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Abstract

Database replication protocols check read-write and/or write-write conflicts. If there are none, then
protocols propagate transactions to the database, assuming they will eventually commit. But commitment
may fail due to integrity constraints violations. Also, theread actions of integrity checking may give raise
to new conflicts. Thus, some more care must be taken if, in addition to the consistency of transactions
and replicas, also the consistency of integrity constraints is to be maintained. In this paper, we investigate
how certification-based replication protocols can be adapted to correctly and transparently deal with the
built-in integrity support provided by the underlying DBMS. Also, we experimentally demonstrate the
negative effects that an incorrect management of integrityconstraints may cause in a database replication
distributed system.

1 Introduction

Many database replication protocols have been proposed [3,4, 10, 13, 23] over the years. None of these pro-
posals has assessed the support of semantic consistency as postulated by integrity constraints. In general,
the ignorance of problems related to integrity checking in concurrent, distributed and replicated systems is
in good company. Even the most well-known authors in the fieldof transaction processing are accustomed
to assume that all transactions are programmed in such a way that they preserve integrity when executed
in isolation, and therefore, integrity preservation is also guaranteed by serializable schedules of concurrent
executions[9, 3].

Unfortunately, this assumption does not always apply. And even if it would, its consequence does
not necessarily hold in replicated databases. Concurrent transactions may start and execute in different
nodes, and proceed without problems until they request commitment. Upon receipt of the commit request
of a transaction, the replication protocol validates it andguarantees its commit if there is no read-write or
write-write conflict among concurrent transactions. Complications may arise if constraints are checked in
deferred mode, i.e., at effective commit time, i.e., only after conflict validation by the replication protocol.
Then, integrity checking may diagnose constraint violations by transactions that are already successfully
validated by the protocol, i.e., the protocol has already sanctioned those transactions to commit. Moreover,
integrity checking may increase the transaction’s readset, remaining these new accesses unnoticed by the
protocol.
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On the other hand, if the replication protocol guarantees a serializable isolation level and all checks are
immediate, all accesses made during integrity checking will be contained in the readset of the transaction.
Thus, other concurrent transactions are prevented from accessing the same items, even if the commitment
of both transactions does not violate any integrity constraint. However, a deferred checking still presents
the problems mentioned above.

Read actions for checking integrity need to be taken into account by a scheduler of a set of concurrent
transactions just as any other action of the given transactions. Hence, the sequentializability of a set of con-
current transactions may change if also actions for integrity checking are taken, concurrently. It seems that
there are two possibilities for taking integrity checking actions into account: either as a separate concurrent
transaction, or as actions by which the checked transactionis augmented. In middleware-based replication
protocols, integrity checking actions are treated as if they would need no scheduling. In particular, it is
not clear how “immediate” checks are scheduled. Each changeof a schedule can, however, destroy the
sequentializability of the schedule. For this reason, and also because the semantics of “immediate” usually
is proprietary, “immediate” checks can not be considered aslegal actions in general.

On the other hand, if “deferred” checking means that all checks are scheduled after all actions of a
given transaction have been processed, then these deferredchecks still need to be scheduled with regard to
concurrent actions, for avoiding sequentializability problems.

If a transactionT is augmented by integrity checks, a new transactionT ′ results. If all transactions
T1,. . . ,Tn concurrent withT are also augmented by such checks, a new setT ′,T ′

1
,. . . ,T ′

n
of transactions

results. Then, the serializability ofT ′,T ′

1
,. . . ,T ′

n
is not the same as serializability ofT ,T1,. . . ,Tn. Thus, a

new serializability condition is needed: A set of transactions isserializable with regard to integrityif its
augmentation with integrity checks is serializable in the traditional sense.

Things may get even worse when isolation levels are relaxed.Recently, thesnapshotisolation level
[1] has gained popularity, since it is supported by several DBMSs (e.g., Oracle, PostgreSQL, Microsoft
SQL Server, . . . ), though it does not avoid all isolation anomalies. Although it can support serializable
executions [8], the replication protocols that support it [13, 14, 6, 17] are able to relax the final transaction
validation process, since only write-write conflicts need to be checked for this isolation level. This implies
that the abortion rate generated by the replication protocol is lower than using serializable isolation. That,
however, may cause bigger problems for integrity maintenance, since more protocol-accepted transactions
will be involved in constraint-related problems at commit time. Moreover, other relaxed isolation levels
like read committed, which may make sense for some kinds of applications, and some replication protocols
that support them [2, 20], are facing the same problem as discussed above.

This way, if the replication protocol only guarantees a snapshot isolation level (abbr., SI), only write-
write conflicts will be checked during the validation phase.Thus, for SI, a state transition that preserves
the integrity of the database can be guaranteed only if integrity is checked in deferred mode. For instance,
suppose an integrity constraint that limits the value of thesum of two different columnsx andy. Assume
also two concurrent transactionsA andB being executed in different nodes:A only updatesx, so y is
read to check integrity; in the other node,B only updatesy, sox is read for integrity checking. Suppose
that both integrity checkings are passed in their respective local nodes, but the updates are such that, when
combined, the integrity constraint is violated. The validation phase of the protocol will not detect any
write-write conflict betweenA andB and thus will allow both transactions to commit, which leadsto an
integrity inconsistent database state. Although multi-columnCHECK constraints are not usually supported
in DBMSs, the same situation can be reached with a simpler constraint for a single columnx, like CHECK
SUM(x) < Threshold, whereThreshold is a constant. In this case, withSUM(x) = 8 in the old
state and a threshold of 10, two transactionsA andB both inserting a new row with value 1 in columnx
will successfully pass their local integrity checkings, but cause a integrity violation when combined. For
this reason, such constraints must be checked at commit time, in order to consider the updates made by
previous remote transactions.

Apart from the two options considered until now, i.e., making constraint checking immediately after the
update action or deferring this checking until commit time,there is a third possibility, proposed by some
DBMS vendors, consisting in making constraints immediate at the end of a transaction. This is a way of
checking whether a commit operation can succeed. Thus, the transaction programmercan avoid unexpected
rollbacks by setting constraintsIMMEDIATE as the last statement in a transaction. If any constraint fails
the check, the programmer can then correct the error before requesting the commit of the transaction.
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However, such techniques can be dismissed because they are non-standardized proprietary tricks, requiring
an additional non-declarative programming effort for transactions. Also the constructsIMMEDIATE and
DEFERREDare procedural. That is against the principle of declarativity, which means that constraints are
stated without control structures, so that the evaluation (checking) of constraints is completely transparent
to the transaction designer/programmer. Procedural constructs tend to be error-prone and hard to maintain,
in particular if they are not standard. Moreover, although there is a substantial difference for the transaction
programmer between using this trick and declaring constraints IMMEDIATE from the beginning of the
transaction, from the point of view of the replication protocol there is no difference, as both checkings
are done before the local commit request of the transaction.Thus, the updates made by previous remote
transactions are not considered in these checkings, leading to the same problem described above.

Something similar will happen with foreign key constraints, which are supported by all DBMSs sup-
porting SI. Suppose a table constraint likeFOREIGN KEY x REFERENCES t.y, wheret is the ref-
erenced table andy is the primary key column oft. If an INSERT inserts a row with valuex = v and
a concurrentDELETE deletes the row int with column valuey = v, then a violation of the foreign key
constraint remains undetected by local immediate checks.

Thus, there may be transactions that are sanctioned to commit by the replication protocol but have to
be aborted later, due to integrity violations detected by deferred checking. Recall that to abort after commit
is against the basic principles of transaction processing.

Most modern database replication protocols use total orderbroadcast for propagating sentences or
writesets/readsets of transactions to other replicas [23]. Among them, certification-based replication pro-
tocols provide good performance by optimised algorithms, such as [14]. In this paper, we are going to
analyse the integrity checking support needed for certification-based replication protocols.

This paper follows up to [16]. As far as the authors are aware,our work is the first to study the in-
tegrity support by replication protocols. If so, then, apart from inaugurating this subfield of research, its
main contribution consists in identifying how replicationprotocols can be adapted in order to correctly deal
with integrity constraints. This paper also contains a practical study of the negative effects of improperly
managing integrity constraints in a certification-based replication protocol. Our study reflects that an incor-
rect handling of integrity-violating transactions in a distributed system leads, at least, to a higher abortion
rate. Moreover, incorrectly aborted transactions might have led, if not aborted, to the correct abortion of
concurrent conflicting transactions that are then incorrectly committed.

The rest of this paper is structured as follows. In section 2 we detail the assumed system model.
Section 3 briefly explains integrity constraints and section 4 explains in detail the certification-based repli-
cation and the extensions made for a proper management of integrity constraints in this type of replication
protocols. In section 5 we present the experimental resultsobtained, detailing the tests performed and
the observed protocol behavior. Section 6 analyses the problems that other works present with regard to
integrity consistency. Finally, section 7 concludes the paper.

2 System Model

We assume a partially synchronous distributed system of finitely many nodes with the following character-
istics. Clocks are not synchronized but message transmission time is bounded. Each node holds a replica of
a given database; i.e., the database is fully replicated. Each system node has a local DBMS that is used for
local transaction management. On top of the DBMS, the middleware systemMADIS [12, 17] is deployed
in order to provide support for replication. This middleware uses a group communication service (abbr.,
GCS), that provides a communication and a membership service supporting virtual synchrony [5]. The
communication service uses a total order multicast for message exchange among nodes through reliable
channels. TheGCSgroups messages delivered in views [5]. The uniform reliable multicast facility [11]
ensures that, if a multicast message is delivered by a node (correct or not), then it will be delivered to all
available nodes in that view. In this work, we use Spread [21]as ourGCS.
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3 Integrity Constraints

Integrity constraints (shortly, constraints) define what is a consistent database state, by requiring that certain
conditions be invariant across updates. Consistency as defined by constraints is sometimes calledsemantic
consistency. This emphasises that constraints express properties pertaining to the application domain of the
database. This nomenclature also serves to distinguish semantic consistency fromtransaction consistency,
which involves guarantees of atomicity and isolation, and from replication consistency, which requires that
the states of replicated database nodes coincide on the values of their individual copies of common data
items.

Constraints can be classified by well-known criteria such asdeclarative or procedural; static or dynamic;
column, table or inter-table constraints [15]. In this paper, we only consider the effects of not correctly
coordinating integrity checks, as provided by the DBMS at hand, with the actions taken by the replication
protocol, regardless of the integrity constraint type.

But, since we build on existing DBMS support for integrity checking, the common concept in current
SQL implementations of thechecking modeis important. As previously commented, this mode specifies
when a declarative constraint is to be checked: eitherimmediate, i.e., directly upon the given update action,
or deferred, i.e., delayed until the transaction containing the updateswitches to immediate-mode or, by
default, right before the commit of the transaction. In general, the checking mode is controlled by the
transaction programmer or, if the transaction is dynamic, by the agent who executes the transaction.

4 Certification-Based Database Replication Protocols

Certification-based database replication protocols (abbr., CBR) use a total order broadcast mechanism [5]
for update propagation and replica coordination. As definedin [23], such protocols proceed along the
following sequence of steps:

1. A transactionT is executed in a single replica, the delegate one.

2. WhenT locally requests its commit, its readset and writeset are collected.

3. A message is broadcast to all replicas in total order, propagatingT ’s writeset and readset.

4. OnT ’s data delivery,T is validated against concurrent transactions, looking forread-write and write-
write conflicts. This validation stage is symmetrical sinceall replicas can hold the same history list
of previously delivered readsets and writesets, i.e. no additional communication step is needed for
that.

5. If the delegate replica has not found any conflict, the protocol is able to reply to the client, notifying
T ’s success. Moreover, in all replicas,T ’s data is added to a list of to-be-committed transactions and
also to the history list used for evaluating conflicts with incoming ones.

6. If a conflict is found,T is aborted in its delegate replica, and its data are discarded in all other
replicas.

7. If no conflict is found,T can commit in each replica. To this end, its writeset is applied. At the end
of this step, a local commit operation is executed in all replicas in order to commitT . If writeset
application is impeded, for instance byT being involved in a deadlock and aborted by the DBMS,
then writeset application is reattempted until it succeeds.

Note that readset collection and propagation can be costly if row-level granularity instead of table-
level granularity is used. So, in practice, certification-based protocols are rarely used for implementing
serializable isolation. On the other hand, CBR is the preferred protocol class when thesnapshotisolation
(abbr., SI) level [1] is supported, mainly because this level relies on multiversion concurrency control, and
readsets do not need to be checked in the certification step. On the other hand, since such certification is
based on logical timestamps and depends on the length of transactions, a list of previously accepted certified
transactions is needed for certifying the incoming ones. Moreover, we have also proved recently [20] that
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the read committedisolation level can be implemented by using the CBR protocolclass, demanding a
certification strategy quite similar to the one used in SI.

So, we focus on SI-oriented CBR protocols in this paper. A general protocol of this kind is displayed
in figure 1a. The following symbols are used:t is the transaction being processed;R is the set of alive
replicas;ri is the local replica executing the protocol;rd is the delegate replica of a transaction, i.e., the
replica where that transaction started;c is the client process;DB is the local DBMS interface accessed by
the replication protocol; andwset(t) is the writeset oft. Note that theDB.abort(t) operation is executed
in non-delegate replicas without having previously applied t’s updates. If that happens,t’s writeset must
be discarded and, obviously, no operation will be requestedto the underlying DBMS. The symbolwslisti
is needed for representing the list of successfully certified writesets in replicari, also called the history
list. A writeset should be added to that list in step 8 of this new protocol, once it has been accepted for
commitment. Thus, the list might grow indefinitely. To avoidthat, the list can be pruned following the
suggestions given in [23]. Accesses to this list are confinedwithin mutually exclusive zones delimited by
mutex.lock andmutex.unlock calls. Note that amutex.unlock call has no effect if the mutual exclusion
was already ended (line 13 in figure 1a has no effect for transactions successfully certified as they leave the
protected section in line 8a).

As already indicated, certification-based replication gives rise to several problems with regard to in-
tegrity constraints. If there is any deferrable declarative constraint and a transaction requests deferred
checking, that checking can not be done until the last step inthe sequence presented at the beginning of
this section. However, as we have seen, that may lead to constraint violation and abortion behind sched-
ule. In this case, any repeated attempts to commit the transaction clearly would be in vain. Also note
that in step 5 of the same sequence the transaction was assumed successful, and other transactions whose
data were delivered afterT may have already been aborted due toT ’s assumed commit. So, certification-
based protocols need to be modified in order to correctly dealwith deferrable constraints. We discuss such
modifications below.

Replication protocols are assumed to be implemented, as usual, either in a middleware or as a direct
extension of the DBMS core. In each case, the DBMS is assumed to directly provide support for integrity
maintenance, by raising exceptions or reporting errors in case of constraint violation. Such exceptions
and error messages are then managed by the replication protocol. Thus, they do not reach the user-level
application, unless the replication protocol decides so. We also assume that the DBMS is able to support
the isolation level for which the replication protocol has been conceived. Thus, the replication protocol
may focus on its native purpose of ensuring replica consistency, and delegate local concurrency control to
the DBMS.

1: Execute t. 1: Execute t.
2: On t commit request: 2: On t commit request:
3: TO-bcast(R, 〈wset(t), ri〉) 3: TO-bcast(R, 〈wset(t), ri〉)
4: Upon 〈wset(t), rd〉 reception: 4: Upon 〈wset(t), rd〉 reception:
5: mutex.lock 5: mutex.lock

6: statust ← certify(wset(t), wslisti) 6: statust ← certify(wset(t), wslisti)
7: if (statust = commit) then 7: if (statust = commit) then
8: append(wslisti, wset(t)) 8: append(wslisti, wset(t))

8a: mutex.unlock

9: if (ri 6= rd) then 9: if (ri 6= rd) then
10: DB.apply(wset(t)) 10: DB.apply(wset(t))
11: DB.commit(t) 11: statust ← DB.commit(t)

11a: if (statust = abort) then
11b: remove(wslisti, wset(t))

12: else DB.abort(t) 12: else DB.abort(t)
13: mutex.unlock 13: mutex.unlock

14: if (ri = rd) then 14: if (ri = rd) then
15: send(c, statust) 15: send(c, statust)

a) SI CBR protocol. b) Extended SI CBR protocol.

Figure 1: SI and Extended SI certification-based protocols.
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The extensions for managing integrity constraints in SI CBRprotocols, as displayed in figure 1b, seem
to be minor. Only a slight modification of the original line 11is needed, for recording the result of the
commit attempt. If such commit attempt of some transactiont failed due to integrity violation (but not
if failure is due to other causes, since such abortions are indefinitely reattempted), then the writeset oft

should be removed from thewslisti, since it has not been finally accepted. This is done in lines 11a and
11b.

However, these seemingly minor extensions may have a notable impact on system performance. Typical
SI CBR protocols [6, 14, 17, 7] use some optimisations in order to achieve good performance. One such
optimisation consists in minimising the set of operations to be executed in mutual exclusion (i.e., avoiding
new remote writeset processing) in the part of the protocol devoted to managing incoming messages. In
many protocols (e.g., [14, 17]), an auxiliary list is used for storing the writesets to be committed (the related
protocol section in fig. 1a only encompasses lines 6 to 8). As aresult, new certifications can be made, once
the current writeset has been accepted. With our extensions, no new writeset can be certified until a firm
decision on the current one has been taken. That only happensafter line 11b in fig. 1b; i.e., once the
writeset has been applied in the DBMS and its commit has been requested. This might take quite some
time, and must be done one writeset at a time.

5 Experimental Analysis

For analysing the protocol extensions proposed in section 4by practical experiments, we have imple-
mented three SI CBR protocol versions: a) IntUnaware –integrity-unaware protocol– corresponds to the
pseudocode shown in figure 1a with only two modifications: first, it is able to identify those transactions
that raise integrity exceptions when tried to be committed and, thus, it does not indefinitely reattempt them
(we introduced this extension in order to obtain a protocol that keeps liveness even though it still improperly
manages integrity consistency), and second, it informs clients with the real final status of transactions in
line 15; b) IntAware –integrity-aware– protocol, which corresponds to the pseudocode shown in figure 1b;
and c) IntAwareOpt, an optimised version of the previous protocol.

In short, the integrity management error made by the IntUnaware protocol is to keep in the history
list those transactions that were aborted due to integrity violations. At this point, the reader may ask why
we analyse the IntUnaware protocol at all, since its behavior is incorrect and should be replaced by a cor-
rect version such as the IntAware protocol. The reason is that no better protocols yet exist for replicated
databases. Therefore, we want to analyse the difference of performance between existing protocols such
as the IntUnaware protocol and our proposal to make it correct, as embodied by the IntAware protocol.
This performance analysis also is interesting because, in many situations and applications (e.g., data ware-
housing), proper constraint checking is often disabled, which means that using either the IntUnaware or the
IntAware version will have the same (possibly incorrect) effect. Hence, the differences of performance of
both protocol variants are of practical interest.

For this reason, the third protocol version was introduced in the analysis. The IntAwareOpt protocol was
designed to reduce the completion time of aborted transactions of the IntAware version, as we observed that
the difference in completion times between the IntUnaware and the IntAware protocols was considerable
higher for aborted transactions. With this end, the IntAwareOpt protocol starts the certification of a writeset
W as soon as it is delivered, without waiting for the completion of previous transactions, as does the
IntAware protocol. In order to maintain correctness, this certification phase establishes dependencies for
W , in such a way that the certification is only definitive when the protocol has a firm decision for all
previous conflicting transactions, i.e., all previous transactions that conflict withW have been committed
or aborted. This optimisation brings forward the certification decision of abortion for a transactionT , as
the successful commitment of only one concurrent conflicting transaction is enough to determine thatT

must abort.
The last performance issue considered in this study was the accurate tunning of an important module of

our middleware: the BlockDetector. This module uses the concurrency control support of the local DBMS
for detecting conflicts between local transactions and writesets of remote transactions. Periodically, this
module executes a stored procedure that looks up blocked transactions in the DBMS metadata. In short,
it reads a system catalogue table in which the DBMS keeps information about transaction conflicts. Such
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a table is maintained by most DBMSs, e.g., theV$LOCK view in Oracle 9i, theDBA LOCK in Oracle
10g r2, thesys.syslockinfo table of Microsoft SQL Server 2000 –converted into a system view in
SQL Server 2005–, etc. This mechanism, combined with a transaction priority scheme in the replication
protocol, allows the BlockDetector to early abort those local transactions that, anyway, the protocol would
have also aborted due to conflicts with previous and concurrent transactions already successfully certified.
More detailed information about this module, along with performance results, can be found in [17].

As already mentioned, the BlockDetector lowers the completion time for local aborted transactions.
But two considerations have to be made: first, this module aborts a local low-priority transaction only
if its block is related to another transaction that has been already marked by the protocol with a higher
priority, as a result of a successful certification; and second, the BlockDetector is implemented as a thread
that cyclically –its period is defined by a timeout– obtains information about current blocks and takes the
appropriate actions. This way, the sooner the protocol successfully certifies transactions –thus increasing
their priority–, and also the shorter the timeout of the BlockDetector, the earlier the local to-be-aborted
transactions will actually abort. The first condition motivated the inclusion of the IntAwareOpt version in
the study. The second one, led us to test performance with regard to different values for the BlockDetector
timeout.

To accomplish the analysis, we use PostgreSQL [19] as the underlying DBMS, and a database with
two tables,tbl1 andtbl2, each with 10,000 rows and two columns. The first of each tableis declared as
its primary key. The second column oftbl2 is a foreign key, set to be evaluated indeferredmode, that
references the first column oftbl1. The second column oftbl1 is an integer field that is subject to updates
made by transactions.

Two types of transactions have been used: a) transactions that preserve integrity, called IntS –integrity
safe– transactions; and b) transactions that violate an integrity constraint that has been satisfied before their
execution. These last transactions update the foreign key column oftbl2 with a value that has no reference
value in the primary key column oftbl1, and are called IntV –integrity violating– transactions. In the test
runs of our analysis, we have varied the proportions of IntS and IntV transactions. More precisely, we
analysed test runs with 0, 10, 20, 30, 40 and 50% of IntV transactions. Although these percentages reach
an artificially high level, we wanted to measure the consistency degradation as more and more transactions
are improperly added to the history list. Thus, all shown graphs display this percentage in their x axis.

Both protocols have been tested usingMADIS with 3 replica nodes. Each node has anAMD Athlon(tm)
64 Processor at 2.0 GHz with 2 GB of RAM running Linux Fedora Core 5 with PostgreSQL 8.1.4 and Sun
Java 1.5.0. They are interconnected by a 1 Gbit/s Ethernet. In each replica, there are 4 concurrent clients,
each of them executing a stream of sequential transactions,each one accessing a fixed number of 20 items
for writing, with a fixed pause of 500 ms between each consecutive transaction.

In order to clearly show the differences in the decisions made by each protocol, each replica node
works with a different one: IntUnaware, IntAware or IntAwareOpt protocol versions. So, for convenience,
we may identifiy nodes as IntUnaware, IntAware or IntAwareOpt nodes, respectively. Moreover, when
performance is not being considered, both IntAware and IntAwareOpt nodes can be simply identified as
aware nodes, and the IntUnaware node can be referenced as theunaware node. Although the database
states of both unaware and aware nodes can be expected to diverge, no interference appears between the
three types of protocol, as a certification-based protocol takes its decisions independently from the rest of
nodes. So it is possible to run these three protocols together in the same cluster. To determine the outcome
of transactions in each protocol type, each of the 22,500 transactions that we issued in each execution of
the test, was assigned a unique global identifier determinedby the total order broadcast.

With this cluster configuration, it is easy to detect the incorrect decisions made by the IntUnaware
protocol. Suppose that an IntV transactionTv is delivered in the system, presenting no conflicts with
concurrent transactions. Aware nodes try to commit it and discard it when the database notifies the integrity
violation, removingTv from the history list. The unaware node, after the certification step, includesTv in
both the history and thetocommit lists. Later, whenTv is sent to the database, the integrity violation
is detected, soTv is not indefinitely retried, but –and this is the error in the integrity management– it is
not deleted from the history list. Problems arise when subsequent IntS transactions present write conflicts
only with those IntV transactions not applied but maintained in the history list of the unaware node. The
outcome for these transactions will differ from unaware to aware nodes: they will be incorrectly aborted
in the unaware node, while committed in aware ones. For convenience, let us call such incorrect abortions
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Figure 2: Errors of the IntUnaware protocol.

abort errors. But such erroneous abortions are not the only problem caused by the improper management
of integrity. Notice that a transactionTa, incorrectly aborted in the unaware node, is committed in aware
ones. This way, it appears in the history list of aware nodes but not in the history list of the unaware one.
Now suppose that a subsequent IntS transactionTc is delivered in the nodes. IfTc only presents conflicts
with Ta, Tc will be aborted in aware nodes but committed in the unaware one. This is called a commit error.
Both abort and commit errors were computed in the tests and are shown in figure 2 in absolute numbers,
i.e., the number of transactions with different outcome over the total of transactions issued. Notice that
only IntS transactions are subjected to such errors in theiroutcome, as IntV transactions always end in
abortion.

Notice also that transactions incorrectly included in the history list –IntV or erroneously committed IntS
transactions– and transactions incorrectly missed from it–erroneously aborted IntS transactions– affect
subsequent certifications. This way, it is possible that theunaware node certifies incoming transactions in
a wrong way, i.e. with different certification result that aware nodes, or, even, the same final certification
decision but based on conflicts with different transactions. These certification errors remain unnoticed in
our tests except for those related to an IntS transaction that becomes certified with a different result in both
types of nodes.

Mainly, as seen in figure 2, detected errors consist in abort errors, i.e. aborting transactions that conflict
with others incorrectly included in the history list. Commit errors are less usual as transactions in an
unaware node are certified against a greater number of transactions, thus being more likely to get aborted
by mistake. Notice that, for an IntS transaction to get erroneously committed, it can only present conflicts
with other IntS transactions that were erroneously aborted. The graph shows that, as expected, the greater
the percentage of IntV transactions, the greater number of abort errors made by the unaware node, whereas
the number of commit errors never rises above 20.

The next graphs, in figure 3, show the average percentage of local transactions that got aborted in a
node due to write conflicts with concurrent transactions previuosly delivered. Note that here we do not
consider those transactions aborted by integrity violation. It can be seen that this abortion rate increases in
IntUnaware nodes as we increase the percentage of IntV transactions, while it linearly decreases in both
IntAware and IntAwareOpt nodes. Here it has to be remarked that this abortion rate was calculated in each
node over its own local transactions. This way, although IntUnaware nodes incorrectly abort transactions
from all nodes, transactions aborted by a node only contribute to the raise of the abortion rate of that node
if they were local to it. Thus, in IntAware and IntAwareOpt nodes, as we increase the IntV percentage,
more and more transactions are removed from the history listdue to integrity violation, leading to a smaller
probability for local IntS transactions to present conflicts with the remaining ones. Similar graphs are
obtained with different timeout values for the block detection mechanism.

The last graphs, in figure 4, show the performance of each typeof node, measured as the length in
milliseconds of local transactions. As mentioned above, completion time for aborted transactions, figure 4b,
in IntAware nodes is clearly greater than in IntUnaware ones. This led us to add the IntAwareOpt protocol
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c) Block-detection timeout of 750ms.

Figure 3: Abortion rate due to actual certification conflicts.

version, which achieves reductions in the completion time for aborted transactions from at least 4.42%
–timeout of 500 ms and 10% of IntV transactions– up to 11.35% –timeout of 750 ms and 40% of IntV
transactions–. As said before, as we increase the BlockDetector timeout, the length of aborted transactions
becomes greater in those nodes where certification is delayed in exchange for correctness, i.e., in aware
nodes. In the case of IntUnaware nodes, as they immediately (but possibly incorrectly) certify transactions,
variations in the timeout have negligible effects.

With regard to committed transactions, figure 4a shows that IntAware nodes again perform worse than
IntUnaware ones. Recall that the proper management of integrity constraints prevents the IntAware pro-
tocol from applying any optimisation proposed for certification-based replication protocols –actually, the
IntAwareOpt version only achieves to half-apply one of them–. Even so, increments in completion time for
committed transactions only reach up to 14.27%, but it has tobe noticed that the IntUnaware protocol only
applies the optimisation consisting in certifying newly delivered writesets concurrently with the application
of previous ones. Thus, this difference would be bigger whencomparing with an optimised version of the
SI CBR protocol type. Graphs also show that the IntAwareOpt version performs worse than the IntAware
one when considering committed transactions. The management of dependencies between transactions and
the inclusion of a new thread to establish and control them, increases the completion time of committed
transactions. Nevertheless, this increment never exceeds5.8% of the IntAware completion time, whereas
the improvement in time for aborted transactions reaches upto 11.35%.

6 Related Work

This work is a continuation from our technical report [16]. As far as the authors know, these two papers
are the first ones addressing the problem of integrity constraints management at protocol level of database
replication systems.

As seen in the previous section, the improper management of integrity-violating transactions leads
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Figure 4: Length of transactions.
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to a higher abortion rate. This effect will be increased whenexploiting an optimisation proposed for
certification-based protocols [7], consisting in groupingmultiple successfully certified writesets, applying
all of them at once in the underlying DBMS. This reduces the number of DBMS and I/O requests, thus
improving a lot the overall system performance. On the otherhand, it will also generate the abortion of all
transactions in a batch as soon as one of them raises an integrity constraint violation.

We have also remarked that indefinitely reattempting to commit an integrity-violating transaction –or
batch of grouped transactions– is not only useless –as the database will always raise the integrity exception–
but also prevents the protocol from proceeding normally, stopping the processing of all transactions in the
system. This cannot be avoided even though some other optimisations are used, such as the holes technique
presented in [14]. With such optimisation, several non-conflicting transactions can be sent to the database,
in such a way that the commit order can be altered from one nodeto the others if a transaction commits
before a previously delivered one. This way, when indefinitely reattempting one integrity-violating trans-
action, subsequent non-conflicting transactions can be sent to the database, not stopping the processing of
the node. However, the holes optimisation cannot be appliedwhen the next transaction presents conflicts
with the ones already sent to the database, so the protocol will stop all processing eventually.

7 Conclusions

The literature on integrity checking in replicated database systems is extremely scant; solitary exceptions
are few and peripheral, e.g., [22, 18]. None of the papers we have found deals with the problem of coordi-
nating integrity checking with replication protocols. However, on the protocol level of replicated database
architectures, many problems remain to be solved for implementing mechanisms that take care of control-
ling transaction consistency, replication consistency and integrity, i.e., semantic consistency. One of them
is addressed in this paper.

Due to the physical distribution of database replicas over possibly wide areas, and to the communi-
cation between replicas needed to coordinate their actions, there is a latency between the point of time a
transaction is requested to commit and the point of time it iseffectively committed. For guaranteeing the
ACID property of transactions [3], integrity can often not be checked soundly in immediate mode, but has
to be delayed until all write actions of previously delivered transactions have been processed. For several
classes of replication protocols, this poses a problem, because none of the known ones consider integrity
constraints at all. Rather, they sanction transaction as ready to commit if no access conflict to shared data
resources has been detected. That way, integrity checking may fail due to other writes from transactions
delivered during the mentioned latency gap. Thus, the rightmoment of reacting suitably to integrity vi-
olations may be missed, so that committed transactions either are aborted behind schedule, or integrity
remains persistently violated. Both of that is known to havepotentially fatal consequences for consistency.

We have presented an experimental study of the negative effects of not correctly managing integrity con-
straints. This has been accomplished by comparing the behavior of two protocols. One of them reflected the
traditional behavior of protocols which do not care about integrity maintenance, based on the uncautious
assumption that all transactions are programmed in such a way that they will preserve integrity. As opposed
to that, the other protocol studied in our analysis properlyhandles semantic consistency as declared by in-
tegrity constraints. Only a simple modification of the traditional protocol is enough to reach the correctness
of the second protocol. We have showed that an improper processing of integrity-violating transactions en-
tails a history list that does not correspond to the transactions actually applied in the database, which leads
to errors in the certification phase of subsequent transactions. This causes not only incorrect abortions but
also incorrect commits, as explained in this paper.

Moreover, and resulting from the errors mentioned above, incorrect nodes present higher conflict-
related abortion rates –computed in each node as the percentage of local transactions that were aborted
by the local protocol due to write conflicts with concurrent transactions–.

Finally, results also show that the proposed integrity-aware protocol introduces higher delays due to the
larger extension of the mutually-exclusive zone needed to safely access the history list. These delays arrive
up to a 14.27% of the completion time, and an optimised version of the integrity-aware protocol achieves
to reduce the completion time only for aborted transactions, showing that more researching has to be done
in order to obtain efficient constraint-aware replication protocols.
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