
Extending Middleware Protocols for Database Replication

with Integrity Support
F. D. Muñoz, M. I. Ruiz, H. Decker, J. E. Armendáriz, J. R. González de Mendı́vil

Instituto Tecnológico de Informática - Depto. de Ing. Matemática e Informática

{fmunyoz, miruifue, hendrik}@iti.upv.es,{enrique.armendariz, mendivil}@unavarra.es

Technical Report TR-ITI-ITE-08/14

F.
D

.M
u

ñ
o

z-
E

sc
o

ı́e
ta

l.:
E

xt
e

n
d

in
g

M
id

d
le

w
a

re
P

ro
to

co
ls

fo
r

D
a

ta
b

a
se

R
e

p
lic

a
tio

n
w

ith
In

te
g

ri
ty

S
u

p
p

o
rt

T
R

-I
T

I-
IT

E
-0

8
/1

4

Extending Middleware Protocols for Database
Replication with Integrity Support

F. D. Muñoz, M. I. Ruiz, H. Decker, J. E. Armendáriz, J. R. González de Mendı́vil

Instituto Tecnológico de Informática - Depto. de Ing. Matemática e Informática

Technical Report TR-ITI-ITE-08/14

e-mail: {fmunyoz, miruifue, hendrik}@iti.upv.es,{enrique.armendariz, mendivil}@unavarra.es

Jul, 2008

Abstract

Current middleware database replication protocols take care of read-write conflict evaluation. If
there are no such conflicts, protocols sanction transactions to commit. Other conflicts may arise due to
integrity violation. So, if, in addition to the consistencyof transactions and replicas, also the consistency
of integrity constraints is to be supported, some more care must be taken. Some classes of replication
protocols are able to seamlessly deal with the integrity support of the underlying DBMS, but others
are not. In this paper, we analyze the support for integrity that can be provided in various classes of
replication protocols. Also, we propose extensions for those that cannot directly manage certain kinds of
constraints that are usually supported in DBMSs.

1 Introduction

Over the years, many database replication protocols have been proposed [3, 5, 11, 14]. None of these
proposals has assessed the support of semantic consistencyas required by integrity constraints. This is in
line with the well-known result that the serializability ofintegrity-preserving transactions yields integrity-
preserving schedules [3], since all protocols assumed a serializable isolation level.

Unfortunately, this result does not hold in a replicated database scenario if transactions trust that the
enforcement of all constraints declared in the schema is delegated automatically to the DBMS. Concurrent
transactions may start and execute in different nodes, and proceed as usual until they request commitment.
At this point, the replication protocol is in the position tovalidate each transaction and request its commit,
based on checking for read-write and write-write conflicts among concurrent transactions. However, at least
in middleware-oriented protocols [9, 12, 21, 19], complications may arise, for instance if constraints are
checked in deferred mode, i.e., at effective commit time, i.e., only after conflict validation by the replication
protocol. Recall that deferred checking is unavoidable, sometimes, for maintaining transaction atomicity.
Thus, integrity checking may diagnose constraint violations that remained unnoticed by the replication
protocol. For instance, this may happen if integrity checking results in a failed read request of some item
that otherwise would not be accessed, e.g., one referenced by a foreign key constraint. Thus, there may be
transactions that are sanctioned to commit by the replication protocol but are aborted later, due to deferred
integrity checking. Recall that to abort after commit is a cardinal sin against the principles of transaction
processing.

Things may get even worse when isolation levels are relaxed.Recently, thesnapshotisolation level
[2] has gained popularity, since it is supported by several DBMSs (e.g., Oracle, PostgreSQL, Microsoft
SQL Server, . . .), though it does not avoid all isolation anomalies. Although it can support serializable
executions [10], the replication protocols that support it[14, 16, 7, 19] are able to relax the final transaction
validation process, since only write-write conflicts need to be checked for this isolation level. This implies

1

that the abortion rate generated by the replication protocol is lower than using serializable isolation. That,
however, may cause bigger problems for integrity maintenance, since more protocol-accepted transactions
will be involved in constraint-related problems at commit time.

Most modern database replication protocols use total orderbroadcast for propagating sentences or
writesets/readsets of transactions to other replicas. We are going to analyze the integrity-checking support
needed for different categories of replication protocols,according to the classification proposed in [26]. As
far as the authors know, no such study of integrity support byreplication protocols exists yet. If so, then our
main contribution consists in inaugurating this subfield ofresearch by the study at hand, and in identifying
how some replication protocols should be adapted in order tocorrectly deal with integrity constraints.

Section 2 recapitulates the main database replication classes identified in [26]. Section 3 describes the
problems that arise in constraint management in a replicated system. In Section 4, we propose solutions
for the problems identified in Sect. 3. Later, Section 5 describes an analytical model that has been used for
studying the costs of a correct constraint management in middleware protocols. Finally, in Section 6, we
conclude with a long-term outlook.

2 Database Replication Protocols

Replication techniques were initially applied on distributed databases extending the distributed mecha-
nisms already used in the latter; i.e.,2 Phase Commit(2PC) for termination management andStrict Two
Phase Locking(implemented by distributed locks) orMulti-Versionmanagement for concurrency control
[3]. However, this approach prevented such first generationof replicated databases from achieving good
performance. As a result, new proposals arose in the next decade. Thus, new techniques were proposed for
concurrency control, trying to ensure that most of the requests were locally managed, as in theOptimistic
Two Phase Lockingtechnique described in [5] that only requests remote locks at commit time and whose
performance and abort rates are better than any other of its contemporary approaches in most settings.

Despite this, termination management was also a problem, and some other papers [1, 22] proposed
and proved thatatomic(i.e., total-order)broadcast[6] can be an efficient replacement for the traditional
2PC protocol. Moreover, such two papers also maintained thesuggestions given in [5] for improving con-
currency control performance. As a result, a new family of database replication protocols was generated,
based on first executing locally all kinds of transactions and broadcasting at commit time –and in total
order– the updates made –if any– to all replicas, still following the ROWA principle presented in [3]. Note
that the initial local transaction execution uses a quite optimistic concurrency control management, since
evaluation of transaction conflicts is partially delayed until update-propagation time. On the other hand, at
remote transaction’s application time, local conflicting transactions are aborted in order to guarantee that
such remote updates could be applied following the update total order imposed by the atomic broadcast
mechanism. This guarantees an excellent performance and reduces the degree of optimism of the resulting
concurrency control.

A comparison of these total-order based replication protocol families with other approaches typical
in other replicated applications (that follow either the active or primary-copy replication techniques) was
described in [26]. We follow such comparison in this section. Its protocol classes are:

• Active replication(AR). The client sends its transaction to a given replicaRd. The latter forwards
all transaction operations to all database replicas by a single total-order broadcast. Each replica
independently and deterministically processes the transaction. Total-order propagation ensures the
same transaction scheduling in all replicas. So, all replicas should get the same results for each
transaction. Once the transaction has been completed,Rd returns its results to the client.

• Certification-based replication(CBR). The transaction is initially executed in a single delegate
replica. Once the client application requests its commitment, the transaction readset and writeset
are collected and propagated to all replicas using total-order broadcast. Once such message is de-
livered, the transaction is certified against concurrent transactions whose messages where previously
delivered. This validation stage is symmetrical since all replicas can hold the same historic list of
previously delivered readsets and writesets. So, all of them can take the same decision on the transac-
tion termination, i.e., no additional communication step is needed for that. Once certified, accepted

2

transactions are applied and committed, and their writesets and readsets will be temporarily held in
order to certify other concurrent transactions whose data will be delivered later. Otherwise, i.e., when
the transaction has been aborted in the certification stage,its readset and writeset are discarded.

• Weak voting replication(WVR). As in the previous class, each transaction is executed in a single
delegate replica. When a transaction requests its commit, its readset and writeset are collected as in
the previous class, but only its writeset is broadcast in total order to all replicas. Once the writeset
is delivered, it is validated (but only in its own delegate replica) against the writesets of concurrent
transactions that have been delivered before its own one. Note that read-write conflicts are detectable,
since the delegate replica knows which has been the readset of its local transaction and also which
writesets are from remote. If any conflict is found, the transaction is aborted, else it is committed.
The decision about this is propagated using areliable broadcast[6] to all replicas. The latter then
behave according to the action prescribed in the broadcast message.

• Primary copy replication(PCR). All transactions must be executed by the same primaryreplica
which may rely on its local concurrency and integrity control mechanisms to decide whether trans-
actions can be committed or not. Once a transaction has been executed in the primary replica, its
writeset will be propagated to other replicas (that behave as backups) and applied there. Finally, the
transaction is committed in all replicas, and the client gets reported on this.

• Lazy replication(LR). This class is an extension of the previous one, where each transaction may
select a different delegate replica and the client is informed after the delegate’s commit. Thus, trans-
actions are first completed in their selected delegate replicas and, once done, their updates are prop-
agated to other replicas. This replication class is not practical, since conflicts are actually detected
once transactions have been already committed, which demands reconciliation techniques for ensur-
ing consistency. Therefore, we do not further discuss this kind of replication.

Classes AR and PCR do not pose any problem for integrity management. In AR, all replicas should
behave in exactly the same way, thus local management is enough. Also in PCR, no coordination nor vali-
dation is required since only one replica is processing the transaction. So, in this regard, it is equivalent to
a non-replicated architecture. Hence, both AR and PCR protocols are able to deal with integrity constraints
in a seamless way, by relying on the support provided by the underlying DBMS.

Unfortunately, neither AR nor PCR protocols provide good performance, according to [26]. However,
the authors of [13] propose some adaptations of the PCR classthat partition the database and distribute the
subsets according to predefined conflict classes among multiple primary copies (each one being responsi-
ble for each subset). These adaptations significantly improve the performance, while the reliance on the
integrity support from the underlying DBMS is not impaired.

On the other hand, the two classes providing best performance (CBR and WVR) give rise to several
problems with regard to integrity constraints. Let us discuss them in detail.

3 Integrity Problems with Deferred Checking

The study of this paper is limited to the SQL constructs that typically are offered and supported for speci-
fying and maintaining semantic consistency. An analysis ofintegrity support for the SQL:1999 standard in
relational DBMSs was given in [24]. Not too much has changed in the state of the art of integrity checking
in SQL-based databases in the years after the appearance of the standard, except that various developments
have rather diverged from than converged to it, and open source databases have come to be more on par
with what has been offered by commercial vendors earlier, interms of integrity support.

Integrity constraints define what is a consistent database state, by requiring that certain conditions be
invariant across updates. Consistency as defined by integrity constraints is sometimes calledsemantic
consistency, in order to emphasize that constraints express propertiesthat pertain to the domain captured
by the database and the application programs that use the database. This nomenclature also serves to
distinguish semantic consistency fromtransaction consistency, which involves guarantees of atomicity and
isolation, and fromreplication consistency, which requires that the states of replicated database nodes
coincide on the values of their individual copies of common data items.

3

In a centralized setting, integrity constraints have been traditionally managed using a deferred or de-
layed checking [15, 4, 17], instead of an immediate one. Thiscan be explained both in terms of perfor-
mance improvements (as reported in [15, 17]) and because such checking admits temporary inconsistencies
that can be solved before transactions end [15], avoiding intermediate checkings that could have uselessly
required time and resources.

Note that the semantics ofimmediate checkingare unclear, as already explained in [17]. In order to
preserve serializability, each transaction should use theappropriate long read and long write locks on all
items it has read or updated. When another concurrent transaction immediately checks some constraint on
any of its updates, which kind of isolation level should be used in such check? If serializable is used, none
of the concurrent accesses will be observable –or they may block such checking–; if other levels are used,
as eitherread committedor snapshot, as analyzed in [17], the serializable guarantees might be broken. As
a result, deferred checking seems to be the safest approach.

At a glance, deferred checking should be used in middleware database replication protocols, but some
problems arise in the CBR and WVR protocol families described above. Both protocol classes need at least
two steps for transaction management. A first step devoted totransaction conflict checking and, if such
check succeeds, a second step where remote updates are applied in non-delegate replicas and transactions
are finally committed. If constraint checking is deferred till transaction commit time, some misbehavior
could be generated: the protocol could have admitted a transaction as correct in such first transaction
conflict check –reporting its success to the client application– and later the underlying DBMS might abort
it when its commit is requested. So, deferred checking was the solution to some problems in a centralized
system, but it is now the origin of other ones in a replicated scenario.

Let us present a first example with two concurrent transactions that is correctly managed with deferred
checking in a centralized system but cannot be with immediate checking, illustrating what has been said
before. Thus, let us assume a DB composed by two tables T1 and T2 and with two integrity constraints:

IC1: A primary key constraint in T1.

IC2: A foreign key constraint in T2, referring to the primary key of T1.

Imagine two concurrent transactions X1 and X2 that among other actions, perform the following oper-
ations:

X1: It inserts a tuple t2 in T2, referring to tuple t1 in T1.

X2: It inserts a tuple t3 in T1, with the same value in its primary key than tuple t1, and finally it removes
tuple t1 from T1.

This kind of transaction could be needed for, e.g., removinga department (t1, in the example) in a
given company and re-assigning all its employees (tuples inT2 referring to t1) to another one (t3, in
this example).

Note that these transactions can proceed in a centralized system only with deferred checking –otherwise,
constraint IC1 would have been violated, but if X2 executes its operations in the opposite order, constraint
IC2 will be violated, so there is no way of completing X2 actions without any constraint violation using
immediate checking–, and this admits both a serialization order X1, X2 and X2, X1. Additionally, no
problem arises in a replicated system.

Let us imagine now a second example that shows which kind of problems might arise in a replicated
system. In this case, a third transaction X3 is needed. It simply removes t1 from T1 and it is executed con-
currently with transaction X1 from the previous example. This second example can be executed without
problems in a centralized system if the serialization orderX1, X3 is followed. However, execution of X3
will remove the effects of X1 if cascaded deletes are used. But these transactions generate the worst conse-
quences if a replicated system is used. In such a case, and assuming deferred checking, such transactions
have the following readsets and writesets:

• X1.rset =∅

• X1.wset ={t2}

4

• X3.rset =∅

• X3.wset ={t1}

As a result of this, no replication protocol will be able to detect any read-write nor write-write conflict
between both transactions in the first step presented above (conflict evaluation made by the replication
protocol). However, at commit time –and assuming that integrity checking is done at that moment– if X1’s
updates are delivered after X3’s ones, X1 will get aborted due to its violation of IC2. Note that for the
replication protocol both transactions have been considered as successful and the client has been reported
on their commitment, but X1 is actually aborted when it triesto commit in the underlying DBMS. So, the
current structure of middleware database replication protocols is not valid when integrity constraints exist
in the DB schema.

4 How To Support Constraints

In order to adequately support constraints in the WVR and CBRprotocols, some extensions are needed in
both of them. We discuss such extensions in the subsections below. We start with the WVR class since its
solution is easier.

Replication protocols are assumed to be implemented in a middleware layer (A solution for DBMS-core
replication protocols could be trivially derived from the solutions presented here). The underlying DBMS
is assumed to directly provide support for integrity maintenance, by raising exceptions or reporting errors
in case of constraint violation. Such exceptions and error messages are then managed by the replication
protocol. Thus, they do not reach the user-level application, unless the replication protocol decides so. We
also assume that the DBMS is able to support the isolation level for which the replication protocol has been
conceived. Thus, the replication protocol may focus on its native purpose of ensuring replica consistency,
and delegate local concurrency control to the DBMS.

The following symbols are used below for describing protocols: t is the transaction being processed;
R is the set of alive replicas;r is the replica that executes the protocol;rd is the delegate replica, i.e., the
replica where the transaction is locally and directly served; c is the client process;DB is the local DBMS
interface accessed by the replication protocol;wset(t) is the writeset oft, andrset(t) is the readset oft.
Note that theDB.abort(t) operation is used in non-delegate replicas of some protocols (concretely, in
Figs. 2 to 3) without having previously applied transactiont’s updates. If so happens, this means thatt’s
writeset should be discarded and, obviously, no operation will be requested to the underlying DBMS.

4.1 Weak Voting Replication Protocols

A WVR protocol consists of the steps in the pseudo-code of Figure 1.a. It is structured by three event-
driven blocks. In block I (lines 1-3),t is executed locally; its writeset is broadcast upon the event that
t is requested to be committed. Blocks II (lines 4–9) and III (lines 10–13) describe what is executed in
all replicas. In the former, action is taken upon arrival of the writeset, andt’s status is broadcast after
validation. In the latter, action is taken upon arrival of the status message, resulting in commit or abort.

Note that thevalidate() function evaluates whether there are read-write or write-write conflicts between
t and any other local transaction that has not arrived yet to its corresponding step 6. This implies that such
local conflicting transactions have not yet requested theircommit, or will be delivered afterward in total
order. In any case, when a conflict is found between a local anda remote transaction, the local transaction
is immediately aborted. If such transaction’s writeset hasbeen already broadcast, itsvalidate() call will
finally return anabort value.

Note also that theDB.commit() operation results are ignored in the WVR protocol, since such operation
was assumed to be always successful. Our first extension consists in considering thatDB.commit() requests
can return anabort value reporting a constraint violation, or acommitvalue meaning that the commit was
successfully made.

Some more extensions are needed, resulting in the protocol displayed in Figure 1.b. Note that the line
numbers from the original version in Figure 1.a remain the same. The extensions simply consist of three
added lines between the original 6th and 7th lines, and another one after line 10. Thus, lines 6a-6c check

5

1: Execute t. 1: Execute t.
2: On t commit request: 2: On t commit request:
3: TO-bcast(R,<wset(t), r>) 3: TO-bcast(R,<wset(t), r>)
4: Upon <wset(t), rd> reception: 4: Upon <wset(t), rd> reception:
5: if (r = rd) then 5: if (r = rd) then
6: statust ← validate(t) 6: statust ← validate(t)

6a: if (statust = commit) then
6b: statust ← DB.commit(t)
6c: else DB.abort(t)

7: R-bcast(R,statust) 7: R-bcast(R,statust)
8: send(c,statust) 8: send(c,statust)
9: else DB.apply(wset(t)) 9: else DB.apply(wset(t))

10: Upon statust reception: 10: Upon statust reception:
10a: if (r 6= rd) then

11: if (statust = commit) then 11: if (statust = commit) then
12: DB.commit(t) 12: DB.commit(t)
13: else DB.abort(t) 13: else DB.abort(t)

(a) Original (b) Extended

Figure 1: Weak voting protocols.

the result of the validation done by the replication protocol and, if it was successful, lead to the immediate
transaction commit in the delegate replica, storing the result value in thestatust variable. Note that in Fig.
1 (and in all subsequent figures), a sequence of rows shaded ingray corresponds to a block of protocol
steps that should be executed in mutual exclusion. Note alsothat a transaction is accepted as aborted only
if the abortion was caused by integrity constraint violations. Otherwise, e.g., abortions due to deadlocks or
timeouts, the transaction will be indefinitely reattempted, applying its writeset repeatedly. This means that
the transaction commitment is attempted before reliably broadcasting the protocol decision. Thus, in case
of a commit-time constraint violation, the delegate replica will know about such event, and the replication
protocol will be able to react by aborting the transaction inall replicas. This ensures consistency between
the decisions taken by the underlying DBMS and the replication protocol. Additionally, line 10a is needed
for ignoring in the delegate replica the reception of the message that communicates which has been the
termination decision fort, since the actions needed for managing such message have already been executed
in the delegate replica.

Although these extensions may seem to demand a minor effort,they do have some impact in transaction
response time. In the original algorithm, control was returned to the client before the actual commit was
requested to the DBMS, thus reducing the transaction completion time perceived by the user application.
When integrity constraints are involved, such optimization is not correct.

Moreover, a potential recovery problem may arise. In case the delegate replicard fails (breaks down)
for a to-be-committed transaction (t) between steps 6b and 7, the delegate replica had committed the trans-
action while all others are still waiting for its commit/abort message. This violates the uniformity principle
that was required in [22] for preserving in modern replication protocols the same functionality than in the
traditional 2PC one. Such uniformity is preserved in the original WVR protocol using uniform total-order
broadcast for writeset propagation, and uniform reliable broadcast in the termination/voting final message.
In our extensions, one of the non-delegate replicas must be selected as the new transaction delegate, for
broadcasting that message. This complicates such transaction termination, demanding much more time.
Additionally, this also complicates the recovery protocols since the state maintained in the crashed del-
egate replica for that transaction is uncertain (it may haveapplied its updates or not), violating also the
assumptions of thepersistent logical synchrony[18] model that was specifically tailored for replicated
database recovery.

6

4.2 Certification-Based Replication Protocols

CBR protocols are quite similar to WVR ones. The main difference consists in using a symmetrical trans-
action evaluation stage (in CBR protocols), instead of one where the delegate replica decides, broadcasting
later its decision (in WVR protocols). Thus, readset propagation is needed in CBR protocols, since only
the delegate replica maintains such information when transactions request their commit, but all replicas
need it when the evaluation stage is executed. So, the CBR basic protocol consists of the steps shown in
Figure 2.

1: Execute t.
2: On t commit request:
3: TO-bcast(R,<wset(t), rset(t), r>)
4: Upon <wset(t), rset(t), rd> reception:
5: statust ← certify(wset(t),rset(t))
6: if (statust = commit) then
7: if (rd 6= r) then
8: DB.apply(wset(t))
9: DB.commit(t)

10: else DB.abort(t)
11: if (rd = r) then
12: send(c,statust)

Figure 2: Certification-based protocol.

Note that readset collection and propagation can be costly if row-level granularity instead of table-level
granularity is used by the protocol for managing readsets and writesets. So, in practice, certification-based
protocols are rarely used for implementing serializable isolation. On the other hand, CBR serializable pro-
tocols are able to deal correctly with integrity constraints, since they rely on localstrict 2PLfor managing
write-write conflicts, as shown in the last protocol presented in [1]. This ensures that the replication proto-
col certification step for a given transaction is not decoupled from such transaction termination. However,
this also introduces another performance penalty on supporting the serializable isolation level with this
kind of replication protocol.

1: Execute t.
2: On t commit request:
3: TO-bcast(R,<wset(t), r>)
4: Upon <wset(t), rd> reception:
5: statust ← certify(wset(t), wslist)
6: if (statust = commit) then
7: append(wslist,wset(t))
8: if (rd 6= r) then
9: DB.apply(wset(t))

10: DB.commit(t)

11: else DB.abort(t)
12: if (rd = r) then
13: send(c,statust)

(a) Original

1: Execute t.
2: On t commit request:
3: TO-bcast(R,<wset(t), r>)
4: Upon <wset(t), rd> reception:
5: statust ← certify(wset(t), wslist)
6: if (statust = commit) then
7: append(wslist,wset(t))
8: if (rd 6= r) then
9: DB.apply(wset(t))

10: statust ← DB.commit(t)
10a: if (statust = abort) then
10b: remove(wslist,wset(t))
11: else DB.abort(t)
12: if (rd = r) then
13: send(c,statust)

(b) Extended

Figure 3: SI certification-based protocols.

But CBR is the preferred protocol class when thesnapshotisolation (abbr., SI) level [2] is supported,

7

mainly because this level relies on multiversion concurrency control, and readsets do not need to be checked
in the certification step. On the other hand, since such certification is based on logical timestamps and
depends on the length of transactions, a list of previously accepted certified transactions is needed for cer-
tifying the incoming ones. Note also that several DBMS products (PostgreSQL, Oracle, Microsoft SQL
Server,...) are currently able to support such isolation level, but some of them label it asserializableand
do not enforce a true serializable level but their own flavor of the SI one. Our aim in supporting integrity
checking in database replication protocols is to guaranteethe same supporting level in a middleware pro-
tocol than it was present in its underlying DBMS. Regarding these DBMSs, they are actually providing
an enhanced integrity management in their systems, equivalent to the one theoretically achievable when a
serializablelevel is used. So, the resulting isolation level cannot be tagged as a pure SI one (as it was first
defined in [2]) but as an extended SI level able to support integrity constraints in a serializable way. Our
aim in this section is to describe how such extended SI level can be implemented in a database replication
protocol based on the CBR approach. As a result of this, the extensions shown below in order to correctly
manage integrity contraints in this kind of protocols should not be interpreted as a critique on already pub-
lished SI certification-based protocols (e.g., [14, 16, 7, 19]), since they correctly support suchpure SIlevel
[2] and they did not aim to extend such level with constraint management as the underlying DBMSs do.

So, we focus on SI-oriented CBR protocols in the rest of this section. To this end, a general protocol of
this kind is displayed in Figure 3.a. The symbolwslist is needed for representing the list of successfully
certified writesets in replicar. A writeset should be added to that list in step 7 of this new protocol, once it
has been accepted for commitment. Thus, the list might grow indefinitely. To avoid such problem, the list
can be pruned following the suggestions given in [26].

Again, the extensions for managing integrity constraints in SI CBR protocols, as displayed in Figure
3.b, seem to be minor. Only a slight modification of the original line 10 is needed, for recording the result
of the commit attempt. If such commit attempt failed due to integrity constraints (but not if failure is due
to other causes, as said before), then the writeset of such transaction should be removed from thewslist
variable, since it has not finally been accepted. This is donein lines 10a and 10b.

Again, these seemingly minor extensions may have a notable impact on system performance, this time
even more than for extending WVR protocols. Typical SI CBR protocols [7, 16, 19, 8] use some opti-
mizations in order to achieve good performance. One such optimization consists in minimizing the set of
operations to be executed in mutual exclusion (i.e., avoiding new remote writeset processing) in the part
of the protocol devoted to managing incoming messages. The related protocol section in Fig. 3.a only
encompasses lines 5 to 7. As a result, new certifications can be made, once the current writeset has been
accepted. With our extensions, no new writeset can be certified until a firm decision on the current one has
been taken. That only happens once line 10b in Fig. 3.b has been executed; i.e., once the writeset has been
applied in the DBMS and its commit has been requested. This might take quite some time, and must be
done one writeset at a time.

A second optimization [8] consists in grouping multiple successfully certified writesets, applying all of
them at once in the underlying DBMS. This reduces the number of DBMS and I/O requests, thus improving
a lot the overall system performance. On the other hand, thisoptimization might compromise the recovery
efforts in case of a system crash, since it is unclear which writesets were actually applied, and some
additional actions would be needed to get such information.Also note that this optimization may not work
due to reasons explained in the previous paragraph, since each writeset should be individually applied for
finding out whether it violates some integrity constraint.

5 Performance Evaluation

In order to study the costs of a correct constraint management in middleware protocols, an analytical model
has been used. This model identifies and measures each step followed by transactions in both the original
and the extended replication protocols, as they were detailed before.

In the original WVR protocol (Fig. 1.a), the total duration of a transaction perceived by the client can
be expressed with the following formula:

torigWV R = tclient + tws + tTObcast + [tval] + tRbcast + tresp

8

wheretclient represents the interval the client spends accessing the database,tws is the time needed to col-
lect the writeset of the transaction once the client asks forcommitment,tTObcast is the duration of the total
order broadcast used to send this writeset to all the system replicas,tval represents the time used to validate
the received writeset in the local replica,tRbcast is the time needed to reliably broadcast the outcome of
the previous validation for all nodes to behave equally regarding this transaction termination, andtresp

is the time used by the protocol to inform the client about theoutcome of this transaction. We represent
between brackets the interval of mutual exclusion during which no new writesets can be validated by the
protocol. Bothtclient andtws depend on the amount of objects accessed by the transaction.Network load1

will determine the duration fortTObcast andtRbcast. We can assume thattresp is a constant in replicar for
all transactions of the same client, although it can vary from client to client depending on the geographi-
cal distance between client and server. Finally,tval depends on the amount of concurrent transactions to
be checked against. Note that this formula is valid for both aborted and committed transactions, as the
response to the client is sent before the actual terminationof the transaction.

When we extend the WVR protocol to correctly manage integrity constraints, the resulting formula is
the following:

textWV R = tclient + tws + tTObcast + [tval + tterm] + tRbcast + tresp

wheretterm is the time needed for terminating the transaction, either in abortion or with commitment,
depending on the validation outcome. This new component lengthens the total time perceived by the client
in two ways: directly, by adding to the formula, and indirectly, by extending the duration of the mutual
exclusion zone, making subsequent transactions to wait more before being validated.

Similarly, times for transactions increase in the SI CBR protocol when extended to provide a proper
constraint management. In the original SI CBR, the durationof a transaction that results aborted due to
conflicts is the following:

torigCBRab
= tclient + tws + tTObcast + [tcert] + tabort + tresp

wheretcert is the time spent during certification, andtabort is the time needed to abort the transaction. On
the other hand, a committed transaction presents a total time of:

torigCBRco
= tclient + tws + tTObcast + [tcert + thist] + tcommit + tresp

wherethist is the time required to insert the writeset into the historiclist, andtcommit is the time used to
commit the transaction in the database.

When extending SI CBR protocols to manage contraints, formulas for conflict-aborted transactions,
committed ones and those that finally abort due to integrity violations are:

textCBRab
= tclient + tws + tTObcast + [tcert] + tabort + tresp

textCBRco
= tclient + tws + tTObcast + [tcert + thist + tcommit] + tresp

textCBRin
= tclient + tws + tTObcast + [tcert + thist + tcommit + thist] + tresp

wheretextCBRin
is the time for integrity-aborted transactions, for which asecondthist is included in order

to represent the time needed to remove the writeset from the historic list.
All these formulas can be simplified making some assumptions. The two initial components of each

formula, as said before, depend on the transaction size –thenumber of accessed objects– and can be con-
sidered independent of the protocol version and added in onecomponenttlocal. Let’s also suppose that the
network load is such that the costs in the communications canbe considered a constanttcomm. Finally, we
can consider thattresp is negligible or, at least, a constant value only affecting the time of one transaction:
it is outside the mutual exclusion zone and is not a broadcastmessage, so it does not increase the network
load (we can add this constant to thetlocal time). With all this, formulas can be simplified to the following
ones:

1Note, however, that in most GCSs such broadcasts are asynchronous, demanding a negligible time.

9

torigWV R = tlocal + tcomm + [tval]
textWV R = tlocal + tcomm + [tval + tterm]
torigCBRab

= tlocal + tcomm + [tcert] + tabort

torigCBRco
= tlocal + tcomm + [tcert + thist] + tcommit

textCBRab
= tlocal + tcomm + [tcert] + tabort

textCBRco
= tlocal + tcomm + [tcert + thist + tcommit]

textCBRin
= tlocal + tcomm + [tcert + thist + tcommit + thist]

The goal of this analysis is to measure the increase in time for transactions executed by protocols that
correctly manage integrity constraints. To this end, the main component to study is that corresponding to
the mutual exclusion zone, as the bigger the exclusion zone,the greater the time transactions must wait to
be processed, i.e. to enter this mutual exclusion zone. Thiswait can be represented by a queue in which
transactions are inserted when received from the broadcast. The mutual exclusion zone will act as the
server in a queueing system modelling the processing of transactions.

We can consider that the arrival of new clients, i.e. new transactions, to the queueing system follows a
Poisson distribution with arrival rate ofλ. A Poisson distribution is a discrete probability distribution that
models the number of events occurring within a given time interval. In our case, it models transactions
arriving to the mutual exclusion zone in such a way that the intervals between subsequent arrivals follow
an exponential distribution and the average arrival rate isλ. This queueing system has only one server,
the mutual exclusion zone, whose service time can be assumedto be exponentially distributed with rate
µ. With this M/M/1 queue model, some values can be estimated, like the mean queue lengthLq (i.e. the
average number of transactions waiting to enter the mutual exclusion zone) and the mean waiting timeWq

(i.e. the time transactions must wait to enter that zone). Formulas are:

Lq =
(λ

µ
)2

1− λ
µ

Wq =

λ
µ

µ− λ

With these formulas, and giving some standard values for each step duration, we can analyze the per-
formance loss due to the longer mutual exclusion zone that appears when correctly managing constraints.
Note, however, that the mutual exclusion zone is not the onlystep in the processing of transactions and that
the number of concurrent operations in the underlying database is usually limited for perfomance reasons.
So, in the original protocols, the output rate of the mutual exclusion zone is not the output rate of the whole
system, as transactions must be effectively terminated in the database after they leave the mutual exclusion
zone. As a result of this, in the original protocols we have assumed that there exists a second server –the
DBMS involved in the transaction termination– whose service time (i.e., itsµ) is equal totcommit and
whose arrival rate (λ) is equal to the output rate of the mutual exclusion zone. Note that for the original
protocols we have considered as their queue lengths and queue waiting times the accumulated values from
both queues: the one needed to access the mutual exclusion zone and the second one needed to terminate
the transaction in the underlying DBMS.

A set of values representing the typical behavior of our MADIS middleware for the steps identified
above is: tval = tcert = 3 ms, tterm = tcommit = tabort = 25 ms and thist = 1 ms. With these
values, the mean service time can be evaluated depending on the protocol version and the outcome of
transactions. For WVR, the original version takes 3 ms whilst the correct one lasts 28 ms. This leads to
rates ofµorigWV R = 333.33 tr/sec (if we only consider its mutual exclusion zone, but later itssecond
“server” –DBMS termination, persisting the updates– provides an effectiveµorigWV R = 40 tr/sec) and
µextWV R = 35.71 tr/sec. For the CBR case, the service time depends on the outcome of the transaction.
In order to obtain an average service time, some values can beassigned to the abort rate due to conflicts
and also to the abort rate due to integrity violations. With values of 3% and 2%, respectively, weigthed
average service time is 3.97 ms for the incorrect version and28.24 ms for the correct one. These values
lead to rates ofµorigCBR = 251.89 tr/sec (again, limited toµorigCBR = 40 tr/sec for the same reasons
explained in the WVR case) andµextCBR = 35.41 tr/sec.

In order to maintain the system under its saturation point, arrival ratesλ cannot be greater than service
ratesµ. Varying the value for the arrival rate from 5 to 30tr/sec, plots in Figures 4 and 5 are obtained.
Figure 4 shows the mean number of transactions waiting in thequeue in order to enter the mutual exclusion
zone. Values for both original protocols are quite low, as their service rate is always higher than the arrival

10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30

M
ea

n
qu

eu
e

le
ng

th

Arrival rate

Original WVR
Extended WVR
Original SI CBR

Extended SI CBR

Figure 4: Values forLq depending onλ

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30

M
ea

n
qu

eu
e

tim
e

(m
s)

Arrival rate

Original WVR
Extended WVR
Original SI CBR

Extended SI CBR

Figure 5: Values forWq depending onλ

rate. On the other hand, both extended protocols present a notable increment in their graphs as the arrival
rate becomes closer to the service rate. Figure 5 shows the mean time transactions must wait in order to
access the mutual exclusion zone, measured in milliseconds. As expected, such waiting times are propor-
tional to the queue lengths shown in Fig. 4. Experimental measures of transaction completion times were
obtained in [23] for both the original and the extended protocol. Times for the extended version presented
increments similar to the differences between mean queue times predicted in the previous graph. This sup-
ports the idea of considering the greater mutual exclusion zone as the main disadvantage of the proposed
extended version. This proves that a correct integrity management demands much longer transaction com-
pletion times, and that some additional research is needed in order to find compatible optimizations able to
reduce such times.

6 Conclusions

The literature on integrity checking in replicated database systems is extremely scant; solitary exceptions
are few and peripheral, e.g., [25, 20]. None of the papers we have found deals with the problem of coordi-
nating integrity checking with replication protocols. However, on the protocol level of replicated database
architectures, many problems remain to be solved for implementing mechanisms that take care of control-

11

ling transaction consistency, replication consistency and integrity, i.e., semantic consistency. One of them
is addressed in this paper.

Due to the physical distribution of database replicas over possibly wide areas, and to the communi-
cation between replicas needed to coordinate their actions, there is a latency between the point of time a
transaction is requested to commit and the point of time it iseffectively committed. For guaranteeing the
ACID property of transactions [3], integrity can often not be checked soundly in immediate mode, but has
to be delayed until all write actions of a transaction have been processed. For several classes of replica-
tion protocols, this poses a problem, because none of the known ones consider integrity constraints at all.
Rather, they sanction transactions as ready to commit if no access conflict to shared data resources has
been detected. That way, integrity may be lost in the mentioned latency gap. Thus, the right moment of
reacting suitably to integrity violations may be missed, sothat committed transactions either are aborted
behind schedule, or integrity remains persistently violated. Both of that is known to have potentially fatal
consequences for consistency.

We first have described and then analyzed this problem in detail, for several well-known classes of
replication protocols that are based on total order communication mechanisms. For some, we have seen
that, surprisingly, support for integrity checking can be integrated seamlessly. For others, careful modifi-
cations are needed to make them work well also when integrityis checked by the DBMS at hand. We have
proposed such extensions for each critical class. For CBR and WVR protocols (which have the best per-
formance properties according to [26]), their extensions for integrity control prevent them from using most
of the optimizations that are responsible for their good reputation. An analytical study is also included,
showing the average additional time transactions must waitwhen managed by the extended protocol ver-
sions. These delays are due to the greater mutual exclusion zone, which forces transactions to wait before
accessing it. This way, as the arrival rate of transactions increases, also the queue length and, therefore,
the waiting time become larger. So, this opens a new line of research in the field of database replica-
tion, that could lead to efficient constraint-aware protocols, if new protocol optimizations are designed for
overcoming the current limitations, as identified in this paper.

So far, we have only considered those integrity constructs that are actually supported by currently
available DBMSs. However, our goal in the long run is to offera transparent integration of support for
transaction consistency, replication consistency and semantic consistency, where the latter is expressed by
integrity constraints that are as general as possible. Up tonow, the onus of ensuring integrity in replicated
databases has been on the designers and users of applications. In the long run, this should give way to
specifications of integrity constraints that can be supported automatically, just the way they are supported
already in centralized, non-distributed database systems.

Acknowledgments

This work has been partially supported by EU FEDER and the Spanish MEC under grants TIN2006-14738-
C02 and BES-2007-17362.

References

[1] Divyakant Agrawal, Gustavo Alonso, Amr El Abbadi, and Ioana Stanoi. Exploiting atomic broadcast
in replicated databases. In3rd International Euro-Par Conference, pages 496–503, Passau, Germany,
August 1997.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,and P. O’Neil. A critique of ANSI SQL
isolation levels. InProc. of the ACM SIGMOD International Conference on Management of Data,
pages 1–10, San José, CA, USA, May 1995.

[3] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery
in Database Systems. Addison Wesley, Reading, MA, USA, 1987.

12

[4] Stephanie J. Cammarata, Prasadram Ramachandra, and Darrell Shane. Extending a relational
database with deferred referential integrity checking andintelligent joins. InSIGMOD Conference,
pages 88–97, Portland, Oregon, May 1989.

[5] M. J. Carey and M. Livny. Conflict detection tradeoffs forreplicated data.ACM Trans. on Database
Systems, 16(4):703–746, 1991.

[6] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a com-
prehensive study.ACM Comput. Surv., 33(4):427–469, 2001.

[7] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database replication using generalized snapshot isolation.
In SRDS, pages 73–84, Orlando, FL, USA, October 2005.

[8] Sameh Elnikety, Steven G. Dropsho, and Fernando Pedone.Tashkent: uniting durability with transac-
tion ordering for high-performancescalable database replication. InEuroSys, pages 117–130, Leuven,
Belgium, April 2006.

[9] Javier Esparza-Peidro, Antonio Calero-Monteagudo, Jordi Bataller, Francesc D. Muñoz-Escoı́, Hen-
drik Decker, and José M. Bernabéu-Aubán. COPLA - a middleware for distributed databases. In
APLAS, pages 102–113, Shanghai, China, December 2002.

[10] Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E. O’Neil, and Dennis Shasha. Mak-
ing snapshot isolation serializable.ACM Trans. Database Syst., 30(2):492–528, 2005.

[11] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers of replication and a
solution. InSIGMOD Conference, pages 173–182, 1996.

[12] Luis Irún-Briz, Hendrik Decker, Rubén de Juan-Marı́n, Francisco Castro-Company, José Enrique Ar-
mendáriz-Iñigo, and Francesc D. Muñoz-Escoı́. MADIS: Aslim middleware for database replication.
Lecture Notes in Computer Science, 3648:349–359, August 2005.

[13] Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, Bettina Kemme, and Gustavo Alonso. Improving the
scalability of fault-tolerant database clusters. InICDCS, pages 477–484, 2002.

[14] B. Kemme and G. Alonso. A new approach to developing and implementing eager database replica-
tion protocols.ACM Transactions on Database Systems, 25(3):333–379, September 2000.

[15] Gilles M. E. Lafue. Semantic integrity dependencies and delayed integrity checking. InEigth In-
ternational Conference on Very Large Data Bases, pages 292–299, Mexico City, Mexico, September
1982.

[16] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. InSIGMOD Conference, pages 419–430, 2005.

[17] François Llirbat, Eric Simon, and Dimitri Tombroff. Using versions in update transactions: Applica-
tion to integrity checking. In23rd International Conference on Very Large Data Bases, pages 96–105,
Athens, Greece, August 1997.

[18] Francesc D. Muñoz-Escoı́, Rubén de Juan-Marı́n, J. Enrique Armendáriz-́Iñigo, and J. R. González
de Mendı́vil. Persistent logical synchrony. In7th International Symposium on Network Computing
and Applications, Toronto, Canada, July 2008.

[19] Francesc D. Muñoz-Escoı́, Jerónimo Pla-Civera, Marı́a Idoia Ruiz-Fuertes, Luis Irún-Briz, Hendrik
Decker, José Enrique Armendáriz-Iñigo, and José Ramón González de Mendı́vil. Managing trans-
action conflicts in middleware-based database replicationarchitectures. InSymposium on Reliable
Distributed Systems, pages 401–410, 2006.

[20] Michael Okun and Amnon Barak. Atomic writes for data integrity and consistency in shared storage
devices for clusters.Future Generation Comp. Syst., 20(4):539–547, 2004.

13

[21] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso. MIDDLE-R: Consistent database
replication at the middleware level.ACM Trans. Comput. Syst., 23(4):375–423, 2005.

[22] Fernando Pedone, Rachid Guerraoui, and André Schiper. Exploiting atomic broadcast in replicated
databases. In4th International Euro-Par Conference, pages 513–520, Southampton, UK, September
1998.

[23] Marı́a Idoia Ruiz-Fuertes, Francesc D. Muñoz-Escoı́, Hendrik Decker, José Enrique Armendáriz-
Íñigo, and José Ramón González de Mendı́vil. IntegrityDangers in Certification-Based Replication
Protocols. Technical Report ITI-ITE-08/13, Instituto Tecnológico de Informática, Valencia, Spain,
May 2008.

[24] Can Türker and Michael Gertz. Semantic integrity support in SQL:1999 and commercial (object-
)relational database management systems.The VLDB Journal, 10:241–269, June 2001.

[25] Luı́s Veiga and Paulo Ferreira. RepWeb: Replicated webwith referential integrity. InSAC, pages
1206–1211, Melbourne, FL, USA, March 2003.

[26] Matthias Wiesmann and André Schiper. Comparison of database replication techniques based on total
order broadcast.IEEE Trans. on Knowledge and Data Engineering, 17(4):551–566, April 2005.

14

