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Technical Report TR-ITI-ITE-08/07

e-mail:{jr.juarez, enrique.armendariz, mendivil}@unavarra.es, fmunyoz@iti.upv.es

March 17, 2008

Abstract

In database replication, primary-copy systems sort out easily the problem of keeping replicate data
consistent by allowing only updates at the primary copy. While this kind of systems are very efficient
with workloads dominated by read-only transactions, the update-everywhere approach is more suitable
for heavy update loads. However, this approach adds a significant overload when working with read-
only transactions. We propose a new database replication paradigm, halfway between primary-copy and
update-everywhere approaches, which permits improving system performance adapting its configuration
to the workload, thanks to a deterministic database replication protocol which ensures that broadcast
writesets are always going to be committed.

1 Introduction and Motivation

Database replication is considered as a joint venture between database and distributed systems research
communities. Each one pursues its own goals: performance improvement and affording site failures, re-
spectively. These issues bring up another important question that is how different replicas are kept con-
sistent, i.e. how these systems deal with updates that modify the database state. During a user transaction
lifetime it is a must to decide in which replica and when to perform updates [13]. The behavior of these
systems is a trade-off between performance according to theway updates are done and data consistency
ensured by some sorting in the execution of update transactions.

According to where to perform updates, the primary copy approach allows only one replica to perform
the updates [8, 19]. Hence, data consistency is trivially maintained since there is only one server executing
update transactions. Changes will be propagated to the secondary replicas, which in turn will apply them.
Secondaries are just allowed to execute read-only transactions. This approach is suitable for workloads
dominated by read-only transactions, as it tends to be in many modern web applications [8, 19]. However,
the primary replica represents a bottleneck for the system and, furthermore, it is a single point of failure.
The opposite approach, called update-everywhere [3, 5], consists in allowing any replica to perform up-
dates. Thus, system’s availability is improved since thereis more than a single primary and failures can be
tolerated. Performance may also be increased, although some kind of synchronization between replicas is
necessary to keep data consistent, what may suppose a significant overload in some configurations.

Several recent approaches [14, 15, 16, 22] take advantage ofthe total-order broadcast primitive [6] and
have developed certain kind of eager update-everywhere replication protocols where the most outstanding
ones are the certification-based and weak-voting ones [21].Under certification-based algorithms a transac-
tion is executed at its delegate replica. When it requests for its commit, the transaction updates (depending
on the case along with the readset [15]) is total-order broadcast to all replicas. Upon its delivery, each
replica performs a deterministic certification test (mainly based on a log of previous committed transac-
tions [16, 22, 10]) to decide the outcome of the transaction.Weak-voting techniques use the same message
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as the previous technique although instead of certifying transactions, the delegate replica, based on pre-
vious delivered conflicting transactions, reliably broadcasts an additional message with the outcome (i.e.
whether it survived or not) of the transaction.

Regarding update propagation and transaction validation,in an ideal replication system all message
exchange should be performed in one round (as in certification-based) and delivered writesets should be
committed without storing a redundant log (as it is done in weak-voting). This is already possible by
a primary-copy approach as the one presented in the Ganymed project [20]. However, in primary copy
approaches, while the complexity of handling update transactions is reduced, the capacity of processing
them is reduced as well. Thus, in scenarios where the workload consists mainly of updates, such systems
are not particularly useful in terms of scalability, since performance is similar to that provided by a single
database instance. Besides, as pointed out before, the primary becomes a bottleneck and a single point of
failure.

In this paper we propose a novel approach that circumvents the problem of the primary-copy approach.
Initially, a fixed number of primary replicas is chosen (at least one, the rest will be secondaries) and,
depending on the workload, new primaries may be added by sending a special control message. The fact
is that there will be a deterministic mechanism that will govern who is the primary at a given time. Thus,
at a given time slot, only those writesets coming from a givenreplica are allowed to commit directly and
other conflicting local transactions should be aborted to permit them to commit [17]. This deterministic
protocol inherits the best characteristics of both certification and weak-voting techniques. Thus, like a
weak-voting protocol, this approach is able to validate transactions without logging history of previously
delivered writesets, and like a certification-based protocol, it is able to validate transactions using only
a single round of messages per transaction. Moreover, such asingle round can be shared by a group of
transactions already served at the same delegate replica.

In this deterministic protocol, an update transaction is firstly executed at its delegate replica (a primary
one) and once it requests for its commit, its updates are stored in a data structure and it will be committed
when the turn of its delegate replica arrives (at its corresponding slot). Then, the replica will broadcast
all writesets from transactions that requested their commit since the last slot and they will be sequentially
applied at the rest of the replicas (after all writesets fromthe previous slot have been applied). Hence, it is
easy to show that all local conflicting transactions are aborted and only those that survived will be broadcast
in their appropriate slot at each primary replica.

Meanwhile, the secondaries generate the proper slots, again based on the replica identifiers, to apply the
remote transactions coming from chosen primaries. This generates a unique scheduling configuration of all
replicas, in which all writesets are applied in the same order at all the replicas. Moreover, the performance
of this replication protocol can be increased if there is an “intelligent” load-balancing schema that tries
to reduce the number of conflicting transactions executing on distinct primary replicas and maximize the
parallelism between transactions [23], provided that theyare committed in the order established by the
token. From the above discussion, it is easy to see that this replication approach can not only dynamically
change the role of existing replicas but also supports the dynamic addition of new secondary replicas. This
process will not stop the system activity and can be done by a process similar to the two phase recovery
process presented in [1].

If we assume that the underlyingDBMS at each replica provides Snapshot Isolation (SI) [2], the pro-
posed protocol will provide Generalized SI [10, 11] (GSI), as explained later. Finally, thanks to the virtual
synchrony of GCSs [6], it is easy to show how to update the listof primary replicas in case of their failure
in order to keep the protocol working with the available ones. Dealing with the failure of a secondary is a
trivial task. More details about failure and recovery of replicas will be given throughout the paper.

The rest of this paper is organized as follows: Section 2 depicts the system model. The replication
protocol is introduced in Section 3. Fault tolerance is discussed in Section 4. Experimental evaluation of
our proposal is described in Section 5. Finally, conclusions end the paper.

2 The System Model

We assume a partially synchronous distributed system wheremessage propagation time is unknown but
bounded. The system consists of a group of sitesM = (R0, ..., RM−1), N primary replicas andM − N
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Figure 1: Startup configuration with one primary and main components of the system.

secondaries, which communicate by exchanging messages. Each site holds an autonomousDBMS pro-
viding SI that stores a physical copy of the replicated database schema (i.e. we consider a full-replicated
system). An instance of the replication protocol is runningin each replica over a DBMS that provides SI. It
is encapsulated at a middleware layer that offers consistent views and a single system entry point through a
standard interface, such asJDBC. Middleware layer instances of different sites communicate among them
for replica control purposes.

A replica interacts with other replicas thanks to a Group Communication System [6] (GCS) that pro-
vides a FIFO reliable multicast communication service. This GCS includes also a membership service with
the virtual synchrony property [6, 4], which monitors the set of participating replicas and provides them
with consistent notifications in case of failures, either real or suspected. Sites may only fail by crashing,
i.e. Byzantine failures are excluded. We assume a primary-partition membership service.

Clients (database applications) access to the system through their delegate replicas to issue transactions.
The way the delegate replica is chosen depends on the kind of transaction. A transaction is composed by a
set of read and/or write operations ended either by a commit or an abort operation. A transaction is said to
be read-only if it does not contain write operations and an update one, otherwise. Read-only transactions
are directly executed (and committed, without any further coordination) over primary or secondary replicas,
while update ones are forwarded to the primaries where theirexecution is coordinated by the replication
protocol that will be introduced in this paper. In Figure 1, an update transaction is committed at the primary
and sent (through a reliable broadcast) to the secondaries.The secondaries have a dedicated process to
apply updates sent by the primaries according to a round-robin policy sorted by the node identifier of the
primaries. Hence, snapshots gotten by read-only transactions at the secondaries are consistent as will also
be seen in the following.

3 Replication Protocol

The main idea of our proposal is to extend the primary-copy approach in order to improve the capacity for
processing update transactions and fault tolerance. In fact, its basic operation (working with one primary
and several secondaries) follows a classical primary copy strategy, as shown in Figure 1. Transactions are
scheduled over a set of snapshot isolation based database replicas. The protocol separates read-only from
update transactions and it executes them on different replicas: updates on the primary replica and reads on
any replica. This scheduler may be easily implemented in a middleware architecture, as the one presented
in [17]. This middleware provides a standard transactionalinterface to clients, such as JDBC, isolating
them from the internal operation of the replicated database.

Thus, in its basic operation, our proposal works as a primarycopy approach. Read-only transactions
will be sent to a secondary replica whenever possible. On theother hand, update transactions are forwarded
to the primary replica where they are executed locally. Onceexecuted locally, performed changes must be
spread in order to keep the secondary replicas consistent with the primary. Thus, writesets are broadcast
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to the secondaries and they are applied (and committed) in the same order in which the primary site com-
mitted them, as explained later. This guarantees that secondary replicas converge to the same snapshot as
the primary and therefore reads executed over secondaries will always use a consistent snapshot installed
previously on the primary.

3.1 Extending Primary-Copy Approach

In this paper, we extend the primary copy approach to improveits performance (mainly increasing the
capacity of handling a high number of updates) and its fault tolerance. This new approach allows different
replicas to be primaries alternately (and hence to execute updates) during given periods of time by means
of a deterministic protocol.

As pointed out before, this protocol follows at each replica(primary or secondary) the most straight-
forward scheduling policy: at a given slot, only those writesets coming from a given primary replica are
allowed to commit. In the primaries, other conflicting localtransactions should be aborted to permit those
writesets to commit [17]. Secondary replicas do not raise this problem since they are not allowed to ex-
ecute update transactions. Read-only transactions will never conflict with them as we assume that local
databases provide SI level. Actually, this is a round-robinpolicy, based on the identifiers of the primary
replicas, which is unique and known by all the system nodes (since all replicas may know the identifiers of
the other ones).

In our approach, as in the classical primary-copy, read-only transactions are sent to any replica and
they are committed straight away when they ask for it; whilstan update transaction is always scheduled in
one of primary replicas, where it is firstly executed locally. Once it requests for its commit, it will have to
wait until the turn of its delegate replica arrives (up to itscorresponding slot). Then, the primary replica
will multicast all writesets from transactions that had requested their commit since the last slot. These
writesets will be sequentially applied at the rest of the replicas after all writesets from previous slots had
been applied and committed. Hence, it is easy to show that alllocal conflicting transactions will be aborted
and only those that survived will be multicast in their appropriate slot. Secondaries will just apply writesets
sequentially ensuring the consistency of their data to the read-only transactions executed at them.

As it can be easily inferred, a primary replica will never multicast writesets that finally abort. Therefore,
this protocol makes possible to share the update transaction load among different primary replicas, while
secondary replicas are still able to handle consistently read-only transactions, increasing usually the system
throughput. Moreover, the most important feature is that a unique scheduling is generated for all replicas,
in which all writesets are applied in the same order at all thereplicas (primaries and secondaries). Hence,
considering that the underlyingDBMS at each replica providesSI, transactions will see a consistent snapshot
of the database, although it may not be the latest version existing in the replicated system. Therefore, this
protocol will provideGSI. The atomicity and the same order of applying transactions in the system have
been proved in [11] to be sufficient conditions for providingGSI.

3.2 Protocol Description

In the following, we explain the operation of the deterministic protocol executed by the middleware at a
primary replicaRk (Figure 2), considering a fault-free environment. Detailsabout the failure and rejoin
of a replica will be depicted in Section 4. Note that secondary replicas may execute the same protocol,
considering that some steps will be never executed or may be removed.

All operations of a transactionT are submitted to the middleware of its delegate replica (explicit abort
operations from clients are ignored for simplicity). Note that, at a primary copy, a transaction may submit
read or update operations, whilst at a secondary just read-only operations. At each replica, the middleware
keeps an array (towork) that determines the same scheduling of update transactions in the system, as pointed
out before, by a round-robin scheduling policy based on the identifiers of the primary replicas.

In general,towork establishes at each replica which writesets have to be applied and in which order,
ensuring that writesets are committed in the same order at all the replicas. Among primary replicas,towork
is also in charge of deciding which primary is allowed to senda message with locally performed updates.
Each element of the array represents a slot that stores the actions delivered from a primary replica. These
actions are processed cyclically according to theturn, which defines the order in which the actions have to
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be performed. There exists a mapping function (map turn()) that defines which turn is assigned to which
primary replica.

Initialization:
1. ws run := false
2. wslist := ∅
3. nprimaries := N

4. towork[i] := ∅ with i ∈ 0..N -1
5. turn := 0

I. Upon operation request for T from local client
1. if SELECT then

a. execute operation at Rk and return to client
2. else if UPDATE, INSERT, DELETE then

a. if ws run = true then
- wait until ws run = false

b. execute operation at Rk and return to client
3. else if COMMIT then

a. T.WS := getWriteset(T) from local Rk

b. if T.WS = ∅ then
- commit T and return to client

c. else
- T.replica := Rk

- T.pre commit := true
- wslist := wslist · 〈T〉

II. Upon receiving message msg from Rn

1. Store msg in towork[Rn ]

III. Upon replica’s turn /* turn = Rk */
1. if wslist = ∅ then R multicast(〈next, Rk〉)
2. else R multicast(〈tocommit, Rk, wslist〉)

IV. Upon 〈next, Rn〉 in towork[turn]
1. Remove 〈next, Rn〉 from towork[turn]
2. turn := (turn+1) mod nprimaries

V. Upon 〈tocommit, Rn, seq txns〉 in towork[turn]
1. while seq txns 6= ∅ do

a. T′ := first in seq txns
b. if T′.replica = Rk then /* T′ is local */

- commit T′ and return to client
c. else /* T′ is remote */

- ws run := true
- apply T′.WS to local Rk

/* T′ may be reattempted */
- commit T′

2. Remove 〈tocommit, Rn, ∅〉 from towork[turn]
3. turn := (turn+1) mod nprimaries
4. ws run := false

VI. Upon block detected between T1 and T2

/* T1.replica 6= Rk */
/* T2.replica = Rk, i.e. local */

1. abort T2 and return to client
2. if T2.pre commit = true then

a. remove 〈T2〉 from wslist

Figure 2:Determ-Rep algorithm at a primary replicaRk

The middleware of a primary replica forwards all the operations but the commit operation to the local
database replica (stepI of Figure 2). Each primary replica maintains a list (wslist) which stores local
transactions (T.replica = Rk) that have requested their commit. Thus, when a transactionrequests its
commit, the writeset (T.WS) is retrieved from the local database replica [20]. If it is empty the transaction
will be committed straight away, otherwise the transaction(together with its writeset) will be stored in
wslist. Secondary replicas work just with read-only transactions. Thus, there is no need to use thewslist,
since transactions do not modify anything and hence they will always commit directly in the local database
without delaying.

In order to commit transactions that have requested it, their corresponding delegate primary replica has
to multicast their writesets in atocommit message, to spread their changes, and wait for the reception
of this message to finally commit the transactions (this is just for fault-tolerance issues explained later in
Section 4). Since our protocol follows a round-robin scheduling among primary replicas, each primary
has to wait for its turn (turn=map turn(Rk) in stepIII) so as to multicast all the writesets contained inwslist
using a simple reliable broadcast service. Note that secondary replicas are not represented in thetowork
queue and therefore they will never have any turn assigned tothem and hence they will never broadcast
any message. Secondaries simply execute read-only transactions and apply writesets from primaries, hence
they require no communication with other replicas.

When the turn of a primary replica arrives and there are no transactions stored inwslist, the replica
will simply advance the turn to the next primary replica, sending anext message to all the replicas. This
message allows also secondary replicas to know that there isnothing to wait for from that replica.

Upon delivery of any of these messages (next andtocommit) at each replica, they are stored in their
corresponding positions in thetowork array (stepII), according to the primary replica which the message
came from and the mapping function (map turn(Rk)). It is important to note that, although these messages
were sent since replica’s turn was reached at their corresponding primary replicas, replicas run at different
speeds and there can be replicas still handling previous positions of their owntowork. At each replica,
messages from a same replica will be delivered in the same order, since we consider FIFO channels between
the replicas. However, messages from different replicas may be delivered disordered (as we do not use total
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Figure 3: The process of adding a new primary to the replicated system.

order), but this is not a problem since they are processed oneafter another as their turn arrives. Disordered
messages are stored in their corresponding positions in thearray and their processing will wait for the
delivery and processing of the previous ones. This ensures that all the replicas process messages in the
same order and as a result all transactions are committed in the same order in all of them.

Thus, thetowork array is processed in a cyclical way. At each turn, the protocol checks the correspond-
ing position of the array (towork[turn]). If a next message is stored, the protocol will simply remove it
from the array and change the turn to the following one (stepIV) so as to allow the next position to be pro-
cessed. If it is atocommit message, we can distinguish between two cases (stepV). When the sender of
the message is the replica itself (a primary replica), transactions grouped in its writeset (seq txns) are local
(already exist in the localDBMS) and therefore the transactions will be straightforwardlycommitted. In the
other case, a remote transaction has to be used to apply and commit the sequence of transactionsseq txns
at the remote replicas (other primaries and secondaries). In both cases, once committed the transaction, the
protocol changes the turn to the following one to continue the process.

At the primary replicas, special attention must be paid to local existing transactions, since they may
conflict with the remote writeset application, avoiding it to progress. To partially avoid this problem, we
stop the execution of write operations in the system (see step I.2.a in Figure 2) when a remote writeset
is applied at a replica, i.e. turning thews run variable to true. However, this is not enough to ensure the
writeset application in the replica; the writeset can be involved in a conflict with local transactions that
already updated some data items that intersect with the writeset.

Progress is ensured by a block detection mechanism, presented in [17], which aborts all local conflicting
transactions (VI) allowing the writeset application to be successfully applied. Besides, this mechanism
prevents local transactions that have requested their commit (T.precommit = true) from being aborted by
other local conflicting transactions, ensuring their completion. Note also that the writeset application may
be involved in a deadlock situation that may result in its abortion and hence it must be re-attempted until
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V. Upon 〈new primary, Rn〉 in towork[turn]
1. Remove message from towork[turn]
2. nprimaries := nprimaries + 1
3. Increase towork capacity in 1

VI. Upon 〈remove primary, Rn〉 in towork[turn]
1. Remove message from towork[turn]
2. nprimaries := nprimaries - 1
3. Reduce towork capacity in 1

Figure 4: Modifications toDeterm-Rep algorithm to add or remove new primaries to the system

its successful completion. Secondaries do not require thismechanism since they only execute read-only
transactions that never conflict with the remote writesets.

3.3 Dynamic Load-Aware Replication Protocol

Initial system configuration sets the number of primary and secondary replicas which compose the repli-
cated system. However, this is not a fixed configuration. Our protocol may easily adapt itself dynamically
to different transaction workloads by turning primaries into secondaries and vice versa. This makes possi-
ble to handle different situations ensuring the most appropriate configuration for each moment.

Note that a great number of primary replicas increases the overhead of the protocol, since delay between
turns is increased and there are more update transactions from other primary replicas that need to be locally
applied. Therefore, it is clear that this leads to higher response times of transactions (even for read-only
transactions). However, this improves the system capacityto handle workloads predominated by update
transactions. On the other hand, increasing the number of secondary replicas does not involve a major
problem, since data consistency is trivially maintained inthese replicas as they are only allowed to execute
read-only transactions. Thus, this improves the system capacity to handle read-only transactions, although
it does not enhance the possibility of handling update transactions or putting up with failures of a single
primary. Therefore, the system performance is a trade-off between the number of primaries and the number
of secondaries, depending on the workload characteristics.

In this way, our protocol is able to adapt itself to the particular behavior of the workload processed in the
replicated system. Considering a set of replicas where one is primary and the others are secondaries, we can
turn a secondary easily into a new primary in order to handle better a workload where update transactions
become predominant (see Figure 3). For this, it is only necessary that a primary replica broadcasts a
message, pointing which secondary replica should start behaving as a primary (new primary). A separate
dynamic load-aware protocol should be in charge of doing this, according to the workload processed by
the system. Its study and implementation is not an aim of thispaper and this protocol simply provides
it with the required mechanisms. When delivering this message, each replica will update the number of
primaries working in the system (nprimaries). They will also add a new entry in the working queue (towork)
to store messages coming from that replica so as to process them as stated. With these two minor changes,
both primary and secondary replicas will be able to handle the incorporation of the secondary as a primary
replica.

In the same way, when the workload becomes dominated by read-only transactions, we can turn a
primary replica into a secondary one through a similar process that updates the number of primaries and
removes the corresponding entry in the working queue at eachreplica of the system.

4 Fault Tolerance Issues

In a replicated database system, it is necessary to considerthe dynamic nature of the composition of replicas
in the system (a partially synchronous one). Thus, replicasmay fail, re-join or new replicas may come up in
order to satisfy some performance needs. We suppose that thefailure and recovery of a replica follows the
crash-recovery with partial amnesia failure model [7]. Note that once a transaction has been committed, the
underlyingDBMS guarantees its persistence, but on-going ones are lost whena replica fails. This provides
a partial amnesia effect.

These issues are handled by theGCS thanks to a membership service [6]. This service provides the
notion of view [6], which is the set of current connected and active nodes. The view concept can be
considered as a synchronization point for the replicated setting: each time a replica crashes or joins the
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system a view change event is fired to report the connected members. This event is totally ordered for all
replicas which install this new view and it also ensures thatreplicas contained in the former and in the new
views deliver the same set of messages; hence the notion of view synchrony [6]. In replicated databases it
is important to work under the primary component assumption[6], i.e. a replica may continue processing
transactions provided that there are more than a half replicas connected; otherwise, it is usually forced to
shutdown until it becomes part of the primary partition.

Related to this is the notion of uniform and same view delivery [6]: if a message is delivered by a
replica (faulty or not), it will be eventually delivered to all replicas that install the next view in the former
view. This does not prevent that a message from a crashed replica be delivered by correct ones. This is
avoided with the no contamination property [12, 9]. All these features let us know which writesets have
been applied between failures or joins of nodes and, thus, define what to do in these cases. This will be
outlined in the following, keeping in mind the protocol shown in Figure 2 and assuming that the GCS
provides all the mentioned properties.

4.1 Replica Failure and Recovery Process

As said before, the failure of a replicaRj involves firing a view change event. Hence, all the nodes will
install the new view with the excluded replica. The most straightforward solution for a primary failure is
that each alive replicaRk to silently discard the position oftowork associated to the primaryRj. Failures of
secondary replicas need no processing at all. The no contamination property [12, 9] prevents that correct
replicas (either primary or secondary) receive messages from faulty primaries. Thus, transactions that were
executing or had requested their commit at the faulty primary replica will never progress and commit in
the other ones. However, we should be more careful about writesets from primary replicas missed by the
faulty replicaRj until the view change reported its failure to the correct ones. By the uniform and same
delivery property, a failed replica will have delivered a writeset message, if any other replica has done it.
Thus, if replica fails before applying and committing changes, these messages will be lost and in case that
replica rejoins it would be inconsistent. This is not a very difficult to avoid thanks to the round robin nature
of our protocol. Each replica has an auxiliary queue where delivered messages are stored. This queue is
pruned each time a new round is started, i.e. when replica’s turn arrives. Hence, when a replica crashes it
is only necessary to store the contents of this queue. This information will be transferred when it rejoins
the system back again, as we explain in the following.

After a replica has crashed, it may eventually rejoin the system, firing a view change event. This
recovering replica has first to apply the possible writesets missed on the view it crashed and then the
writesets while it was down. Thanks to the strong virtual synchrony, there is at least one replica that
completely contains all the system state. Hence, there is a process for choosing arecoverer replica among
all living primary nodes; this is an orthogonal process and we will not discuss it here; hence, let us assume
that there exists a recoverer replica. Initially, a recovering node will join the system as a secondary replica;
later depending on the system load it may become a primary. Upon firing the view change event, we
need to rebuild thetowork queue including the primary replicas available in the system. The recovering
node will discard, in turn, messages coming from working primary replicas until it finishes its recovery.
The recoverer will wait for its turn to send the missed information to the recovering replica, in order to
include other writesets coming from other replicas which the recovering will discard. Note that the set of
missed updates can be inferred quite easily; it is only necessary to store the identifier of the last committed
transaction before the recovering replica crashed. Thanksto some metadata tables present in someDBMS,
such asPostgreSQL, it is possible to infer the set of items updated since that transaction and to transfer their
current state.

Concurrently to this, the recovering replica will store allwritesets delivered from primary replicas in
an additional queue calledpending WS where they may be compacted [18]. It is not necessary that another
replica stores the committed writesets and discards the ones that have to abort (e.g. after a certification
process), since in our proposal delivered writesets are always supposed to have to commit. Once all missed
updates transferred by the recoverer have been applied at the recovering, it will finally apply the compacted
writesets stored inpending WS and, thus, finish the recovery. From then on, recovering replica will pro-
cess thetowork queue as usual. As it may be seen, we have followed a two phase recovery process very
similar to the one described in [1]: the first phase consists in transferring the missed updates while the
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(a) Primary-copy approach of the system. (b) Update-everywhere operation. (c) Balancing the system configuration.

Figure 5: Throughputs for different analyzed workloads andconfigurations.

replica was crashed; and, the second one applies the missed updates of the current view while the recovery
process took place. This last phase serves for considering the recovering replica as alive, once established
a synchronization point with the rest of the replicas.

5 Experimental Results

To verify the validity of our approach we performed some preliminary tests. We have implemented the
proposed protocol on a middleware architecture called MADIS [17], taking advantage of its capabilities
provided for database replication. For the experiments, weused a cluster of 4 workstations (openSUSE
10.2 with 2.6.18 kernel, Pentium4 3.4GHz, 2Gb main memory, 250Gb SATA disk) connected by a full
duplex Fast Ethernet network. JGroups 2.1 is in charge of thegroup communication. PostgreSQL 8.1 was
used as the underlying DBMS, which ensured SI level. The database consists of 10 tables each containing
10000 tuples. Each table contains the same schema: two integers, one being the primary key. Update trans-
actions modify 5 consecutive tuples, randomly chosen from atable of the database. Read-only transactions
retrieve the values from 1000 consecutive tuples, randomlychosen from a table of the database too. The
PostgreSQL databases were configured to enforce the synchronization of write operations (enabling the
fsync function). We used a load generator to simulate different types of workloads depending on the ratio
of update transactions (10%, 50%, 90%). We simulated 12 clients submitting 500 transactions each one
with no delay between them. The load generator established with each working replica the same number
of connections than simulated clients. Transactions were generated and submitted through connections to
replicas according to their role: update transactions to primary ones and read-only transactions to both
primary and secondary ones. Note that, as these are preliminar tests, we have not paid much attention to
the way transactions were distributed among the replicas and therefore results are not the best ones.

Experimental results are summarized in Figure 5. In the firsttwo tests, we have tested the performance
of our proposal working as a primary-copy and an update-everywhere approach respectively. Thus, starting
from a primary replica (needed in both cases), we have increased the number of replicas depending on the
evaluated approach: primaries for the update-everywhere operation and secondaries for the primary-copy
one. As shown in Figure 5a, increasing the number of secondaries permits the system handling better
read-only predominant loads (10% updates). However, in this primary-copy approach, it is imposible to
enhance its performance when working with loads with a greatnumber of updates (50% or 90% updates).
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In these cases, increasing the number of secondaries means no improvement, since additional secondaries
do not increase the system capacity to process update transactions. In fact, all the update transactions are
executed in the primary replica, and this overloads the replica.

On the other hand, the update-everywhere operation provides better results (see Figure 5b) than the
primary-copy approach with loads including many update transactions (50% and 90% updates). In these
cases, increasing the number of primaries allows to handle agreat number of update transactions and
therefore the performance is improved. However, all the replicas are able to execute update transactions
that may overload them and this may lead to higher response times when executing read-only transactions
in these replicas. Besides, the coordination of the primaryreplicas involves also a greater overhead in
their protocols than in a secondary protocol. For these reasons, the performance of the update-everywhere
approach is poorer than the primary-copy one when the systemworks with a great number of read-only
transactions.

We have seen that each approach behaves better under different loads. Hence, it is interesting to test
how an intermediate approach (mixing several primaries andsecondaries) performs. We have tested the
behavior of mixed compositions, considering a fixed number of replicas. As shown in Figure 5c, mixed
configurations with 4 replicas provide in general near the same and usually better results for each load
considered in our tests. In particular, for a 10%-update load the best behavior is not provided by a pure
primary-copy approach but by 2 primaries and 2 secondaries,getting thus the best throughput (192 TPS)
in all these tests. This happens because using a single primary that concentrates all update transactions
penalizes a bit the read-only transactions in such single primary replica, but with two primaries none
of them gets enough update transactions for delaying read-only transaction service. Once again, for a
50%-update load the best throughput (76TPS) is given by 3 primaries and 1 secondary, outperforming a
primary-copy configuration (51TPS) and an update-everywhere one (69TPS). This proves that intermediate
configurations are able to improve the throughput achivable.

6 Conclusions

This paper has presented a new database replication approach, halfway between primary-copy and update-
everywhere paradigms. This permits improving system performance depending on its load. Besides, it also
allows to increase the fault-tolerance of a primary-copy system (limited by the failure of the primary), since
it is possible to have more than a single primary-copy replica to execute update transactions.

This is feasible thanks to the use of a deterministic database replication protocol that takes the best
qualities from both certification and weak-voting approaches. This protocol establishes a unique schedule
in all replicas based on primaries identifiers, what permitsknowing a priori that broadcast writesets are
always going to be committed.

We have also discussed how this protocol can adapt itself dynamically to different environments (by
turning secondaries into primaries to handle heavy-updateworkloads or primaries into secondaries when
read-only transactions become predominant) and how easilyfailures and rejoins are treated in this protocol.
Finally, we have performed some preliminary experiments toprove the feasibility of this approach, showing
how system can provide better performance, adapting its configuration to the load characteristics; although
we have still to make a great effort to achieve more significant results.
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[17] F. D. Muñoz-Escoı́, J. Pla-Civera, M. I. Ruiz-Fuertes, L. Irún-Briz, H. Decker, J. E. Armendáriz-
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