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Abstract

Database replication protocols check read-write and/dewrrite conflicts. If there are none, then
protocols propagate transactions to the database, aggtiminwill eventually commit. But commitment
may fail due to integrity constraints violations. Also, tlead actions of integrity checking may give raise
to new conflicts. Thus, some more care must be taken if, intiaddio the consistency of transactions
and replicas, also the consistency of integrity constsdsito be maintained. In this paper, we investigate
how certification-based replication protocols can be asthp correctly and transparently deal with the
built-in integrity support provided by the underlying DBM8BIso, we experimentally demonstrate the
negative effects that an incorrect management of integahstraints may cause in a database replication
distributed system.

1 Introduction

Many database replication protocols have been proposdd18, 13, 23] over the years. None of these pro-
posals has assessed the support of semantic consistenagtalafed by integrity constraints. In general,
the ignorance of problems related to integrity checkinganaurrent, distributed and replicated systems is
in good company. Even the most well-known authors in the fi¢kiansaction processing are accustomed
to assume that all transactions are programmed in such ahadyhtey preserve integrity when executed
in isolation, and therefore, integrity preservation ioagsiaranteed by serializable schedules of concurrent
executions|9, 3].

Unfortunately, this assumption does not always apply. Awehef it would, its consequence does
not necessarily hold in replicated databases. Concumansactions may start and execute in different
nodes, and proceed without problems until they request dament. Upon receipt of the commit request
of a transaction, the replication protocol validates it gondrantees its commit if there is no read-write or
write-write conflict among concurrent transactions. Coggilons may arise if constraints are checked in
deferred mode, i.e., at effective commit time, i.e., onleratonflict validation by the replication protocol.
Then, integrity checking may diagnose constraint violagiby transactions that are already successfully
validated by the protocol, i.e., the protocol has alreaghcsaned those transactions to commit. Moreover,
integrity checking may increase the transaction’s readseataining these new accesses unnoticed by the
protocol.



On the other hand, if the replication protocol guaranteesializable isolation level and all checks are
immediate, all accesses made during integrity checkinigogitontained in the readset of the transaction.
Thus, other concurrent transactions are prevented fromsaatg the same items, even if the commitment
of both transactions does not violate any integrity comstraHowever, a deferred checking still presents
the problems mentioned above.

Read actions for checking integrity need to be taken intoastby a scheduler of a set of concurrent
transactions just as any other action of the given tranmagtiHence, the sequentializability of a set of con-
current transactions may change if also actions for intgghiecking are taken, concurrently. It seems that
there are two possibilities for taking integrity checkirgians into account: either as a separate concurrent
transaction, or as actions by which the checked transaigiangmented. In middleware-based replication
protocols, integrity checking actions are treated as iftweuld need no scheduling. In particular, it is
not clear how “immediate” checks are scheduled. Each chahgeschedule can, however, destroy the
sequentializability of the schedule. For this reason, dsallaecause the semantics of “immediate” usually
is proprietary, “immediate” checks can not be considerdégal actions in general.

On the other hand, if “deferred” checking means that all &sesre scheduled after all actions of a
given transaction have been processed, then these detbeekis still need to be scheduled with regard to
concurrent actions, for avoiding sequentializability fpieoms.

If a transactionl” is augmented by integrity checks, a new transacfivmesults. If all transactions
Ty,....T,, concurrent withT' are also augmented by such checks, a newl'58t,,... T of transactions
results. Then, the serializability @, 77,... T is not the same as serializability % 7,... T,,. Thus, a
new serializability condition is needed: A set of transasi isserializable with regard to integrityf its
augmentation with integrity checks is serializable in ttaglitional sense.

Things may get even worse when isolation levels are relakatently, thesnapshoisolation level
[1] has gained popularity, since it is supported by seveaM3s (e.g., Oracle, PostgreSQL, Microsoft
SQL Server, ...), though it does not avoid all isolation anbes. Although it can support serializable
executions [8], the replication protocols that suppori,[14, 6, 17] are able to relax the final transaction
validation process, since only write-write conflicts need¢ checked for this isolation level. This implies
that the abortion rate generated by the replication prdtedower than using serializable isolation. That,
however, may cause bigger problems for integrity mainteeasince more protocol-accepted transactions
will be involved in constraint-related problems at comniiteé. Moreover, other relaxed isolation levels
like read committegwhich may make sense for some kinds of applications, an@ seplication protocols
that support them [2, 20], are facing the same problem asisé&t] above.

This way, if the replication protocol only guarantees a sy isolation level (abbr., Sl), only write-
write conflicts will be checked during the validation pha3dwus, for Sl, a state transition that preserves
the integrity of the database can be guaranteed only if iityeig checked in deferred mode. For instance,
suppose an integrity constraint that limits the value ofghmn of two different columnsg andy. Assume
also two concurrent transactiomsand B being executed in different nodegt only updatese, soy is
read to check integrity; in the other node,only updates;, soz is read for integrity checking. Suppose
that both integrity checkings are passed in their respettioal nodes, but the updates are such that, when
combined, the integrity constraint is violated. The vdiidia phase of the protocol will not detect any
write-write conflict betweerd and B and thus will allow both transactions to commit, which le&mlan
integrity inconsistent database state. Although multisson CHECK constraints are not usually supported
in DBMSs, the same situation can be reached with a simplestaaint for a single columm, like CHECK
SUM x) < Threshol d, whereThr eshol d is a constant. In this case, wiB8UM x) = 8 in the old
state and a threshold of 10, two transactighand B both inserting a new row with value 1 in column
will successfully pass their local integrity checkingst bause a integrity violation when combined. For
this reason, such constraints must be checked at commit tm@der to consider the updates made by
previous remote transactions.

Apart from the two options considered until now, i.e., makaonstraint checking immediately after the
update action or deferring this checking until commit tirttegre is a third possibility, proposed by some
DBMS vendors, consisting in making constraints immediatin@ end of a transaction. This is a way of
checking whether a commit operation can succeed. Thuggahsection programmer can avoid unexpected
rollbacks by setting constraintsiMEDIATE as the last statement in a transaction. If any constrail#t fai
the check, the programmer can then correct the error befayaeasting the commit of the transaction.



However, such techniques can be dismissed because theyrastandardized proprietary tricks, requiring
an additional non-declarative programming effort for sactions. Also the constructeMEDIATE and
DEFERREDare procedural. That is against the principle of declaitgfiwhich means that constraints are
stated without control structures, so that the evaluatitie¢king) of constraints is completely transparent
to the transaction designer/programmer. Procedural oaetsttend to be error-prone and hard to maintain,
in particular if they are not standard. Moreover, althouggre is a substantial difference for the transaction
programmer between using this trick and declaring consisaMMEDIATE from the beginning of the
transaction, from the point of view of the replication proobthere is no difference, as both checkings
are done before the local commit request of the transaciitis, the updates made by previous remote
transactions are not considered in these checkings, lg&alihhe same problem described above.

Something similar will happen with foreign key constrajntghich are supported by all DBMSs sup-
porting Sl. Suppose a table constraint [IKOREI GN KEY x REFERENCES t .y, wheret is the ref-
erenced table ang is the primary key column of . If an INSERT inserts a row with valug = v and
a concurrenbELETE deletes the row it with column valuey = v, then a violation of the foreign key
constraint remains undetected by local immediate checks.

Thus, there may be transactions that are sanctioned to ddogrttie replication protocol but have to
be aborted later, due to integrity violations detected heted checking. Recall that to abort after commit
is against the basic principles of transaction processing.

Most modern database replication protocols use total dodeadcast for propagating sentences or
writesets/readsets of transactions to other replicas [28Jong them, certification-based replication pro-
tocols provide good performance by optimised algorithnughsas [14]. In this paper, we are going to
analyse the integrity checking support needed for centiibabased replication protocols.

This paper follows up to [16]. As far as the authors are aware,work is the first to study the in-
tegrity support by replication protocols. If so, then, agesm inaugurating this subfield of research, its
main contribution consists in identifying how replicatiprotocols can be adapted in order to correctly deal
with integrity constraints. This paper also contains a ficatstudy of the negative effects of improperly
managing integrity constraints in a certification-basadication protocol. Our study reflects that an incor-
rect handling of integrity-violating transactions in atdisuted system leads, at least, to a higher abortion
rate. Moreover, incorrectly aborted transactions mightehlad, if not aborted, to the correct abortion of
concurrent conflicting transactions that are then incdlysommitted.

The rest of this paper is structured as follows. In section€detail the assumed system model.
Section 3 briefly explains integrity constraints and setiaexplains in detail the certification-based repli-
cation and the extensions made for a proper managementgfitytconstraints in this type of replication
protocols. In section 5 we present the experimental resildtained, detailing the tests performed and
the observed protocol behavior. Section 6 analyses thdgrabthat other works present with regard to
integrity consistency. Finally, section 7 concludes thpgra

2 System Model

We assume a partially synchronous distributed system aéfjninany nodes with the following character-
istics. Clocks are not synchronized but message trangmnitisie is bounded. Each node holds a replica of
a given database; i.e., the database is fully replicatech Egstem node has a local DBMS that is used for
local transaction management. On top of the DBMS, the mvdalle systenMADIS [12, 17] is deployed

in order to provide support for replication. This middlewarses a group communication service (abbr.,
GC9), that provides a communication and a membership servippasting virtual synchrony [5]. The
communication service uses a total order multicast for ags®xchange among nodes through reliable
channels. Th&CSgroups messages delivered in views [5]. The uniform rediabllticast facility [11]
ensures that, if a multicast message is delivered by a nanteet or not), then it will be delivered to all
available nodes in that view. In this work, we use Spread §81urGCS



3 Integrity Constraints

Integrity constraints (shortly, constraints) define wisat consistent database state, by requiring that certain
conditions be invariant across updates. Consistency aseddfiy constraints is sometimes calfsaantic
consistencyThis emphasises that constraints express propertiesmied to the application domain of the
database. This nomenclature also serves to distinguisargentonsistency froransaction consistency
which involves guarantees of atomicity and isolation, andifreplication consistengywhich requires that
the states of replicated database nodes coincide on thesvafitheir individual copies of common data
items.

Constraints can be classified by well-known criteria suatheadarative or procedural; static or dynamic;
column, table or inter-table constraints [15]. In this papee only consider the effects of not correctly
coordinating integrity checks, as provided by the DBMS atdyavith the actions taken by the replication
protocol, regardless of the integrity constraint type.

But, since we build on existing DBMS support for integrityecking, the common concept in current
SQL implementations of thehecking modés important. As previously commented, this mode specifies
when a declarative constraint is to be checked: eitherediatei.e., directly upon the given update action,
or deferred i.e., delayed until the transaction containing the upgatiéches to immediate-mode or, by
default, right before the commit of the transaction. In gahethe checking mode is controlled by the
transaction programmer or, if the transaction is dynamydhle agent who executes the transaction.

4 Certification-Based Database Replication Protocols

Certification-based database replication protocols (aGtBR) use a total order broadcast mechanism [5]
for update propagation and replica coordination. As defime[23], such protocols proceed along the
following sequence of steps:

1. Atransactiorf’ is executed in a single replica, the delegate one.
2. WhenT locally requests its commit, its readset and writeset allected.
3. Amessage is broadcast to all replicas in total order, ggafing’”’s writeset and readset.

4. OnT’s data delivery]’ is validated against concurrent transactions, lookingdad-write and write-
write conflicts. This validation stage is symmetrical sidlereplicas can hold the same history list
of previously delivered readsets and writesets, i.e. natiathél communication step is needed for
that.

5. If the delegate replica has not found any conflict, thequotis able to reply to the client, notifying
T’s success. Moreover, in all replicaB's data is added to a list of to-be-committed transactioms an
also to the history list used for evaluating conflicts witbaming ones.

6. If a conflict is found,T" is aborted in its delegate replica, and its data are disdaieall other
replicas.

7. If no conflict is found;I" can commit in each replica. To this end, its writeset is agpliAt the end
of this step, a local commit operation is executed in allicgsl in order to commit’. If writeset
application is impeded, for instance Bybeing involved in a deadlock and aborted by the DBMS,
then writeset application is reattempted until it succeeds

Note that readset collection and propagation can be cdstiywi-level granularity instead of table-
level granularity is used. So, in practice, certificaticasbd protocols are rarely used for implementing
serializable isolation. On the other hand, CBR is the prefeprotocol class when tremapshotsolation
(abbr., SI) level [1] is supported, mainly because thislleses on multiversion concurrency control, and
readsets do not need to be checked in the certification stegh&®other hand, since such certification is
based on logical timestamps and depends on the length séiztions, a list of previously accepted certified
transactions is needed for certifying the incoming onesrddeer, we have also proved recently [20] that



the read committedsolation level can be implemented by using the CBR protatats, demanding a
certification strategy quite similar to the one used in SlI.

So, we focus on Sl-oriented CBR protocols in this paper. Aegalprotocol of this kind is displayed
in figure 1a. The following symbols are usedis the transaction being processédtlis the set of alive
replicas;r; is the local replica executing the protoce; is the delegate replica of a transaction, i.e., the
replica where that transaction starteds the client procesd) B is the local DBMS interface accessed by
the replication protocol; andisett) is the writeset of. Note that theD B.abort(t) operation is executed
in non-delegate replicas without having previously applie updates. If that happenss writeset must
be discarded and, obviously, no operation will be requetstéke underlying DBMS. The symbalsiist;
is needed for representing the list of successfully cedtifigitesets in replica;, also called the history
list. A writeset should be added to that list in step 8 of thesvrprotocol, once it has been accepted for
commitment. Thus, the list might grow indefinitely. To avaitht, the list can be pruned following the
suggestions given in [23]. Accesses to this list are confimi¢ltin mutually exclusive zones delimited by
mutex.lock andmutex.unlock calls. Note that anutezx.unlock call has no effect if the mutual exclusion
was already ended (line 13 in figure 1a has no effect for tietitsas successfully certified as they leave the
protected section in line 8a).

As already indicated, certification-based replicatioregivise to several problems with regard to in-
tegrity constraints. If there is any deferrable declamtionstraint and a transaction requests deferred
checking, that checking can not be done until the last stepdrsequence presented at the beginning of
this section. However, as we have seen, that may lead toragrtstiolation and abortion behind sched-
ule. In this case, any repeated attempts to commit the tctinsaclearly would be in vain. Also note
that in step 5 of the same sequence the transaction was assumessful, and other transactions whose
data were delivered aftdf may have already been aborted du€te assumed commit. So, certification-
based protocols need to be modified in order to correctly wéhldeferrable constraints. We discuss such
modifications below.

Replication protocols are assumed to be implemented, &, wsther in a middleware or as a direct
extension of the DBMS core. In each case, the DBMS is assuonéidectly provide support for integrity
maintenance, by raising exceptions or reporting errorsaisecof constraint violation. Such exceptions
and error messages are then managed by the replicatiorcptofbhus, they do not reach the user-level
application, unless the replication protocol decides se.alg§o assume that the DBMS is able to support
the isolation level for which the replication protocol hasel conceived. Thus, the replication protocol
may focus on its native purpose of ensuring replica consisteand delegate local concurrency control to
the DBMS.

1: Execute t. 1: Execute ¢.
2: On t commit request: 2: On t commit request:
3: TO-bcast(R, (wset(t), r;)) 3:  TO-bcast(R, (wset(t), r;))
4: Upon (wset(t), r4) reception: 4: Upon (wset(t), r4) reception:
5. mutex.lock 5. mutex.lock
6: status; < certify(wset(t), wslist;) 6: statusy < certify(wset(t), wslist;)
7. if (statusy = commit) then 7. if (statusy = commit) then
8: append(wslist;, wset(t)) 8: append(wslist;, wset(t))
8a: mutex.unlock
9: if (7’1' #* Td) then 9: if (7‘7; #* Td) then
10: DB.apply(wset(t)) 10: DB.apply(wset(t))
11: DB.commit(t) 11: statust «— DB.commit(t)
1la: if (status; = abort) then
11b: remove(wslist;, wset(t))
12: else DB.abort(t) 12: else DB.abort(t)
13:  mutex.unlock 13:  mutex.unlock
14: if (7‘7; = Td) then 14: if (7‘7; = Td) then
15: send(c, statust) 15: send(c, statust)
a) S| CBR protocol. b) Extended S| CBR protocol.

Figure 1: Sl and Extended Sl certification-based protocols.



The extensions for managing integrity constraints in S| GB&tocols, as displayed in figure 1b, seem
to be minor. Only a slight modification of the original line islneeded, for recording the result of the
commit attempt. If such commit attempt of some transactifailed due to integrity violation (but not
if failure is due to other causes, since such abortions atefinitely reattempted), then the writesettof
should be removed from theslist;, since it has not been finally accepted. This is done in lidesand
11b.

However, these seemingly minor extensions may have a matapblct on system performance. Typical
S| CBR protocols [6, 14, 17, 7] use some optimisations in otd@chieve good performance. One such
optimisation consists in minimising the set of operatianbé executed in mutual exclusion (i.e., avoiding
new remote writeset processing) in the part of the protoesbted to managing incoming messages. In
many protocols (e.g., [14, 17]), an auxiliary list is useddtoring the writesets to be committed (the related
protocol section in fig. 1a only encompasses lines 6 to 8). ¥esalt, new certifications can be made, once
the current writeset has been accepted. With our extensimnsew writeset can be certified until a firm
decision on the current one has been taken. That only haggtsrsine 11b in fig. 1b; i.e., once the
writeset has been applied in the DBMS and its commit has begumessted. This might take quite some
time, and must be done one writeset at a time.

5 Experimental Analysis

For analysing the protocol extensions proposed in sectitwy fractical experiments, we have imple-
mented three SI CBR protocol versions: a) IntUnaware —fitiegnaware protocol— corresponds to the
pseudocode shown in figure 1a with only two modificationst,fitds able to identify those transactions
that raise integrity exceptions when tried to be committed), shus, it does not indefinitely reattempt them
(we introduced this extension in order to obtain a protoeat keeps liveness even though it still improperly
manages integrity consistency), and second, it informenddi with the real final status of transactions in
line 15; b) IntAware —integrity-aware— protocol, which oesponds to the pseudocode shown in figure 1b;
and c) IntAwareOpt, an optimised version of the previougqol.

In short, the integrity management error made by the IntUaravprotocol is to keep in the history
list those transactions that were aborted due to integiithations. At this point, the reader may ask why
we analyse the IntUnaware protocol at all, since its behasimcorrect and should be replaced by a cor-
rect version such as the IntAware protocol. The reason isrtbdetter protocols yet exist for replicated
databases. Therefore, we want to analyse the differencertdrmmance between existing protocols such
as the IntUnaware protocol and our proposal to make it coreecembodied by the IntAware protocol.
This performance analysis also is interesting becauseamyraituations and applications (e.g., data ware-
housing), proper constraint checking is often disabled¢ciwvimeans that using either the IntUnaware or the
IntAware version will have the same (possibly incorrectgef. Hence, the differences of performance of
both protocol variants are of practical interest.

For this reason, the third protocol version was introducetié analysis. The IntAwareOpt protocol was
designed to reduce the completion time of aborted trarwastif the IntAware version, as we observed that
the difference in completion times between the IntUnawaik:the IntAware protocols was considerable
higher for aborted transactions. With this end, the IntAs@ypt protocol starts the certification of a writeset
W as soon as it is delivered, without waiting for the completaf previous transactions, as does the
IntAware protocol. In order to maintain correctness, thestification phase establishes dependencies for
W, in such a way that the certification is only definitive whee firotocol has a firm decision for all
previous conflicting transactions, i.e., all previous sactions that conflict with? have been committed
or aborted. This optimisation brings forward the certifieatdecision of abortion for a transactidn as
the successful commitment of only one concurrent conflictransaction is enough to determine tiat
must abort.

The last performance issue considered in this study wasctheate tunning of an important module of
our middleware: the BlockDetector. This module uses theaoency control support of the local DBMS
for detecting conflicts between local transactions andesets of remote transactions. Periodically, this
module executes a stored procedure that looks up blockeddctions in the DBMS metadata. In short,
it reads a system catalogue table in which the DBMS keepsnrdton about transaction conflicts. Such



a table is maintained by most DBMSs, e.g., ¥ OCK view in Oracle 9i, theDBA_LOCK in Oracle
10g r2, thesys. sysl ocki nf o table of Microsoft SQL Server 2000 —converted into a systésmw\n
SQL Server 2005—, etc. This mechanism, combined with aa&eimn priority scheme in the replication
protocol, allows the BlockDetector to early abort thosealdcansactions that, anyway, the protocol would
have also aborted due to conflicts with previous and conntittansactions already successfully certified.
More detailed information about this module, along withfpemance results, can be found in [17].

As already mentioned, the BlockDetector lowers the conietime for local aborted transactions.
But two considerations have to be made: first, this moduletalelocal low-priority transaction only
if its block is related to another transaction that has bderady marked by the protocol with a higher
priority, as a result of a successful certification; and selcthe BlockDetector is implemented as a thread
that cyclically —its period is defined by a timeout— obtaim®rmation about current blocks and takes the
appropriate actions. This way, the sooner the protocolessfally certifies transactions —thus increasing
their priority—, and also the shorter the timeout of the Bloetector, the earlier the local to-be-aborted
transactions will actually abort. The first condition matied the inclusion of the IntAwareOpt version in
the study. The second one, led us to test performance witlrdeg different values for the BlockDetector
timeout.

To accomplish the analysis, we use PostgreSQL [19] as therlyimy DBMS, and a database with
two tables;tbll andtbl2, each with 10,000 rows and two columns. The first of each tesbikeclared as
its primary key. The second column tfl2 is a foreign key, set to be evaluateddeferredmode, that
references the first column tl1. The second column dbl1 is an integer field that is subject to updates
made by transactions.

Two types of transactions have been used: a) transactiahpriiserve integrity, called IntS —integrity
safe—transactions; and b) transactions that violate agiity constraint that has been satisfied before their
execution. These last transactions update the foreignddeyrn oftbl2 with a value that has no reference
value in the primary key column dbl1, and are called IntV —integrity violating— transactions.the test
runs of our analysis, we have varied the proportions of Im8 kotV transactions. More precisely, we
analysed test runs with 0, 10, 20, 30, 40 and 50% of IntV tretimas. Although these percentages reach
an artificially high level, we wanted to measure the coneselegradation as more and more transactions
are improperly added to the history list. Thus, all showrptisdisplay this percentage in their x axis.

Both protocols have been tested usimgDIS with 3 replica nodes. Each node hasfmD Athlon(tm)

64 Processor at 2.0 GHz with 2 GB of RAM running Linux FedoraeC®with PostgreSQL 8.1.4 and Sun
Java 1.5.0. They are interconnected by a 1 Gbit/s Etheredacdh replica, there are 4 concurrent clients,
each of them executing a stream of sequential transactaich, one accessing a fixed number of 20 items
for writing, with a fixed pause of 500 ms between each congextransaction.

In order to clearly show the differences in the decisions enbg each protocol, each replica node
works with a different one: IntUnaware, IntAware or IntAvwe&pt protocol versions. So, for convenience,
we may identifiy nodes as IntUnaware, IntAware or IntAware®pdes, respectively. Moreover, when
performance is not being considered, both IntAware andviat&Opt nodes can be simply identified as
aware nodes, and the IntUnaware node can be referenced asdhare node. Although the database
states of both unaware and aware nodes can be expected tgejine interference appears between the
three types of protocol, as a certification-based protadas its decisions independently from the rest of
nodes. So it is possible to run these three protocols togethlee same cluster. To determine the outcome
of transactions in each protocol type, each of the 22,50G:aetions that we issued in each execution of
the test, was assigned a unique global identifier deternigete total order broadcast.

With this cluster configuration, it is easy to detect the imeot decisions made by the IntUnaware
protocol. Suppose that an IntV transactidp is delivered in the system, presenting no conflicts with
concurrent transactions. Aware nodes try to commit it asdalid it when the database notifies the integrity
violation, removindl’, from the history list. The unaware node, after the certifarastep, included’, in
both the history and theoconmi t lists. Later, wherl’, is sent to the database, the integrity violation
is detected, sd@’, is not indefinitely retried, but —and this is the error in timegrity management- it is
not deleted from the history list. Problems arise when sgbset IntS transactions present write conflicts
only with those IntV transactions not applied but maintdiinethe history list of the unaware node. The
outcome for these transactions will differ from unaware waee nodes: they will be incorrectly aborted
in the unaware node, while committed in aware ones. For auanee, let us call such incorrect abortions
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Figure 2: Errors of the IntUnaware protocol.

abort errors But such erroneous abortions are not the only problem chloyg¢he improper management
of integrity. Notice that a transactidfi,, incorrectly aborted in the unaware node, is committed iaraw
ones. This way, it appears in the history list of aware nodgsbt in the history list of the unaware one.
Now suppose that a subsequent IntS transadijois delivered in the nodes. . only presents conflicts
with Ty, T, will be aborted in aware nodes but committed in the unawaee ®his is called a commit error.
Both abort and commit errors were computed in the tests amdlawwn in figure 2 in absolute numbers,
i.e., the number of transactions with different outcomeratie total of transactions issued. Notice that
only IntS transactions are subjected to such errors in thaicome, as IntV transactions always end in
abortion.

Notice also that transactions incorrectly included in thstdry list —IntV or erroneously committed IntS
transactions— and transactions incorrectly missed froreitoneously aborted IntS transactions— affect
subsequent certifications. This way, it is possible thauth@&wvare node certifies incoming transactions in
a wrong way, i.e. with different certification result thatae nodes, or, even, the same final certification
decision but based on conflicts with different transactiofisese certification errors remain unnoticed in
our tests except for those related to an IntS transactidrbomes certified with a different result in both
types of nodes.

Mainly, as seen in figure 2, detected errors consist in alvats i.e. aborting transactions that conflict
with others incorrectly included in the history list. Comneirrors are less usual as transactions in an
unaware node are certified against a greater number of taoss, thus being more likely to get aborted
by mistake. Notice that, for an IntS transaction to get ezmarsly committed, it can only present conflicts
with other IntS transactions that were erroneously aborfé@ graph shows that, as expected, the greater
the percentage of IntV transactions, the greater numbdvart &rrors made by the unaware node, whereas
the number of commit errors never rises above 20.

The next graphs, in figure 3, show the average percentagealf tiansactions that got aborted in a
node due to write conflicts with concurrent transactionwipi@sly delivered. Note that here we do not
consider those transactions aborted by integrity viotatibcan be seen that this abortion rate increases in
IntUnaware nodes as we increase the percentage of IntVaitiass, while it linearly decreases in both
IntAware and IntAwareOpt nodes. Here it has to be remarkatttis abortion rate was calculated in each
node over its own local transactions. This way, althougblaware nodes incorrectly abort transactions
from all nodes, transactions aborted by a node only corteitmuthe raise of the abortion rate of that node
if they were local to it. Thus, in IntAware and IntAwareOptdes, as we increase the IntV percentage,
more and more transactions are removed from the historgllistto integrity violation, leading to a smaller
probability for local IntS transactions to present conflietith the remaining ones. Similar graphs are
obtained with different timeout values for the block dei@timechanism.

The last graphs, in figure 4, show the performance of each ¢ypwde, measured as the length in
milliseconds of local transactions. As mentioned abovemetion time for aborted transactions, figure 4b,
in IntAware nodes is clearly greater than in IntUnaware oiféss led us to add the IntAwareOpt protocol
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Figure 3: Abortion rate due to actual certification conflicts

version, which achieves reductions in the completion timeaborted transactions from at least 4.42%
—timeout of 500 ms and 10% of IntV transactions— up to 11.3%%eout of 750 ms and 40% of IntV
transactions—. As said before, as we increase the Blocketigmeout, the length of aborted transactions
becomes greater in those nodes where certification is ditliayexchange for correctness, i.e., in aware
nodes. In the case of IntUnaware nodes, as they immedidtely ¢ssibly incorrectly) certify transactions,
variations in the timeout have negligible effects.

With regard to committed transactions, figure 4a shows thiZ¥are nodes again perform worse than
IntUnaware ones. Recall that the proper management ofrityegpnstraints prevents the IntAware pro-
tocol from applying any optimisation proposed for certifioa-based replication protocols —actually, the
IntAwareOpt version only achieves to half-apply one of thefven so, increments in completion time for
committed transactions only reach up to 14.27%, but it h&®tooticed that the IntUnaware protocol only
applies the optimisation consisting in certifying newlyidered writesets concurrently with the application
of previous ones. Thus, this difference would be bigger wtmmparing with an optimised version of the
S| CBR protocol type. Graphs also show that the IntAware@psion performs worse than the IntAware
one when considering committed transactions. The managehdependencies between transactions and
the inclusion of a new thread to establish and control therreases the completion time of committed
transactions. Nevertheless, this increment never exce88s of the IntAware completion time, whereas
the improvement in time for aborted transactions reaches 4fi.35%.

6 Related Work

This work is a continuation from our technical report [16]s far as the authors know, these two papers
are the first ones addressing the problem of integrity cairgs management at protocol level of database
replication systems.

As seen in the previous section, the improper managemenmttedrity-violating transactions leads
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to a higher abortion rate. This effect will be increased wiegploiting an optimisation proposed for
certification-based protocols [7], consisting in groupmgltiple successfully certified writesets, applying
all of them at once in the underlying DBMS. This reduces theber of DBMS and I/O requests, thus
improving a lot the overall system performance. On the oftaerd, it will also generate the abortion of all
transactions in a batch as soon as one of them raises anitintgrstraint violation.

We have also remarked that indefinitely reattempting to caramintegrity-violating transaction —or
batch of grouped transactions—is not only useless —as thbatse will always raise the integrity exception—
but also prevents the protocol from proceeding normalbpping the processing of all transactions in the
system. This cannot be avoided even though some other gptions are used, such as the holes technique
presented in [14]. With such optimisation, several nonfiécting transactions can be sent to the database,
in such a way that the commit order can be altered from one tmtlee others if a transaction commits
before a previously delivered one. This way, when indefipiteattempting one integrity-violating trans-
action, subsequent non-conflicting transactions can hietia¢ine database, not stopping the processing of
the node. However, the holes optimisation cannot be appltezh the next transaction presents conflicts
with the ones already sent to the database, so the protoltsteyp all processing eventually.

7 Conclusions

The literature on integrity checking in replicated databsgstems is extremely scant; solitary exceptions
are few and peripheral, e.g., [22, 18]. None of the papersave found deals with the problem of coordi-
nating integrity checking with replication protocols. Hever, on the protocol level of replicated database
architectures, many problems remain to be solved for implging mechanisms that take care of control-
ling transaction consistency, replication consistenay iategrity, i.e., semantic consistency. One of them
is addressed in this paper.

Due to the physical distribution of database replicas owassibly wide areas, and to the communi-
cation between replicas needed to coordinate their agttbese is a latency between the point of time a
transaction is requested to commit and the point of timedfffisctively committed. For guaranteeing the
ACID property of transactions [3], integrity can often n@ thecked soundly in immediate mode, but has
to be delayed until all write actions of previously delivéiteansactions have been processed. For several
classes of replication protocols, this poses a problematmse none of the known ones consider integrity
constraints at all. Rather, they sanction transactionadyréo commit if no access conflict to shared data
resources has been detected. That way, integrity checkaygfail due to other writes from transactions
delivered during the mentioned latency gap. Thus, the mgbtent of reacting suitably to integrity vi-
olations may be missed, so that committed transactionsredtte aborted behind schedule, or integrity
remains persistently violated. Both of that is known to hpetentially fatal consequences for consistency.

We have presented an experimental study of the negativag€&not correctly managing integrity con-
straints. This has been accomplished by comparing the bmtaitwo protocols. One of them reflected the
traditional behavior of protocols which do not care abotgmity maintenance, based on the uncautious
assumption that all transactions are programmed in suclyghaathey will preserve integrity. As opposed
to that, the other protocol studied in our analysis propkdgdles semantic consistency as declared by in-
tegrity constraints. Only a simple modification of the ttaatial protocol is enough to reach the correctness
of the second protocol. We have showed that an improper psirgg of integrity-violating transactions en-
tails a history list that does not correspond to the trangastactually applied in the database, which leads
to errors in the certification phase of subsequent trarmagtiThis causes not only incorrect abortions but
also incorrect commits, as explained in this paper.

Moreover, and resulting from the errors mentioned abovegrirect nodes present higher conflict-
related abortion rates —computed in each node as the pageenf local transactions that were aborted
by the local protocol due to write conflicts with concurrenatrtsactions—.

Finally, results also show that the proposed integrity+@aotocol introduces higher delays due to the
larger extension of the mutually-exclusive zone neededfilygaccess the history list. These delays arrive
up to a 14.27% of the completion time, and an optimised varsfdhe integrity-aware protocol achieves
to reduce the completion time only for aborted transactishewing that more researching has to be done
in order to obtain efficient constraint-aware replicatioatpcols.
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