Extending Middleware Protocols for Database Replication

with Integrity Support
F. D. Mufioz, M. I. Ruiz, H. Decker, J. E. Armendariz, J. R.n2alez de Mendivil

Instituto Tecnologico de Informéatica - Depto. de Ing. Btattica e Informatica

{fmunyoz, miruifue, hendrik@iti.upv.es{enrique.armendariz, mendiy@unavarra.es

Technical Report TR-ITI-ITE-08/14

TR-ITI-ITE-08/14

Extending Middleware Protocols for Database Replicatiagtihvntegrity Support

F. D. Mufioz-Escoi et al.:

Extending Middleware Protocols for Database
Replication with Integrity Support

F. D. Muioz, M. |. Ruiz, H. Decker, J. E. Armendariz, J. R.i2alez de Mendivil

Instituto Tecnolodgico de Informéatica - Depto. de Ing. Erattica e Informatica
Technical Report TR-ITI-ITE-08/14
e-mail: {fmunyoz, miruifue, hendrik@iti.upv.es{enrique.armendariz, mendiyi®unavarra.es

Jul, 2008

Abstract

Current middleware database replication protocols take o& read-write conflict evaluation. If
there are no such conflicts, protocols sanction transactmicommit. Other conflicts may arise due to
integrity violation. So, if, in addition to the consistenaf/transactions and replicas, also the consistency
of integrity constraints is to be supported, some more casstrbe taken. Some classes of replication
protocols are able to seamlessly deal with the integritypsupof the underlying DBMS, but others
are not. In this paper, we analyze the support for integtigt tan be provided in various classes of
replication protocols. Also, we propose extensions fosththat cannot directly manage certain kinds of
constraints that are usually supported in DBMSs.

1 Introduction

Over the years, many database replication protocols hage pemposed [3, 5, 11, 14]. None of these
proposals has assessed the support of semantic consiateneguired by integrity constraints. This is in
line with the well-known result that the serializability imttegrity-preserving transactions yields integrity-
preserving schedules [3], since all protocols assumedaligable isolation level.

Unfortunately, this result does not hold in a replicatecabbase scenario if transactions trust that the
enforcement of all constraints declared in the schema epdédd automatically to the DBMS. Concurrent
transactions may start and execute in different nodes, esaepd as usual until they request commitment.
At this point, the replication protocol is in the positionvalidate each transaction and request its commit,
based on checking for read-write and write-write conflictoag concurrent transactions. However, at least
in middleware-oriented protocols [9, 12, 21, 19], comgiimas may arise, for instance if constraints are
checked in deferred mode, i.e., at effective commit tinge, only after conflict validation by the replication
protocol. Recall that deferred checking is unavoidableetimes, for maintaining transaction atomicity.
Thus, integrity checking may diagnose constraint violagithat remained unnoticed by the replication
protocol. For instance, this may happen if integrity chagkiesults in a failed read request of some item
that otherwise would not be accessed, e.g., one refererycaddreign key constraint. Thus, there may be
transactions that are sanctioned to commit by the reptingirotocol but are aborted later, due to deferred
integrity checking. Recall that to abort after commit is adi@al sin against the principles of transaction
processing.

Things may get even worse when isolation levels are relakeztently, thesnapshoisolation level
[2] has gained popularity, since it is supported by sevelM3s (e.g., Oracle, PostgreSQL, Microsoft
SQL Server, ...), though it does not avoid all isolation anbes. Although it can support serializable
executions [10], the replication protocols that suppdtt4t, 16, 7, 19] are able to relax the final transaction
validation process, since only write-write conflicts neet& checked for this isolation level. This implies

that the abortion rate generated by the replication prdtedower than using serializable isolation. That,
however, may cause bigger problems for integrity mainteeasince more protocol-accepted transactions
will be involved in constraint-related problems at comririte.

Most modern database replication protocols use total dodeadcast for propagating sentences or
writesets/readsets of transactions to other replicas. id/g@ing to analyze the integrity-checking support
needed for different categories of replication protocats;ording to the classification proposed in [26]. As
far as the authors know, no such study of integrity supporejpjication protocols exists yet. If so, then our
main contribution consists in inaugurating this subfieldesfearch by the study at hand, and in identifying
how some replication protocols should be adapted in ordeotectly deal with integrity constraints.

Section 2 recapitulates the main database replicatiosetagentified in [26]. Section 3 describes the
problems that arise in constraint management in a repticggstem. In Section 4, we propose solutions
for the problems identified in Sect. 3. Later, Section 5 dessran analytical model that has been used for
studying the costs of a correct constraint management inlleudare protocols. Finally, in Section 6, we
conclude with a long-term outlook.

2 Database Replication Protocols

Replication techniques were initially applied on disttéa databases extending the distributed mecha-
nisms already used in the latter; i.2.Phase Commi2PC) for termination management a8ttict Two
Phase Lockingimplemented by distributed locks) dfulti-Versionmanagement for concurrency control
[3]. However, this approach prevented such first generaifaeplicated databases from achieving good
performance. As a result, new proposals arose in the negdded hus, new techniques were proposed for
concurrency control, trying to ensure that most of the retpieere locally managed, as in t©@timistic
Two Phase Lockingechnique described in [5] that only requests remote lotk®amit time and whose
performance and abort rates are better than any other dafritemporary approaches in most settings.

Despite this, termination management was also a problethsame other papers [1, 22] proposed
and proved thaatomic(i.e., total-orderbroadcast6] can be an efficient replacement for the traditional
2PC protocol. Moreover, such two papers also maintainedulygestions given in [5] for improving con-
currency control performance. As a result, a new family dbbase replication protocols was generated,
based on first executing locally all kinds of transactiond Broadcasting at commit time —and in total
order— the updates made —if any- to all replicas, still fellg the ROWA principle presented in [3]. Note
that the initial local transaction execution uses a quiténaigtic concurrency control management, since
evaluation of transaction conflicts is partially delayedlurpdate-propagation time. On the other hand, at
remote transaction’s application time, local conflictingnisactions are aborted in order to guarantee that
such remote updates could be applied following the updaté ¢oder imposed by the atomic broadcast
mechanism. This guarantees an excellent performance dndeas the degree of optimism of the resulting
concurrency control.

A comparison of these total-order based replication prtéemilies with other approaches typical
in other replicated applications (that follow either théiae or primary-copy replication techniques) was
described in [26]. We follow such comparison in this sectilk® protocol classes are:

e Active replication(AR). The client sends its transaction to a given replita The latter forwards
all transaction operations to all database replicas by glesitotal-order broadcast. Each replica
independently and deterministically processes the trditga Total-order propagation ensures the
same transaction scheduling in all replicas. So, all raglishould get the same results for each
transaction. Once the transaction has been compl>kturns its results to the client.

e Certification-based replicatiofCBR). The transaction is initially executed in a single edglte
replica. Once the client application requests its commitinehe transaction readset and writeset
are collected and propagated to all replicas using totaéiobroadcast. Once such message is de-
livered, the transaction is certified against concurrartsactions whose messages where previously
delivered. This validation stage is symmetrical since @fllicas can hold the same historic list of
previously delivered readsets and writesets. So, all ohtben take the same decision on the transac-
tion termination, i.e., no additional communication steméeded for that. Once certified, accepted

transactions are applied and committed, and their wrisemetl readsets will be temporarily held in
order to certify other concurrent transactions whose ddtéderdelivered later. Otherwise, i.e., when
the transaction has been aborted in the certification si@geadset and writeset are discarded.

e Weak voting replicatiofWVR). As in the previous class, each transaction is exetine single
delegate replica. When a transaction requests its conmmigadset and writeset are collected as in
the previous class, but only its writeset is broadcast ialtotder to all replicas. Once the writeset
is delivered, it is validated (but only in its own delegatpliea) against the writesets of concurrent
transactions that have been delivered before its own ont tNat read-write conflicts are detectable,
since the delegate replica knows which has been the reafliéeti@cal transaction and also which
writesets are from remote. If any conflict is found, the tet®n is aborted, else it is committed.
The decision about this is propagated usinglable broadcas{6] to all replicas. The latter then
behave according to the action prescribed in the broadcessage.

e Primary copy replication(PCR). All transactions must be executed by the same primeplca
which may rely on its local concurrency and integrity cohtreechanisms to decide whether trans-
actions can be committed or not. Once a transaction has beeunted in the primary replica, its
writeset will be propagated to other replicas (that behavieackups) and applied there. Finally, the
transaction is committed in all replicas, and the cliensgeported on this.

e Lazy replication(LR). This class is an extension of the previous one, whech ¢@ansaction may
select a different delegate replica and the client is infirafter the delegate’s commit. Thus, trans-
actions are first completed in their selected delegateaapknd, once done, their updates are prop-
agated to other replicas. This replication class is nottpral; since conflicts are actually detected
once transactions have been already committed, which désranonciliation techniques for ensur-
ing consistency. Therefore, we do not further discuss timd kf replication.

Classes AR and PCR do not pose any problem for integrity memagt. In AR, all replicas should
behave in exactly the same way, thus local management igganéilso in PCR, no coordination nor vali-
dation is required since only one replica is processingrduesaction. So, in this regard, it is equivalent to
a non-replicated architecture. Hence, both AR and PCR potg@re able to deal with integrity constraints
in a seamless way, by relying on the support provided by thiketiping DBMS.

Unfortunately, neither AR nor PCR protocols provide good@enance, according to [26]. However,
the authors of [13] propose some adaptations of the PCR ttlaspartition the database and distribute the
subsets according to predefined conflict classes amongpteybtiimary copies (each one being responsi-
ble for each subset). These adaptations significantly isgtioe performance, while the reliance on the
integrity support from the underlying DBMS is not impaired.

On the other hand, the two classes providing best perform@BR and WVR) give rise to several
problems with regard to integrity constraints. Let us d&cthem in detail.

3 Integrity Problems with Deferred Checking

The study of this paper is limited to the SQL constructs tipically are offered and supported for speci-
fying and maintaining semantic consistency. An analysiategrity support for the SQL:1999 standard in
relational DBMSs was given in [24]. Not too much has changetié state of the art of integrity checking

in SQL-based databases in the years after the appearareesithhdard, except that various developments
have rather diverged from than converged to it, and openceodiatabases have come to be more on par
with what has been offered by commercial vendors earligglims of integrity support.

Integrity constraints define what is a consistent databi@ie, oy requiring that certain conditions be
invariant across updates. Consistency as defined by ihtegpnstraints is sometimes callegmantic
consistencyin order to emphasize that constraints express propéhetgertain to the domain captured
by the database and the application programs that use thbats#t. This nomenclature also serves to
distinguish semantic consistency fraransaction consistengyhich involves guarantees of atomicity and
isolation, and fronmreplication consistengywhich requires that the states of replicated databasesnode
coincide on the values of their individual copies of commatedtems.

In a centralized setting, integrity constraints have beaditionally managed using a deferred or de-
layed checking [15, 4, 17], instead of an immediate one. Thisbe explained both in terms of perfor-
mance improvements (as reported in [15, 17]) and becausechiecking admits temporary inconsistencies
that can be solved before transactions end [15], avoiditegrimediate checkings that could have uselessly
required time and resources.

Note that the semantics ahmediate checkingre unclear, as already explained in [17]. In order to
preserve serializability, each transaction should usepg@opriate long read and long write locks on all
items it has read or updated. When another concurrent tioeammediately checks some constraint on
any of its updates, which kind of isolation level should bedig such check? If serializable is used, none
of the concurrent accesses will be observable —or they nagktduch checking—; if other levels are used,
as eitheread committedr snapshatas analyzed in [17], the serializable guarantees mightbleein. As
a result, deferred checking seems to be the safest approach.

At a glance, deferred checking should be used in middlewarabése replication protocols, but some
problems arise in the CBR and WVR protocol families desctifeove. Both protocol classes need at least
two steps for transaction management. A first step devotéhtsaction conflict checking and, if such
check succeeds, a second step where remote updates aszlapplon-delegate replicas and transactions
are finally committed. If constraint checking is deferrdtttansaction commit time, some misbehavior
could be generated: the protocol could have admitted adrios as correct in such first transaction
conflict check —reporting its success to the client apgbeceat and later the underlying DBMS might abort
it when its commit is requested. So, deferred checking wasdtution to some problems in a centralized
system, but it is now the origin of other ones in a replicateghsirio.

Let us present a first example with two concurrent transastibat is correctly managed with deferred
checking in a centralized system but cannot be with immediaecking, illustrating what has been said
before. Thus, let us assume a DB composed by two tables T12add with two integrity constraints:

IC1: A primary key constraintin T1.
IC2: A foreign key constraintin T2, referring to the primary kefyTdL.

Imagine two concurrent transactions X1 and X2 that amongrahtions, perform the following oper-
ations:

X1: Itinserts a tuple t2 in T2, referring to tuple t1 in T1.

X2: Itinserts a tuple t3 in T1, with the same value in its primaey khan tuple t1, and finally it removes
tuple t1 from T1.

This kind of transaction could be needed for, e.g., remoagpartment (t1, in the example) in a
given company and re-assigning all its employees (tupl@ireferring to t1) to another one (t3, in
this example).

Note that these transactions can proceed in a centraliztelsyonly with deferred checking —otherwise,
constraint IC1 would have been violated, but if X2 executesperations in the opposite order, constraint
IC2 will be violated, so there is no way of completing X2 aosowithout any constraint violation using
immediate checking—, and this admits both a serializati@eioX1, X2 and X2, X1. Additionally, no
problem arises in a replicated system.

Let us imagine now a second example that shows which kindaiflems might arise in a replicated
system. In this case, a third transaction X3 is needed. Iplsinemoves t1 from T1 and it is executed con-
currently with transaction X1 from the previous example.isTéecond example can be executed without
problems in a centralized system if the serialization oixier X3 is followed. However, execution of X3
will remove the effects of X1 if cascaded deletes are usedtl&se transactions generate the worst conse-
guences if a replicated system is used. In such a case, amtiagsdeferred checking, such transactions
have the following readsets and writesets:

e Xl.rset=0
e X1l.wset={t2}

e X3.rset=0
e X3.wset ={tl1}

As a result of this, no replication protocol will be able taelg any read-write nor write-write conflict
between both transactions in the first step presented alwovdli€t evaluation made by the replication
protocol). However, at commit time —and assuming that intyyghecking is done at that moment— if X1's
updates are delivered after X3's ones, X1 will get aborted ttuits violation of IC2. Note that for the
replication protocol both transactions have been consitlas successful and the client has been reported
on their commitment, but X1 is actually aborted when it tti@g€ommit in the underlying DBMS. So, the
current structure of middleware database replicationquis is not valid when integrity constraints exist
in the DB schema.

4 How To Support Constraints

In order to adequately support constraints in the WVR and @BRocols, some extensions are needed in
both of them. We discuss such extensions in the subsect@awa.bWe start with the WVR class since its
solution is easier.

Replication protocols are assumed to be implemented in dlevicire layer (A solution for DBMS-core
replication protocols could be trivially derived from thelstions presented here). The underlying DBMS
is assumed to directly provide support for integrity maiaece, by raising exceptions or reporting errors
in case of constraint violation. Such exceptions and erressages are then managed by the replication
protocol. Thus, they do not reach the user-level applicatimless the replication protocol decides so. We
also assume that the DBMS is able to support the isolatia fevwhich the replication protocol has been
conceived. Thus, the replication protocol may focus ondtsvie purpose of ensuring replica consistency,
and delegate local concurrency control to the DBMS.

The following symbols are used below for describing proteceis the transaction being processed;
R is the set of alive replicas; is the replica that executes the protoeg];is the delegate replica, i.e., the
replica where the transaction is locally and directly sdrves the client procesd) B is the local DBMS
interface accessed by the replication protoegdett) is the writeset of, andrset(t) is the readset of.
Note that theD B.abort(t) operation is used in non-delegate replicas of some pragdcoincretely, in
Figs. 2 to 3) without having previously applied transactisnupdates. If so happens, this means tfsat
writeset should be discarded and, obviously, no operatitilbe/requested to the underlying DBMS.

4.1 Weak Voting Replication Protocols

A WVR protocol consists of the steps in the pseudo-code ofifeid..a. It is structured by three event-
driven blocks. In block I (lines 1-3), is executed locally; its writeset is broadcast upon the etheat

t is requested to be committed. Blocks Il (lines 4-9) and iHd$ 10—13) describe what is executed in
all replicas. In the former, action is taken upon arrival loé twriteset, and’s status is broadcast after

validation. In the latter, action is taken upon arrival of gtatus message, resulting in commit or abort.

Note that thevalidatd) function evaluates whether there are read-write or waitiée conflicts between
t and any other local transaction that has not arrived yestodtresponding step 6. This implies that such
local conflicting transactions have not yet requested tb@inmit, or will be delivered afterward in total
order. In any case, when a conflict is found between a locabanedhote transaction, the local transaction
is immediately aborted. If such transaction’s writeset besn already broadcast, italidatg) call will
finally return anabort value.

Note also that th®B.commif) operation results are ignored in the WVR protocol, singghsoperation
was assumed to be always successful. Our first extensiorst®imsconsidering thdadB.commif) requests
can return ambort value reporting a constraint violation, ocammitvalue meaning that the commit was
successfully made.

Some more extensions are needed, resulting in the protsibgted in Figure 1.b. Note that the line
numbers from the original version in Figure 1.a remain thesaThe extensions simply consist of three
added lines between the origindl@Gnd 7" lines, and another one after line 10. Thus, lines 6a-6¢ check

1: Executet. 1: Executet.
2: Ont commit request: 2: Ont commit request:
3: TO-bcast(R,<wset(t), r>) 3: TO-bcast(R,<wset(t), r>)
4: Upon <wset(t), r4> reception: 4: Upon <wset(t), r4> reception:
5. if (r = rg) then 5. if (r =rg) then
6: status; < validate(t) 6: status; < validate(t)
6a: if (status; = commit) then
6b: statusy < DB.commit(t)
6C: else DB.abort(t)
7: R-bcast(R,status;) 7: R-bcast(R,status;)
8: send(c,status;) 8: send(c,status;)
9: else DB.apply(wset(t)) 9: else DB.apply(wset(t))
10: Upon status; reception: 10: Upon status; reception:
10a: if (r # rq) then
11: if (status; = commit) then 11: if (status; = commit) then
12: DB.commit(t) 12: DB.commit(t)
13: else DB.abort(t) 13: else DB.abort(t)
(a) Original (b) Extended

Figure 1: Weak voting protocols.

the result of the validation done by the replication prot@d, if it was successful, lead to the immediate
transaction commit in the delegate replica, storing thalteslue in thestatus; variable. Note that in Fig.

1 (and in all subsequent figures), a sequence of rows shadg@yncorresponds to a block of protocol
steps that should be executed in mutual exclusion. Notetldga transaction is accepted as aborted only
if the abortion was caused by integrity constraint violaioOtherwise, e.g., abortions due to deadlocks or
timeouts, the transaction will be indefinitely reattempiagplying its writeset repeatedly. This means that
the transaction commitment is attempted before reliabbatcasting the protocol decision. Thus, in case
of a commit-time constraint violation, the delegate reghidll know about such event, and the replication
protocol will be able to react by aborting the transactiomlireplicas. This ensures consistency between
the decisions taken by the underlying DBMS and the repbicgpirotocol. Additionally, line 10a is needed
for ignoring in the delegate replica the reception of the sage that communicates which has been the
termination decision fot, since the actions needed for managing such message headyabeen executed

in the delegate replica.

Although these extensions may seem to demand a minor dffestdo have some impact in transaction
response time. In the original algorithm, control was readt to the client before the actual commit was
requested to the DBMS, thus reducing the transaction cdiopléme perceived by the user application.
When integrity constraints are involved, such optimizai®not correct.

Moreover, a potential recovery problem may arise. In casaltilegate replica, fails (breaks down)
for a to-be-committed transactiot) petween steps 6b and 7, the delegate replica had comnfitdrhins-
action while all others are still waiting for its commit/atbonessage. This violates the uniformity principle
that was required in [22] for preserving in modern replioatprotocols the same functionality than in the
traditional 2PC one. Such uniformity is preserved in thgiol WVR protocol using uniform total-order
broadcast for writeset propagation, and uniform relialvtealdcast in the termination/voting final message.
In our extensions, one of the non-delegate replicas museleeted as the new transaction delegate, for
broadcasting that message. This complicates such trémsaetmination, demanding much more time.
Additionally, this also complicates the recovery protacsince the state maintained in the crashed del-
egate replica for that transaction is uncertain (it may hapglied its updates or not), violating also the
assumptions of theersistent logical synchronjd8] model that was specifically tailored for replicated
database recovery.

4.2 Certification-Based Replication Protocols

CBR protocols are quite similar to WVR ones. The main diffe® consists in using a symmetrical trans-
action evaluation stage (in CBR protocols), instead of oher& the delegate replica decides, broadcasting
later its decision (in WVR protocols). Thus, readset praiim is needed in CBR protocols, since only
the delegate replica maintains such information when #etiens request their commit, but all replicas
need it when the evaluation stage is executed. So, the CBR fyasocol consists of the steps shown in
Figure 2.

Execute t.
On ¢t commit request:
TO-bcast(R,<wset(t), rset(t), r>)
Upon <wset(t), rset(t), r4> reception:
status; +— certify(wset(t),rset(t))
if (status; = commit) then
if (rq # r) then
DB.apply(wset(t))
DB.commit(t)
10: else DB.abort(t)
11: if (rq =) then
12: send(c,statusy)

Figure 2: Certification-based protocol.

Note that readset collection and propagation can be cdstiyilevel granularity instead of table-level
granularity is used by the protocol for managing readsetisiaitesets. So, in practice, certification-based
protocols are rarely used for implementing serializabd¢sison. On the other hand, CBR serializable pro-
tocols are able to deal correctly with integrity constrajrgince they rely on locatrict 2PLfor managing
write-write conflicts, as shown in the last protocol preselih [1]. This ensures that the replication proto-
col certification step for a given transaction is not decedgtom such transaction termination. However,
this also introduces another performance penalty on stipgothe serializable isolation level with this
kind of replication protocol.

1: Executet. 1. Execute t.

2: Ont commit request: 2: Ont commit request:

3: TO-bcast(R,<wset(t), r>) 3: TO-bcast(R,<wset(t), r>)

4: Upon <wset(t), rq4> reception: 4: Upon <wset(t), r4> reception:

5 status; < certify(wset(t), wslist) 53 status; < certify(wset(t), wslist)
6: if (status; = commit) then 6: if (status; = commit) then

7 append(wslist,wset(t)) 7 append(wslist,wset(t))

8: if (rq # r) then 8: if (rq # r) then

9: DB.apply(wset(t)) 9: DB.apply(wset(t))

10: DB.commit(t) 10: status; <+ DB.commit(t)
10a: if (status; = abort) then
10b: remove(wslist,wset(t))

11: else DB.abort(t) 11: else DB.abort(t)

12: if (rq =) then 12: if (rq =r) then

13: send(c,statusy) 13: send(c,statusy)

(a) Original (b) Extended

Figure 3: Sl certification-based protocols.

But CBR is the preferred protocol class when gmapshotsolation (abbr., Sl) level [2] is supported,

mainly because this level relies on multiversion concuryaontrol, and readsets do not need to be checked
in the certification step. On the other hand, since suchfimation is based on logical timestamps and
depends on the length of transactions, a list of previoustgpted certified transactions is needed for cer-
tifying the incoming ones. Note also that several DBMS pridi{PostgreSQL, Oracle, Microsoft SQL
Server,...) are currently able to support such isolatieellebut some of them label it arializableand

do not enforce a true serializable level but their own flaviothe SI one. Our aim in supporting integrity
checking in database replication protocols is to guaratfiteesame supporting level in a middleware pro-
tocol than it was present in its underlying DBMS. Regardingse DBMSs, they are actually providing
an enhanced integrity management in their systems, eguived the one theoretically achievable when a
serializablelevel is used. So, the resulting isolation level cannot lbge¢a as a pure Sl one (as it was first
defined in [2]) but as an extended Sl level able to supporgiitieconstraints in a serializable way. Our
aim in this section is to describe how such extended Sl lemeloe implemented in a database replication
protocol based on the CBR approach. As a result of this, theneions shown below in order to correctly
manage integrity contraints in this kind of protocols stibaibt be interpreted as a critique on already pub-
lished SI certification-based protocols (e.g., [14, 16,97),3since they correctly support suplre Sllevel

[2] and they did not aim to extend such level with constraiahiagement as the underlying DBMSs do.

So, we focus on Sl-oriented CBR protocols in the rest of teetien. To this end, a general protocol of
this kind is displayed in Figure 3.a. The symheilist is needed for representing the list of successfully
certified writesets in replica. A writeset should be added to that list in step 7 of this nestqwol, once it
has been accepted for commitment. Thus, the list might gnolefinitely. To avoid such problem, the list
can be pruned following the suggestions given in [26].

Again, the extensions for managing integrity constraintSi CBR protocols, as displayed in Figure
3.b, seem to be minor. Only a slight modification of the ordgiine 10 is needed, for recording the result
of the commit attempt. If such commit attempt failed due tegnity constraints (but not if failure is due
to other causes, as said before), then the writeset of sankéction should be removed from thelist
variable, since it has not finally been accepted. This is dlotires 10a and 10b.

Again, these seemingly minor extensions may have a notaigladt on system performance, this time
even more than for extending WVR protocols. Typical SI CBRtpcols [7, 16, 19, 8] use some opti-
mizations in order to achieve good performance. One sudm@ation consists in minimizing the set of
operations to be executed in mutual exclusion (i.e., angigiew remote writeset processing) in the part
of the protocol devoted to managing incoming messages. @laged protocol section in Fig. 3.a only
encompasses lines 5 to 7. As a result, new certifications eandile, once the current writeset has been
accepted. With our extensions, no new writeset can be eettifintil a firm decision on the current one has
been taken. That only happens once line 10b in Fig. 3.b hasdezuted; i.e., once the writeset has been
applied in the DBMS and its commit has been requested. Thgbintake quite some time, and must be
done one writeset at a time.

A second optimization [8] consists in grouping multiple sessfully certified writesets, applying all of
them at once in the underlying DBMS. This reduces the numtieBd1S and I/0 requests, thus improving
a lot the overall system performance. On the other handpfftisnization might compromise the recovery
efforts in case of a system crash, since it is unclear whictesgts were actually applied, and some
additional actions would be needed to get such informa#dsp note that this optimization may not work
due to reasons explained in the previous paragraph, sirteve@eset should be individually applied for
finding out whether it violates some integrity constraint.

5 Performance Evaluation

In order to study the costs of a correct constraint managememddleware protocols, an analytical model
has been used. This model identifies and measures each beyetbby transactions in both the original
and the extended replication protocols, as they were @etaifore.

In the original WVR protocol (Fig. 1.a), the total duratiohaotransaction perceived by the client can
be expressed with the following formula:

tm’igWVR = tetient + tws + tTObca,st + [tual] + tRbca,st + tTesp

wheret;.n: represents the interval the client spends accessing thbakst,, ; is the time needed to col-
lect the writeset of the transaction once the client asksdarmitmentfropeqs: 1S the duration of the total
order broadcast used to send this writeset to all the systplitasy,,; represents the time used to validate
the received writeset in the local replida,..s: IS the time needed to reliably broadcast the outcome of
the previous validation for all nodes to behave equally réiga this transaction termination, arngl,
is the time used by the protocol to inform the client aboutdbiecome of this transaction. We represent
between brackets the interval of mutual exclusion duringctvimo new writesets can be validated by the
protocol. Botht;.,,; andt,,s depend on the amount of objects accessed by the transastonork load
will determine the duration fofropcas: andt picast. We can assume that.,, is a constant in replicafor
all transactions of the same client, although it can varynfidient to client depending on the geographi-
cal distance between client and server. Findlly; depends on the amount of concurrent transactions to
be checked against. Note that this formula is valid for bdibreed and committed transactions, as the
response to the client is sent before the actual terminafitime transaction.

When we extend the WVR protocol to correctly manage intggrimnstraints, the resulting formula is
the following:

tethVR = tclient + tws + tTObcast + [tval + tterm] + tRbcast + tresp

wheret;.,, is the time needed for terminating the transaction, eithestbortion or with commitment,
depending on the validation outcome. This new componegtihems the total time perceived by the client
in two ways: directly, by adding to the formula, and inditgcby extending the duration of the mutual
exclusion zone, making subsequent transactions to wak imefiore being validated.

Similarly, times for transactions increase in the SI CBRtpcol when extended to provide a proper
constraint management. In the original SI CBR, the duratdiba transaction that results aborted due to
conflicts is the following:

tom'gCBRab = tclient + tws + tTOb(:ast + [tcert] + ta,bm’t + tresp

wheret...; is the time spent during certification, ang,. is the time needed to abort the transaction. On
the other hand, a committed transaction presents a totaldfm

torigCBRco = tclient + tws + tTObcast + [tcert + thist] + tcommit + tresp

wheret;;s: is the time required to insert the writeset into the histéigt; andt...,mi: IS the time used to
commit the transaction in the database.

When extending SI CBR protocols to manage contraints, ftamfor conflict-aborted transactions,
committed ones and those that finally abort due to integiiiations are:

tethBRab = t(:liem‘, + 7fws + tTObca,st + [t(:eﬁ‘,] + tabort + tTesp
tea:tCBRco = tclient + tws + tTObcast + [tcert + thist + tcommit] + tresp
tea:tCBRm = tclient + tws + tTObcast + [tcert + thist + tcommit + thist] + tresp

wheret..:cBr,, IS the time for integrity-aborted transactions, for whickezond,;s. is included in order
to represent the time needed to remove the writeset fromigteric list.

All these formulas can be simplified making some assumptidie two initial components of each
formula, as said before, depend on the transaction sizenttimber of accessed objects— and can be con-
sidered independent of the protocol version and added itomponent;,.,;. Let's also suppose that the
network load is such that the costs in the communicationdearonsidered a constainy,,... Finally, we
can consider that..,, is negligible or, at least, a constant value only affectimgtime of one transaction:
it is outside the mutual exclusion zone and is not a broaduoassage, so it does not increase the network
load (we can add this constant to thg.,; time). With all this, formulas can be simplified to the follmg
ones:

INote, however, that in most GCSs such broadcasts are asymais, demanding a negligible time.

tm’igWVR =tiocal + tcomm +
tethVR = tloca,l + tcoan +
torigCBRah = tlocal + tcomm + tcert] + tabort

[tmz,l]

[t

[
torigCBRw = tlocal + tcomm + [tcert + thist] + tcommit

[

[

[

val T ttm’m]

tethBRab = tloca,l + tcoan + t(:ert] + tabort
tethBRm = tlocal + tcoan + t(:ert + thist + tcomnmﬁt]
tethBRm = tlocal + tcoan + t(:ert + thist + tcomnmﬁt + thist]

The goal of this analysis is to measure the increase in timgdasactions executed by protocols that
correctly manage integrity constraints. To this end, thénsamponent to study is that corresponding to
the mutual exclusion zone, as the bigger the exclusion zbeegreater the time transactions must wait to
be processed, i.e. to enter this mutual exclusion zone. Waiscan be represented by a queue in which
transactions are inserted when received from the broadddst mutual exclusion zone will act as the
server in a queueing system modelling the processing ofaetions.

We can consider that the arrival of new clients, i.e. newdsations, to the queueing system follows a
Poisson distribution with arrival rate of A Poisson distribution is a discrete probability disttilom that
models the number of events occurring within a given timeridl. In our case, it models transactions
arriving to the mutual exclusion zone in such a way that therials between subsequent arrivals follow
an exponential distribution and the average arrival ratg. iS his queueing system has only one server,
the mutual exclusion zone, whose service time can be asstortal exponentially distributed with rate
. With this M/M/1 queue model, some values can be estimaileglfhie mean queue length, (i.e. the
average number of transactions waiting to enter the mutghlision zone) and the mean waiting tirvig,
(i.e. the time transactions must wait to enter that zone)mitas are:

—
= >
~—

[\v]
= >

With these formulas, and giving some standard values fdn etp duration, we can analyze the per-
formance loss due to the longer mutual exclusion zone thatas when correctly managing constraints.
Note, however, that the mutual exclusion zone is not the stely in the processing of transactions and that
the number of concurrent operations in the underlying degalis usually limited for perfomance reasons.
So, in the original protocols, the output rate of the mutualesion zone is not the output rate of the whole
system, as transactions must be effectively terminateikiatabase after they leave the mutual exclusion
zone. As a result of this, in the original protocols we haveuased that there exists a second server —the
DBMS involved in the transaction termination— whose sexime (i.e., itsu) is equal t0tcommi: and
whose arrival rateX) is equal to the output rate of the mutual exclusion zone.eNloat for the original
protocols we have considered as their queue lengths anequasting times the accumulated values from
both queues: the one needed to access the mutual exclusieramd the second one needed to terminate
the transaction in the underlying DBMS.

A set of values representing the typical behavior of our M&Dhiddleware for the steps identified
above iS:tya = teert = 3MS, tierm = teommit = tabort = 25ms andity;ss = 1ms. With these
values, the mean service time can be evaluated dependingeopraotocol version and the outcome of
transactions. For WVR, the original version takes 3 ms wltfile correct one lasts 28 ms. This leads to
rates ofpiorigwvr = 333.33tr/sec (if we only consider its mutual exclusion zone, but latersésond
“server” -DBMS termination, persisting the updates— pdeg an effectivgi,,.qwvr = 40tr/sec) and
Lextwvr = 35.71tr/sec. For the CBR case, the service time depends on the outcorhe &fansaction.

In order to obtain an average service time, some values caisdigned to the abort rate due to conflicts
and also to the abort rate due to integrity violations. Witthues of 3% and 2%, respectively, weigthed
average service time is 3.97 ms for the incorrect versionz8184 ms for the correct one. These values
lead to rates OfiorigcBr = 251.89 tr/sec (again, limited tou.riqcrr = 40 tr/sec for the same reasons
explained in the WVR case) and,:cpr = 35.41tr/sec.

In order to maintain the system under its saturation ponnityal rates\ cannot be greater than service
ratesu. Varying the value for the arrival rate from 5 to 38/sec, plots in Figures 4 and 5 are obtained.
Figure 4 shows the mean number of transactions waiting igteeie in order to enter the mutual exclusion
zone. Values for both original protocols are quite low, asrtkervice rate is always higher than the arrival

10

‘ Original WVR -8

45 | Extended WVR --#&-- ,L'
Original SI CBR —<— /®
4| Extended SI CBR -——-¥--/ |

Mean queue length
N
[62]

Arrival rate

Figure 4: Values fot_, depending o

160

Original WVR 8-
Extended WVR -——&—- /'l
140 Original SI CBR —v—'/]
Extended SI CBR v/v

120
100

80

Mean queue time (ms)

Arrival rate

Figure 5: Values foiV, depending or\

rate. On the other hand, both extended protocols presentbhlaancrement in their graphs as the arrival
rate becomes closer to the service rate. Figure 5 shows tha timee transactions must wait in order to
access the mutual exclusion zone, measured in millisec@xslsexpected, such waiting times are propor-
tional to the queue lengths shown in Fig. 4. Experimentalsuess of transaction completion times were
obtained in [23] for both the original and the extended peotoTimes for the extended version presented
increments similar to the differences between mean queestpredicted in the previous graph. This sup-
ports the idea of considering the greater mutual exclustwrezas the main disadvantage of the proposed
extended version. This proves that a correct integrity rgangent demands much longer transaction com-
pletion times, and that some additional research is neededler to find compatible optimizations able to
reduce such times.

6 Conclusions

The literature on integrity checking in replicated databsgstems is extremely scant; solitary exceptions
are few and peripheral, e.g., [25, 20]. None of the papersave found deals with the problem of coordi-

nating integrity checking with replication protocols. Hever, on the protocol level of replicated database
architectures, many problems remain to be solved for implging mechanisms that take care of control-

11

ling transaction consistency, replication consistenay iategrity, i.e., semantic consistency. One of them
is addressed in this paper.

Due to the physical distribution of database replicas owasibly wide areas, and to the communi-
cation between replicas needed to coordinate their acttbege is a latency between the point of time a
transaction is requested to commit and the point of timedfffisctively committed. For guaranteeing the
ACID property of transactions [3], integrity can often n& bhecked soundly in immediate mode, but has
to be delayed until all write actions of a transaction haverbprocessed. For several classes of replica-
tion protocols, this poses a problem, because none of therkooes consider integrity constraints at all.
Rather, they sanction transactions as ready to commit ifavess conflict to shared data resources has
been detected. That way, integrity may be lost in the mertidatency gap. Thus, the right moment of
reacting suitably to integrity violations may be missedftsat committed transactions either are aborted
behind schedule, or integrity remains persistently vedatBoth of that is known to have potentially fatal
consequences for consistency.

We first have described and then analyzed this problem inldéiaseveral well-known classes of
replication protocols that are based on total order comuatitin mechanisms. For some, we have seen
that, surprisingly, support for integrity checking can beepgrated seamlessly. For others, careful modifi-
cations are needed to make them work well also when inteigrithecked by the DBMS at hand. We have
proposed such extensions for each critical class. For CRRMYIR protocols (which have the best per-
formance properties according to [26]), their extensiansritegrity control prevent them from using most
of the optimizations that are responsible for their goodutapon. An analytical study is also included,
showing the average additional time transactions mustwiaén managed by the extended protocol ver-
sions. These delays are due to the greater mutual exclusit gvhich forces transactions to wait before
accessing it. This way, as the arrival rate of transactiongeiases, also the queue length and, therefore,
the waiting time become larger. So, this opens a new line séaech in the field of database replica-
tion, that could lead to efficient constraint-aware protecid new protocol optimizations are designed for
overcoming the current limitations, as identified in thippa

So far, we have only considered those integrity construts are actually supported by currently
available DBMSs. However, our goal in the long run is to offietransparent integration of support for
transaction consistency, replication consistency andaséimconsistency, where the latter is expressed by
integrity constraints that are as general as possible. Wt the onus of ensuring integrity in replicated
databases has been on the designers and users of app#icdtiotime long run, this should give way to
specifications of integrity constraints that can be sugggbatutomatically, just the way they are supported
already in centralized, non-distributed database systems

Acknowledgments

This work has been partially supported by EU FEDER and th@iSphaMEC under grants TIN2006-14738-
C02 and BES-2007-17362.

References

[1] Divyakant Agrawal, Gustavo Alonso, Amr El Abbadi, andalta Stanoi. Exploiting atomic broadcast
in replicated databases. 3nd International Euro-Par Conferengpages 496-503, Passau, Germany,
August 1997.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Naild P. O’'Neil. A critique of ANSI SQL
isolation levels. InProc. of the ACM SIGMOD International Conference on Manageiof Data
pages 1-10, San Josg, CA, USA, May 1995.

[3] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Gaaad. Concurrency Control and Recovery
in Database Systemaddison Wesley, Reading, MA, USA, 1987.

12

[4] Stephanie J. Cammarata, Prasadram Ramachandra, amellC&rane. Extending a relational
database with deferred referential integrity checking emelligent joins. InSIGMOD Conference
pages 88-97, Portland, Oregon, May 1989.

[5] M. J. Carey and M. Livny. Conflict detection tradeoffs feplicated dataACM Trans. on Database
Systemsl6(4):703—-746, 1991.

[6] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Gpaommunication specifications: a com-
prehensive studyACM Comput. Sury33(4):427-469, 2001.

[7] S.Elnikety, W. Zwaenepoel, and F. Pedone. Databaseegjoin using generalized snapshotisolation.
In SRDSpages 73-84, Orlando, FL, USA, October 2005.

[8] Sameh Elnikety, Steven G. Dropsho, and Fernando Pedassbkent: uniting durability with transac-
tion ordering for high-performance scalable databasegabn. InEuroSyspages 117-130, Leuven,
Belgium, April 2006.

[9] Javier Esparza-Peidro, Antonio Calero-MonteagudajiJ®ataller, Francesc D. Mufioz-Escoi, Hen-
drik Decker, and José M. Bernabéu-Auban. COPLA - a migdte for distributed databases. In
APLAS pages 102-113, Shanghai, China, December 2002.

[10] Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’WNd?atrick E. O’Neil, and Dennis Shasha. Mak-
ing snapshot isolation serializablBCM Trans. Database SysB0(2):492-528, 2005.

[11] Jim Gray, Pat Helland, Patrick E. O'Neil, and Dennis §te The dangers of replication and a
solution. INSIGMOD Conferenggages 173-182, 1996.

[12] Luis Irtn-Briz, Hendrik Decker, Rubén de Juan-Maifrrancisco Castro-Company, José Enrique Ar-
mendariz-1fiigo, and Francesc D. Mufioz-Escoi. MADISli#tn middleware for database replication.
Lecture Notes in Computer Scien8648:349-359, August 2005.

[13] Ricardo Jiménez-Peris, Marta Patifio-MartineztiBa Kemme, and Gustavo Alonso. Improving the
scalability of fault-tolerant database clustersI@DCS pages 477-484, 2002.

[14] B. Kemme and G. Alonso. A new approach to developing amalémenting eager database replica-
tion protocols.ACM Transactions on Database Systet(3):333-379, September 2000.

[15] Gilles M. E. Lafue. Semantic integrity dependencied delayed integrity checking. IRigth In-
ternational Conference on Very Large Data Bagemges 292299, Mexico City, Mexico, September
1982.

[16] V. Lin, B. Kemme, M. Patifio-Martinez, and R. Jimésfegris. Middleware based data replication
providing snapshot isolation. BRIGMOD Conferencgages 419-430, 2005.

[17] Francois Llirbat, Eric Simon, and Dimitri Tombroff. dihg versions in update transactions: Applica-
tion to integrity checking. 1123rd International Conference on Very Large Data Bagesgyes 96—105,
Athens, Greece, August 1997.

[18] Francesc D. Mufioz-Escoi, Rubén de Juan-Marinndigie Armendarizfigo, and J. R. Gonzalez
de Mendivil. Persistent logical synchrony. Tth International Symposium on Network Computing
and ApplicationsToronto, Canada, July 2008.

[19] Francesc D. Mufioz-Escoi, Jeronimo Pla-Civera, isl&doia Ruiz-Fuertes, Luis Irin-Briz, Hendrik
Decker, José Enrique Armendariz-Ifiigo, and José Rafonzalez de Mendivil. Managing trans-
action conflicts in middleware-based database replicarchitectures. IifBymposium on Reliable
Distributed Systempages 401-410, 2006.

[20] Michael Okun and Amnon Barak. Atomic writes for datagigtity and consistency in shared storage
devices for clustergruture Generation Comp. Sys20(4):539-547, 2004.

13

[21] M. Patifio-Martinez, R. Jiménez-Peris, B. Kemma] én Alonso. MIDDLE-R: Consistent database
replication at the middleware leveACM Trans. Comput. Sys23(4):375-423, 2005.

[22] Fernando Pedone, Rachid Guerraoui, and André Schipeploiting atomic broadcast in replicated
databases. lath International Euro-Par Conferencpages 513-520, Southampton, UK, September
1998.

[23] Maria Idoia Ruiz-Fuertes, Francesc D. Mufoz-Es¢téndrik Decker, José Enrique Armendariz-
IRigo, and José Rambn Gonzalez de Mendivil. Intedbigingers in Certification-Based Replication
Protocols. Technical Report ITI-ITE-08/13, Instituto ietbgico de Informatica, Valencia, Spain,
May 2008.

[24] Can Turker and Michael Gertz. Semantic integrity suppn SQL:1999 and commercial (object-
)relational database management systerhe VLDB Journgl10:241-269, June 2001.

[25] Luis Veiga and Paulo Ferreira. RepWeb: Replicated wib referential integrity. INSAC pages
1206-1211, Melbourne, FL, USA, March 2003.

[26] Matthias Wiesmann and André Schiper. Comparison tdloizse replication techniques based on total
order broadcastEEE Trans. on Knowledge and Data Engineerih@(4):551-566, April 2005.

14

