TR-ITI-ITE-08/03

Correctness Criteria for Replicated Database Systems with

Snapshot Isolation Replicas
J.E. Armendariz, J.R. Juarez, J.R. Gonzalez de Mendivi

Universidad Plblica de Navarra, Pamplona, Spain

{enrique.armendariz, jr.juarez, mendp@unavarra.es

Technical Report TR-ITI-ITE-08/03

Correctness Criteria for Replicated Database Systems Suithipshot Isolation Replicas

J. E. Armendariziiigo et al.:

Correctness Criteria for Replicated Database Systems
with Snapshot Isolation Replicas

J.E. Armendariz, J.R. Juarez, J.R. Gonzalez de Mehdivi

Universidad Plblica de Navarra, Pamplona, Spain
Technical Report TR-ITI-ITE-08/03

e-mail: {enrique.armendariz, jrjuarez, mendh@unavarra.es

Abstract

Most replicated database systems where each replica usegpal®t Isolation (SI) DBMS implement
replication protocols based on the deferred update teaknidt allows read-only transactions to be
locally executed at a single replica. Moreover, as reag-ttahsactions are executed under Sl they never
get blocked and, therefore, the system performance isasertwhenever the majority of the workload
is of this type. In this work we present the correctness gatevhich a replicated database system
with Sl replicas must verify when deferred update protoaots used in a crash failure scenario. We
have formalized them using the Input/Output Automaton Mo@wr criteria proposal ensures that the
replicated database system behaves like a single copyadatalystem where transactions see a weaker
form of Sl, called Generalized-SI. This formal charactatian allows us to study the pros and cons of the
deferred update technique and it serves as a milestonee fite correctness of a replication protocol
in a rigorous way.

1 Introduction

Several database replication techniques allow read-gahsactions to be executed locally at a single
replica without intervention of the replication protocdlhese techniques are the preferred choice when
workloads are mainly composed of read-only transactiohgiriperformance is even more significant if the
local database management systems (DBMS) employed ingheated system execute transactions under
the Snapshot Isolation (SI) level [1], since read-onlysetions are never blocked by the DBMS. Recently,
a significant number of database replication protocols baesm proposed assuming Sl replicas [5, 6, 8, 15,
18, 20]. Primary copy protocols [5, 20] distribute readyotransactions among secondary replicas (which
are not allowed to perform updates) in order to improve thgtesy performance, although they must
care about failures of the primary replica to keep the abdits of the system. Centralized certification
protocols [6, 7] execute update transactions at any relidatheir commitment must be validated by
a central certifier site (i.e. no other concurrent certifimhsaction updated a data item written by the
incoming transaction). It is clear that the certifier replis again a single point of failure. Thus, distributed
certification protocols [8, 15, 18] based on Atomic Broad§ékare proposed, since they can afford replica
failures. Each replica itself constitutes a certifier; hgerethey require that certified remote transactions
(a special kind of transaction containing only the updafes given transaction) must be applied as fast
as possible so as to improve scalability. Weak voting pr®§10] have also been proposed in order
to combine the execution of transactions under differesiaitton levels. More recently, other protocols
which avoid the transmission of remote transactions thiitfinally be aborted in the replicated system
have been proposed as well [11]. All these protocols arecbas¢he deferred update technique [19]. First
transactions perform their operations at a delegate @jglicd when they request the commit, some kind
of coordination with the rest of replicas is needed to glhbebmmit the transaction. If the transaction is
finally committed, their updates must be applied in the rét®replicas.

Most of these protocols are implemented considering they tnly see a standard DBMS interface
(e.g. JDBC or ODBC) [8, 18, 15, 20, 3, 21]. For that reasony ttegjuire additional functions to be
implemented on top of DBMSs core, which make the deploymé&atprotocol easier [21, 3, 18, 15, 20];
mainly, functions which provide the collection of trangantupdates and modifications to facilitate the
programming of remote transactions.

In spite of the differentimplementations and of the praadtioterest of these kind of protocols, we have
not found, up to our knowledge, any work which formally spiesi the correctness criteria that database
replicated systems with Sl replicas must fulfill. Theseesié should be useful to guarantee the correctness
of the protocols and to analyze their advantages and liioitat

In this paper, we propose the usage of the Input/Output AatomModel [17, 16] to provide the speci-
fication of a database replication system with Sl replicde fresented specification stresses the properties
which must fulfill the components and not their specific inmpémtations. The replicated system is shown
as the composition of an abstract replication protocol asétaf databases with extended functionalities;
those ones that make easier the protocol implementatiom system explicitly considers the crash failure
model scenario. Actually, most of proposed protocols aségieed to tolerate at least such failure scenario.
Correctness criteria requirei) the local behavior of each database replica must be respacthe system
(Well-Formedness Conditiong(iz) conflicting transactions executed in the system must baesdally
committed Conflict Serializablg (ii7) the same snapshots must be generated in the system and, henc
transactions must be committed in the very same order atpglicas Uniform Prefix Order Database
Consistency (iv) the decision about a transaction is the same at all rep(igagorm Decisior); and, ¢)
local progress of transactions must be preserved at cagplitas [ocal Transaction Progre3s

As it will be shown later in this paper, these criteria allawassure that transactions are executed in
the replicated system as if there was a single database wihiicexecute transactions under a slightly
weaker isolation level than Sl, known as Generalized-SI (8% Basically, the main difference between
these isolation levels stems from the snapshot gotten hgdctions. Whilst Sl gives the latest committed
shapshot, GSI may see any previous snapshot (includingtestlone), respectively. In both cases, the
lost-updatesanomaly [1] is avoided. In this paper, we discuss some vanatof the correctness criteria
which can be of interest while designing replication praisc

As we have pointed out before, the Input/Output Automatord®lds going to be used to present the
components and the replicated system. For the sake of uaddisg, we refer the reader to the articles [17]
and [16] for a concrete introduction to that model. The riotatve use is based on the one presented in [17].
The rest of the paper is organized as follows. Section 2 ptessn extended database module which is
actually an abstraction but reflects some assumptions atarés implemented in real systems [21, 3, 20,
18]. The correctness criteria for a replicated databastsyare given in Section 3. The justification of
all of them is given in Section 4 (and more formally in an amil Appendix). Finally, we present some
discussion about our correctness criteria proposal ini@esét

2 Extended Database System

In this section, we introduce a specification of an extendadlzhse system by means of a schedule mod-
ule [17], denoted® D B. This module models the performance of a database follothiag! level which
includes some facilities in order to simplify the controleplication protocol exercises over the database.
The database contains a set of uniquely identified databess {indicated ag) which may be accessed
by a group of concurrent transactions. The set of possiatestictions is denoted @5s an each transaction

t € T has a unique identifier. A transaction is a sequence of reddvaite operations over the database
items starting by &eginoperation and ending by@mmittedor abortednotification. The guarantees the
database fulfills concerning to the transaction executiergeouped in the so calle8iCID properties [2].
Throughout this paper, we consider tBaapshot Isolatiofil] level. Sl is obtained using a multiversion
concurrency control mechanism. When a transactien’ under this level reads an item, it sees the ver-
sion which was most recently committed at the titrstarted (notice that if modifies an item, it sees its
own most recent version). Thus, the transaction makes udeafommitted state of the database, called
snapshatwhen it started. When the transactiois finally committed and it updates the value of an item
x € I, anew version denoted, is installed on the database. New versions are visibleteratansactions

only when they are installed. In order to avdast updategl], the transaction will not be allowed to be
committed if it attempts to install a version of an itenwhen a new versiom;, has been installed while
was active. If that situation occurs the transaction wildberted. When a transaction is aborted, it has no
effect on the database nor in any other transaction.

For a committed transactigne T, the set of versions installed by it in the database is c#fetriteset
denotedws;. The writeset of an aborted transaction is also used in sarte pf the text. In that case,
thews; is interpreted as non-installed versions by the abortetstietion. The set of versions read by the
transaction from the snapshot associated to it at its begina itsreadset denoted-s;. The possible set
of versions forl andT is simply represented bly; thus, eachvs, andrs; are included in/.

In the next, we define the signature of the modiile B:

in(EDB) = {crash} U {commit(t,ws), apply(t,ws): t € T,ws € 2"}
out(EDB) = {begin(t), committed(t), aborted(t): t € T} U {deliverws(t,ws): t €
T,ws €2V}

The main actions of a transactienc 7' we are most concerned with abegin(t), committed(t) and
aborted(t). By means of the actiobegin(t) the module notifies the fact that a new transaction has been
initiated. The actionsommitted(t) andaborted(t) represent the final decision about such a transaction.
In this simple model, client interactions during the praggref the transaction execution are not considered.
We assume they appropriately work as long as the databaseézt; i.e., it has not crashed. To model the
possibility of a database failure, the module includes tipeif actioncrash.

This module is intended to work in collaboration with a reption protocol. At some point in the exe-
cution of a transaction € T, after its actiorbegin(t), the ED B informs about the writeset the transaction
is ready to install. This is done by the actideliverws(t, ws). Actually, you may consider this action
as a commit operation requested to the replication protdduk output action indicates to the replication
protocol that a decision about such a transaction has tolevad. The extended database guarantees the
transaction has no work left to be done; so it waits for the matrfor such a transaction. ThED B allows
only the replication protocol to request the commit of trensaction via the input actiatwmmit(t, ws).

A transaction following such a pattern of operation is ahléelocal transaction The transaction starts
under the control of the extended database; and it passestit®| of the transaction to the replication
protocol in order to terminate it.

When the replication protocol takes the decision that asaationt € 1" has to be committed, it re-
quires either the replication protocol produces the actionmit(t, ws) or the database applies the updates
of the transaction; i.e., its writeset. Thus, th® B provides as input action the actiapply(t, ws). The
extended database is responsible of programming suchsat®on in the underlaying database in a trans-
parent way to the replication protocol. A transaction faling such a pattern of operation is calleteanote
transaction The readset of a remote transaction is empty. In this chseyansaction is programmed by
the replication protocol in the extended database which ¢harge of terminating the transaction.

The properties of théZ DB module are introduced by presenting the properties of itabiers [17].
These properties are interpreted as assumptions in theibehiaRecall that each behavior bahs(EDB)
is a finite or infinite sequence of actions framts(EDB) of the signature off DB. A behavior§ €
behs(EDB) is denotedd = mma ... 7. ... and predicates in the assumptions make reference to this
notation. The basis of our database specification istiz@shotoncept. We must define which versions
comprise the snapshot of a behavior of #i® B module at some point of the execution. To do that, the
log of a finite behavior is firstly stated: it is the ordered seqeeof writesets of committed transactions.

Definition 1 (Log of ED B) Let 3 be a finite behavior o2 D B. For each prefix3(j) 1,0 < j < ||, the
log of 5(j) is defined as follows:

~log((j)) = empty iffj = 0
log(B(j)) =log(B(j — 1)) - (t,wsy) iff m; = committed(t) andj > 0
log(B(4)) = log(B(j — 1)) iff m; # committed(t) andj > 0.

18(4) is the prefix of lengthy of 3, i.e.,|3(5)| = j. Further notation about sequences is introduced in theviilig: 3|¢ is the
subsequence ¢ which includes only the actions af in 8. Finally, v < § indicates thaty is a prefix of 3 (v may be the empty
sequence).

The snapshot of a behavior 6D B at some point of the execution contains thest versiorof each
item until that point as it has been defined for conventionah & DBMS [1]. We consider that for each
itemxz € [there is an initial versiony as long as it has not been modified by a transaction. Thus, for a
finite prefix 3(y) of 8 and an item: € I, latestVer(z, 5(j)) is a¢ if x¢ € ws, and(t, ws:) € log(5(4))
beingt € T the latest transaction ifi(j) modifying the itemz; or 2y otherwise.

Definition 2 (Snapshot) Lef be a finite behavior oD B. For each prefix3(j), 0 < 5 < |5], the snapshot
of 3(j) is defined asSnapshot(8(j)) = U, 1latestVer(z, 5(5))}

In this paper, the setcts(M,t), for some modulé\/ defined in the paper, includes the actions from
acts(M) havingt € T as parameter. We writays; N wsy # 0 (or rs; Nwsy # 0) if they contain
some version for the same item. We also use the followingtshod predicate for a behavigr with
two transactiong’,t € T, and two indexes,j € Z*: conflict(t',t,4,5,0) = Fk: i < k < j: 7 =
committed (t') ANws; Nwsy # 0. The safety properties of the behaviorsiob B are presented in the next
assumption.

Assumption 1 For each behaviop; € behs(EDB):
1. (Execution Integrity)r; # crash = Vk: k < i: m, # crash

2. (Well-formed Transaction) For each transactior T the sequencg|acts(EDB,t) is a prefix of
at least one of the following sequences:

(@) begin(t) deliverws(t, wsy) commit(t, wsy) committed(t)

(b) begin(t) aborted(t)
(c) begin

(

(

((t, ws) aborted(t)
(d) begin((

(

(

)
t) deliverws
) t, ws) commit(t, ws) aborted(t)

t) deliverws
(e) apply(t,wst) begin(t) committed(t)
() apply(t,ws) begin(t) aborted(t)

3. (Snapshot Isolation) For each transactiv’ 1" such thatr; = begin(t) andw; = committed(t)
in 3
(@) rs¢ C Snapshot(5(1))
(b) —conflict(t',t,i,5,5) forallt’ e T

Assumption 1.1 (Execution Integrity) indicates that afteish the E'D B stops its activity. Assump-

tion 1.2 (Well-formed Transaction) indicates the corredtay of transaction actions in a behavior. This last
Assumption demands some additional constraints to thécegjgin protocol using thé DB in order to
build well-formed transactions in thE D B. In particular, an input actionrommit(t, ws) for transaction
t may be only possible afteteliverws(t,ws), this can never occur afteommitted(t) or aborted(t)
actions; moreover, it only happens once in a behavior. Reispedy, theapply(t, ws) input action only
occurs once and before its associated adiigrin(t) in a behavior. Assumption 1.2 also indicates that the
parameteivs in the actionsieliverws(t, ws), commit(t, ws), or apply(t, ws) is thews; of the transac-
tion ¢ if it is committed (sequences)or (€)). In other words, aftedeliverws(t, ws) or apply(t, ws) the
ws Will remain unchanged. In the case of an aborted transa¢siequencesc], (d) or (f)) we consider
ws; C ws but the obtained results are not affected by this fact, so iNealso considenws; = ws. Finally,
Assumption 1.3 (Snapshot Isolation) specifies the requéremevery committed transaction in a behavior
has to verify in order to reach the Sl level.
Notice that a replication protocol is only informed abou thritesets of transactions. So, it may only de-
duce the outcome of a transaction through the order of ingerits and their writesets it has been received.
Therefore, in order to complete the Assumption 1, it is intaptto attach the possible aborting causes for
the actionsiborted(t) in Assumption 1.2. This is done in the following remark.

Remark 1 (Abort Assumptions) Let € behs(EDB)

4

- There is no transaction unilateral abort.

- For a transactiornt € 7' such thatr; = begin(t) andm; = aborted(t), if it follows pattern (c), (d)
or (f) in Assumption 1.2 then there is a transacttore T' such thatcon flict(t',t, 1, j, 3).

- aborted(t) in the sequence (b) in Assumption 1.2 is possible by anyiabarause (e.g., a deadlock
resolution, timeout expiration).

From the previous remark, it is worth mentioning that a restodnsaction is not equivalent to a local
one. It will only abort if it is impossible to guarantee itglation level. Other possible causes of abortion
are filtered by the extended database. The conditions in Rehtaave an importantimpact in the practical
application of theE’ D B in real settings. However, we take into consideration thmmalitions as a first
approach to provide a complete specification. Actually,ilsintonsiderations can be found in several
replication protocols presented in the literature [18,8,%20, 5]. Until now, previous assumptions are only
related with safety properties. In the next assumption we gome simple liveness properties of i B.

Assumption 2 For each behaviop} € behs(EDB):
1. 7 = begin(t) = Ik: k > i: mp € {deliverws(t, ws), aborted(t), crash: ws € 2V}

2. m; = begin(t) A m; = deliverws(t, ws) A mp = committed(t') Nwsy Nws #OAi <k
AVrii<r<k:m #committed(t) = 3r: r > j: m, € {aborted(t), crash}

3. m = commit(t,ws) = Fk: k > i: m, € {committed(t), aborted(t), crash}
4. m; = apply(t,ws) = Ik: k > i: m, € {committed(t), aborted(t), crash}

We will informally depict this assumption in the absence afures. Assumption 2.1 (only for local
transactions) states that if a transaction is not aborteélivers its writeset. Assumption 2.2 indicates
that a transaction will be aborted if its isolation level i3t maintained. Assumption 2.3 states that after
commit(t,ws) the transaction terminates. Finally, Assumption 2.4 iatés that a remote transaction
terminates.

One can think that we demand artificial properties in 8 B. Actually, some current implementa-
tions of replication protocols use, and do need, these drttpnapabilities of databases. These features are
implemented in different ways over practical middlewarplieated database systems; e.g. either by re-
attempting aborted remote transactions [15] or by earlgct&in conflict with the help of DBMS facilities
as described in [18].

To end this section, we indicate that a read-only transada®es not conflict with any other transaction and
it receives the latest snapshot at is beginning. Thus, asagdransaction always terminates in a commit-
ted status if theZ D B does not crash. The execution of a read-only transactioorisidered transparent to
the replication protocol. In the rest, we assume that evansgction has a non empty writeset.

3 Replicated Database System: Correctness Criteria

In this section, we provide the correctness criteria forg@icated database system in which databases in
the system perform independently and execute transadtiodsr Sl. The replicated database system is
specified by means of a module denofef) BS. The main components of this module are depicted in
Figure 1.

As Figure 1 suggests, the replicated database system isitmgosition of an abstract replication pro-
tocol and a group of extended databases, one at each site disthibuted system. The finite set of site
identifiers is denoted a&. We assume that at mogtsites may fail by crash andv| > f. At each site
n € N there is an extended database module denbt®d,,. Each action in the signature &fD B,, is
also subscribed by. We consider the replicated database systéiulliseplicated the set of items of each
database is the same set forrakke IV, denoted. The set of transactions operating in the systeffi;iand
the set of possible versions for the itefhand transaction®'is V.

RDBS

RP
¥ Ay ¥
EDB,| [EDB,|---[EDB,

Figure 1: Replicated Database System

There is a mappingsite: T — N, which associates to each transactiorg 7', a unique site,
site(t) € N, in the system. Theite(¢) is called thedelegate sit®f the transaction. Itis the site where the
transaction starts the execution. The transaction is densil as local at that replica and remote at the rest
of sites.

We consider that the replication protocol is based ondigferred update techniqu#9]. In this tech-
nique, once th&Z D B,, completes the execution of a transaction, it submitsifiéverws,, (t, ws) to the
protocol in order it to take the decision of commit the trastgan and to apply the transaction in the rest of
sites. We consider that the replication protocol does nplieiy abort the transaction if it can not provide
the commit for it (in fact we have not model the actidrt(¢) in the ED B). The protocol simply deduces
the transaction will be aborted.

The replication protocol is specified by a module, denoted&k & The main goal of the replication
protocol is to guarantee the correctness criteria in thelevkgstem. We only consider its signature because
the properties of its behaviors will be abstracted in theexiness criteria. The signature BP is:

in(RP) = Upen (out(EDBy,) U{crash,})
out(RP) = Upen {commit,(t,ws), apply,(t,ws): n € N,t € T,ws € 2V}

The moduleRDBS is obtained as a result of the module composition operatlgi: [RDBS =
RP x (N,eny EDB,). This module is well defined, since the collection of signe$wf the component
modules is strongly compatible [17]. Thus, the signatur&6XB.S is:

in(RDBS) = Upen{crashy}
out(RDBS) = (Upen out(EDBy,)) U out(RP)

In the following, we present and explain the correctneseiga for the replicated database system.
Let 5 be a behavior oRDBS. We use the predicatecal(t,n, 5) = begin,(t) < Blacts(EDB,,,t) to
indicate that a transactiagne T has started in the site € IV as a local transaction in the behavibrThe
correctness criteria are indicated in the following axiénfor every behavio$ € behs(RDBS):

1. Well-formedness Conditions
(@) B|EDB, € behs(EDB,,)
(b) local(t,n,B) A local(t,n',3) = n =n' = site(t)
(€) mi = apply,(t,ws) =Fk: k < i: mp, = deliverwsgiie(r) (t, ws) An # site(t)

2. Conflict Serializable

(@) m; € {apply,(t, ws), commit, (t,ws)} Amj = apply,(t',ws') N i <j AN wsNws #0 =
Jk:i <k <j:my € {committed,(t), aborted, (t)}

(b) m € {applyn(t, ws), commit, (t,ws)} Amj, = begin,(t') A wj, = commit,(t',ws") Ni <
Jo AN wsNws' #£0 = Jk:i <k < ji: m € {committed,(t), aborted, (t)}

2Free variables in the expressions are universally quaahiifi¢heir domains for the scope of the entire formulas

3. Uniform Prefix Order Database Consisten&or every finite prefix3’ of j3:
log(B'|EDB,,) < log(#'|EDB,,) or vice versa
4. Uniform Decision

() m; = committed,(t) = Vn' € N: (3k: 7 € {commit, (t,ws:), applyn (t,ws;), crashy }
(b) m; = abortedgte(s)(t) = (Bl{applyn(t,ws): n € N,ws € 2V} = empty)

5. Local Transaction Progress

7 = deliverwsge) (t, ws) = Ik: k > i: mp, € {commitgper)(t, ws), crashger)
V g € {commit ey (t', ws'), applysiser) (t', ws') - ws Nws” # 0}

Criterion 1.(a) states that every behavior of tR& BS has to respect the behavior of eaklD B,,
module. The basic consequences of this fact are that ea@vibelof a £ D B,, module verifies the S
level, it is well-formed, and it satisfies every progresspady given in Assumption 2. Criterion 1.(b)
indicates that the first event of a transaction 7" in the system may only bieegin,;.(+)(t) at its delegate
site; ¢ is local at that replica and remote otherwise. Criterior)lasserts that a remote transaction may
appear in the system as consequence of a local transaciithnthe same writeset. This criterion avoids
spontaneous creation of remote transactions in the sygtéthese previous criteria are grouped and form
what we have denoted as Well-formedness Conditions. @nit& (Conflict Serializable) ensures that the
replication protocol does not apply a remote transactionraquests the commit of a local transaction
if there is a previous unresolved conflicting transactiomisTcriterion guarantees that transactions with
a non-empty intersection of their writesets are serializ€titerion 3 (Uniform Prefix Database Order
Consistency) imposes on the system to build the same sngpashevery database; actually, it obliges
committed transactions to follow the same commit orderingwvery site (not only the conflictive ones).
In addition, every remote transaction of the same locals@ation installs exactly the same writeset; i.e,
the local transaction writeset. Notice that if a databads, fthis criterion ensures that the last installed
snapshot is also a valid snapshot for the rest of the coritect sThe Criterion 4 (Uniform Decision) is
split into two kind of transactions: committed and aborteé® Criterion 4.(a) states that if a transaction
is committed at one site (correct or faulty) then the prot@s@ntually applies or requests the commit of
the same transaction in every correct site; and Criteridin) 4tates that if a transaction is aborted at one
site (correct or faulty) then it is only aborted in the delegsite and no one of its remote transactions will
be programmed in the system. To conclude, Criterion 5 (Ldcahsaction Progress) indicates that if the
replica is correct, then for each of its local associateddaations that requests the commit (via action
deliverws(t, ws)), the replication protocol either requests the commit anks it will be aborted.

4 Justification

The previous correctness criteria specify, very precidbly requirements a replicated database system has
to verify. The best way to justify that they are adequate igrtave that they imply an equivalent behavior
of a one-copy database system.

The most straightforward way to do that, with the I/O AutooreModel, is to prove thatehs(RDBS) C
behs(DB) for some single database modudd3. Unfortunately, due to several reasons, such as the possi-
bility of crash,, events, the lazy nature of remote transactions thraugiy., (¢, ws) events, and the fact
that each D B,, behaves independently of each other, it is non-trivial td &int a singleD B with the same
signature ofRD BSS. This consideration involves an indirect way to provide tine-copy equivalence.

Other reasonable question is whether the replicated degaysstem working with SI databases will
achieve the same isolation level for the transactions érean it. In fact, we do not enforce the system to
work in a pure synchronized manner and it is possible to haweeréplicas with different snapshots at the
same time (see Criterion 3). This means that a transactigrotoi@in in its delegate site a snapshot which
is an older snapshot in anothdéaster replica. A generalization of Sl to include this possilyilibf using
older snapshots was introduced in [7] under the concept obE@&dized Snapshot Isolation (GSI).

Consider an ideal database module, dend¥gt| such thabut(DB) = {begin(t), committed(t): t €

T}, andin(DB) = (J; in which every scheduled transaction is committed. Thébisa transaction € T
and behavios € behs(DB), if m; = begin(t) in § then there is a; = committed(t) with ¢ < j. We
assume that every committed transaction follows the G®ll I&herefore, for each transactior 7' such
thatm, = begin(t) andr; = committed(t) in 3, there exists an indeX < s < 4 such that the two next
conditions hold:

1. rs; C Snapshot(B(s))
2. —conflict(t',t,s,j,0) forallt’ € T

Notice that a transactianunder GSI can use an older snapsHiot(s < ¢), but it can be committed as
its updates are still valid from that snapshot (recall trst-lgpdates phenomenon [1]). In GSI, if conditions
(1) and (2) are valid for every transaction whee= ¢, then the Sl definition is obtained. In the rest of this
section, we give the way to extract from an arbitrary behawfaR D BS an equivalent one-copy behavior
of this GSIDB. In the enclosed Appendix, the proofs of the claims doneimdaction can be found.

Let 3 be a behavior ok DBS. Firstly, we study the performance of a transactian 7' scheduled in the
system. Recall that, by Criterion 1.(b), the first event abasaction i$egin .. (t) in 3. Therefore, we
firstly examine the subsequenge = [[{beging;ic()(t), aborted, (t), committed, (t): n € N} where

three different cases may arise:

Bt = begingie()(t) and actiorcrash,e(y) is givening

Bt = begingite()(t) - abortedgise) (t)

Bt = beginise(r)(t) - Ve, bEING7., @ proper prefix otommitted,, (t) ... committed,, . (t)
with (n1,...,n|y|) @ permutation of the site identifiers.

This result means that a transaction terminates in the stanhes st every correct replica. In fact, the repli-
cation protocol will request aapply, (¢, ws) or commit, (t,ws) only if it is assured that the transaction
is able to become committed. Notice that the case= beging:.(+)(t) is only possible if there is an
eventcrashger) in 3. However, the casg; = beging()(t) - 7., does not exclude the replica from
crashing too. If a transaction is aborted, it will have naeeffin the replicated system (by previous result
and Criterion 1.(a)). Thus, we will only consider those coitbeal transactions appearing ih We say
that atransactiont € T is committed in3, if 8; includes an actionommitted,, (t) for some siten € N.
In the previous result, the eveedmmitted,,,) (t) indicates that the site; (¢) is the first one installing
the writesetws; of the transaction. Every committed transaction at every replica has ingale same
writeset due to Criterion 1.(a) and Criterion 1.(c). In fatiis result is consistent with Criterion 3. Thus,
the rest of committed events for a transaction are still sgagy to maintain the consistency of the database
replicas; however, (t) is the first replica in the whole system in which the new snapghavailable.
Therefore, we will study the properties of the following selquence.
Let us denote aBirst Committed /'C) the set of actiongbegin ize(+ (t), committed,,) (t): t is a com-
mitted transaction irg}. For each behavigs € behs(RDBS), we define the sequengec = 3|FC. In
this ideal sequence, we assign to each transattiasits readset the one obtained from its delegate replica
(i.e.,rsy C Snapshot(B|ED By (1)) Wherem; = begingiier) in B|EDBgie(1)); and, as its writeset
the value ofws; at the time it committed.

This last sequence has a nice property which statedahét| EDB,,) < log(8r¢) foralln € N.
Therefore 5r¢ installs the same snapshots as in the replicated system.
In the replicated system, each transaction can be subniittedy replica (actuallysite(t) is an arbitrary
mapping) every pattern of failures is possible except fen#striction N| > f, and eactE' D B,, performs
in the same way. In additiom, (¢) is some non faulty site. Thus, for eaghe behs(RDBS), there is
some equivalent’ € behs(RDBS) such that each; (¢) is different ton (¢).

We say that two behavioy 5’ of RDBS are equivalent = 3’ if the following conditions hold:
- t is committed in3 < t is committed in3’. For each committed transaction
-rsiinB e rs in
-wsgin B wsgin B
- begingite(r) (t) committed,,, (1) (t) X By & begingie(r) (t) committed,,) (t) < By

For each < behs(RDBS) we defines’|FC” such that3 = ' and FC' = {begingise(r)(t),
committed, (t): t is a committed transaction iBf andn/ (t) = site(t)}.

Finally, 3, ¢ is obtained fronp’| FC’ by renaming each actidmgin ;.. (t) asbegin(t) andcommittedg;e(s)(t)
ascommitted(t). The sequencg, ¢ is the one-copy version @f. In §1¢, the readset ofis rs; of t in §

and the writeset of is ws; of ¢ in 5.

We can prove thatc verifies that for each transactioane T' such thatr; = begin(t) and; =
committed(t) in B¢, there exits an indeX < s < i such that the two next conditions hold: 1.
rs; C Snapshot(Bic(s)) and 2.~conflict(t',t, s, j, f1c) forall t’ € T.

In conclusion, for each behavigt € RDBS there is a one-copy versiofi,c such thatg,c €
behs(DB). In other words, an external observer that collects the fiegfin event and the first commit
event for every committed transaction (whilst discardihg &borted ones) in the system will not distin-
guish the execution of the replicated database system fram@erived from a one-copy database system.

5 Discussion

Most of the literature about database replication intredua given replication protocol and then it is
discussed or proved its correctness [5, 12, 15, 8, 20]. Hewévere has been little (or none) discussion in
the literature about setting up a general correctnesgieriteat these replication protocols must verify [2,
22]. In the same way, most of these replication protocol psas claim that they can afford a crash
failure scenario (or a crash-recovery one) by simply fodifag transactions to another available replica.
Nevertheless, it has never been formally shown, up to ouwledge, neither their correct behavior under
this failure scenario nor which additional correctnestecia have to be established. We have tried to unify
and propose quite general correctness criteria for rejgiicdatabase systems in a crash failure scenario.
The correctness criteria proposed in this work are suitabkereplicated database system where database
replicas are Sl and the replication protocol follows theediefd update technique. In the following, we try
to thoroughly discuss different issues that can remainaar@bout them. Besides, we cover some aspects
about these criteria that can lead to optimizations or tiana of them; actually, they can be considered in
real implementations of a replicated database system.

Let us start with the&onflict Serializableorrectness criterion (Criterion 2). Under conventiondil$,
conflicting update transactions (i.e. givanandt, with ws; Nwss # @) must be serialized and, hence,
it does make sense to include this fact in this correctndterion for a replicated database system. Of
course, this criterion does not say anything about the drderhich non-conflicting update transactions
should be applied and, thus, it is perfectly possible thaivargreplication protocol permits them to be
executed and committed in any order at different replic&$. [1

Nevertheless, we have restricted their application in ot@anpose a unique commit ordering through-
out all replicas (Criterion 3Jniform Prefix Order Database Consistefiend obtain the same global snap-
shots at all replicas. This does not imply that transactesescommitted in a synchronous way at all repli-
cas. Some replicas may run faster than others and transaekecuted on faster ones will get more recent
snapshots than others executed at slower ones; thoughlamdlations will read from a global consistent
snapshot. Thanks to this last criterion committed transastobtain GSI [7, 8]. However, we can weaken
this criterion and allow non-conflicting update transaatido be applied in any order [15]. The main ad-
vantage of this consists in increasing the number of coeatiapplications of writesets. However, there
exists a trade-off for this last feature: a replication poutl cannot guarantee a global consistent snapshot.
Therefore, transactions should not be started as long as déine concurrent applications of writesets. The
beginning of a transaction should be delayed until a giveteset (i.e. known by all replicas) is applied;
the simplest scenario consists of two conflicting writesleéd must always be sequentially applied. The
best approach will depend on the kind of application considé the system. On the other hand, if Sl is
globally desired, then the delegate replica of a transactiast delay the start of it until the latest snapshot
is applied. Both approaches (obtaining Sl as well as coratiapplication of writesets) imply a potential
blocking of the beginning of a read-only transaction. Thistfgoes against the basic non-blocking nature
for such transactions executed under Sl [1] or GSI [8] ang e not transparently executed from the
protocol’s point of view anymore.

Thanks to Criterion 3, the sets of committed transactioragtpair of replicas, either one constitutes
the prefix of the other or vice versa, even if one of the reglitcas crashed. This is particularly interesting

in a crash-recovery failure scenario, since the recovegyfafled replica consists in transferring the set of
missed transactions starting from the end of its prefix atcdinereplica [14].

We have proposed théniform Decisioncriterion to set up the outcome (either committed or abgrted
of a transaction in the database replicated system. Oneeafntiin features of committed transactions
in the deferred update technique is that if a transactioroiernitted at a replica, it will eventually get
committed at the rest of replicas unless they crash (Coitefi(a)). Another particular characteristic of the
deferred update technique refers to the aborted transeadticthe system. They will always get aborted at
its delegate replica and will not be applied to the rest oficag (Criterion 4.(b)), what is a great advantage.
An example of this is the family of certification based regtion protocols for Sl replicas [8, 15, 18].

According to our specification, the replication protocollwiever request the commit on behalf of
a transaction which will be aborted at the local databasee LTital Transaction Progres€Criterion 5)
ensures that this transaction is going to be aborted as a&equoasce of another previously committed
transaction. Usually, real implementations do explicélyort these transactions (by means of an action
abort(t)) to release database resources as soon as possible [18H&Ee replication protocols must be
pretty sure that the explicit abortion of a transaction ie thuthe fact that it will eventually get aborted. We
have not considered these kind of actions because they aneeded in our model proposal.

Finally, we have introduced an extended database absinadthis abstraction includes all functional-
ities needed by replication protocols [15, 3, 18, 20, 21]panticular, it provides an abstraction of writeset
extraction [15, 3, 20, 21] and its successful applicatio®y [i5, 21] (with the implicit abort of local con-
flicting transactions). This last feature has been thorbugtudied in real implementations either with
time outs and re-attempt mechanisms [15], conflict detaatiechanisms [18] or aborting transactions at
the time they request the commit [15]. Moreover, this alusiva hides the details of the particular im-
plementation of the SI DBMS committing rule: eitHest-committer-win®r first-updater-winsule [1, 9]
(though most commercial implementations follow the forjnefhis abstraction is a good enough one,
since it reflects the common features of different real imm@atations. In other words, it does reflect the
functionality of them while hiding all implementation désffollowed in different approaches.

Our work keeps certain similarities with [22] where the dede update technique with serializable
databases is formally studied using TLA+ [13]. As opposeaues, they only cope with serializable
databases and do not cover any kind of failure scenario. Asdwvork, it will be interesting to extend
these correctness criteria in different ways: to the crasiovery model; to other isolation levels; and,
formalize some replication protocols as I/O automata amifyheir correctness.

References

[1] H. Berenson, P.A. Bernstein, J. Gray, J. Melton, E.J. @Nand P.E. O’Neil. A critique of ANSI SQL isolation leveldn
SIGMOD, 1995.

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodma®oncurrency Control and Recovery in Database Systetuglison Wesley,
1987.

[3] N. Carvalho, A. Correia Jr., J. Pereira, L. Rodrigues,(Rveira, and S. Guedes. On the use of a reflective architedtu
augment database management systatd€.S 13(8):1110-1135, 2007.

[4] G. ChockKler, |. Keidar, and R. Vitenberg. Group commuaticn specifications: a comprehensive studM Comput. Sury.
33(4):427-469, 2001.

[5] K. Daudjee and K. Salem. Lazy database replication witipshot isolation. IWVLDB, 2006.

[6] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Umidinrability with transaction ordering for high-perforn@nscalable
database replication. INCM EurosysLeuven, Belgium, April 2006.

[7] S. Elnikety, F. Pedone, and W. Zwaenopoel. Generalizexpshot isolation and a prefix-consistent implementatiBRFL-
Tech-Rep 1C/2004/21, March 2004.

[8] S. Elnikety, F. Pedone, and W. Zwaenopoel. Databasécegjpin using generalized snapshot isolation. SRDS IEEE-CS
Press, 2005.

[9] A. Fekete, D. Liarokapis, E. O'Neil, P. O'Neil, and D. Stren. Making snapshot isolation serializabféCM Trans. Database
Syst, 30(2):492-528, 2005.

[10] J.R.Juarez, J.E. Armendariz, J.R. Gonzalez de Mén#.D. Mufioz, and J.R. Garitagoitia. A weak voting alaase replication
protocol providing different isolation levels. NOTERE'07 2007.

[11] J.R.Juérez, J.E. Armendariz, F.D. Mufioz, J.R. Giemde Mendivil, and J.R. Garitagoitia. A deterministitabase replication
protocol where multicast writesets never get abortedTivl Workshops (3)olume 4805 o£NCS pages 1-2. Springer, 2007.

10

(12]

[13]

[14]
(18]

[16]
[17]
(18]

[29]

[20]
[21]

[22]

B. Kemme and G. Alonso. A new approach to developing amglémenting eager database replication protocd@GM Trans.
Database Syst25(3):333-379, 2000.

L. Lamport. Specifying Systems: The TLA+ Language and Tools for Harehsad Software EngineersAddison Wesley
Professional, 2002.

W. Liang and B. Kemme. Online recovery in cluster dat#sa INEDBT. ACM Press, 2008. Accepted for publication.

Y. Lin, B. Kemme, M. Patifio-Martinez, and R. Jiméreeris. Middleware based data replication providing shapisolation.
In SIGMOD, 2005.

N.A. Lynch. Distributed SystemsMorgan Kaufmann Publishers, 1996.
N.A. Lynch and M.R. Tuttle. An introduction to input/tput automataCWI-Quarterly 2(3):219-246, 1989.

F.D. Mufloz, J. Pla, M.I. Ruiz, L. Irin, H. Decker, J./&mendariz, and J.R. Gonzalez de Mendivil. Managingdeetion
conflicts in middleware-based database replication @chites. I'SRDSIEEE-CS Press, 2006.

F. Pedone. The database state machine and group communication isJlesé¢ N. 2090) PhD thesis, EPFL, Lausanne,
Switzerland, 1999.

C. Plattner, G. Alonso, and M. Tamé&zsu. Extending DBMSs with satellite databasEse VLDB Journal2006.

J. Salas, R. Jiménez-Peris, M. Patifio-Martined, BnKemme. Lightweight reflection for middleware-basedatiase replica-
tion. In SRDSIEEE-CS Press, 2006.

R. Schmidt and F. Pedone. A formal analysis of the deteupdate technique. DISC, volume 4731 o£NCS pages 499-500.
Springer, 2007.

11

A Appendix

Lemma 1 Let 3 be a behavior okRDBS. It holds that
m; € {commit,, (t, ws), apply, (t, ws)} = Fk: k > i: m, € {committed,(t), crashy,}

Proof: The property is referred to the site By Criterion 1.(a) (Well-Formedness ConditionS)E D B,, €
behs(EDB,,). If we prove the property fog|EDB,, then it is also proved fof. In the following, the
indexes are referred 9 ED B,,. Let; in 5|EDB,, and considerthatk: k > i: m, & {committed,(t),
crashy,}. By Assumption 3 (and 4), there is, = aborted, (t) with i < i2. By Remark 1, there is
a transactiont’ € T, such thatcon flict(t',t,i1,i2, 3|EDB,,) wherer;, = begin, (t) with i; < is
(by Assumption 1.2). Therefore, there is an actigh = committed,(t') such that, < j» < i, and
wsy Nws # (). By Assumption 1.2 there exists € {commit, (t', wsy), apply,(t', wsy)} with j < jo.
Any possible case;, < j or j < 4, for the actionsr; and; yields to a contradiction with Criterion 2
(Conflict Serializable). O

Property 1 Lets be abehavioroRDBS. For each transaction € T', the first eventif|acts(RDBS, t)
is begin,ite(+) (t) if the transaction has been programmed or none, otherwise.

Proof: If Blacts(RDBS,t) is non empty there will be some action with parameter 3; thus, trans-
actiont has been programmed. Letthe first event in3|acts(RDBS,t) such thatr # beging;ie)(t).

It cannot bebegin,, (t) with site(t) # n by the Criterion 1.(b) (Well-Formedness Conditions). Foy a
other action withsite(t) # n, itis very simple to show thaiegin..) (t) precedes it by Criterion 1.(a),
Assumption 1.2 and Criterion 1.(c). Again, by Criteriona),(Assumption 1.2, any actionin site(t) with
parameter is preceded b¥yegin,;.(+)(t). The property holds. O

For each transaction € T and behavior3 € behs(RDBS), we define the sequengs = |
{begingite(r)(t), aborted, (t), committed, (t): n € N}.

Theorem 1 Let3 be a behavior oRDBS. For each transaction € 7', the sequencg; is at most one of
the following sequences:

1. G; = empty
2. B¢ = beginger) () and actioncrashe) is givening
3. B¢ = begingie(r) (t) - abortedgipe(r (t)

4. Br = begingiie(r)(t) - Ve, DEING7Y., @ proper prefix okommitted,, (t) ... committed,, , (t) with
(n1,...,nn) @ permutation of the site identifiers.

Proof:

(2). If 8, is empty, then by Property 1 the transaction has not beerrgmoged in the system.

(2). Consider that there is no actienash,.(;) in 4 and the transaction has been programmed. Thus,
by Property 1,3; is some sequence starting wWitbgin ise ;) (t). Letm; = begingiew) (t) in §. By Cri-
terion 1.(a) (Well-Formedness Conditions) and Assump8dn there ist;, € {deliverwsge()(t, ws),
abortedger) ()} in B with i < ji. If m;, = abortedg;.1)(t) then a contradiction is obtained. Thus,
75, = deliverwsge) (t,ws). By Criterion 5 (Local Transaction Progress), there exists the action
Tjy = COMMitgiper) (t, ws) OF w5, € {commitgie) (t', ws"), applygiey (', ws'): ws Nws’ # O} with

j1 < j2. Inthe former case, by Lemma 1 thererig = committed;c(+)(t) with j2 < j3. A contradic-
tion is obtained. In the second case, by Lemma 1 therg,is= committedg;er) (') With jo < j3 and
wsNwsy # O (by Assumption 1.2ys” = wsy). Thereforerr;, w;, andr;, happenirs. By Criterion 1.(a),
the same actions are i§ D B,, in the same order. By Assumption 2.2, thererjs = aborted;se(s)(t).

A contradiction is obtained. Therefor@, = begin.()(t) only if there is the actiorrashse () in 5.
After crash,;e(¢) NO other action happens in that site by Assumption 2.1.

(3). Letm; = begingie)(t) in 3. By the previous proof (2), ikite(t) is correct (nocrashgiser) i
p) thenw; € {committedg;ieq(t), abortedgy e (t)} wWith i < j. If m; = abortedg;.)(t) then,

12

by Criterion 1.(a) and Assumption 1.2, there will be no othetion with parametet in the site(t)
after aborted,;c(+)(t). If there is any other action with parametein other siten # site(t), then
by Criterion 1.(b) (and Property 1) the transaction is resmiot such a site. By Assumption 1.2, any
remote transaction fot starts with the actiormpply, (t,ws). By Criterion 4.(b) (Uniform Decision),
Bl{apply.(t,ws): n € N,ws € 2V} = empty; thereforep; = beginite(t)(t) - abortedgie(r) (t) holds.

If site(t) is faulty eitherm; = abortedgic () (t) beforecrash,;.+y and the property holds, or there is
notabortedgc(r) (t). In this last case either (2), withy = begin;c(+)(t), or the sequence in (4) will be
obtained.

(4). Letm; = beginger)(t) in 3. By the proof (2), ifsite(t) is correct (nocrashier) in) then
mj € {committedgie(r)(t), abortedgiie(r)(t)}. Letm; = committedg;e()(t) in 3. By Criterion 4.(a)
(Uniform Decision): Vn € N: (3k: m, € {commit,(t,ws:), applys(t, ws:), crashy,}). By Crite-
rion 1.(a) and Assumption 1.2, = commit .1 (t, ws;) With i < j; < j occursing. Ast is local only
in site(t), thenw;, is unique ing. Then\Yn € N: n # site(t): (3k: m; € {applyn(t, ws:), crash,}).
Notice, that each possibleply., (¢, ws;) occurs afterleliverwsc(+) (t, ws;) as Criterion 1.(c) indicates,
and by Assumption 1.2, also occurs aftegin,;.()(t). Letm, = apply(t, ws:) in 5. By Lemma 1, there
is mk, € {committed,(t),crashy} with k < ki. If mp, = committed, (t), theni < k;. There is no
other restriction in the potential ordering and numbet@fimitted, (t). If crash,, happens, by Assump-
tion 1.1 no event is provided by the site Therefore3; = begingiie(r)(t) - v, being~., a proper prefix
of committed,, (t) ...committedy,, , (t) with (n1,...,ny|) @ permutation of the site identifiers. In the
considered casg., includescommitted;e(s)(t).

If site(t) is faulty (crashgiie(r) in B) eitherr; = committedgier) (t) in 3 beforecrash,;e+y and the
same result; = begingite(r)(t) - e, is obtained, or it does not occur th However, by Criterion 1.(c)
may ber;, = apply,(t,ws) andr;, = deliverwsg.c (t,ws) with i < iy < iz in 3. If there is not ac-
tion crash,, in g (this is possible by the fact thav| > f) then, by Lemma 1x;, = committed,(t)

(¢ < i4) and by Criterion 4.(a):vn' € N: (3k: m;, € {applyn (t,wst),crashy, }). In this case,
Bt = begingire(t) - Ve, bUt committedg;se(r) IS NOtiN~y,.,. Finally, if no appy,(t,ws) occurs being
n acorrect site, thef; = begingie(r) (1) O

We say that @&ransactiont € T' is committed irg if 5, includes an actionommitted,,(t) for some site
n € N. In 3, the first site where the transactiois committed is denoted as (¢). Let F'C (that stands for
First Committed) be the set of actioflgin c(+)(t), committed,,,) (t): t is a committed transaction in
B}. For each behaviof € behs(RDBS), we define the sequengt-c = G|FC. In this ideal se-
guence, we assign to each transactioas its readset the one obtained from its delegate replieg (i.
rsy © Snapshot(B|ED Bgie) (i) Wherer; = begingiey In B|EDBgie(1)); and, as its writeset the
value ofws; at the time it committed, respectively.

Lemma 2 Let 3 be a behavior oRDBS. It holds thatlog(5|EDB,,) = log(Brc), foralln € N.

Proof: Let 3(j) be a finite prefix of3 for some index € Z*+. By induction overj > 0.

Basis j = 0. 5(0)|EDB,, = (0)|F'C = empty, by Definition 1/og(3(0)|EDB,,) = log(8(0)|FC) =
empty.

Hypothesis;j > 0 andlog(8(j)|EDB,,) = log(8(j)|FC).

Induction StepWe only consider the events.; affecting the property.

- i1 = committed,, +)(t) andni(t) = n. By Hypothesisjog(5(j)|EDB,) = log(8(j)|FC). The
only possible case iog(3(j)|EDBy,) = log(8(j)|FC).

Considetog(8(j)|EDBy,) < log(8(4)|FC). Thereis at least one different elemétit ws;) in log(8(5)|FC).
Thus, 3(j) includesrm;: = committed,, +(t') with j* < j. This action is also in3(j)|F'C but not

in 8(4)|EDB,,. By Criterion 3 (Uniform Prefix Order Database Consistendigre is some replica
(n1(t") = n') n’ # n such thatog(3(3')|EDB,,) < log(8(j')|EDB,). Then,log(8(j)|EDB,) <
log(B(j)|EDB,). By Definition 1, as3(j + 1)|EDB,, = 3(j)|EDB,, - mj11 and3(j + 1)|EDB,, =
B(5)|EDB, thenlog(3(j + 1)|EDBy) # log(5(j + 1)|EDB,) that leads to a contradiction with Cri-
terion 3. As a conclusioripg(8(j)|EDBy,) = log(8(3)|FC). As3(j +1)|EDB,, = 8(j)|EDB,, - Tj+1

13

andB(j + 1)|FC = 8(j)|FC - mj41. By Definition 1,log(3(j + 1)|EDB,) = log(3(j + 1)|FC) holds.

- i1 = committed,, +)(t) andny(t) # n. By Hypothesis/og(5(j)|EDB,) =< log(8(j)|FC). As
B(j +1)|EDB, = B(j)|EDB, andj(j + 1)|FC = 3(j)|FC - wj+1, then by Definition 1/og(5(j +
1)|EDB,,) < log(3(j + 1)|FC) holds.

- i1 = committed,, (t) andn, = n, beingn, # ni(t). By Theorem 1, there exit§ < j such
thatm;, = committed,,)(t) in B(j)|FC. This action is ing(j)|FC but not in3(j)|EDB,, (Crite-
rion 1.(a), Assumption 1.2). By induction Hypothesisg(5(j')|EDB,,) < log(8(;")|FC) and also
log(B(j)|EDB,) < log(B(j)|FC). Thus, as3(j + 1)|EDB,, = 5(j)|EDB,, - mj+1 andp(j + 1)|FC =
B(4)|FC, by Definition 1log(8(j + 1)|EDB,,) = log(3(j + 1)|F'C).

- Tjp1 = committed,, (t) andny # n, beingn # n4(t). In this casef(j + 1)|EDB,, = 5(j)|EDB,
andg(j + 1)|FC = B(j)|FC. Thus, triviallylog(8(j + 1)|[EDB,,) =< log(8(j + 1)|FC) by induction
Hypothesis.

Thus, in the limitj — oo: log(G|EDB,,) =< log(5|FC) holds. O

We say that two behavioys 5’ of RDBS are equivalent = g’ if the following conditions hold:
- t is committed inG < t is committed in3’. For each committed transaction
-rsgin B rsin g
-wsgin & wsgin B
- begingite(r) (t)committed,, 1) (t) 2 Bt & begingise(r) (t)committed,, 1) (t) = B,

In the replicated system, each transaction can be subntittedy replica (actuallysite(t) is an arbi-
trary mapping); every pattern of failures is possible exdepthe restriction N| > f, and eachEDB,,
behaves in the same way, though independent of each ottreddItion, Theorem 1 indicates that(t) is
some non faulty site. Thus, for eaghe behs(RDBS) there is somé’ € behs(RDBS) such thap = '
being each, (¢) different ton) (¢). For each3 € behs(RDBS) we defines’|FC’ such that3 = 5’ and
FC" = {beginite(r)(t), committed,) (t): t is a committed transaction jif andn/ (t) = site(t)}.

Finally, 3, ¢ is obtained frons’| FC’ by renaming each actidmgin ;. (s (t) asbegin(t) andcommittedg;se(s)(t)
ascommitted(t). The sequencg, ¢ is the one-copy version @f. In 5,¢, the readset of is rs; of t in 8
and the writeset of is ws; of t in S.

Theorem 2 Let 8 be a behavior oRDBS. (¢ verifies that for each transactione T such thatr; =
begin(t) andm; = committed(t) in B1c, there exits an indel < s < ¢ such that the two next conditions
hold:

1. rs; C Snapshot(Bic(s))
2. —conflict(t',t, s, j, fic) forall ' € T

Proof: Letm; = begin(t). It verifiesrs; C Snapshot(3'(i')|ED Bge(x)) by definition of 3, and the
given equivalencg = 3’ beingm; = beginge(y) in (. By Lemma 2:log(3'|EDByite(r)) = log(Bic)-
Therefore, by Definition 1 (Log) and Definition 2 (Snapshittiollows that there is some indéx< s < 4,
such thatSnapshot(3'(i')| ED Byjie(r)) = Snapshot(B1c(s)). The condition (1) holds for every

In order to prove the condition (2) we firstly prove the foliog: Consider there ig;, = committed(t')
suchthat < k < j andws; Nwsy # 0. Letmy = committediiey(t') andry = committedgipe(r)(t)

in 4. By Criterion 3:1og(3' (k') ED Byite(r)) < log(8'(K')|ED Byite(r)) andlog(B'(j')| EDByre(v)) <
log(B'(j')| EDBg;te(r)). This is becausey andr;: are the first committed actions in the system. There-
fore, the two previous conditions are only possible/ik ;' and(t’, ws;) is also inlog (8’ (j') | ED Bgte(r))
i.e.,committedg;e () (t') is beforecommittedie () (t) In B (5") | ED Bgjpe(r) - There existsr = committedgpe(r)(t')
in 4’ such thatt’ < k¥’ < j’. In addition, as3;¢ preserves the relative order of actionsdh i/ < k&’ <

4 holds. Then; < k' < k” < j'. In conclusion,f' (j')|EDBgery Will contain begine () (t),
committedgie) (t') and committedge(t) in such order withwsy N ws; # 0. By Criterion 1.(a),

14

B'|EDBgitery € behs(EDBge(1y), and by Assumption 1.3 every committed transactioitia(t) ver-
ifies the Snapshot Isolation level. A contradiction with flaet thatws; N wsy # @ In conclusion:
—conflict(t',t,1, 7, 01c) forall t’ € T.

If a transactiont verifies the condition (1) fog = i then by the previous proof it also verifies the condition
(2). Thus, we consider a transactibsuch that condition (1) is verified fa&r < s < 4. In this case, we
need to prove-conflict(t', t, s, j, B1c) for every transactior’. If condition (1) holds fol0 < s < 4, by
Definition 2, it must be a transactighin ,¢ such thatr, = committed(t’) with s < k < i < j and
rs¢ Nwsy # (. Thus, ing’ there are the actionsy: = committedieqy(t'), i = beginge)(t),
Ty = committedg;e) (t) such thatk’ < ' < j’. Again by Criterion 3:log(5'(k')|ED Byite(r)) <
10g(§3' (') ED Byie(yr)) andlog(B'(5')| ED Byise(ir)) < Log(B'(7')| ED Byise(s))- This is becausey. and
w; are the first committed actions in the system. Thereforagtlegiststy: = committedge () (t')
in B’ such that’ < k" < j'. However, theSnapshot(3'(i')|EDB;.()) does not contain the ver-
sion . produces. Thust’ < i < k" < j" holds. Asf'(j')|EDByie(ry Will contain begin e (t),
committedie) (t') andcommitted,;e(+)(t) in such order, then by By Criterion 1.(aJ;| ED Byre(r) €
behs(EDB,e1)), and by Assumption 1.3 every committed transactiowiite(t) verifies the Snapshot
Isolation level. In conclusionwsy Nws; = O and—conflict(t,t, s, 7, B1c). Any other transaction’ that
is committed afterr;, and beforer; falls betweeri’ and;’ in 5’ and also verifies:conflict(t”,t, s, j, B1c).
The Theorem holds. O

15

