashtepend on the set of machines that constitute the
current distributed system.

Our membership service, tletuster membership monit¢g€MM), also maintains the current set of machines
that constitute the distributed system. In this case, tke efthe membership services is a reliable transport layer.
This transport relies on the information maintained by themhership service to guarantee that all messages that
have been sent are either delivered at their target or anmotidication is returned as soon as possible to the sender
if the target node has crashed. Thus, the transport preaesgader from waiting indefinitely for a response from
a crashed node. Moreover, this transport is the lower lafan@bject request brokefORB) [16] which is also
reported each time a membership change arises.

Since the protocol followed by the CMM is a distributed aigfun that needs a CMM replica in each of the
system nodes, the CMM is also used to guide and synchroniz®RB software placed at each node when a
reconfiguration has to be made. When some membership chedgtected, the ORB must follow a series of steps
to rebuild its state. The CMM controls that all the ORB’s haeenpleted a reconfiguration step before the next
one is initiated.

The rest of the document is arranged as follows. Section @sgian overall description of the environment
where the CMM s integrated and the properties that the pmtmust provide. Section 3 explains the Cluster
Membership Monitor protocol and its current implementaticGections 4 and 5 give some performance values
and some informal correctness arguments. Comparison wiétted work is given in Section 6. Finally, some
conclusions about this work can be found in Section 7.

2 System Requirements

Thecluster membership monitprovides membership services to an ORB which is used todotemunicate the
objects that run in a multi-computer cluster. The CMM has &ntain the set of nodes included in the cluster and
must notify the ORB and other system components when somgeh@appens in the membership set, either due
to a new node joining the cluster or due to the failure or diearof a previously running one. To achieve these
functions, the CMM requires that the following propertiesrer satisfied by the system:

Non-reliable transport servicesThe CMM uses this kind of services to send messages to othéd CM
modules placed in other nodes of the cluster. No additioitexrgpt is made if a message cannot be delivered
to its target node.

Halting failure assumptiof21]. Every node in the system works properly or crashegptwithout causing
any malfunction to the rest of the system.

This is not so easy as it may seem. An isolated hodight answer its requests of service having a local
state inconsistent with that of the rest of the system. Tanssolated node is providing an incorrect service
to its clients. So, to prevent this situation, isolated reogheist be aborted as soon as possible.

Full connectivity.Each node in the cluster is connected to any other nodey eliteetly or via intermediate
nodes. The underlying transport has to provide the imageatimacluster node is directly accessible from
any other node in the cluster.

Bound message transmission tird& upper bound in the message transmissiontimast be assumed. So,

if an expected message is not received on time, its target Ggldimes that its sender has not been able to
send it. If several attempts to receive a message from the sander have failed, the target CMM assumes
the sender has crashed.

Node addressingThe CMM has to be integrated at a software level (inside ferating system kernel, if
possible) where each node in the cluster must be distinghistrom other nodes. Each node has to use a
different and unique identifier (e.g., its network address)

Invariable node and member identifieEach node in the system has always the same node identifieln whi
is used by the CMM protocol as an internal identifier when théenis alive and integrated in the membership
set. So, a node does not change its identifier after beingebor reinitiated.

The latter property requires these of stable storagt save a reconfiguration number associated to any
node. Each time a node takes part in a cluster reconfiguratimcreases aequence numberhis number
is required to distinguish obsolete messages sent by sormberef the cluster.

Moreover the target distributed system is assumed asynohgji.e., all its nodes do not share a global clock
and the message delivery time is not bound.

If the system provides an environment with the characiesistated above, our protocol has to guarantee the
following requirements:

R1 Each active node in the cluster must maintain the same esinip set. When a change in the membership

set is detected, all the active nodes must agree on this elambthis agreement can not be deferred.

R2 Only preconfigured nodes can be members of the clustendtla was not registered as a possible member

of the group, its requests to join the group are rejected.

R3 A node can be integrated in the membership set at any tinfeenW requests its integration, the joining

node gets the current membership set and joins the groupasasgossible.

This can be made even if the membership set was being recoedigue to the joining or failure of other
nodes; i.e., multiple-nodes joins are accepted.

1The termisolated nodeefers to a cluster node that is not able to communicate wishather node of its cluster, although it can send or

receive messages from external client nodes or domains.

2The termtransmission timeefers here to the time needed to carry a message from itesende to its receiver node when no failure

occurs. It is not the same a&sessage delivery timevhich considers the time needed to deliver a message testsndtion, including all
transmission attempts made in case of communication &silur

R4 A node is considered faulty when its messages are notvegtbly the rest of the cluster nodes. A faulty
node is removed from the membership set immediately.

When a member node does not receive any message from oth@ratuembers, it is automatically aborted.
This prevents interaction between a “faulty” node and exdemachines.

R5 Partitions are not allowed. When some members of themiehaster can not communicate with others, the
greater subgroup becomes the new cluster and the nodesinsoithgroups must be shutdown. Moreover, a
minimum quorum is required to allow the remaining group tosare. If this quorum is not achieved, all the
nodes are stopped.

These requirements are needed to serve appropriatelydiigbuted servers that run in our multi-computer
cluster. As stated above, two of these servers are the lelignsport layer and the ORB. The former needs a
fast notification of membership changes, which can be sadisfithe failure detection mechanism is based on
requirement R4. R4 is needed because the target systemnishasyous, and according to [3] in such a system
theaccuracyandlivenesgroperties can not be simultaneously satisfied if the faitletection mechanism reports
failures before the faulty component is restored. In ouec#ise CMM is notaccurate—so it can notify failures
that never arose— but lve, because all failures are notified by the membership service

Requirement R2 is needed to guarantee that only the clustissbelong to the group. Similarly, requirement
R5 is needed to prevent inconsistencies in the shared dtéte distributed applications that run in the cluster
(mainly the ORB).

3 Cluster Membership Monitor

The CMM protocol can be seen as a distributed algorithm #@ires a monitor in each one of the machines that
run the algorithm and are included in the membership sethBae of these monitors runs the same algorithm,
which is divided in three procedures according to the taskddone by the membership service. These three
procedures require different intercommunication appheado deal with their purposes.

The first procedure corresponds to the search of the grouohmes that are currently running and is known
as theagreement proceduréAll monitors enter this phase when a failure is suspectea mew node is trying to
join the group. In the agreement procedure, all the mon#achange information about the group of nodes that
are accessible from their local nodes. Eventually, all sag@ch agreement on the set of nodes that are up and
running. So, as a result of the agreement procedure, arestahbership set is found.

The second procedure is needed to notify other cluster-gaaeices about the new membership set found in
the agreement phase. This is ti@ification procedurand can be divided in a sequence of steps. In each step, the
membership monitor notifies the new membership set to ardiftesystem component. Once the local component
has been notified, all monitors initiate a round of messagegjtee on the termination of the current notification
and, if other steps are required, the following one is itétia At the end of the notification procedure, all system
services that need to know the current membership set hae@/esl that information. The arrangement in steps
guarantees that all nodes have done the notifications irathe srder and at the same time.

The third procedure is also started when the agreement daaniated. This is thpolling procedure In this
procedure periodical messages are sent by the cluster tmdégck the state of the other cluster members. If a
node does not receive some messages of this kind for a ginelesét suspects this sender is faulty and leads all
cluster monitors to thagreement procedure

This decomposition of the membership protocol in three edaes allows an efficient and robust implemen-
tation of the protocol, integrating failure detection iretresulting algorithm —several membership algorithms
require external failure detectors [12, 13, 19, 18, 6], soulinole cost of their membership solutions depends on
this external service. Also, theotification proceduref our membership service provides valuable help to other
system services when a change in the membership set hasneabgo, the approach followed in this protocol
seems to be practical to satisfy all the membership req@rgsfound in a multi-computer cluster.

The following subsections describe the data structurestaiaied by the membership monitors, the information
being transferred in membership messages and the algaritiitowed in each protocol procedure.

3.1 Data Structures

Each membership monitor runs an algorithm based on an atbomBach automaton state represents a different
protocol phase or a transitory step that modifies part of tita chaintained by the monitor. Transitions between
states occur when the tasks associated to the current stagebeen finished or some external event has been
detected,; for instance, a message from a joining memberjoremut pointing out the failure of another member.

The completion of the tasks needed in each automaton stedgatequires an agreementamong all the current
members on their successful termination. To control thésaeiment of the agreementstate matrix is used. This
matrix maintains the current states of all preconfiguredtelunodes as they are known by the local monitor. The
matrix has as many columns and rows as preconfigured memistsiedependently of their current state. Each
cell of the matrix holds an integer number that identifiesdtage of the node represented by that cell of the matrix.
The possible states are:

START The node is still being initialized. No message has beendwast by its monitor.

BEGIN The node is executing tregreement proceduréAll nodes in this state are exchanging messages to find
out which is the current membership set.

STEP(i) The node is notifying a system component inittle step of itsnotification procedurelt has also started
thepolling procedureo check the stability of the new membership set.

END The node has terminated the notification procedure and itlisachecking the stability of the current mem-
bership set.

RETURN The node has detected a membership change. It has to nasifsitiiation to the rest of membership
monitors and has to return to tagreement proceduree., it is returning to thdEGIN state.

UNKNOWN The state of this node is uncertain. Some expected messagegHis node have not arrived on
time, but some additional time is needed to declare thatdlde has failed.

DOWN The node does not reply nor send any message. It has failed.

The cellstate[i][j] maintains the state of the noflas known by the nodie Each time a monitor A detects a
change in the state of another cluster node B, it modifieBttie column of the row associated to its local node
(the A-th row) and broadcasts this row to the rest of nodes. WhenrtordC receives a message from a remote
monitor A it replaces thé-th row of its local matrix to the one received in the incomimgssage. Also, tha-th
column of theC-th row is changed to the current value of gtate[A][A] cell.

As an example, figure 1 shows how thiate matrix of the node 2 is changed when it receives a message
from node 3. In this example the cluster has only 3 precondigumodes. Before arriving the message, the cluster
consists of the nodes 2 and 3, which are both inEND state; node 1 has not started. When node 1 starts, its
messages have been received only by node 3, which chande=R&TURN state and broadcasts its matrix row.
When this row is received by node 2, this node changes itsxraintents to the ones shown in the second table
of the figure. As a result, row 3 is completely replaced andstiage[2][3] cell is also updated. Later, node 2 will
initiate its transition to th&ETURN state, too.

1 2 3 1 2 3
1| UNK | UNK | UNK 1| UNK | UNK | UNK
2 | DOWN | END | END 2 | DOWN | END | RET

3 | DOWN | END | END 3 | BEGIN | END | RET

@ (b)

Figure 1:State matrices of node 2 befoi@) and after(b) receiving a message from node 3.

To reach agreement on a given state, all the cells assod@mt@tlactive nodesin the cluster must have the
same state value. When this agreement is achieved, aleclhm&mbers transit to the following automaton state.
All possible transitions are depicted in figure 2 and are &xgd in the following subsections.

+++++

Reconfig-
uration
ended.

re-initialized.

STATE State with unstable membership.
STATE State with stable membership.

Figure 2: States and some causes of transition in the CMMhzattun.

RETURN

Other important variables in each monitor @aegnum andlocal_id. The segnum variable maintains the
number of reconfigurations seen by the local monitor; i.ew many times the monitor automaton has arrived to
theBEGIN state, either due to new nodes joining the cluster or to tiééof some nodes. A copy of this variable
is saved in stable storage each time its value is modified.relocal machine is restarted, its value has to be
read from stable storage and it is used to tag the initial@ntgmessages sent by the local membership monitor.

Thelocal.id variable maintains the identifier of the local node in thestdn membership set. This identifier is
an integer number lower than the number of preconfigured neesrdnd greater than or equal to zero.

Finally, some other variables are needed to maintain theuatrad time assigned to each one of the timers that
control the reception or sending of messages. These vasialé:

e heartbeat_time. Maximum amount of time that may be elapsed between the Emisé two different
messages. Once this time has passed, the local monitor encshisnessage to the other monitors.

o failure_time. Maximum amount of time the local monitor is waiting for a reage from a remote monitor
before that remote node is considered faulty. If no messagairived from the intended sender in this time,
that sender is registered BOWN.

e shutdown_time. If the local monitor does not receive any messagesfartdown_time microseconds, it
shutdowns itself. The lack of messages for this period mawtghe node remains isolated.

Each monitor maintains a set of timers associated to thas&blas. There are a heart-beat and a shutdown
timers associated to the local node. Theart-beat timeiis re-instantiated each time the local monitor sends a
message. Thehutdown timeis reset each time the local node receives a message frontlagrynoonitor.

There is a pair of reception and failure timers for each on¢éhefsupposedly active remote monitors. The
reception timelis associated to the expected heart-beat messages sehbtiyealmonitors. It is reset each time
a message is received from the expected sender. When thgs dietects a reception timeout, the state of the
associated sender is changedfldKNOWN. Thefailure timeris also reset each time a message is received from
its associated sender monitor.

3.2 Message Contents

The CMM protocol uses two types of messages. The first oneigtjularmessage. It is used to transfer the row
of thestate matrix, either in theagreement procedure-to achieve consensus on the current membership set— or
in the polling procedurgo check the stability of the group. The other type is stepmessage, which is used to
reach agreement on the termination of a notification step.

3A node isactive when no other cluster node suspects it faulty; i.e., it dassappear in th@OWN state in any cell of its associated
column.

typedef struct {

node_t nmsg_sender;

usecti me_t nmsg_senderti ne;
seqnumt nsg-segnum

node_st at e_t neg_st at evec[MAXNCODES] ;

} message.t;

Figure 3: Contents of a regular message.

The contents of a regular message are depicted in figure 3raraxplained below:

e Sender identifiefmsg_sender). Identifier of the node that sent the message. This ideni#fiset by the
local monitor when the message was received, translatmgébwork address of the sender to its identifier.
This is done using a table of network addresses for all thequiigured cluster members. So, machines that
have not been preconfigured as possible cluster memberstae mcluded in the membership set.

e Sender timémsg_sendertime). Timestamp set by the sender when the message was sentllbhis an
accurate control of periodical message timeouts at theuwercside.

e Reconfiguration sequence numlfersg_segnum). This is the number of reconfigurations made by the
sender. It is needed to check if the message is stale or ifetbeiver node has lost any messages in the
BEGIN state.

e Sender state roymsg_statevec). Row of thestate matrix where the sender maintains the states of other
cluster nodes.

typedef struct {

node_t nsg_sender;

bool ean_t neg.i s_nmast er;
bool ean_t neg.i s_ended;
unsi gned nsg_st ep_nunber;
seqnumt nsg_seqnum

} messtepdt;

Figure 4: Contents of a step message.

Stepmessages maintain the reconfiguration sequence numbeharmdentifier of the sender fields of regular
messages and replace all other fields by a boolsey (is_master) that tells the role its sender is playing in the
synchronization needed at the end of the step, anotherdmo@esg_is_ended) which points out if the local node
does not have additional programs to be notified and an in{fegeg_step_number) that holds the step number.
The contents of a message of this type are shown in figure 4.

3.3 Initialization Procedures

In the START andRETURN states described in section 3.1, the data structures nradthy the monitor have to

be initialized. This initialization procedure sets thetsszof all other nodes to tHeNKNOWN value in thestate
matrix. Also, in theSTART state, the value of theeqnum variable is read from stable storage. Finally, a set of
timers are installed to check the current state of all préganed nodes in the cluster. For each remote node there
are a pair of timers, theeceptionand thefailure ones. Théheart-beatand theshutdowrtimers have to be set for
the local node, too. The function associated to each timeralr@ady been described in section 3.1. The steps
followed in this procedure are shown in figure 5.

1. procedureinitialize;

2: var

3: i, j: nodet;

4: begin

5: for i := 0 to MAXNODES - 1do

6: begin

7 for j := 0to MAXNODES - 1do

8: state][i][j] := UNKNOWN,;

9: if i <> localid
11: then begin
12: reinstalltimer(i, receptiontimer);
13: reinstalltimer(i, failure_timer);
14: end;
15: end;
16: reinstalltimer(localid, heart-beatimer);
17: reinstalltimer(localid, shutdowntimer);
18: end;

Figure 5: Initialization procedure run in tf&TART state.

Thereinstall_timer procedure sets the timer received as the second argumehgefande received as the first
one. Each timer class needs to be set to a different time ifutiee. For instance, the reception and heart-beat
timers are set to the current time plus the value stored ith#agtbeat_time variable. The failure timer uses the
failure_time variable and the shutdown timer tebutdown_time one.

3.4 Agreement Procedure

In the agreement procedurall membership monitors cooperate to find a new membershiwlsen new cluster
machines have started or some of the previously running baes been stopped or have failed. Also, a new
configuratiorsequence numbgusually the following one in ascending order, is chosenalhmiessages sent after
the agreement procedure will carry it. This sequence nunslreeeded to avoid the processing of stale messages
in the membership monitors.

The tasks done in the agreement procedure are outlined irefgyuThecheck_agreement function checks
if all non-faulty nodes in the locatate matrix have the same contents in their associated state néwe, the
agreement variable is set to true. Moreover, if some cell of the row assted to the local node in the state matrix
has changed, thepdated_state variable is also set to true. If the agreement has been aathigl membership
monitors do a transition to the following automaton stat; to theSTEP1 state. This is achieved when the state
of the local node is changed in tetate matrix.

Thebcast_state function broadcasts a regular message to all preconfiglustec members. It also reinstalls
theheart-beat timefor the local node.

Finally, theshutdown function initiates a shutdown of the local node, reportipg@priately all system com-
ponents that have requested this notification. This fundi@nly used when the local node has not received any
message from any other preconfigured cluster member foremdimne and this may only happen when this node
becomes isolated.

The main loop of this procedure waits for external eventsesehevents may be the arrival of a message sent
by another monitor or the triggering of a local timer. When essage arrives and its sequence number is equal to
the local one, the reception and failure timers are reilestdbr the message sender. The local shutdown timer is
reprogrammed, too. Later, the state matrix is updated daogly to the contents of the incoming message and the
resulting state is checked to find out if an agreement haa@rbeen achieved. If so, the local automaton goes to
the STEPL1 state, initiating thenotification procedure

If the sequence number of the incoming message is lower ti@prie maintained by the local monitor, the
message is discarded. Otherwise, if it is greater than tted line, the monitor has to updatesesqnum variable

procedure agreement;

var
m : message
n : nodet;
begin

state[localid][local_id] := BEGIN;
while state[localid][local.id] = BEGIN do
wait-for event;
caseeventof
recv(m)
if m.msgsegnum = segnum
then begin
reinstalltimer(m.msgsender, receptiatimer);
reinstalltimer(m.msgsender, failurdgimer);
reinstalltimer(localid, shutdowntimer);
state[m.msgender] := m.msgtatevec;
state[locaid][m.msg sender] := m.msgtatevec[m.msgender];
checkagreement;
if agreement
then begin
state[locaid][local_id] := STEP1,;
segnum := segnum + 1,
end;
if updatedstate
then begin
bcasistate;
updatedstate := FALSE;
end;
else ifm.msgseqgnunt> seqnum
then begin
segnum := m.msgeqgnum;
state[locaid][local.id] := RETURN,;
bcaststate;
end;
receptiontimeout(n)
state[locaid][n] := UNKNOWN;
bcasistate;
failure_timeout(n)
state[locaid][n] := DOWN,;
bcaststate;
heart-beattimeout
bcasistate;
shutdowntimeout
shutdown;
esac;
done;
end;

Figure 6: Agreement procedure run in tBEGIN state.

and go to th(RETURN state to reinitialize its variables.

The timers set for the remote monitors are used to find outlim@mote nodes are not active. So, when these
timers trigger a timeout event, the state associated torémabte node is updated in the locthte matrix. To
reduce the time needed to rebuild the membership set whew aneenber is being added or an old member has
failed, the re-initialization made in tRRETURN state is slightly different to the one shown in figure 5. Inttha
case, the assignment done in line 8, is only made if the cuecetients of that cell in the matrix are different to the
DOWN value; i.e., faulty or stopped nodes are suspected to reim#iat state. Moreover, the timer re-installation
made at lines 12 and 13 is only made for nodes that are not iD@W&/N state. If some of these faulty nodes has
been started, when its first messages are received by therotimétors, the appropriate timers are reinstalled. As
a result, the agreement time can be reduced if no timer iglilyiassociated to these nodes.

3.5 Notification Procedure

Thenatification proceduresshown in figure 7 is used to report the new membership set terdift software com-
ponents in the local node that depend on the current set sfeclmachines. Samples of applications of this kind
are the reliable communications layer, the object requestds and several ORB extensions required to provide
high availability support [8].

The programs or objects to be reported about the memberbhipges have to register themselves when the
CMM is being initialized or when it is already running. Eacbhde may have a different set of applications
registered to be reported in the notification procedure hkggoplication has to request a different step stage.

At the beginning of the notification procedure, each morfitmis out if it is the current master of this stage.
To do so, thes_master function is used (line 8). This function returiKRUE if the local monitor has the lowest
identifier among all the current active nodes in the clug@erce this is done, the main loop of the procedure starts
(lines 11 through 34 in figure 7). Each iteration in the loopised to advance an step, notifying all instances of
the program registered for this step in each cluster node flihctionregistered checks if there is a program
registered for the current notification step in the local @odf so, thenotify_application function is used to
synchronously notify that component about the current nestip.

Later, all cluster nodes have to send a step message to tBerchwaster. When the master has received the
appropriate message from each other monitor, it broadeastscknowledgment to all them. When the acknowl-
edgment is received, the monitor updatesstiste matrix accordingly and initiates a transition to the foliog
automaton state, which can be anotB@EP message or the fin&IND state. In théEND state, the notification
stage terminates and the local monitor only executepdiiang procedure

Since each monitor may have a different number of applioatinterested in the membership status and addi-
tional applications may be registered at any time, the nurabeequired steps have to be decided at runtime. To
this end, the step messages carmsy_is_ended field. This field, when the message is sent by a non-master node
points out whether the sender monitor has no other prograoe tootified. On the other hand, for the acknowl-
edgment messages sent by the master, a TRUE value meani thanidors have notified all registered programs
and the current one was the I&TEP needed. Two functions are used to find out the value to bersessig this
message field. In the master side, theck_if_ended function (in line 17) returns TRUE when the master node
has notified all its registered programs and it has receiteqalmessages from all other monitors pointing out that
they also have notified all their programs. In the non-masbeles, theheck_if_all_notified function (in line 23)
checks if all programs locally registered have been alresudified.

3.6 Polling Procedure

The polling procedurds started as soon as thgreement procedutis terminated. It checks the stability of the
membership set found in the agreement stage. To do thisg atdht of the polling procedure each monitor chooses
two neighbors from the whole membership set, building i thay a logical ring among all current members.
Periodically, each monitor checks the state of its two neagh, sending a message to them and expecting also a
message from each one of them. This behavior is controllethé&heart-beat, shutdown, reception and failure
timers, as it was done in section 3.4.

The algorithm followed in this procedure is outlined in figu8. The first steps (lines 6 through 16) are used
to cancel the timers set in t/BEGIN state and to reinstall them for the neighbor nodes in thecldging being
established.

1: procedure natification;

2: var

3: step : integer:=1;

4: ended : boolean := FALSE;

5: master : boolean;

6: m, n : messtey;

7. begin

8: master := ismaster(locald);

9: m.msgseqgnum := segnum;
10: m.msgis_master := master;
11: while not endeddo
12: if registered(step)
13: then notify_application(step);
14: if master
15: then begin
16: wait-for reception-of-step-messages;
17: ended := check _ended;
18: m.msgstepnumber ;= step;
19: m.msgis_ended := ended;
20: bcast(m);
21: end else begin
22: m.msgstepnumber := step;
23: m.msgis_ended := checkf _all_notified;
24. sendto_master(m);
25: recvfrom_master(n);
26: ended := n.msgs_ended;
27: end;
28: step :=step + 1;
29: for i in live_nodesdo
30: for j in live_nodesdo
31: if ended
32: then state[i][j] := END;
33: elsestate[i][j] := STEP(step);
34: done;
35: end;

Figure 7: Notification procedure run in @ITEP states.

10

eoNaRrONRE

procedure polling;

var
m : message
n : nodet;
begin

for nin live_nodesdo begin
stoptimer(n, receptioctimer);
stoptimer(n, failuretimer);
end;
neighbors := fincheighbors;
for nin neighborgo begin
reinstalltimer(n, receptiottimer);
reinstalltimer(n, failuretimer);
end;
reinstalltimer(localid, heart-beatimer);
reinstalltimer(localid, shutdowntimer);
sendstateto_neighbors;
while state[localid][local_id] <> RETURNdo
wait-for event;
caseeventof
recv(m)
if m.msgsegnum = seqnum
then begin
reinstalltimer(m.msgsender, receptiatimer);
reinstalltimer(m.msgsender, failurdgimer);
reinstalltimer(localid, shutdowntimer);
if m.msgstatevec[m.msgender] = RETURN
then begin
state[locaid][local.id] := RETURN;
bcaststate;
end;
end else ifm.msgsendemnot in neighbors
then begin
state[locaid][local_id] := RETURN,;
bcaststate;
end;
receptiontimeout(n)
state[locaid][n] := UNKNOWN;
failure_timeout(n)
state[locaid][n] := DOWN,;
state[locaid][local_id] := RETURN;
bcaststate;
heart-beattimeout
sendstateto_neighbors;
shutdowntimeout
shutdown;
esac;
done;
end;

Figure 8: Polling procedure run in tf®&TEP andEND states.

11

Later, the local monitor starts the main loop, sending ghcally a message to its both neighbors and expect-
ing the arrival of their messages. If some neighbor does @nd @iny message forfailure_time interval, it is
considered faulty and the local monitor changes toREFURN state, broadcasting its associated row to all other
cluster nodes. As a result, once a monitor has detectedithesfaf another one, all monitors eventually arrive to
theBEGIN state, initiating anothexgreement procedurdlote also that the polling and the notification procedures
may be executed simultaneously. If a failure is detectedwidath are being executed, the decision taken by the
polling procedure has the highest priority, and the locabaaton goes to thRETURN state.

Finally, the lines 32 through 36 are needed to detect thenatieof a new node to join the cluster and they also
lead the local automaton to tiRETURN state.

3.7 Isolated Nodes

Section 3.4 outlines a mechanism to halt isolated nodesllaséhe locakhutdown timethat is reset each time
the local node receives a message from another cluster Badehis timer is only useful when only one node is
isolated from the rest of the cluster, preventing its intéica with cluster clients.

A source of isolated nodes is a cluster partition. A panitizises when some of the active cluster nodes are
not able to communicate with other active nodes in the samstearl As a result of a partition some subgroups of
machines can be identified. This situation can be considepdblem, since the members of each subgroup can
receive messages from other cluster nodes, but not front@leanodes. As a result, the distributed applications
or services running on the remaining subgroups do not hatet@ lsnown by all their active components. So, in a
multi-computer cluster environment only one of the resigitsubgroups can be allowed to proceed. All other ones
have to be shutdown, but in this case the local shutdown ti@eomes completely unuseful.

For managing patrtitions, the protocol provides two mecéiast

e Require a minimum number of nodes in the current clustehif humber can not be achieved, the nodes
are shutdown. So, if a cluster becomes partitioned, onlgtibgroup which exceeds the required population
remains. Obviously, the required minimum must be high ehdogvoid two remaining subgroups.

e The local software modules notified in the STEP states aetabiequest a shutdown of the local or some
remote nodes. These software modules are at kernel levehagdre assumed trustful.

When one of these modules notes that the current membergtigoigsufficient and the service it is carrying
on is essential for the cluster, it can request the shutddvta subgroup (which can be the whole cluster).

Anyway, the partition problem seldom arises in a multi-cengp cluster. Usually, the cluster nodes are phys-
ically close each other and the interconnecting network lmareasily replicated. With a system of this kind,
communication problems may only arise due to an excessaak\Which slows down the message delivery time.
So, physical partitions are not frequent.

4 Performance

The costin messages and elapsed time of a reconfiguratibar(aijoin or a failure) depends mainly on the number
of machines in the resulting cluster (N). Besides this, mij@ reconfiguration can be initiated at any time but
a reconfiguration to drop some node is delayed a bit. Thisafaconfiguration is triggered when a period of
failure_time microseconds has been elapsed since the last message &demitly node was received by the other
monitors.

Theoretically, to get the next membership set the followgnt-to-point messages are needed:

e The node which detects the membership change s¥ndsssages to the other members. This sending leads
all member nodes to tiRETURN state.

e Onreception of this message, each other member notifiexasdoftware modules about what is happening,
and eventually arrives to tHREGIN state.

e Once in theBEGIN state, each node broadcasts its local row. That impliésnessages.

12

In the best case a node can receive a message from any livebetmle replying to any of them. In the
worst case, the node receives a message from any other nacle iwiplies a change in the row associated
to the local node and broadcasts a message for each one gftlinem the node receives a second or later
message from a node, it does not reply to it. Consequent\BEGIN state ends with an upper bound of
N3 messages.

Later, in theSTEP andEND states onl\2N messages are needed at the end of each step or lewariy
beat_time microseconds; i.e., for each round of messages.

So, the cost in messagesi$N?) in a cluster ofN nodes.

5 Correctness

An argument about the accomplishment of the requiremertsdaced in section 2 is given below. It is not a
formal prove, we only describe the behavior of the algorithrthe situations required in that section.

R1 Each active node in the cluster must maintain the same mresimp set.

R2

R3

R4

R5

The membership set is built in tiBEEGIN state. Using thetate matrix, we ensure that each node leaves
the BEGIN state only if each member of the cluster shares the samexncatitents.

When a node monitor detects a variation in its membershjptsggies to theRETURN state and eventually

all cluster members re-initiate BEGIN state. So, either the membership set is stable and sharelll by a
cluster members or it is unstable and the active nodes ahe RETURN or BEGIN state, building the new
one.

If the cluster is partitioned, the cluster could be in a ditrawhere more than one membership set has been
built and different active nodes assume different membprséts. In section 3.7 we have shown how this
situation is avoided.

Only preconfigured nodes can be members of the cluster.

We use a configuration file where the network address of eashilgle cluster member is associated to a
logical identifier. Only machines which appear in this filedee members of the cluster. So, external nodes
can not receive protocol messages and can not take the glagea cluster member.

A node can be integrated in the membership set at any time.

When a new node tries to join the cluster, it broadcasts alaeguessage. These messages will lead the
cluster to the(RETURN state and in the subsequ@&&GIN state, the new node is included in the cluster.

This procedure allows multiple node joins, too. If severadles are awaken at the same time, they can be
included in the cluster in thBEGIN state of the same reconfiguration.

Moreover, the delay of a (possibly multiple) node join is hdad. The maximum number of messages
which can be exchanged due to a join is known and the time deed# so is easily predictable.
A node considered faulty is removed from the membershimsebounded delay.

When a node is faulty, extremely slow or is attached to a yduik, other nodes detect this situation and
initiate a reconfiguration sequence. In the NBEGIN step, the node is excluded from the membership set.

The node failure is detected using periodical message®iBTREP or END states. Its two neighbors in the
logical ring detect the problem. Then a reconfiguration isated and the membership set is rebuilt.

Partitions are not allowed.
This is only a consequence of the first requirement.

13

6 Related Work

There has been a lot of work related to membership protoddis.case of a multi-computer cluster as the target
system simplifies some of the problems to be solved. Forigstave can assume that the interconnecting network
is private to the cluster members and their membership ramnitre well-behaved. So, our protocol does not have
to worry about malicious failure suspectors, as is the cdigeoone proposed in [18].

Another property that has to be required in a cluster menhig@nsrotocol is to avoid partitions. A multi-
computer cluster behaves as a single system and its comigcsteare their state. It can not tolerate its division
in two or more subgroups which believe that they are the whhister, since this might lead to inconsistencies in
the cluster data or in the responses provided to exterreitsli Some other systems, for instance [5, 11, 18, 19],
neither tolerate partitions but their way to guarantee thiaior partitions realize they have been excluded from the
group are different. In their case, the dropped memberst#tat the current group size is not big enough and
leave the group. In our case, this mechanism is aided by a tirhieh lead to the shutdown of the node in case
of becoming isolated. This stronger guarantee is needegbid any communication among the isolated node and
remote clients, as explained above.

Group members can have some degree of centralization. Sgstenss give any member the same role in
the protocol, as in the algorithms described in [5, 11]. $e, fprotocol is fully distributed and does not depend
on any centralized authority. On the other hand, [18] and fliftinguish the figure of a manager node which
controls a two-phase protocol each time a membership chacges. The former alternative has the advantage
that the nodes have not to agree in which is the current lead@@anager of the group, and reconfigurations are
not penalized when this most privileged node fails. Howeifer manager node is used, the amount of messages
to be exchanged when the membership set is reconfigured caedbeed extremely. Our protocol is a mixture
of these two approaches. In the reconfiguration stage, inm=has a decentralized algorithm, and each future
member broadcasts a similar number of messages. No worgasegded to elect a special node at this stage.
So, the protocol is quite sound when a reconfiguration is d@vigen the membership set has been computed, we
define a subsequent stage to report to other system compgasiemit the new members. This task can be done
in a set of sub-stages. So, we need some synchronizationgathercluster members (otherwise, an individual
node may become reconfigured before the others and thisdadie dangerous in a system like ours). To achieve
this agreement on the completion of sub-stages, we devisateatized sub-protocol where a manager is elected.
But the leader election is trivial now. We already know whinlembers belong to the cluster and each member
manages exactly the same information. So, the electionedoie locally in each node and no additional message
is required. Finally, when the membership set is alreadyistave follow a protocol similar to the third appeared
in [5]. This protocol is also decentralized and requireg ttech member exchanges messages with another two
members of the cluster. So, we have elected a decentraligedthm which requires a low number of messages
and guarantees a fast detection of failures. Other appesaels the use of a token that is passed along a logical
ring ([1], [11] and the second protocol of [5]), require a kmnumber of messages but the time needed to detect
multiple failures is longer. In a multi-computer clusteiisi very important to detect failures as soon as possible.

The assignment of logical identifiers to the group membess hhs several flavors. Systems like [19] propose
to assign a different identifier for a node in each of its imedions. So, when a node is repaired and initiated
again it is considered by the protocol as a different machineur case, the use of a dedicated interconnecting
network among the cluster members ensures that the maxiroumber of nodes and their identity can be known
a priori. To avoid confusion among successive reconfigomatdf the same machine, a sequence number is used
and attached to all messages. So, stale messages can belisaailded.

The use of constant logical identifiers for all nodes simgdifine relationship between the cluster membership
monitor and other components of the distributed operatystesn.

As we have seen above, the characteristics required to a ership protocol for a multi-computer cluster are
not new. They can be found in some previous works. Howevere d these have been appropriately tailored for
a cluster system. In this kind of systems, the abortion datedl nodes and the time spent to detect some failure
are critical. We believe our algorithm is a reasonable sotuto both problems.

7 Summary

We have outlined the requirements that have to be acconegligi a multi-computer cluster membership protocol
and we have described a possible solution for a system dfitinils Our protocol combines some ideas of previous

14

protocols to achieve its main goals: fast failure detectavoidance of partitions, assurance of fail stop behavior
and a sound reconfiguration procedure.

Besides solving the membership problem, our protocol plesimechanisms to link the membership monitor
to other operating system’s local components which depertti® membership service. Also, it ensures that the
reconfiguration procedure is highly synchronized amongnkeenbership members when the new membership set
has been built, avoiding inconsistencies.

It will be used to provide membership services to the reéatdnsport layer of the HIDRA architecture. It also
assists in the reconfiguration of the ORB and all their conemdsirelated to the high availability support being
provided by this architecture.

So, the protocol described in this paper seems to be apptepoia particular kind of system — multi-computer
clusters —, such as the one introduced here.

References

[1] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, rad P. Ciarfella. Fast message ordering and
membership using a logical token-passing ring.Phaceedings of the 13th International IEEE Conference
on Distributed Computing Systenmages 551-560, May 1993.

[2] O. Babaoglu, R. Davoli, L. A. Giachini, and M. Baker. Reladscommunications infrastructure for con-
structing reliable applications in large-scale distrémisystems. Technical report, UBLCS-94-15, Dept. of
Computer Science, University of Bologna, Bologna, Italynd 1994.

[3] K. P. Birman and B. B. Glade. Consistent failure repagtin reliable communication systems. Technical
report, TR93-1349, Dept. of Computer Science, Cornell ®rsity, Ithaca, NY, May 1993.

[4] K. P. Birman and R. van Reness&eliable Distributed Computing with the Isis ToolkiEEE Computer
Society Press, Los Alamitos, CA, 1994.

[5] F. Cristian. Reaching agreement on processor-group lmeeship in synchronous distributed systerfss-
tributed Computing6(4):175-187, 1991.

[6] D. Dolev, D. Malki, and R. Strong. An asynchronous menshégs protocol that tolerates partitions. Technical
report, CS94-6, Institute of Computer Science, The Hebraivéisity of Jerusalem, Israel, March 1994.

[7] D. Dolev, D. Malki, and R. Strong. A framework for partitiable membership service. Technical report,
CS95-4, Insitute of Computer Science, The Hebrew Univedditlerusalem, Israel, 1995.

[8] P. Galdamez, F. D. Mufioz-Escoi, and J. M. Bernab@&ibak. HIDRA: Architecture and high availability
support. Technical report, DSIC-11/14/97, Univ. Politéca de Valéncia, Spain, May 1997.

[9] M. A. Hiltunen and R. D. Schlichting. Understanding mesnthip. Technical report, 95-07, Dept. of Com-
puter Science, The University of Arizona, Tucson, AZ, JUb@45.

[10] M. A. Hiltunen and R. D. Schlichting. A configurable meerbhip service. Technical report, 94-37A, Dept.
of Computer Science, The University of Arizona, Tucson, Aanuary 1996.

[11] H. Kopetz and G. Grunsteidl. TTP - A protocol for fatdterant real-time systemslEEE Computer
27(1):14-23, January 1994.

[12] C. Malloth, P. Felber, A. Schiper, and U. Wilhelm. PhoerA toolkit for building fault-tolerant distributed
applications in large scale. Technical report, Dépt. fiftmatique,Ecole Polytechnique Fédérale de Lau-
sanne, Lausanne, Switzerland, July 1995.

[13] S. Mishra, L. L. Peterson, and R. D. Schlichting. A memsbé protocol based on partial order. In J. F.
Meyer and R. D. Schlichting, editorependable Computing for Critical Applicationpages 309-331.
Springer-Verlag, Wien, 1992.

[14] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. Budhiand C. Lingley-Papadopoulos. Totem: A fault-
tolerant multicast group communication systeb@mmunications of the ACN9(4):54-63, April 1996.

15

[15] F. D. Mufioz-Escoi, J. M. Bernabéu-Auban, and Pdaalez. The group membership problem and its solu-
tions. Technical report, DSIC-11/8/97, Univ. Politecaide Valéncia, Spain, May 1997.

[16] OMG. The Common Object Request Broker: Architecture and Spatnific Object Management Group,
July 1995. Revision 2.0.

[17] R. Rajkumar, S. Fakhouri, and F. Jahanian. Processaoipgnembership protocols: Specification, design and
implementation. IrProceedings of the 12th IEEE Symposium on Reliable Diggtb®ystems, Princeton,
NJ, pages 2-11, October 1993.

[18] M. K. Reiter. A secure group membership protocol. Taéchhreport, AT&T Bell Labs., 1994.

[19] A. M. Ricciardi. The group membership problem in asyretous systemd$2h.D. dissertation (also available
as TR92-1313), Dept. of Computer Science, Cornell Uniygishaca, NY page 198 pgs, January 1993.

[20] L. Rodrigues, P. Vassimo, and J. Rufino. A low-level processor group memberphotocol for LANS. In
Proceedings of the 13th International Conference on Distied Computing Systenpzages 541-50, May
1993.

[21] R. D. Schlichting and F. B. Schneider. Fail-stop praoes: An approach to designing fault-tolerant systems.
ACM Trans. on Computer Sy4(3), August 1983.

[22] R. van Renesse, K. P. Birman, B. Glade, K. Guo, M. Haydem). Hickey, D. Malki, A. Vaysburd, and
W. Vogels. Horus: A flexible group communications systemchrecal report, TR95-1500, Dept. of Com-
puter Science, Cornell University, Ithaca, NY, March 1995.

16

