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Abstract

In database replication, primary-copy systems sort outyetde problem of keeping replicate data
consistent by allowing only updates at the primary copy. MV/ttiis kind of systems are very efficient
with workloads dominated by read-only transactions, theatg-everywhere approach is more suitable
for heavy update loads. However, this approach adds a signifoverload when working with read-
only transactions. We propose a new database replicatiadiga, halfway between primary-copy and
update-everywhere approaches, which permits improvietesy performance adapting its configuration
to the workload, thanks to a deterministic database rdpicgrotocol which ensures that broadcast
writesets are always going to be committed.

1 Introduction and Motivation

Database replication is considered as a joint venture lgtwlatabase and distributed systems research
communities. Each one pursues its own goals: performangmirament and affording site failures, re-
spectively. These issues bring up another important qurethiat is how different replicas are kept con-
sistent, i.e. how these systems deal with updates that pnttaifdatabase state. During a user transaction
lifetime it is a must to decide in which replica and when tofpem updates [13]. The behavior of these
systems is a trade-off between performance according tw#lyeupdates are done and data consistency
ensured by some sorting in the execution of update tramsecti

According to where to perform updates, the primary copy aagh allows only one replica to perform
the updates [8, 19]. Hence, data consistency is triviallintained since there is only one server executing
update transactions. Changes will be propagated to th@daopreplicas, which in turn will apply them.
Secondaries are just allowed to execute read-only transact This approach is suitable for workloads
dominated by read-only transactions, as it tends to be irymmaxdern web applications [8, 19]. However,
the primary replica represents a bottleneck for the systaun farthermore, it is a single point of failure.
The opposite approach, called update-everywhere [3, Bisists in allowing any replica to perform up-
dates. Thus, system’s availability is improved since tliereore than a single primary and failures can be
tolerated. Performance may also be increased, althougl kid of synchronization between replicas is
necessary to keep data consistent, what may suppose acsighdiverload in some configurations.

Several recent approaches [14, 15, 16, 22] take advantdje tital-order broadcast primitive [6] and
have developed certain kind of eager update-everywhelieatipn protocols where the most outstanding
ones are the certification-based and weak-voting ones [Rider certification-based algorithms a transac-
tion is executed at its delegate replica. When it requestissfcommit, the transaction updates (depending
on the case along with the readset [15]) is total-order brasidto all replicas. Upon its delivery, each
replica performs a deterministic certification test (maibhsed on a log of previous committed transac-
tions [16, 22, 10]) to decide the outcome of the transactdeak-voting technigues use the same message



as the previous technique although instead of certifyinggactions, the delegate replica, based on pre-
vious delivered conflicting transactions, reliably broasts an additional message with the outcome (i.e.
whether it survived or not) of the transaction.

Regarding update propagation and transaction validaitioan ideal replication system all message
exchange should be performed in one round (as in certificdtased) and delivered writesets should be
committed without storing a redundant log (as it is done irakveoting). This is already possible by
a primary-copy approach as the one presented in the Ganyroget{p[20]. However, in primary copy
approaches, while the complexity of handling update tretisas is reduced, the capacity of processing
them is reduced as well. Thus, in scenarios where the watldoasists mainly of updates, such systems
are not particularly useful in terms of scalability, sin@fprmance is similar to that provided by a single
database instance. Besides, as pointed out before, thargrbecomes a bottleneck and a single point of
failure.

In this paper we propose a novel approach that circumveatsribblem of the primary-copy approach.
Initially, a fixed number of primary replicas is chosen (addeone, the rest will be secondaries) and,
depending on the workload, new primaries may be added byirsgadspecial control message. The fact
is that there will be a deterministic mechanism that will gvwho is the primary at a given time. Thus,
at a given time slot, only those writesets coming from a gikapiica are allowed to commit directly and
other conflicting local transactions should be aborted tontehem to commit [17]. This deterministic
protocol inherits the best characteristics of both cestifan and weak-voting techniques. Thus, like a
weak-voting protocol, this approach is able to validatedesctions without logging history of previously
delivered writesets, and like a certification-based proitoit is able to validate transactions using only
a single round of messages per transaction. Moreover, ssgfgke round can be shared by a group of
transactions already served at the same delegate replica.

In this deterministic protocol, an update transaction &lfirexecuted at its delegate replica (a primary
one) and once it requests for its commit, its updates arediora data structure and it will be committed
when the turn of its delegate replica arrives (at its comesing slot). Then, the replica will broadcast
all writesets from transactions that requested their caramce the last slot and they will be sequentially
applied at the rest of the replicas (after all writesets ftheprevious slot have been applied). Hence, it is
easy to show that all local conflicting transactions are tgaland only those that survived will be broadcast
in their appropriate slot at each primary replica.

Meanwhile, the secondaries generate the proper slots) bgaéd on the replica identifiers, to apply the
remote transactions coming from chosen primaries. Thisigges a unique scheduling configuration of all
replicas, in which all writesets are applied in the same ioatlall the replicas. Moreover, the performance
of this replication protocol can be increased if there is melligent” load-balancing schema that tries
to reduce the number of conflicting transactions executmdistinct primary replicas and maximize the
parallelism between transactions [23], provided that theycommitted in the order established by the
token. From the above discussion, it is easy to see thatdhlgation approach can not only dynamically
change the role of existing replicas but also supports tineuayc addition of new secondary replicas. This
process will not stop the system activity and can be done hyeegs similar to the two phase recovery
process presented in [1].

If we assume that the underlyim@BMS at each replica provides Snapshot Isolatigf) [2], the pro-
posed protocol will provide Generalized SI [10, 18]]), as explained later. Finally, thanks to the virtual
synchrony of GCSs [6], it is easy to show how to update theofigtrimary replicas in case of their failure
in order to keep the protocol working with the available ori@saling with the failure of a secondary is a
trivial task. More details about failure and recovery oflieges will be given throughout the paper.

The rest of this paper is organized as follows: Section 2alephe system model. The replication
protocol is introduced in Section 3. Fault tolerance isulised in Section 4. Experimental evaluation of
our proposal is described in Section 5. Finally, conclusiend the paper.

2 The System M odel

We assume a patrtially synchronous distributed system wiessage propagation time is unknown but
bounded. The system consists of a group of sites= (R, ..., Rypr—1), N primary replicas and/ — N
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Figure 1: Startup configuration with one primary and main porrents of the system.

secondaries, which communicate by exchanging messageh dita holds an autonomo@®8MS pro-
viding Sl that stores a physical copy of the replicated database scfieen we consider a full-replicated
system). An instance of the replication protocol is runrimgach replica over a DBMS that provides SI. It
is encapsulated at a middleware layer that offers consigtens and a single system entry point through a
standard interface, such 3BBC. Middleware layer instances of different sites commum@hong them
for replica control purposes.

A replica interacts with other replicas thanks to a Group @amication System [6] (GCS) that pro-
vides a FIFO reliable multicast communication service STBCS includes also a membership service with
the virtual synchrony property [6, 4], which monitors the gEparticipating replicas and provides them
with consistent notifications in case of failures, eitheal @ suspected. Sites may only fail by crashing,
i.e. Byzantine failures are excluded. We assume a primariition membership service.

Clients (database applications) access to the systenghthair delegate replicas to issue transactions.
The way the delegate replica is chosen depends on the kindnsection. A transaction is composed by a
set of read and/or write operations ended either by a commait @bort operation. A transaction is said to
be read-only if it does not contain write operations and agatg one, otherwise. Read-only transactions
are directly executed (and committed, without any furtloerdination) over primary or secondary replicas,
while update ones are forwarded to the primaries where #xaicution is coordinated by the replication
protocol that will be introduced in this paper. In Figure i ugpdate transaction is committed at the primary
and sent (through a reliable broadcast) to the secondaries.secondaries have a dedicated process to
apply updates sent by the primaries according to a rounoh-pidicy sorted by the node identifier of the
primaries. Hence, snapshots gotten by read-only tramsectit the secondaries are consistent as will also
be seen in the following.

3 Replication Protocol

The main idea of our proposal is to extend the primary-comy@gch in order to improve the capacity for
processing update transactions and fault tolerance. tpifadasic operation (working with one primary
and several secondaries) follows a classical primary ctpyegy, as shown in Figure 1. Transactions are
scheduled over a set of snapshot isolation based datali®ase The protocol separates read-only from
update transactions and it executes them on differentcaplupdates on the primary replica and reads on
any replica. This scheduler may be easily implemented indulleivare architecture, as the one presented
in [17]. This middleware provides a standard transactiam@irface to clients, such as JDBC, isolating
them from the internal operation of the replicated database

Thus, in its basic operation, our proposal works as a priraapy approach. Read-only transactions
will be sent to a secondary replica whenever possible. Oatther hand, update transactions are forwarded
to the primary replica where they are executed locally. Gneeuted locally, performed changes must be
spread in order to keep the secondary replicas consistémthé primary. Thus, writesets are broadcast



to the secondaries and they are applied (and committedisaime order in which the primary site com-
mitted them, as explained later. This guarantees that slacpmeplicas converge to the same snapshot as
the primary and therefore reads executed over secondaitiedways use a consistent snapshot installed
previously on the primary.

3.1 Extending Primary-Copy Approach

In this paper, we extend the primary copy approach to impitsvperformance (mainly increasing the
capacity of handling a high number of updates) and its faldrance. This new approach allows different
replicas to be primaries alternately (and hence to exeqdatas) during given periods of time by means
of a deterministic protocol.

As pointed out before, this protocol follows at each rep(jgamary or secondary) the most straight-
forward scheduling policy: at a given slot, only those wséts coming from a given primary replica are
allowed to commit. In the primaries, other conflicting lotr@nsactions should be aborted to permit those
writesets to commit [17]. Secondary replicas do not raige gthoblem since they are not allowed to ex-
ecute update transactions. Read-only transactions wimeonflict with them as we assume that local
databases provide Sl level. Actually, this is a round-rgimficy, based on the identifiers of the primary
replicas, which is unique and known by all the system nodasésall replicas may know the identifiers of
the other ones).

In our approach, as in the classical primary-copy, reag-trahsactions are sent to any replica and
they are committed straight away when they ask for it; whatstipdate transaction is always scheduled in
one of primary replicas, where it is firstly executed locadnce it requests for its commit, it will have to
wait until the turn of its delegate replica arrives (up todtsresponding slot). Then, the primary replica
will multicast all writesets from transactions that haduested their commit since the last slot. These
writesets will be sequentially applied at the rest of thdicag after all writesets from previous slots had
been applied and committed. Hence, it is easy to show thiatcall conflicting transactions will be aborted
and only those that survived will be multicast in their appiate slot. Secondaries will just apply writesets
sequentially ensuring the consistency of their data toehd-+only transactions executed at them.

As it can be easily inferred, a primary replica will never tradst writesets that finally abort. Therefore,
this protocol makes possible to share the update transdotia among different primary replicas, while
secondary replicas are still able to handle consistendlg-anly transactions, increasing usually the system
throughput. Moreover, the most important feature is thatigwe scheduling is generated for all replicas,
in which all writesets are applied in the same order at alrépticas (primaries and secondaries). Hence,
considering that the underlyim@BMS at each replica provideH, transactions will see a consistent snapshot
of the database, although it may not be the latest versitilegiin the replicated system. Therefore, this
protocol will provideGSlI. The atomicity and the same order of applying transactinorieé system have
been proved in [11] to be sufficient conditions for providiag!.

3.2 Protocol Description

In the following, we explain the operation of the determtigiprotocol executed by the middleware at a
primary replicar, (Figure 2), considering a fault-free environment. Detali®ut the failure and rejoin
of a replica will be depicted in Section 4. Note that secopdaplicas may execute the same protocol,
considering that some steps will be never executed or magrheved.

All operations of a transactionare submitted to the middleware of its delegate replicali@kpbort
operations from clients are ignored for simplicity). Ndtat, at a primary copy, a transaction may submit
read or update operations, whilst at a secondary just rabdeperations. At each replica, the middleware
keeps an arraydwork) that determines the same scheduling of update transadtidime system, as pointed
out before, by a round-robin scheduling policy based ondkatifiers of the primary replicas.

In generaltowork establishes at each replica which writesets have to beegpahd in which order,
ensuring that writesets are committed in the same ordel theadeplicas. Among primary replicaswork
is also in charge of deciding which primary is allowed to sandessage with locally performed updates.
Each element of the array represents a slot that stores tibasdelivered from a primary replica. These
actions are processed cyclically according tottme, which defines the order in which the actions have to



be performed. There exists a mapping functiorag_turn()) that defines which turn is assigned to which
primary replica.

Initialization:
1. ws_run := false
2. wslist := 0
3. nprimaries := N
4. towork]i] := @ withi € 0..N-1
5.turn ;=0 IV. Upon (next, R,,) in towork[turn]
1. Remove (next, R,,) from towork[turn]
1. Upon operation request for T from local client 2. turn := (turn+1) mod nprimaries
1. if SELECT then
a. execute operation at Ry, and return to client V. Upon (tocommit, R,,, seq-txns) in towork[turn]
2. elseif UPDATE, | NSERT, DELETE then 1. while seg-txns # () do
a. if ws_run = true then a. T/ :=first in seq-txns
- wait until ws_run = false b. if T".replica = Ry, then /* T’ is local */
b. execute operation at R;, and return to client - commit T” and return to client
3. elseif COWM T then c. dse/* T’ is remote */
a. TWS := getWriteset(T) from local Ry, - ws_run := true
b. if TWS = 0 then - apply T.WS to local Ry,
- commit T and return to client [* T' may be reattempted */
c. else - commit T
- Treplica := Ry, 2. Remove (tocommit, R,,, () from towork[turn]
- T.pre_commit := true 3. turn := (turn+1) mod nprimaries
- wslist := wslist - (T) 4. ws_run := false
II. Upon receiving message msg from R,, VI. Upon block detected between Ty and To
1. Store msg in towork[R,, ] * T .replica # Ry, */
/* Ta.replica = Ry, i.e. local */
1l Upon replica’s turn /* turn = Ry, */ 1. abort T4 and return to client
1. if wslist = @ then R_multicast((next, Ry )) 2. if To.pre_commit = true then
2. else R_multicast((tocommit, Ry, WS|iS'[>) a. remove <T2> from wslist

Figure 2:Determ-Rep algorithm at a primary replic&;

The middleware of a primary replica forwards all the openadibut the commit operation to the local
database replica (stapof Figure 2). Each primary replica maintains a ligisiist) which stores local
transactionsT.replica = R;) that have requested their commit. Thus, when a transactiguests its
commit, the writesetT.\WS) is retrieved from the local database replica [20]. If it ispy the transaction
will be committed straight away, otherwise the transactimgether with its writeset) will be stored in
wslist. Secondary replicas work just with read-only transactidrtsus, there is no need to use thslist,
since transactions do not modify anything and hence thdyalmieys commit directly in the local database
without delaying.

In order to commit transactions that have requested it; toeresponding delegate primary replica has
to multicast their writesets in socommit message, to spread their changes, and wait for the reception
of this message to finally commit the transactions (this $ far fault-tolerance issues explained later in
Section 4). Since our protocol follows a round-robin schieduamong primary replicas, each primary
has to wait for its turnt(rn=map_turn(R) in steplll) so as to multicast all the writesets containedtist
using a simple reliable broadcast service. Note that sexgrréplicas are not represented in th@ork
gueue and therefore they will never have any turn assignélteto and hence they will never broadcast
any message. Secondaries simply execute read-only ttaorsaand apply writesets from primaries, hence
they require no communication with other replicas.

When the turn of a primary replica arrives and there are nustretions stored imwslist, the replica
will simply advance the turn to the next primary replica, dieg anext message to all the replicas. This
message allows also secondary replicas to know that thehing to wait for from that replica.

Upon delivery of any of these messagasxt andtocommit) at each replica, they are stored in their
corresponding positions in thework array (stepl), according to the primary replica which the message
came from and the mapping functiongp_turn(Ry)). It is important to note that, although these messages
were sent since replica’s turn was reached at their correlpg primary replicas, replicas run at different
speeds and there can be replicas still handling previouigros of their owntowork. At each replica,
messages from a same replica will be delivered in the saneg,@idce we consider FIFO channels between
the replicas. However, messages from different replicashealelivered disordered (as we do not use total
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Figure 3: The process of adding a new primary to the replicaystem.

order), but this is not a problem since they are processedftereanother as their turn arrives. Disordered
messages are stored in their corresponding positions iarttag and their processing will wait for the
delivery and processing of the previous ones. This enshedsatl the replicas process messages in the
same order and as a result all transactions are committée iseime order in all of them.

Thus, theowork array is processed in a cyclical way. At each turn, the patdeecks the correspond-
ing position of the arrayt¢work[turn]). If a next message is stored, the protocol will simply remove it
from the array and change the turn to the following one (Bt¢pgo as to allow the next position to be pro-
cessed. Ifitis aocommit message, we can distinguish between two cases\(3t&ghen the sender of
the message is the replica itself (a primary replica), siatisns grouped in its writeseddg_txns) are local
(already exist in the loc@BMS) and therefore the transactions will be straightforwandlgnmitted. In the
other case, a remote transaction has to be used to apply amditthe sequence of transactioses)_txns
at the remote replicas (other primaries and secondariegpth cases, once committed the transaction, the
protocol changes the turn to the following one to continweiocess.

At the primary replicas, special attention must be paid tmle@xisting transactions, since they may
conflict with the remote writeset application, avoidingatgrogress. To partially avoid this problem, we
stop the execution of write operations in the system (sqelf2e in Figure 2) when a remote writeset
is applied at a replica, i.e. turning thes_run variable to true. However, this is not enough to ensure the
writeset application in the replica; the writeset can beoimed in a conflict with local transactions that
already updated some data items that intersect with thesetit

Progress is ensured by a block detection mechanism, pegserjiL 7], which aborts all local conflicting
transactions\(l) allowing the writeset application to be successfully &bl Besides, this mechanism
prevents local transactions that have requested their @fmmrecommit = true) from being aborted by
other local conflicting transactions, ensuring their cagtiph. Note also that the writeset application may
be involved in a deadlock situation that may result in itsribo and hence it must be re-attempted until



V. Upon (new_primary, R,,) in towork[turn] VI. Upon (remove_primary, R,,) in towork[turn]

1. Remove message from towork[turn] 1. Remove message from towork[turn]
2. nprimaries := nprimaries + 1 2. nprimaries := nprimaries - 1
3. Increase towork capacity in 1 3. Reduce towork capacity in 1

Figure 4: Modifications t@eterm-Rep algorithm to add or remove new primaries to the system

its successful completion. Secondaries do not requirentieishanism since they only execute read-only
transactions that never conflict with the remote writesets.

3.3 Dynamic L oad-Awar e Replication Protocol

Initial system configuration sets the number of primary amtbadary replicas which compose the repli-
cated system. However, this is not a fixed configuration. @otogol may easily adapt itself dynamically
to different transaction workloads by turning primariemisecondaries and vice versa. This makes possi-
ble to handle different situations ensuring the most apgstgconfiguration for each moment.

Note that a great number of primary replicas increases taghead of the protocol, since delay between
turns is increased and there are more update transact@m®ther primary replicas that need to be locally
applied. Therefore, it is clear that this leads to highepoese times of transactions (even for read-only
transactions). However, this improves the system cap&zibandle workloads predominated by update
transactions. On the other hand, increasing the numbercohsgary replicas does not involve a major
problem, since data consistency is trivially maintainethise replicas as they are only allowed to execute
read-only transactions. Thus, this improves the systeraggpto handle read-only transactions, although
it does not enhance the possibility of handling update &ati@ns or putting up with failures of a single
primary. Therefore, the system performance is a tradeatifiben the number of primaries and the number
of secondaries, depending on the workload characteristics

In this way, our protocol is able to adapt itself to the partie behavior of the workload processed in the
replicated system. Considering a set of replicas wheresopmérary and the others are secondaries, we can
turn a secondary easily into a new primary in order to handteeba workload where update transactions
become predominant (see Figure 3). For this, it is only rezogsthat a primary replica broadcasts a
message, pointing which secondary replica should staeMetp as a primarydew_primary). A separate
dynamic load-aware protocol should be in charge of doing, #¢cording to the workload processed by
the system. lIts study and implementation is not an aim ofhjser and this protocol simply provides
it with the required mechanisms. When delivering this mgesaach replica will update the number of
primaries working in the systemgrimaries). They will also add a new entry in the working quetsvork)
to store messages coming from that replica so as to prooassdb stated. With these two minor changes,
both primary and secondary replicas will be able to handiértborporation of the secondary as a primary
replica.

In the same way, when the workload becomes dominated byaelydiransactions, we can turn a
primary replica into a secondary one through a similar pgedbat updates the number of primaries and
removes the corresponding entry in the working queue at egadica of the system.

4 Fault Tolerance I ssues

In areplicated database system, it is necessary to conls@dynamic nature of the composition of replicas
in the system (a partially synchronous one). Thus, replitagfail, re-join or new replicas may come up in
order to satisfy some performance needs. We suppose thiailtive and recovery of a replica follows the
crash-recovery with partial amnesia failure model [7]. &libiat once a transaction has been committed, the
underlyingDBMS guarantees its persistence, but on-going ones are lostavtepiica fails. This provides
a partial amnesia effect.

These issues are handled by theSthanks to a membership service [6]. This service provides th
notion of view [6], which is the set of current connected awctive nodes. The view concept can be
considered as a synchronization point for the replicat¢tihge each time a replica crashes or joins the



system a view change event is fired to report the connectecoersmThis event is totally ordered for all
replicas which install this new view and it also ensures tbplicas contained in the former and in the new
views deliver the same set of messages; hence the notiopwfsyinchrony [6]. In replicated databases it
is important to work under the primary component assumédri.e. a replica may continue processing
transactions provided that there are more than a half @ptionnected; otherwise, it is usually forced to
shutdown until it becomes part of the primary partition.

Related to this is the notion of uniform and same view de}iéi: if a message is delivered by a
replica (faulty or not), it will be eventually delivered tdl eeplicas that install the next view in the former
view. This does not prevent that a message from a crasheidadqd delivered by correct ones. This is
avoided with the no contamination property [12, 9]. All tedsatures let us know which writesets have
been applied between failures or joins of nodes and, thdsedehat to do in these cases. This will be
outlined in the following, keeping in mind the protocol shown Figure 2 and assuming that the GCS
provides all the mentioned properties.

4.1 ReplicaFailureand Recovery Process

As said before, the failure of a repli€g involves firing a view change event. Hence, all the nodes will
install the new view with the excluded replica. The mostigtrtHorward solution for a primary failure is
that each alive replicB;, to silently discard the position edwork associated to the primaRy;. Failures of
secondary replicas need no processing at all. The no comdion property [12, 9] prevents that correct
replicas (either primary or secondary) receive messagesfaulty primaries. Thus, transactions that were
executing or had requested their commit at the faulty pymmaplica will never progress and commit in
the other ones. However, we should be more careful abowtsertis from primary replicas missed by the
faulty replicaR; until the view change reported its failure to the correctanBy the uniform and same
delivery property, a failed replica will have delivered ateset message, if any other replica has done it.
Thus, if replica fails before applying and committing chasgthese messages will be lost and in case that
replica rejoins it would be inconsistent. This is not a veiffiallt to avoid thanks to the round robin nature
of our protocol. Each replica has an auxiliary queue wheteated messages are stored. This queue is
pruned each time a new round is started, i.e. when replica’sarrives. Hence, when a replica crashes it
is only necessary to store the contents of this queue. Tfosnration will be transferred when it rejoins
the system back again, as we explain in the following.

After a replica has crashed, it may eventually rejoin thaesys firing a view change event. This
recovering replica has first to apply the possible writesets missed erviéw it crashed and then the
writesets while it was down. Thanks to the strong virtualcdyony, there is at least one replica that
completely contains all the system state. Hence, therelie@ps for choosing i@ecoverer replica among
all living primary nodes; this is an orthogonal process ardnmill not discuss it here; hence, let us assume
that there exists a recoverer replica. Initially, a recowggnode will join the system as a secondary replica;
later depending on the system load it may become a primanonUiping the view change event, we
need to rebuild théowork queue including the primary replicas available in the syst&he recovering
node will discard, in turn, messages coming from workingnaniy replicas until it finishes its recovery.
The recoverer will wait for its turn to send the missed infation to the recovering replica, in order to
include other writesets coming from other replicas whiah riscovering will discard. Note that the set of
missed updates can be inferred quite easily; it is only reeaggo store the identifier of the last committed
transaction before the recovering replica crashed. Thienksme metadata tables present in s@BSIS,
such asPostgresQL, it is possible to infer the set of items updated since tlaatdaction and to transfer their
current state.

Concurrently to this, the recovering replica will store &litesets delivered from primary replicas in
an additional queue callggnding WS where they may be compacted [18]. It is not necessary thahano
replica stores the committed writesets and discards the tha have to abort (e.g. after a certification
process), since in our proposal delivered writesets arayawupposed to have to commit. Once all missed
updates transferred by the recoverer have been applied adbvering, it will finally apply the compacted
writesets stored ipending_ WS and, thus, finish the recovery. From then on, recoveringaamlill pro-
cess theaowork queue as usual. As it may be seen, we have followed a two phaseary process very
similar to the one described in [1]: the first phase consistsansferring the missed updates while the
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Figure 5: Throughputs for different analyzed workloads endfigurations.

replica was crashed; and, the second one applies the migdatks of the current view while the recovery
process took place. This last phase serves for considéréngetovering replica as alive, once established
a synchronization point with the rest of the replicas.

5 Experimental Results

To verify the validity of our approach we performed some ipnaiary tests. We have implemented the
proposed protocol on a middleware architecture called MA[I7], taking advantage of its capabilities
provided for database replication. For the experimentsuses a cluster of 4 workstations (openSUSE
10.2 with 2.6.18 kernel, Pentium4 3.4GHz, 2Gb main memos@Gb SATA disk) connected by a full
duplex Fast Ethernet network. JGroups 2.1 is in charge ofthep communication. PostgreSQL 8.1 was
used as the underlying DBMS, which ensured Sl level. Thebdataconsists of 10 tables each containing
10000 tuples. Each table contains the same schema: tweisteme being the primary key. Update trans-
actions modify 5 consecutive tuples, randomly chosen fréabke of the database. Read-only transactions
retrieve the values from 1000 consecutive tuples, randambgen from a table of the database too. The
PostgreSQL databases were configured to enforce the syrizhtion of write operations (enabling the
fsync function). We used a load generator to simulate diffetypes of workloads depending on the ratio
of update transactions (10%, 50%, 90%). We simulated 18tslisubmitting 500 transactions each one
with no delay between them. The load generator establisligdeach working replica the same number
of connections than simulated clients. Transactions wenegated and submitted through connections to
replicas according to their role: update transactions bmamy ones and read-only transactions to both
primary and secondary ones. Note that, as these are prafitgists, we have not paid much attention to
the way transactions were distributed among the replicddlerefore results are not the best ones.
Experimental results are summarized in Figure 5. In thetfirsttests, we have tested the performance
of our proposal working as a primary-copy and an updateysusere approach respectively. Thus, starting
from a primary replica (needed in both cases), we have iserethe number of replicas depending on the
evaluated approach: primaries for the update-everywlmgeation and secondaries for the primary-copy
one. As shown in Figure 5a, increasing the number of sec@slpermits the system handling better
read-only predominant loads (10% updates). However, mighimary-copy approach, it is imposible to
enhance its performance when working with loads with a graatber of updates (50% or 90% updates).



In these cases, increasing the number of secondaries meamprovement, since additional secondaries
do not increase the system capacity to process update ¢teomsa In fact, all the update transactions are
executed in the primary replica, and this overloads theéagapl

On the other hand, the update-everywhere operation previdter results (see Figure 5b) than the
primary-copy approach with loads including many updatedaztions (50% and 90% updates). In these
cases, increasing the number of primaries allows to handjeeat number of update transactions and
therefore the performance is improved. However, all thdicap are able to execute update transactions
that may overload them and this may lead to higher respomsstivhen executing read-only transactions
in these replicas. Besides, the coordination of the primmapjicas involves also a greater overhead in
their protocols than in a secondary protocol. For theseoreaghe performance of the update-everywhere
approach is poorer than the primary-copy one when the systerks with a great number of read-only
transactions.

We have seen that each approach behaves better underrdiffeads. Hence, it is interesting to test
how an intermediate approach (mixing several primariesssudndaries) performs. We have tested the
behavior of mixed compositions, considering a fixed numbieeplicas. As shown in Figure 5c, mixed
configurations with 4 replicas provide in general near theesand usually better results for each load
considered in our tests. In particular, for a 10%-update kb& best behavior is not provided by a pure
primary-copy approach but by 2 primaries and 2 secondayeting thus the best throughput (192 TPS)
in all these tests. This happens because using a singlergrihmt concentrates all update transactions
penalizes a bit the read-only transactions in such singlagmy replica, but with two primaries none
of them gets enough update transactions for delaying redtansaction service. Once again, for a
50%-update load the best throughput (76 TPS) is given byrBgies and 1 secondary, outperforming a
primary-copy configuration (51TPS) and an update-everyaiee (69TPS). This proves that intermediate
configurations are able to improve the throughput achivable

6 Conclusions

This paper has presented a new database replication apphadisvay between primary-copy and update-
everywhere paradigms. This permits improving system perémce depending on its load. Besides, it also
allows to increase the fault-tolerance of a primary-costem (limited by the failure of the primary), since
it is possible to have more than a single primary-copy regdlicexecute update transactions.

This is feasible thanks to the use of a deterministic dawbaglication protocol that takes the best
qualities from both certification and weak-voting appragghThis protocol establishes a unique schedule
in all replicas based on primaries identifiers, what periiitswing a priori that broadcast writesets are
always going to be committed.

We have also discussed how this protocol can adapt itseHirdjsally to different environments (by
turning secondaries into primaries to handle heavy-updat&loads or primaries into secondaries when
read-only transactions become predominant) and how dasgilyes and rejoins are treated in this protocol.
Finally, we have performed some preliminary experimengstwe the feasibility of this approach, showing
how system can provide better performance, adapting itigroration to the load characteristics; although
we have still to make a great effort to achieve more significasults.
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