
A Cost Analysis of Solving the Amnesia Problems

R. de Juan, L. Irún, F. D. Muñoz

Instituto Tecnológico de Informática

{rjuan,lirun,fmunyoz}@iti.upv.es

Technical Report TR-ITI-ITE-08/08

R
.
d
e
Ju
a
n
-M

a
rı́
n
et

a
l.
:

A
C
os
t
A
n
al
y
si
s
of
S
ol
v
in
g
th
e
A
m
n
es
ia
P
ro
bl
em

s
T
R
-I
T
I-
IT
E
-0
8
/
0
8

A Cost Analysis of Solving the Amnesia Problems

R. de Juan, L. Irún, F. D. Muñoz

Instituto Tecnológico de Informática

Technical Report TR-ITI-ITE-08/08

e-mail: {rjuan,lirun,fmunyoz}@iti.upv.es

April 21, 2008

Abstract

Replicated systems in order to provide more efficient recovery processes have adopted the
crash-recovery with partial amnesia failure model. But, this assumption forces to deal with the
amnesia phenomenon which implies that not committed state is lost at crash time. So, if this
phenomenon is not accurately managed in recovery processes it can lead to state inconsisten-
cies in the replicate state. A general solution that consists in persisting messages atomically in
the delivery process has been proposed for overcoming this problem, demonstrating also its
validity. But, its use implies a cost: the overhead introduced for persisting messages atomically
in the delivery process. This paper analyzes this overhead simulating the proposed solution for
a transactional replication protocol based on certification and demonstrates how this overhead
can be minimized using solid memories, making it acceptable.

1 Introduction

Transactional replication has become a key factor in providing fault-tolerant, highly available
information systems, providing at the same time good performance levels. Performance can be
improved forwarding client requests to their closest replica [13, 18], or by using load-balancing
algorithms [1, 10, 19]. And fault tolerance and high availability are reached forwarding such re-
quests to non-failed nodes in a transparent way. In last years these techniques have been making
use of Group Communication System (GCS for short) [4] as it is detailed in [22], because they
provide communication primitives and membership mechanisms, which are very important in
replicated systems.

Important aspects when designing transactional replicated systems are how they manage
membership changes –which alter their performance, fault tolerance and high availability support–
and the adopted progress condition that must fulfil in order to go on working.

In regard to the progress condition, most of these works have adopted the majority of living
replicas progress condition –primary partition [4].

For managing the membership events they make use of recovery components which deal with
these situations attending the failure model adopted. The most commonly used failure model in
transactional systems has been the halt-crash failure model [5] –similar to the fail-stop proposed
by [21]. It is used due to its simplicity; crashed replicas are discarded and substituted by new
ones.

But, this simplicity implies a high cost in the recovery process because it is necessary to trans-
fer the whole state to the replicas that substitute the crashed ones, being very inefficient when
talking about systems managing large states. In order to provide more efficient recovery pro-
cesses protocols have adopted the crash-recovery with partial amnesia, as defined in [5]. When this

1

failure model is adopted crashed replicas can recover maintaining some of its previous state –
persisted one– reducing then the amount of information to transfer in the recovery process being
therefore more efficient.

The problem of adopting the crash-recovery with partial amnesia is that in can lead to a consis-
tency state problem as demonstrated in [8] if the recovery process does not manage accurately the
amnesia phenomenon in the recovering replica –it is possible that not all deliveredmessages have
been correctly processed before crashing. Moreover, another consistency state problem appears
when the amnesia phenomenon is combined with a specific sequence of membership change
events tolerated by the primary partition progress condition as shows [6], which will force to
stop the work of the recovery process because the consistency of the replicated state is not guar-
anteed.

For this reason, both papers proposed a generic solution for overcoming this inconsistencies
consisting in forcing each replica to persist messages atomically in the delivery process. Obvi-
ously, this solution for overcoming these consistency problems introduces some overhead in the
work performance of the replication protocol when it is applied. But, this overhead is not always
constant. It can vary depending on different characteristics of the replicated system. Therefore,
the goal of this paper is to present how the overhead behaves when different characteristics of the
replicated system vary: workload, message size, number of replicas, message processing time in
replicas,... simulating it in a replication protocol based on certification [23]. Also the simulation
considers different storage engines –which provide different transfer speeds– in order to compare
them, noticing how with solid memories it is maintained in acceptable levels.

This article is structured as follows. First, section 2 presents the basic system model consid-
ered. On the sequel, section 3 outlines the basic solution while section 4 presents the overheads
introduced. Later, section 5 introduces the simulation that has been performed for analysing the
behaviour of the overhead. This behaviour is subsequently explained in section 6. Related work
is detailed in section 7 while section 8 concludes the paper.

2 System Model

A replicated transactional system composed by several replicas –each replica in a different node–
is considered. The nodes belong to a partially synchronous distributed system: their clocks are
not synchronized but the message transmission time is bounded. The state is fully replicated in
each node, so each replica has a copy of the whole state. State changes are performed between
the boundaries of transactions.

The replicated system uses aGCS, supporting point-to-point and broadcast deliveries. A FIFO
and reliable communication is assumed. Transaction updates are propagated to all replicas using
atomic broadcast: i.e. total order delivery.

The GCS includes a group membership service, who knows in advance the identity of all
potential system nodes. These nodes can join the group and leave it either explicitly or implicitly
by crashing. The GCS provides Virtual Synchrony[2] guarantees, thus each time a membership
change happens, it supplies consistent information about the current set of reachable members.
This information is given in the format of views. Sites are notified about a new view installation
with view change events.

3 Amnesia Solution Outline

The crash-recovery with partial amnesia failure model implies that when a crashed node recon-
nects it may not remember exactly which was its last state before crashing. In other words, at
reconnection time it expects to have a theoretic last state which in fact is different to its real state
due to amnesia. That happens because the node has delivered some messages MF but their as-
sociated updates have not been committed –and therefore persisted– before the node crash. This
can happen for example due to workload reasons in this replica. Then all this non persisted state

2

is lost at crash time. So, if the recovery process does not consider this forgotten state in the replica
being recovered state inconsistencies could arise between the state reached in this replica after the
recovery process and the state in other replicas.

The basic properties that must fulfil a recovery protocol which does not transfer the whole
state to overcome this problem were presented in [7] and can be stated as follows:

• Property 1: a crashed replica must remember its last committed transaction, knowing there-
fore its last committed message;

• Property 2: the replicated system must maintain and provide a way for obtaining the up-
dates associated to forgotten messages MF, knowing then in an implicit way the changes
attached to forgotten transactions.

Moreover, if the replicas that ensure the continuity between two consecutive majority par-
titions suffer from amnesia it can imply that the state from which will start to work the new
majority partition would be different to the last state reached in previous working view. This
will imply therefore that the majority partition progress condition can not ensure the consistency
continuity between consecutive working partitions under this specific sequence of events.

As it was demonstrated in [6] only modifying partially the second property presented in [7]
–making it more restrictive– was enough to overcome this problem too:

• Property 2’: each replica must maintain and provide a way for obtaining the forgotten mes-
sages –or transactions– or associated updates, instead of trusting in “the replicated system”.

The basic solution for solving the two inconsistency problems related to the amnesia phe-
nomenon described in papers [8], [6] consists in: keeping track of the last committed message
and persisting the broadcast messages atomically in the delivery process at each replica. There-
fore properties Property 1, Property 2’ are fulfilled.

This solution allows in the recovery process of crashed replicas to check which messages de-
livered before crashing have not been correctly processed in the crashed replica. So, those that
have not been correctly processed before crashing can be applied in this recovery step overcom-
ing in this way the amnesia phenomenon at each replica. Then both previous problems are solved
in a straightforward way.

4 Amnesia Solution Overheads

Obviously, forcing the system to persist the messages in the delivery process implies to introduce
an overhead in the overall performance. As a minimum, this overheadwould be equal to the cost
of persisting in physical storage the messages. This cost will therefore depend on the size of the
message to store and in the transfer write rate of the used device. Basically, it can be said that the
faster the storage engine is, the better the system will behave.

But in some situations this overhead will be higher than the cost of persisting the message.
This happens when the persisting process becomes a bottleneck, in other words, when the rate of
incoming messages to persist is higher than the speed at which the storage engine persists them.

The messages that must be persisted in the system for overcoming the amnesia problems are
the update transactions –assuming a message per transaction– that must be broadcast –update
transactions that have not been aborted locally. Therefore, the rate of incomingmessages depends
on the transactions per second workload that can process the replicated system, the % of read
transactions of this workload and the local abort rate of update transactions. High workloads,
low % of read transactions and low rates of update transactions locally aborted can convert the
persisting process in a bottleneck.

It must be noticed that from a persisting point of view high workloads and low rates of local
aborts are bad news but from a replication point of view are good ones. So, the ideal storing en-
gine must be able to deal with high workloads and really low local aborts of update transactions.

3

Forcing the system to persist messages atomically in the delivery process implies that the
replicas can not deliver the message until they know that all living replicas have persisted the
message. Thus, it is necessary that replicas exchange messages in order to notify themselves that
they have persisted the message before delivering them. Obviously, this extra messages round
implies another overhead in the system. But, it must be noticed that this message is really small
because is simply a control message. Moreover, as some GCS use internally an ack for confirming
the reception of the message, this ack can be delayed in order to inform also that the message has
been persisted.

5 Simulation

For observing how behaves the proposed solution it has been simulated a transactional repli-
cation protocol based on certification for a wholly replicated database. It works in an update
everywhere approach so all replicas can serve client requests; read transactions are processed
only locally while update transactions are broadcast to all nodes –ROWAA approach– using a
single message per transaction –constant interaction. As it has been said a read transaction is
only processed locally so at commit time if there are no conflicts the node serving the transaction
commits it and answers to the client. While an update transaction is first processed locally in
the node that is serving the request and at commit time –if it has not been aborted locally– is
broadcast using total order to all nodes. In this case it is broadcast both the writeset –WS– and
the readset –RS– in order to provide serializability.

The total atomic broadcast is implemented using a sequencer with two reliable broadcasts.
In the first broadcast the sender spreads the message to all nodes, the second broadcast –a small
control message– is used by the sequencer to notify the delivery order. A reliable point to point
communication is used by the nodes in order to notify that they have persisted the message to
the other nodes. Note, however, that such additional round –to the two ones used by the basic
atomic broadcast considered– only uses small control messages; i.e., they do not carry the request
or update-propagation contents of the original message, so their size is small and such message
round can be completed faster than the contents-propagation one in the regular case (Consid-
ering, e.g., that in database replication protocols the broadcast messages propagate transaction
writesets and their size may be as big as several hundred KB). The simulation has used network
values appropriate for a 1 Gbps LAN.

In table 1 are listed the values assumed for different parameters in the simulation. The value
of some parameters has been varied in order to analyse how behaves the solution.

Parameter Value
Database size 100000 items

Transaction processing time in serving replica 50 ms
Transaction processing time in other replicas 20 ms

Net average delay 0.15 ms

Workload 30, 100, 300 and 500 TPS
Number of nodes 3, 5, 7, 9, 11 and 21

Total order broadcast message size 100, 200, 300 and 500 KB

% of read transactions 0, 10 and 20

Table 1: Simulation values.

Moreover, as the solution consists in persisting the messages broadcast in total order by the
replication protocol two different secondary storage systems have been considered. On one hand
a hard disk drive of 7200 r.p.m. (a.k.a. HDD) as basic storage system commonly found in low- and
middle-range personal computers. On the other hand a solid state disk based on flash memory.
There are disks of this kind able to store 16 GB and with a transfer rate of 90 MB/s for less than
400 USD (December 2007 prices). Table 2 summarizes the main performance-related figures of

4

both disks. In the simulation, we consider that there is a disk entirely dedicated to GCS log
management, apart from the one being used by the DBMS.

Hard Disk Drive
Parameter Value

Positioning disk average time 5.5 ms

Rotation disk average time 4.16 ms
Write transfer rate 40 MB/s

Flash Memory
Parameter Value

Write transfer rate 90 MB/s

Table 2: Storing system values.

The tested configurations in the simulation are the result of combining the workload, num-
ber of nodes, the message size and the rate of read transactions. The experiment measures the
transaction completion time and consisted in simulating each configuration with each consid-
ered storing engine. An additional test without persisting messages has been performed for each
configuration. This last one is used as the base level for comparison purposes.

Each test consisted in completing 40000 transactions in the whole system. In the simulation
it has been forced that there are not local aborts –so all update transactions must be broadcast–
because this is the worst scenario from a persisting point of view. Once the simulation has com-
pleted all these transactions, the average results for committed transactions are calculated.

6 Results

For explaining the simulation results, different graphics have been prepared. They present the
results without persisting –basic–, persisting in HDD –HDD– and persisting in flash memory –
flash–. The percentage of read transactions used in these figures is 10 %, corresponding each one
to 3, 9 and 21 replicas respectively.

Figures 1, 3 and 5 show the average completion time and persistence overhead in absolute
values with two different graphics. In these figures, (a) graphics show the total cost for basic,
HDD and flash storing policies. But, as it is really difficult to see differences in them (b) graphics
have been attached. Those show the difference of HDD an flash in regard to the basic one. In
both graphics, MS stands for Message Size (in KB) whilst TPS gives the workload in transactions
per second. The vertical axis gives times expressed in milliseconds.

Figures 2, 4 and 6 depict the overhead in % introduced by the proposed solution for 3, 9 and
21 replicas respectively. As in previous figures, they show the results for the basic approach –
without persisting–, for theHDD and flash storing engines. In this case the basic graphic only can
be used as a reference point as it happened for (b) graphics in figures 1, 3 and 5.

Attending to these graphics on the sequel it will be explained how the proposed solution
behaves attending to several characteristics in the replicated system simulated.

6.1 Workload

For transaction workloads it can be observed from figures in a general way that for higher work-
loads the proposed solution presents: higher overheads in absolute terms at least for HDD –(b)
graphics of figures 1, 3 and 5–, but lower overheads in percentage terms –figures 2, 4 and 6 either
when using HDD or flash.

First of all, someone can state that the persisting overhead in absolute terms must not in-
crease with the workload if the size of the messages to store does not increase, contradicting then
the trend observed for HDD in (b) graphics. This statement would be right if the write trans-
fer speed of the storing engine was always high enough to not become a bottleneck when the

5

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

Committing cost for 3 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(a) Committing time (in ms)

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

Committing cost difference for 3 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(b) Persistence overhead (in ms)

Figure 1: Results for 3 replicas and 10% read-only Txs.

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 5

 10
 15
 20
 25
 30
 35
 40

Overhead % for 3 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

Figure 2: Overhead cost - 3 replicas and 10 % of read Tx.

workload rises. And (b) graphics show that; HDD becomes sooner a bottleneck –increasing then
its overhead in absolute terms without increasing the message size– as it is the slowest storing
engine tested, while flash memory –which has higher write transfers rates– does not show this
trend at least for the tested workload ranges. As it can be inferred this trend manifests better for
high message size values –worse cases– as shown HDD tendencies in (b) graphics.

It is also necessary to explain the apparently –at first glance– contradictory behaviour of the
overhead in absolute –increase– and percentage –decrease– terms when the workload rises. The
explanation for this phenomenon relates to the fact that the overall replicated system becomes a
bottleneck for a certain workload, increasing the response time when the workload grows from
this threshold level. From this assert, it can be stated that the tested replication protocol behaves
in a bottleneck way because its time processing cost increases with workload when messages are
not persisted as it can be seen in (a) graphics for the basic approach. Therefore, the persisting
overhead decreases in percentage –even when it increases as it happens for HDD solution– when
the workload rises because the basic cost of processing transactions grows more.

At this point, it can happen that the replicated system bottleneck hides or avoids to manifest
in all its magnitude the persisting overhead. In fact, observing the (b) graphics of figures 1, 3 and
5 and figures 2, 4 and 6 it can be seen how when the number of replicas increases, the overhead
increases both in absolute and relative terms –for the same workload and message size– because
the effects of the replicated system bottleneck are lower.

Finally, it must be also specified that the persisting overhead depends on the workload of
messages to persist which in spite of being related to is different from the workload of incoming

6

requests to the replicated system. The former one depends on the incoming workload, the rate
of update transactions of this workload and the rate of transactions aborted locally.

6.2 Message size

For this parameter there can not be observed in figures any unsurprising result; when the mes-
sage size grows the persisting overhead grows both for HDD and flash storing engines. And,
obviously, it manifests in a sharper way for the HDD storing engine than for the flash one, and
already expected result as the second one has a higher write transfer.

Moreover, from figures it also can be deduced that the message size has an important effect in
the probabilities that the persisting solution becomes a bottleneck. And it affects in the following
way, when higher the message size the more probabilities has the persisting solution to become
a bottleneck.

6.3 Number of replicas

The number of replicas affect to the persisting overhead in an indirect way. As it has been said
previously, when the system hasmore replicas it can process higher workloads without becoming
a bottleneck, then the persisting engine must manage higher workloads without the barrier pro-
vided by the replicated system when it acts as a bottleneck so its introduced overhead manifests
more in percentage terms.

In regard to the bottleneck phenomenon, the persisting solution has more probabilities of
becoming a bottleneck when the system has more replicas as it can manage usually higher work-
loads, forcing the storage engine to persist a higher rate of incoming messages.

6.4 Storing engines

From the figures it can be said that any storing engine introduces some overhead in the replication
work, being lower when higher its write transfer rate is. So, the flash memory introduces lower
overheads than the HDD solution for any tested replication configuration both in absolute and
percentage terms. In fact, it can be seen how the flash storing engine never becomes a bottleneck
as it happens with the HDD solution as graphics (b) from figures 1, 3 and 5 demonstrate for any
of the simulated workloads.

It must be said, that having a fast soring engine is not only interesting because it introduces
lower overhead but also for decreasing the probabilities of becoming a bottleneck as it is seen in
(b) graphics.

6.5 Other parameters

In the simulation other parameters have been considered: % of read transactions and % of local
aborts. No graphics associated to them have been included due to space reasons. But, it can be
said that the observed evolution was the expected one. The overhead decreased either when the
% of read transactions increased or when the % of locally aborted transactions increased, because
it implied less messages to persist.

6.6 Summary

From the results obtained in the simulation different conclusions can be stated. The first and
obvious one is that any persisting solution introduces some overhead in the system. It is also
important to say that this introduced overhead depends on the combination of several static and
dynamic characteristics of the replicated system. This overhead in absolute terms increases with
the workload, the message size, and % of write transactions, while in % the worst cases are those
in which the system is able to process in a fast way the transactions.

7

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0

 100

 200

 300

 400

 500

 600

 700

Committing cost for 9 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(a) Committing time (in ms)

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0

 10

 20

 30

 40

 50

 60

Committing cost difference for 9 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(b) Persistence overhead (in ms)

Figure 3: Results for 9 replicas and 10% read-only Txs.

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Overhead % for 9 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

Figure 4: Overhead cost in % - 9 replicas and 10 % of read Tx.

Overhead that would be lower when faster is the used storage engine. And that the worst
overhead cases appear when the persisting process becomes a bottleneck because in this case
the overhead introduced by the persisting process is higher than the a priory expected cost of
persisting –considering the message size and the write transfer speed. Evidently, as it has been
said the phenomenon of becoming a bottleneck is more probable for slow storing engines. At
this point it also must be remarked how the flash memory does not only become a bottleneck but
even it maintains the introduced overhead in a low level range for usual workloads.

Moreover, it has been seen how the worst conditions from the persisting point of view are a
system processing highworkloads, with greatmessage sizes, low% of read transactions and slow
storing engines. In regard to the message size, it must be advanced that the replicated protocols
which propagate the writeset and readset would behave worse from the storing point of view
than those transferring the operations to perform. Moreover, in the particular case of certification
it would behave better if instead of using serializability it would have used snapshot isolation,
because in this last case the readset must not be transferred by the replication protocol.

Another obtained conclusion from the simulation is that sometimes when the replicated sys-
tem gets overloaded it can hide or decrease the phenomenon of saturation in the persisting pro-
cess. This conclusion can be converted in a guideline to follow when designing a replicated
system and this rule will state that the capacity of processing transactions by the replicated sys-
tem and the capacity of persisting messages by this replicated system must evolve parallely. The
idea is that having a replicated system that can manage high workloads is not worthy if the stor-
ing process acts as a bottleneck because the latter will decrease the overall performance. And the

8

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 50

 100

 150

 200

 250

 300

 350

Committing cost for 21 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(a) Committing time (in ms)

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0

 10

 20

 30

 40

 50

 60

 70

Committing cost difference for 21 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

(b) Persistence overhead (in ms)

Figure 5: Results for 21 replicas and 10% read-only Txs.

 100 150 200 250 300 350 400 450 500

 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Overhead % for 21 nodes and 10% of read transactions

basic
HDD
flash

MS

TPS

Figure 6: Overhead cost in % - 21 replicas and 10 % of read Tx.

rule also works in the other way, so investing money in fast storing engines is not profitable if the
replicated system can not deal with high workloads. In this last case, it only would be interesting
if the size of message transactions is quite large. Other parameter to consider is the average time
cost of processing transactions in nodes because when higher it is the replicated system saturates
sooner, hiding therefore the overhead introduced by the persisting engines.

It must be remarked, that all these results have been obtained with a 0% aborts, so all the
incoming update requests to the replicated system must be broadcast among the replicas. If the
abort rate in the serving replica is higher the number of transactions to broadcast decreases, di-
minishing then the demand to the storing process, reducing therefore the probabilities of reaching
the saturation point for the persisting process.

7 Related Work

There are many replicated database works in the literature that give some numeric results about
how they behave. The problem is that most of them have not considered the amnesia phe-
nomenon and its possible associated consistency problems that arise when working under spe-
cific conditions. So, it is really difficult to compare the results obtained with this simulation with
these other works.

Among all these works it is interesting to point out the following two ones [13] and [3]. The
first one because it gives the results associated for the same type of replication protocol. While

9

the second one because the way it implements the total order broadcast can avoid in an straight-
forward way the problems associated to the amnesia phenomenon.

In [13] authors show the results of a replicated system based on a certification replication
protocol. It uses also an update everywhere approach broadcasting only update transactions in a
constant interaction way –single message per transaction– through a total order communication
primitive provided by a GCS. The problem is that these results can not be compared with the
ones obtained here, because in their case they provided Snapshot Isolation level instead of the
Serializable one used in the simulation. Moreover, they do not specify the GCS they have used
and the guarantees it provides from an amnesia point of view.

Authors of Sprint Middleware [3] provide some results of their solution which main charac-
teristic is to take advantage of being an in memory database –IMDB. This solution uses as atomic
broadcast protocol the Paxos [12] protocol. This Paxos protocol forces the system to persist mes-
sages in order to establish the total order, therefore it can avoid in a straightforward way the
basic amnesia phenomenon. But, these results can not be compared with the simulation results
because their system is a partial replicated system.

Other interesting works are [20] and [15] papers that also try to provide a more accurate
approach for replicated systems adopting the crash-recovery with partial amnesia failure-model.

Authors of [20] make mandatory in their proposal that for any consensus round each replica
has to persist its proposed messages –the step before agreeing the order for this round. Later,
the basic approach allowed in the recovery process of a crashed node to replay all the consensus
rounds avoiding rebuilding therefore the agreed messages queue. This approach allows to over-
come the basic amnesia problem presented in paper [8], and also affords the amnesia problem
presented in paper [6] because the whole queue of deliveredmessages is rebuilt in the recovering
node. But this also introduces an overhead, since messages should be persisted.

In [15] authors considered that the existing specifications of atomic broadcast were not com-
pletely satisfactory in the crash-recovery model. To overcome this problem they build their
atomic broadcast specification using three primitives: abcast, adeliver and commit –new one–.
This specification also divided the process state into two different states: the application state
and the state at the atomic broadcast protocol. They proposed two variants: an uniform –more-
consistent– and a non-uniform –more efficient– one as they show in their obtained results. The
first one was forced to access to stable storage at the beginning of each consensus round, while
the other only at commit time. Therefore, the first one –uniform– could replay the consensus
rounds not persisted in the checkpointed state avoiding the amnesia phenomenon, while the sec-
ond one only can be used for these applications that can afford losing uncommitted parts –in
this case the amnesia is not completely avoided. Anyway, it must be pointed out that neither of
these two proposals could manage the problem of combining amnesia with the majority progress
condition. This is due to the fact that the replay phase –in the uniform solution– needs that all
originally proposed values in the consensus round to be replayed must be available –condition
that is not fulfilled.

It must be noticed that [14] demonstrated that consensus can be solved without accessing sta-
ble storage, implying that replicated systems based on total order broadcast can be built without
persisting messages. Obviously, this approach does not introduce any overhead in the replicated
system. The problem is that this way of working requires that the always–up processes must
be larger than bad processes. Therefore, it can not manage accurately the problem that appears
when the amnesia phenomenon is combined with the majority progress condition [6].

In regard to commercial databases that provide replication or clustered solutions, usually
they provide different solutions for managing node crashes and node recoveries. But usually
these solutions consist in a trade off between consistency and the overhead introduced. This is
the case of MySQL [17], in order to avoid consistency problems in the recovery process, the [17]
proposes to set the master binary log synchronization parameter to the value which implies the
highest rate of binary log flush, decreasing then the probabilities of not having flushed the binary
log at crash time but without ensuring it at all. So, the basic idea is that the flush frequency must
be increased in order to be more consistent, but this also increases the overhead.

Finally, this simulation can be seen as a continuation of the work started in [9], measuring

10

the overhead introduced when forcing the system to persist atomically the total ordered broad-
cast messages in the delivery process. Moreover, this solution fulfills completely the properties
defined by [16].

8 Conclusions

As it has been seen in this paper the overhead introduced by the proposed solution varieswith the
number of nodes, workload, % of local aborts, % of read transactions, average time for processing
transactions and last but not least message size. Thus, if this solution must be applied a proper
study of the most common values of these variables in the replicated system must be performed
in order to determine the minimum write transfer speed in order to avoid the saturation of the
storing process.

Anyway, for minimizing the overhead cost the best option is to use the fastest storing engines.
As it has been seen in the results the solid memory is a good option for keeping the overhead
introduced by the proposed solution in low values in almost all the cases making it acceptable.
Moreover, the continuous increase of transfer speeds both for flash memories and HDD will
minimize this overhead in the future. Otherwise for systems managing big messages and high
workloads there are other solutions as ioDrive [11] which provides 600MB/swrite transfer rates.

9 Acknowledgements

This work has been partially supported by EU FEDER and Spanish MEC under grant TIN2006-
14738-C02 and by IMPIVA under grant IMIDIC/2007/68.

References

[1] Cristiana Amza, Alan L. Cox, andWilly Zwaenepoel. A comparative evaluation of transpar-
ent scaling techniques for dynamic content servers. In ICDE, pages 230–241. IEEE Computer
Society, 2005.

[2] Kenneth P. Birman and Robbert Van Renesse. Reliable Distributed Computing with the ISIS
Toolkit. IEEE Computer Society Press, Los Alamitos, CA, USA, 1993.

[3] Lásaro Camargos, Fernando Pedone, and Marcin Wieloch. Sprint: a middleware for high-
performance transaction processing. SIGOPS Oper. Syst. Rev., 41(3):385–398, 2007.

[4] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifica-
tions: A comprehensive study. ACM Computing Surveys, 33(4):427–469, December 2001.

[5] Flaviu Cristian. Understanding fault-tolerant distributed systems. Communications of the
ACM, 34(2):56–78, February 1991.

[6] Rubén de Juan-Marı́n, Luis Irún Briz, and Francesc D. Muñoz-Escoı́. Ensuring Progress in
Amnesiac Replicated Systems. In 3rd International Conference on Availability, Reliability and
Security, March 2008, Barcelona, Spain, March 2008.

[7] Rubén de Juan-Marı́n, Luis Héctor Garcı́a-Muñoz, Jose Enrique Armnedáriz-Íñigo, and
Francesc D. Muñoz-Escoı́. Reviewing Amnesia Support in Database Recovery Protocols.
In 9th International Symposium on Distributed Objects, Middleware and Applications, Vilamoura,
Portugal. Springer, November 2007. Accepted for publication.

[8] Rubén de Juan-Marı́n, Luis Irún-Briz, and Francesc D. Muñoz-Escoı́. Supporting amnesia
in log-based recovery protocols. In Euro-American Conference On Telematics and Information
Systems (EATIS 2007), Faro, Portugal, 2007.

11

[9] Rubén de Juan-Marı́n, Marı́a Idoia Ruiz-Fuertes, Jerónimo Pla-Civera, Luis Héctor Garcı́a-
Muñoz, and Francesc D. Muñoz-Escoı́. On Optimizing Certification-Based Database Recov-
ery Supporting Amnesia. In XV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 07),
Torremolinos, Spain, pages 145–157, June 2007.

[10] Sameh Elnikety, Steven Dropsho, and Willy Zwaenepoel. Tashkent+: Memory-aware load
balancing and update filtering in replicated databases. In Proc. EuroSys 2007, pages 399–412,
March 2007.

[11] Fusionio. iodrive, 2007. Accessible in URL: http://www.fusionio.com.

[12] Leslie Lamport. The part-time parliament. ACM Transanctions on Computer Systems,
16(2):133–169, 1998.

[13] Yi Lin, Bettina Kemme, Marta Patiño-Martı́nez, and Ricardo Jiménez-Peris. Middleware
based data replication providing snapshot isolation. In Fatma Ozcan, editor, SIGMOD,
pages 419–430. ACM, 2005.

[14] Sam Tueg Marcos Kawazoe Aguilera, Wei Chen. Failure detection and consensus in the
crash recovery model. In DISC, pages 231–245, 1998.

[15] SergioMena and André Schiper. A new look at atomic broadcast in the asynchronous crash-
recovery model. In SRDS, pages 202–214. IEEE-CS Press, 2005.

[16] Francesc D. Muñoz-Escoı́, Rubén de Juan-Marı́n, José Enrique Armendáriz-Iñigo, and
José Ramón González de Mendı́vil. Persistent Logical Synchrony. Technical report, Tech-
nical Report ITI-ITE-08/02, Instituto Tecnológico de Informática, January 2008.

[17] MySQL AB. Mysql 5.1 reference manual, 2006. Accessible in URL: http://dev.mysql.com/doc/.

[18] Marta Patiño-Martı́nez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso.
Middle-r: Consistent database replication at the middleware level. ACM Trans. Comput.
Syst., 23(4):375–423, 2005.

[19] Christian Plattner and Gustavo Alonso. Ganymed: Scalable replication for transactional
web applications. In Hans-Arno Jacobsen, editor, Middleware, volume 3231 of Lecture Notes
in Computer Science, pages 155–174. Springer, 2004.

[20] Luı́s Rodrigues and Michel Raynal. Atomic broadcast in asynchronous crash-recovery dis-
tributed systems and its use in quorum-based replication. IEEE Trans. Knowl. Data Eng.,
15(5):1206–1217, 2003.

[21] Fred B. Schneider. Byzantine generals in action: implementing fail-stop processors. ACM
Trans. Comput. Syst., 2(2):145–154, 1984.

[22] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme, and Gustavo
Alonso. Understanding replication in databases and distributed systems. In ICDCS ’00:
Proceedings of the The 20th International Conference on Distributed Computing Systems (ICDCS
2000), page 464, Washington, DC, USA, 2000. IEEE Computer Society.

[23] Matthias Wiesmann and André Schiper. Comparison of database replication techniques
based on total order broadcast. IEEE Trans. Knowl. Data Eng., 17(4):551–566, 2005.

12

