
Correctness Criteria for Replicated Database Systems with

Snapshot Isolation Replicas
J.E. Armendáriz, J.R. Juárez, J.R. González de Mendı́vil

Universidad Pública de Navarra, Pamplona, Spain

{enrique.armendariz, jr.juarez, mendivil}@unavarra.es

Technical Report TR-ITI-ITE-08/03

J.
E

.A
rm

en
d

ár
iz

-́Iñ
ig

o
et

al
.:

C
o

rr
e

ct
n

e
ss

C
ri
te

ri
a

fo
r

R
e

p
lic

a
te

d
D

a
ta

b
a

se
S

ys
te

m
s

w
ith

S
n

a
p

sh
o

tI
so

la
tio

n
R

e
p

lic
a

s
T

R
-I

T
I-

IT
E

-0
8

/0
3

Correctness Criteria for Replicated Database Systems
with Snapshot Isolation Replicas

J.E. Armendáriz, J.R. Juárez, J.R. González de Mendı́vil

Universidad Pública de Navarra, Pamplona, Spain

Technical Report TR-ITI-ITE-08/03

e-mail:{enrique.armendariz, jr.juarez, mendivil}@unavarra.es

Abstract

Most replicated database systems where each replica uses a Snapshot Isolation (SI) DBMS implement
replication protocols based on the deferred update technique. It allows read-only transactions to be
locally executed at a single replica. Moreover, as read-only transactions are executed under SI they never
get blocked and, therefore, the system performance is increased whenever the majority of the workload
is of this type. In this work we present the correctness criteria which a replicated database system
with SI replicas must verify when deferred update protocolsare used in a crash failure scenario. We
have formalized them using the Input/Output Automaton Model. Our criteria proposal ensures that the
replicated database system behaves like a single copy database system where transactions see a weaker
form of SI, called Generalized-SI. This formal characterization allows us to study the pros and cons of the
deferred update technique and it serves as a milestone to prove the correctness of a replication protocol
in a rigorous way.

1 Introduction

Several database replication techniques allow read-only transactions to be executed locally at a single
replica without intervention of the replication protocol.These techniques are the preferred choice when
workloads are mainly composed of read-only transactions. Their performance is even more significant if the
local database management systems (DBMS) employed in the replicated system execute transactions under
the Snapshot Isolation (SI) level [1], since read-only transactions are never blocked by the DBMS. Recently,
a significant number of database replication protocols havebeen proposed assuming SI replicas [5, 6, 8, 15,
18, 20]. Primary copy protocols [5, 20] distribute read-only transactions among secondary replicas (which
are not allowed to perform updates) in order to improve the system performance, although they must
care about failures of the primary replica to keep the availability of the system. Centralized certification
protocols [6, 7] execute update transactions at any replicabut their commitment must be validated by
a central certifier site (i.e. no other concurrent certified transaction updated a data item written by the
incoming transaction). It is clear that the certifier replica is again a single point of failure. Thus, distributed
certification protocols [8, 15, 18] based on Atomic Broadcast [4] are proposed, since they can afford replica
failures. Each replica itself constitutes a certifier; however, they require that certified remote transactions
(a special kind of transaction containing only the updates of a given transaction) must be applied as fast
as possible so as to improve scalability. Weak voting protocols [10] have also been proposed in order
to combine the execution of transactions under different isolation levels. More recently, other protocols
which avoid the transmission of remote transactions that will finally be aborted in the replicated system
have been proposed as well [11]. All these protocols are based on the deferred update technique [19]. First
transactions perform their operations at a delegate replica and when they request the commit, some kind
of coordination with the rest of replicas is needed to globally commit the transaction. If the transaction is
finally committed, their updates must be applied in the rest of the replicas.

1

Most of these protocols are implemented considering that they only see a standard DBMS interface
(e.g. JDBC or ODBC) [8, 18, 15, 20, 3, 21]. For that reason, they require additional functions to be
implemented on top of DBMSs core, which make the deployment of a protocol easier [21, 3, 18, 15, 20];
mainly, functions which provide the collection of transaction updates and modifications to facilitate the
programming of remote transactions.

In spite of the different implementations and of the practical interest of these kind of protocols, we have
not found, up to our knowledge, any work which formally specifies the correctness criteria that database
replicated systems with SI replicas must fulfill. These criteria should be useful to guarantee the correctness
of the protocols and to analyze their advantages and limitations.

In this paper, we propose the usage of the Input/Output Automaton Model [17, 16] to provide the speci-
fication of a database replication system with SI replicas. The presented specification stresses the properties
which must fulfill the components and not their specific implementations. The replicated system is shown
as the composition of an abstract replication protocol and aset of databases with extended functionalities;
those ones that make easier the protocol implementation. The system explicitly considers the crash failure
model scenario. Actually, most of proposed protocols are designed to tolerate at least such failure scenario.
Correctness criteria require: (i) the local behavior of each database replica must be respected in the system
(Well-Formedness Conditions); (ii) conflicting transactions executed in the system must be sequentially
committed (Conflict Serializable); (iii) the same snapshots must be generated in the system and, hence,
transactions must be committed in the very same order at all replicas (Uniform Prefix Order Database
Consistency); (iv) the decision about a transaction is the same at all replicas(Uniform Decision); and, (v)
local progress of transactions must be preserved at correctreplicas (Local Transaction Progress).

As it will be shown later in this paper, these criteria allow to assure that transactions are executed in
the replicated system as if there was a single database whichwill execute transactions under a slightly
weaker isolation level than SI, known as Generalized-SI (GSI) [8]. Basically, the main difference between
these isolation levels stems from the snapshot gotten by transactions. Whilst SI gives the latest committed
snapshot, GSI may see any previous snapshot (including the latest one), respectively. In both cases, the
lost-updatesanomaly [1] is avoided. In this paper, we discuss some variations of the correctness criteria
which can be of interest while designing replication protocols.

As we have pointed out before, the Input/Output Automaton Model is going to be used to present the
components and the replicated system. For the sake of understanding, we refer the reader to the articles [17]
and [16] for a concrete introduction to that model. The notation we use is based on the one presented in [17].
The rest of the paper is organized as follows. Section 2 presents an extended database module which is
actually an abstraction but reflects some assumptions and features implemented in real systems [21, 3, 20,
18]. The correctness criteria for a replicated database system are given in Section 3. The justification of
all of them is given in Section 4 (and more formally in an additional Appendix). Finally, we present some
discussion about our correctness criteria proposal in Section 5.

2 Extended Database System

In this section, we introduce a specification of an extended database system by means of a schedule mod-
ule [17], denotedEDB. This module models the performance of a database followingthe SI level which
includes some facilities in order to simplify the control a replication protocol exercises over the database.
The database contains a set of uniquely identified database items (indicated asI) which may be accessed
by a group of concurrent transactions. The set of possible transactions is denoted asT , an each transaction
t ∈ T has a unique identifier. A transaction is a sequence of read and write operations over the database
items starting by abeginoperation and ending by acommittedor abortednotification. The guarantees the
database fulfills concerning to the transaction execution are grouped in the so calledACID properties [2].
Throughout this paper, we consider theSnapshot Isolation[1] level. SI is obtained using a multiversion
concurrency control mechanism. When a transactiont ∈ T under this level reads an item, it sees the ver-
sion which was most recently committed at the timet started (notice that ift modifies an item, it sees its
own most recent version). Thus, the transaction makes use ofthe committed state of the database, called
snapshot, when it started. When the transactiont is finally committed and it updates the value of an item
x ∈ I, a new version denotedxt, is installed on the database. New versions are visible to other transactions

2

only when they are installed. In order to avoidlost updates[1], the transaction will not be allowed to be
committed if it attempts to install a version of an itemx when a new versionxt′ has been installed whilet
was active. If that situation occurs the transaction will beaborted. When a transaction is aborted, it has no
effect on the database nor in any other transaction.

For a committed transactiont ∈ T , the set of versions installed by it in the database is calledits writeset,
denotedwst. The writeset of an aborted transaction is also used in some parts of the text. In that case,
thewst is interpreted as non-installed versions by the aborted transaction. The set of versions read by the
transaction from the snapshot associated to it at its beginning is its readset, denotedrst. The possible set
of versions forI andT is simply represented byV ; thus, eachwst andrst are included inV .

In the next, we define the signature of the moduleEDB:

in(EDB) = {crash}∪ {commit(t, ws), apply(t, ws) : t ∈ T, ws ∈ 2V }
out(EDB) = {begin(t), committed(t), aborted(t) : t ∈ T } ∪ {deliverws(t, ws) : t ∈
T, ws ∈ 2V }

The main actions of a transactiont ∈ T we are most concerned with arebegin(t), committed(t) and
aborted(t). By means of the actionbegin(t) the module notifies the fact that a new transaction has been
initiated. The actionscommitted(t) andaborted(t) represent the final decision about such a transaction.
In this simple model, client interactions during the progress of the transaction execution are not considered.
We assume they appropriately work as long as the database is correct; i.e., it has not crashed. To model the
possibility of a database failure, the module includes the input actioncrash.

This module is intended to work in collaboration with a replication protocol. At some point in the exe-
cution of a transactiont ∈ T , after its actionbegin(t), theEDB informs about the writeset the transaction
is ready to install. This is done by the actiondeliverws(t, ws). Actually, you may consider this action
as a commit operation requested to the replication protocol. This output action indicates to the replication
protocol that a decision about such a transaction has to be achieved. The extended database guarantees the
transaction has no work left to be done; so it waits for the commit for such a transaction. TheEDB allows
only the replication protocol to request the commit of the transaction via the input actioncommit(t, ws).
A transaction following such a pattern of operation is called a local transaction. The transaction starts
under the control of the extended database; and it passes thecontrol of the transaction to the replication
protocol in order to terminate it.

When the replication protocol takes the decision that a transactiont ∈ T has to be committed, it re-
quires either the replication protocol produces the actioncommit(t, ws) or the database applies the updates
of the transaction; i.e., its writeset. Thus, theEDB provides as input action the actionapply(t, ws). The
extended database is responsible of programming such a transaction in the underlaying database in a trans-
parent way to the replication protocol. A transaction following such a pattern of operation is called aremote
transaction. The readset of a remote transaction is empty. In this case, the transaction is programmed by
the replication protocol in the extended database which is in charge of terminating the transaction.

The properties of theEDB module are introduced by presenting the properties of its behaviors [17].
These properties are interpreted as assumptions in the behaviors. Recall that each behavior inbehs(EDB)
is a finite or infinite sequence of actions fromacts(EDB) of the signature ofEDB. A behaviorβ ∈
behs(EDB) is denotedβ = π1π2 . . . πr . . . and predicates in the assumptions make reference to this
notation. The basis of our database specification is thesnapshotconcept. We must define which versions
comprise the snapshot of a behavior of theEDB module at some point of the execution. To do that, the
log of a finite behavior is firstly stated: it is the ordered sequence of writesets of committed transactions.

Definition 1 (Log ofEDB) Let β be a finite behavior ofEDB. For each prefixβ(j) 1, 0 ≤ j ≤ |β|, the
log ofβ(j) is defined as follows:

· log(β(j)) = empty iffj = 0
· log(β(j)) = log(β(j − 1)) · 〈t, wst〉 iff πj = committed(t) andj > 0
· log(β(j)) = log(β(j − 1)) iff πj 6= committed(t) andj > 0.

1β(j) is the prefix of lengthj of β, i.e., |β(j)| = j. Further notation about sequences is introduced in the following: β|ϕ is the
subsequence ofβ which includes only the actions ofϕ in β. Finally, γ � β indicates thatγ is a prefix ofβ (γ may be the empty
sequence).

3

The snapshot of a behavior ofEDB at some point of the execution contains thelatest versionof each
item until that point as it has been defined for conventional SI in a DBMS [1]. We consider that for each
item x ∈ I there is an initial versionx0 as long as it has not been modified by a transaction. Thus, for a
finite prefixβ(j) of β and an itemx ∈ I, latestV er(x, β(j)) is xt if xt ∈ wst and〈t, wst〉 ∈ log(β(j))
beingt ∈ T the latest transaction inβ(j) modifying the itemx; or x0 otherwise.

Definition 2 (Snapshot) Letβ be a finite behavior ofDB. For each prefixβ(j), 0 ≤ j ≤ |β|, the snapshot
of β(j) is defined asSnapshot(β(j)) =

⋃
x∈I{latestV er(x, β(j))}

In this paper, the setacts(M, t), for some moduleM defined in the paper, includes the actions from
acts(M) having t ∈ T as parameter. We write,wst ∩ wst′ 6= ∅ (or rst ∩ wst′ 6= ∅) if they contain
some version for the same item. We also use the following shorthand predicate for a behaviorβ with
two transactionst′, t ∈ T , and two indexesi, j ∈ Z+: conflict(t′, t, i, j, β) ≡ ∃ k : i < k < j : πk =
committed(t′)∧wst ∩wst′ 6= ∅. The safety properties of the behaviors ofEDB are presented in the next
assumption.

Assumption 1 For each behaviorβ ∈ behs(EDB):

1. (Execution Integrity)πi 6= crash ⇒ ∀ k : k < i : πk 6= crash

2. (Well-formed Transaction) For each transactiont ∈ T the sequenceβ|acts(EDB, t) is a prefix of
at least one of the following sequences:

(a) begin(t) deliverws(t, wst) commit(t, wst) committed(t)

(b) begin(t) aborted(t)

(c) begin(t) deliverws(t, ws) aborted(t)

(d) begin(t) deliverws(t, ws) commit(t, ws) aborted(t)

(e) apply(t, wst) begin(t) committed(t)

(f) apply(t, ws) begin(t) aborted(t)

3. (Snapshot Isolation) For each transactiont ∈ T such thatπi = begin(t) andπj = committed(t)
in β:

(a) rst ⊆ Snapshot(β(i))

(b) ¬conflict(t′, t, i, j, β) for all t′ ∈ T

Assumption 1.1 (Execution Integrity) indicates that aftercrash theEDB stops its activity. Assump-
tion 1.2 (Well-formed Transaction) indicates the correct order of transaction actions in a behavior. This last
Assumption demands some additional constraints to the replication protocol using theEDB in order to
build well-formed transactions in theEDB. In particular, an input actioncommit(t, ws) for transaction
t may be only possible afterdeliverws(t, ws), this can never occur aftercommitted(t) or aborted(t)
actions; moreover, it only happens once in a behavior. Respectively, theapply(t, ws) input action only
occurs once and before its associated actionbegin(t) in a behavior. Assumption 1.2 also indicates that the
parameterws in the actionsdeliverws(t, ws), commit(t, ws), or apply(t, ws) is thewst of the transac-
tion t if it is committed (sequences (a) or (e)). In other words, afterdeliverws(t, ws) or apply(t, ws) the
ws will remain unchanged. In the case of an aborted transaction(sequences (c), (d) or (f)) we consider
wst ⊆ ws but the obtained results are not affected by this fact, so we will also considerwst = ws. Finally,
Assumption 1.3 (Snapshot Isolation) specifies the requirements every committed transaction in a behavior
has to verify in order to reach the SI level.
Notice that a replication protocol is only informed about the writesets of transactions. So, it may only de-
duce the outcome of a transaction through the order of input events and their writesets it has been received.
Therefore, in order to complete the Assumption 1, it is important to attach the possible aborting causes for
the actionsaborted(t) in Assumption 1.2. This is done in the following remark.

Remark 1 (Abort Assumptions) Letβ ∈ behs(EDB)

4

- There is no transaction unilateral abort.

- For a transactiont ∈ T such thatπi = begin(t) andπj = aborted(t), if it follows pattern (c), (d)
or (f) in Assumption 1.2 then there is a transactiont′ ∈ T such thatconflict(t′, t, i, j, β).

- aborted(t) in the sequence (b) in Assumption 1.2 is possible by any abortion cause (e.g., a deadlock
resolution, timeout expiration).

From the previous remark, it is worth mentioning that a remote transaction is not equivalent to a local
one. It will only abort if it is impossible to guarantee its isolation level. Other possible causes of abortion
are filtered by the extended database. The conditions in Remark 1 have an important impact in the practical
application of theEDB in real settings. However, we take into consideration thoseconditions as a first
approach to provide a complete specification. Actually, similar considerations can be found in several
replication protocols presented in the literature [18, 15,8, 20, 5]. Until now, previous assumptions are only
related with safety properties. In the next assumption we give some simple liveness properties of theEDB.

Assumption 2 For each behaviorβ ∈ behs(EDB):

1. πi = begin(t) ⇒ ∃ k : k > i : πk ∈ {deliverws(t, ws), aborted(t), crash : ws ∈ 2V }

2. πi = begin(t) ∧ πj = deliverws(t, ws) ∧ πk = committed(t′) ∧ wst′ ∩ ws 6= ∅ ∧ i < k

∧ ∀ r : i < r < k : πr 6= committed(t) ⇒ ∃ r : r > j : πr ∈ {aborted(t), crash}

3. πi = commit(t, ws) ⇒ ∃ k : k > i : πk ∈ {committed(t), aborted(t), crash}

4. πi = apply(t, ws) ⇒ ∃ k : k > i : πk ∈ {committed(t), aborted(t), crash}

We will informally depict this assumption in the absence of failures. Assumption 2.1 (only for local
transactions) states that if a transaction is not aborted itdelivers its writeset. Assumption 2.2 indicates
that a transaction will be aborted if its isolation level is not maintained. Assumption 2.3 states that after
commit(t, ws) the transaction terminates. Finally, Assumption 2.4 indicates that a remote transaction
terminates.

One can think that we demand artificial properties in theEDB. Actually, some current implementa-
tions of replication protocols use, and do need, these extended capabilities of databases. These features are
implemented in different ways over practical middleware replicated database systems; e.g. either by re-
attempting aborted remote transactions [15] or by early detection conflict with the help of DBMS facilities
as described in [18].
To end this section, we indicate that a read-only transaction does not conflict with any other transaction and
it receives the latest snapshot at is beginning. Thus, a read-only transaction always terminates in a commit-
ted status if theEDB does not crash. The execution of a read-only transaction is considered transparent to
the replication protocol. In the rest, we assume that every transaction has a non empty writeset.

3 Replicated Database System: Correctness Criteria

In this section, we provide the correctness criteria for a replicated database system in which databases in
the system perform independently and execute transactionsunder SI. The replicated database system is
specified by means of a module denotedRDBS. The main components of this module are depicted in
Figure 1.

As Figure 1 suggests, the replicated database system is the composition of an abstract replication pro-
tocol and a group of extended databases, one at each site of the distributed system. The finite set of site
identifiers is denoted asN . We assume that at mostf sites may fail by crash and|N | > f . At each site
n ∈ N there is an extended database module denotedEDBn. Each action in the signature ofEDBn is
also subscribed byn. We consider the replicated database system isfull replicated: the set of items of each
database is the same set for alln ∈ N , denotedI. The set of transactions operating in the system isT ; and
the set of possible versions for the itemsI and transactionsT is V .

5

Figure 1: Replicated Database System

There is a mapping,site : T −→ N , which associates to each transaction,t ∈ T , a unique site,
site(t) ∈ N , in the system. Thesite(t) is called thedelegate siteof the transaction. It is the site where the
transaction starts the execution. The transaction is considered as local at that replica and remote at the rest
of sites.

We consider that the replication protocol is based on thedeferred update technique[19]. In this tech-
nique, once theEDBn completes the execution of a transaction, it submits thedeliverwsn(t, ws) to the
protocol in order it to take the decision of commit the transaction and to apply the transaction in the rest of
sites. We consider that the replication protocol does not explicitly abort the transaction if it can not provide
the commit for it (in fact we have not model the actionabort(t) in theEDB). The protocol simply deduces
the transaction will be aborted.

The replication protocol is specified by a module, denoted asRP . The main goal of the replication
protocol is to guarantee the correctness criteria in the whole system. We only consider its signature because
the properties of its behaviors will be abstracted in the correctness criteria. The signature ofRP is:

in(RP) = ∪n∈N (out(EDBn) ∪ {crashn})
out(RP) = ∪n∈N {commitn(t, ws), applyn(t, ws) : n ∈ N, t ∈ T, ws ∈ 2V }

The moduleRDBS is obtained as a result of the module composition operation [17]: RDBS =
RP × (Πn∈N EDBn). This module is well defined, since the collection of signatures of the component
modules is strongly compatible [17]. Thus, the signature ofRDBS is:

in(RDBS) = ∪n∈N{crashn}
out(RDBS) = (∪n∈N out(EDBn)) ∪ out(RP)

In the following, we present and explain the correctness criteria for the replicated database system.
Let β be a behavior ofRDBS. We use the predicatelocal(t, n, β) ≡ beginn(t) � β|acts(EDBn, t) to
indicate that a transactiont ∈ T has started in the siten ∈ N as a local transaction in the behaviorβ. The
correctness criteria are indicated in the following axioms2. For every behaviorβ ∈ behs(RDBS):

1. Well-formedness Conditions.

(a) β|EDBn ∈ behs(EDBn)

(b) local(t, n, β) ∧ local(t, n′, β) ⇒ n = n′ = site(t)

(c) πi = applyn(t, ws) ⇒∃ k : k < i : πk = deliverwssite(t)(t, ws) ∧ n 6= site(t)

2. Conflict Serializable.

(a) πi ∈ {applyn(t, ws), commitn(t, ws)} ∧ πj = applyn(t′, ws′) ∧ i < j ∧ ws∩ws′ 6= ∅ ⇒
∃ k : i < k < j : πk ∈ {committedn(t), abortedn(t)}

(b) πi ∈ {applyn(t, ws), commitn(t, ws)} ∧ πj1 = beginn(t′) ∧ πj2 = commitn(t′, ws′) ∧ i <

j2 ∧ ws ∩ ws′ 6= ∅ ⇒ ∃ k : i < k < j1 : πk ∈ {committedn(t), abortedn(t)}

2Free variables in the expressions are universally quantified in their domains for the scope of the entire formulas

6

3. Uniform Prefix Order Database Consistency. For every finite prefixβ′ of β:

log(β′|EDBn) � log(β′|EDBn′) or vice versa

4. Uniform Decision.

(a) πi = committedn(t) ⇒ ∀n′ ∈ N : (∃ k : πk ∈ {commitn′(t, wst), applyn′(t, wst), crashn′}

(b) πi = abortedsite(t)(t) ⇒ (β|{applyn(t, ws) : n ∈ N, ws ∈ 2V } = empty)

5. Local Transaction Progress.

πi = deliverwssite(t)(t, ws) ⇒ ∃ k : k > i : πk ∈ {commitsite(t)(t, ws), crashsite(t)}
∨ πk ∈ {commitsite(t)(t

′, ws′), applysite(t)(t
′, ws′) : ws ∩ ws′ 6= ∅}

Criterion 1.(a) states that every behavior of theRDBS has to respect the behavior of eachEDBn

module. The basic consequences of this fact are that each behavior of aEDBn module verifies the SI
level, it is well-formed, and it satisfies every progress property given in Assumption 2. Criterion 1.(b)
indicates that the first event of a transactiont ∈ T in the system may only bebeginsite(t)(t) at its delegate
site; t is local at that replica and remote otherwise. Criterion 1.(c) asserts that a remote transaction may
appear in the system as consequence of a local transaction, with the same writeset. This criterion avoids
spontaneous creation of remote transactions in the system.All these previous criteria are grouped and form
what we have denoted as Well-formedness Conditions. Criterion 2 (Conflict Serializable) ensures that the
replication protocol does not apply a remote transaction nor requests the commit of a local transaction
if there is a previous unresolved conflicting transaction. This criterion guarantees that transactions with
a non-empty intersection of their writesets are serialized. Criterion 3 (Uniform Prefix Database Order
Consistency) imposes on the system to build the same snapshots at every database; actually, it obliges
committed transactions to follow the same commit ordering at every site (not only the conflictive ones).
In addition, every remote transaction of the same local transaction installs exactly the same writeset; i.e,
the local transaction writeset. Notice that if a database fails, this criterion ensures that the last installed
snapshot is also a valid snapshot for the rest of the correct sites. The Criterion 4 (Uniform Decision) is
split into two kind of transactions: committed and aborted ones. Criterion 4.(a) states that if a transaction
is committed at one site (correct or faulty) then the protocol eventually applies or requests the commit of
the same transaction in every correct site; and Criterion 4.(b) states that if a transaction is aborted at one
site (correct or faulty) then it is only aborted in the delegate site and no one of its remote transactions will
be programmed in the system. To conclude, Criterion 5 (LocalTransaction Progress) indicates that if the
replica is correct, then for each of its local associated transactions that requests the commit (via action
deliverws(t, ws)), the replication protocol either requests the commit or knows it will be aborted.

4 Justification

The previous correctness criteria specify, very precisely, the requirements a replicated database system has
to verify. The best way to justify that they are adequate is toprove that they imply an equivalent behavior
of a one-copy database system.

The most straightforward way to do that, with the I/O Automaton Model, is to prove thatbehs(RDBS) ⊆
behs(DB) for some single database moduleDB. Unfortunately, due to several reasons, such as the possi-
bility of crashn events, the lazy nature of remote transactions throughapplyn(t, ws) events, and the fact
that eachEDBn behaves independently of each other, it is non-trivial to find out a singleDB with the same
signature ofRDBS. This consideration involves an indirect way to provide theone-copy equivalence.

Other reasonable question is whether the replicated database system working with SI databases will
achieve the same isolation level for the transactions executed on it. In fact, we do not enforce the system to
work in a pure synchronized manner and it is possible to have two replicas with different snapshots at the
same time (see Criterion 3). This means that a transaction may obtain in its delegate site a snapshot which
is an older snapshot in another ‘faster’ replica. A generalization of SI to include this possibility of using
older snapshots was introduced in [7] under the concept of Generalized Snapshot Isolation (GSI).
Consider an ideal database module, denotedDB, such thatout(DB) = {begin(t), committed(t) : t ∈

7

T }, andin(DB) = ∅; in which every scheduled transaction is committed. That is, for a transactiont ∈ T

and behaviorβ ∈ behs(DB), if πi = begin(t) in β then there is aπj = committed(t) with i < j. We
assume that every committed transaction follows the GSI level. Therefore, for each transactiont ∈ T such
thatπi = begin(t) andπj = committed(t) in β, there exists an index0 ≤ s ≤ i such that the two next
conditions hold:

1. rst ⊆ Snapshot(β(s))

2. ¬conflict(t′, t, s, j, β) for all t′ ∈ T

Notice that a transactiont under GSI can use an older snapshot (0 ≤ s ≤ i), but it can be committed as
its updates are still valid from that snapshot (recall the lost-updates phenomenon [1]). In GSI, if conditions
(1) and (2) are valid for every transaction whens = i, then the SI definition is obtained. In the rest of this
section, we give the way to extract from an arbitrary behavior of RDBS an equivalent one-copy behavior
of this GSIDB. In the enclosed Appendix, the proofs of the claims done in this section can be found.
Let β be a behavior ofRDBS. Firstly, we study the performance of a transactiont ∈ T scheduled in the
system. Recall that, by Criterion 1.(b), the first event of a transaction isbeginsite(t)(t) in β. Therefore, we
firstly examine the subsequenceβt = β|{beginsite(t)(t), abortedn(t), committedn(t) : n ∈ N} where
three different cases may arise:

βt = beginsite(t)(t) and actioncrashsite(t) is given inβ

βt = beginsite(t)(t) · abortedsite(t)(t)
βt = beginsite(t)(t) · γct

beingγct
a proper prefix ofcommittedn1

(t) . . . committedn|N|
(t)

with (n1, . . . , n|N |) a permutation of the site identifiers.

This result means that a transaction terminates in the same status at every correct replica. In fact, the repli-
cation protocol will request anapplyn(t, ws) or commitn(t, ws) only if it is assured that the transaction
is able to become committed. Notice that the caseβt = beginsite(t)(t) is only possible if there is an
eventcrashsite(t) in β. However, the caseβt = beginsite(t)(t) · γct

does not exclude the replica from
crashing too. If a transaction is aborted, it will have no effect in the replicated system (by previous result
and Criterion 1.(a)). Thus, we will only consider those committed transactions appearing inβ. We say
that atransactiont ∈ T is committed inβ, if βt includes an actioncommittedn(t) for some siten ∈ N .
In the previous result, the eventcommittedn1(t)(t) indicates that the siten1(t) is the first one installing
the writesetwst of the transactiont. Every committed transaction at every replica has installed the same
writeset due to Criterion 1.(a) and Criterion 1.(c). In fact, this result is consistent with Criterion 3. Thus,
the rest of committed events for a transaction are still necessary to maintain the consistency of the database
replicas; however,n1(t) is the first replica in the whole system in which the new snapshot is available.
Therefore, we will study the properties of the following subsequence.
Let us denote asFirst Committed(FC) the set of actions{beginsite(t)(t), committedn1(t)(t) : t is a com-
mitted transaction inβ}. For each behaviorβ ∈ behs(RDBS), we define the sequenceβFC = β|FC. In
this ideal sequence, we assign to each transactiont: as its readset the one obtained from its delegate replica
(i.e., rst ⊆ Snapshot(β|EDBsite(t)(i)) whereπi = beginsite(t) in β|EDBsite(t)); and, as its writeset
the value ofwst at the time it committed.

This last sequence has a nice property which states thatlog(β|EDBn) � log(βFC) for all n ∈ N .
Therefore,βFC installs the same snapshots as in the replicated system.
In the replicated system, each transaction can be submittedto any replica (actually,site(t) is an arbitrary
mapping) every pattern of failures is possible except for the restriction|N | > f , and eachEDBn performs
in the same way. In addition,n1(t) is some non faulty site. Thus, for eachβ ∈ behs(RDBS), there is
some equivalentβ′ ∈ behs(RDBS) such that eachn1(t) is different ton′

1(t).
We say that two behaviorsβ, β′ of RDBS are equivalent,β ≡ β′ if the following conditions hold:

- t is committed inβ ⇔ t is committed inβ′. For each committed transactiont:
- rst in β ⇔ rst in β′

- wst in β ⇔ wst in β′

- beginsite(t)(t) committedn1(t)(t) � βt ⇔ beginsite(t)(t) committedn′
1
(t)(t) � β′

t

For eachβ ∈ behs(RDBS) we defineβ′|FC′ such thatβ ≡ β′ and FC′ = {beginsite(t)(t),
committedn′

1
(t)(t) : t is a committed transaction inβ′ andn′

1(t) = site(t)}.

8

Finally,β1C is obtained fromβ′|FC′ by renaming each actionbeginsite(t)(t) asbegin(t) andcommittedsite(t)(t)
ascommitted(t). The sequenceβ1C is the one-copy version ofβ. In β1C , the readset oft is rst of t in β

and the writeset oft is wst of t in β.
We can prove thatβ1C verifies that for each transactiont ∈ T such thatπi = begin(t) and πj =
committed(t) in β1C , there exits an index0 ≤ s ≤ i such that the two next conditions hold: 1.
rst ⊆ Snapshot(β1C(s)) and 2.¬conflict(t′, t, s, j, β1C) for all t′ ∈ T .

In conclusion, for each behaviorβ ∈ RDBS there is a one-copy versionβ1C such thatβ1C ∈
behs(DB). In other words, an external observer that collects the firstbegin event and the first commit
event for every committed transaction (whilst discarding the aborted ones) in the system will not distin-
guish the execution of the replicated database system from one derived from a one-copy database system.

5 Discussion

Most of the literature about database replication introduces a given replication protocol and then it is
discussed or proved its correctness [5, 12, 15, 8, 20]. However, there has been little (or none) discussion in
the literature about setting up a general correctness criteria that these replication protocols must verify [2,
22]. In the same way, most of these replication protocol proposals claim that they can afford a crash
failure scenario (or a crash-recovery one) by simply forwarding transactions to another available replica.
Nevertheless, it has never been formally shown, up to our knowledge, neither their correct behavior under
this failure scenario nor which additional correctness criteria have to be established. We have tried to unify
and propose quite general correctness criteria for replicated database systems in a crash failure scenario.
The correctness criteria proposed in this work are suitableto a replicated database system where database
replicas are SI and the replication protocol follows the deferred update technique. In the following, we try
to thoroughly discuss different issues that can remain unclear about them. Besides, we cover some aspects
about these criteria that can lead to optimizations or variations of them; actually, they can be considered in
real implementations of a replicated database system.

Let us start with theConflict Serializablecorrectness criterion (Criterion 2). Under conventional SI [1],
conflicting update transactions (i.e. givent1 andt2 with ws1 ∩ ws2 6= ∅) must be serialized and, hence,
it does make sense to include this fact in this correctness criterion for a replicated database system. Of
course, this criterion does not say anything about the orderin which non-conflicting update transactions
should be applied and, thus, it is perfectly possible that a given replication protocol permits them to be
executed and committed in any order at different replicas [15].

Nevertheless, we have restricted their application in order to impose a unique commit ordering through-
out all replicas (Criterion 3,Uniform Prefix Order Database Consistency) and obtain the same global snap-
shots at all replicas. This does not imply that transactionsare committed in a synchronous way at all repli-
cas. Some replicas may run faster than others and transactions executed on faster ones will get more recent
snapshots than others executed at slower ones; though all transactions will read from a global consistent
snapshot. Thanks to this last criterion committed transactions obtain GSI [7, 8]. However, we can weaken
this criterion and allow non-conflicting update transactions to be applied in any order [15]. The main ad-
vantage of this consists in increasing the number of concurrent applications of writesets. However, there
exists a trade-off for this last feature: a replication protocol cannot guarantee a global consistent snapshot.
Therefore, transactions should not be started as long as there are concurrent applications of writesets. The
beginning of a transaction should be delayed until a given writeset (i.e. known by all replicas) is applied;
the simplest scenario consists of two conflicting writesetsthat must always be sequentially applied. The
best approach will depend on the kind of application considered in the system. On the other hand, if SI is
globally desired, then the delegate replica of a transaction must delay the start of it until the latest snapshot
is applied. Both approaches (obtaining SI as well as concurrent application of writesets) imply a potential
blocking of the beginning of a read-only transaction. This fact goes against the basic non-blocking nature
for such transactions executed under SI [1] or GSI [8] and they are not transparently executed from the
protocol’s point of view anymore.

Thanks to Criterion 3, the sets of committed transactions atany pair of replicas, either one constitutes
the prefix of the other or vice versa, even if one of the replicas has crashed. This is particularly interesting

9

in a crash-recovery failure scenario, since the recovery ofa failed replica consists in transferring the set of
missed transactions starting from the end of its prefix at an active replica [14].

We have proposed theUniform Decisioncriterion to set up the outcome (either committed or aborted)
of a transaction in the database replicated system. One of the main features of committed transactions
in the deferred update technique is that if a transaction is committed at a replica, it will eventually get
committed at the rest of replicas unless they crash (Criterion 4.(a)). Another particular characteristic of the
deferred update technique refers to the aborted transactions in the system. They will always get aborted at
its delegate replica and will not be applied to the rest of replicas (Criterion 4.(b)), what is a great advantage.
An example of this is the family of certification based replication protocols for SI replicas [8, 15, 18].

According to our specification, the replication protocol will never request the commit on behalf of
a transaction which will be aborted at the local database. The Local Transaction Progress(Criterion 5)
ensures that this transaction is going to be aborted as a consequence of another previously committed
transaction. Usually, real implementations do explicitlyabort these transactions (by means of an action
abort(t)) to release database resources as soon as possible [18, 21].These replication protocols must be
pretty sure that the explicit abortion of a transaction is due to the fact that it will eventually get aborted. We
have not considered these kind of actions because they are not needed in our model proposal.

Finally, we have introduced an extended database abstraction. This abstraction includes all functional-
ities needed by replication protocols [15, 3, 18, 20, 21]. Inparticular, it provides an abstraction of writeset
extraction [15, 3, 20, 21] and its successful application [18, 15, 21] (with the implicit abort of local con-
flicting transactions). This last feature has been thoroughly studied in real implementations either with
time outs and re-attempt mechanisms [15], conflict detection mechanisms [18] or aborting transactions at
the time they request the commit [15]. Moreover, this abstraction hides the details of the particular im-
plementation of the SI DBMS committing rule: eitherfirst-committer-winsor first-updater-winsrule [1, 9]
(though most commercial implementations follow the former). This abstraction is a good enough one,
since it reflects the common features of different real implementations. In other words, it does reflect the
functionality of them while hiding all implementation details followed in different approaches.

Our work keeps certain similarities with [22] where the deferred update technique with serializable
databases is formally studied using TLA+ [13]. As opposed toours, they only cope with serializable
databases and do not cover any kind of failure scenario. As future work, it will be interesting to extend
these correctness criteria in different ways: to the crash-recovery model; to other isolation levels; and,
formalize some replication protocols as I/O automata and verify their correctness.

References
[1] H. Berenson, P.A. Bernstein, J. Gray, J. Melton, E.J. O’Neil, and P.E. O’Neil. A critique of ANSI SQL isolation levels. In

SIGMOD, 1995.

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in Database Systems. Addison Wesley,
1987.

[3] N. Carvalho, A. Correia Jr., J. Pereira, L. Rodrigues, R.Oliveira, and S. Guedes. On the use of a reflective architecture to
augment database management systems.JUCS, 13(8):1110–1135, 2007.

[4] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a comprehensive study.ACM Comput. Surv.,
33(4):427–469, 2001.

[5] K. Daudjee and K. Salem. Lazy database replication with snapshot isolation. InVLDB, 2006.

[6] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Uniting durability with transaction ordering for high-performance scalable
database replication. InACM Eurosys, Leuven, Belgium, April 2006.

[7] S. Elnikety, F. Pedone, and W. Zwaenopoel. Generalized snapshot isolation and a prefix-consistent implementation.EPFL-
Tech-Rep IC/2004/21, March 2004.

[8] S. Elnikety, F. Pedone, and W. Zwaenopoel. Database replication using generalized snapshot isolation. InSRDS. IEEE-CS
Press, 2005.

[9] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making snapshot isolation serializable.ACM Trans. Database
Syst., 30(2):492–528, 2005.

[10] J.R. Juárez, J.E. Armendáriz, J.R. González de Mendı́vil, F.D. Muñoz, and J.R. Garitagoitia. A weak voting database replication
protocol providing different isolation levels. InNOTERE’07, 2007.

[11] J.R. Juárez, J.E. Armendáriz, F.D. Muñoz, J.R. González de Mendı́vil, and J.R. Garitagoitia. A deterministicdatabase replication
protocol where multicast writesets never get aborted. InOTM Workshops (1), volume 4805 ofLNCS, pages 1–2. Springer, 2007.

10

[12] B. Kemme and G. Alonso. A new approach to developing and implementing eager database replication protocols.ACM Trans.
Database Syst., 25(3):333–379, 2000.

[13] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison Wesley
Professional, 2002.

[14] W. Liang and B. Kemme. Online recovery in cluster databases. InEDBT. ACM Press, 2008. Accepted for publication.

[15] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris. Middleware based data replication providing snapshot isolation.
In SIGMOD, 2005.

[16] N.A. Lynch. Distributed Systems. Morgan Kaufmann Publishers, 1996.

[17] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata.CWI-Quarterly, 2(3):219–246, 1989.

[18] F.D. Muñoz, J. Pla, M.I. Ruiz, L. Irún, H. Decker, J.E.Armendáriz, and J.R. González de Mendı́vil. Managing transaction
conflicts in middleware-based database replication architectures. InSRDS. IEEE-CS Press, 2006.

[19] F. Pedone. The database state machine and group communication issues (Thèse N. 2090). PhD thesis, EPFL, Lausanne,
Switzerland, 1999.

[20] C. Plattner, G. Alonso, and M. Tamer-Özsu. Extending DBMSs with satellite databases.The VLDB Journal, 2006.

[21] J. Salas, R. Jiménez-Peris, M. Patiño-Martı́nez, and B. Kemme. Lightweight reflection for middleware-based database replica-
tion. In SRDS. IEEE-CS Press, 2006.

[22] R. Schmidt and F. Pedone. A formal analysis of the deferred update technique. InDISC, volume 4731 ofLNCS, pages 499–500.
Springer, 2007.

11

A Appendix

Lemma 1 Letβ be a behavior ofRDBS. It holds that

πi ∈ {commitn(t, ws), applyn(t, ws)} ⇒ ∃ k : k > i : πk ∈ {committedn(t), crashn}

Proof: The property is referred to the siten. By Criterion 1.(a) (Well-Formedness Conditions),β|EDBn ∈
behs(EDBn). If we prove the property forβ|EDBn then it is also proved forβ. In the following, the
indexes are referred toβ|EDBn. Letπi in β|EDBn and consider that∀ k : k > i : πk 6∈ {committedn(t),
crashn}. By Assumption 3 (and 4), there isπi2 = abortedn(t) with i < i2. By Remark 1, there is
a transactiont′ ∈ T , such thatconflict(t′, t, i1, i2, β|EDBn) whereπi1 = beginn(t) with i1 < i2
(by Assumption 1.2). Therefore, there is an actionπj2 = committedn(t′) such thati1 < j2 < i2 and
wst′ ∩ ws 6= ∅. By Assumption 1.2 there existsπj ∈ {commitn(t′, wst′), applyn(t′, wst′)} with j < j2.
Any possible case,i < j or j < i, for the actionsπi andπj yields to a contradiction with Criterion 2
(Conflict Serializable). �

Property 1 Letβ be a behavior ofRDBS. For each transactiont ∈ T , the first event inβ|acts(RDBS, t)
is beginsite(t)(t) if the transaction has been programmed or none, otherwise.

Proof: If β|acts(RDBS, t) is non empty there will be some action with parametert in β; thus, trans-
actiont has been programmed. Letπ the first event inβ|acts(RDBS, t) such thatπ 6= beginsite(t)(t).
It cannot bebeginn(t) with site(t) 6= n by the Criterion 1.(b) (Well-Formedness Conditions). For any
other action withsite(t) 6= n, it is very simple to show thatbeginsite(t)(t) precedes it by Criterion 1.(a),
Assumption 1.2 and Criterion 1.(c). Again, by Criterion 1.(a), Assumption 1.2, any actionπ in site(t) with
parametert is preceded bybeginsite(t)(t). The property holds. �

For each transactiont ∈ T and behaviorβ ∈ behs(RDBS), we define the sequenceβt = β|
{beginsite(t)(t), abortedn(t), committedn(t) : n ∈ N}.

Theorem 1 Letβ be a behavior ofRDBS. For each transactiont ∈ T , the sequenceβt is at most one of
the following sequences:

1. βt = empty

2. βt = beginsite(t)(t) and actioncrashsite(t) is given inβ

3. βt = beginsite(t)(t) · abortedsite(t)(t)

4. βt = beginsite(t)(t) · γct
beingγct

a proper prefix ofcommittedn1
(t) . . . committedn|N|

(t) with
(n1, . . . , n|N |) a permutation of the site identifiers.

Proof:
(1). If βt is empty, then by Property 1 the transaction has not been programmed in the system.
(2). Consider that there is no actioncrashsite(t) in β and the transaction has been programmed. Thus,
by Property 1,βt is some sequence starting withbeginsite(t)(t). Let πi = beginsite(t)(t) in β. By Cri-
terion 1.(a) (Well-Formedness Conditions) and Assumption2.1, there isπj1 ∈ {deliverwssite(t)(t, ws),
abortedsite(t)(t)} in β with i < j1. If πj1 = abortedsite(t)(t) then a contradiction is obtained. Thus,
πj1 = deliverwssite(t)(t, ws). By Criterion 5 (Local Transaction Progress), there existsin β the action
πj2 = commitsite(t)(t, ws) or πj2 ∈ {commitsite(t)(t

′, ws′), applysite(t)(t
′, ws′) : ws ∩ ws′ 6= ∅} with

j1 < j2. In the former case, by Lemma 1 there isπj3 = committedsite(t)(t) with j2 < j3. A contradic-
tion is obtained. In the second case, by Lemma 1 there isπj3 = committedsite(t)(t

′) with j2 < j3 and
ws∩wst′ 6= ∅ (by Assumption 1.2,ws′ = wst′). Therefore,πi, πj1 andπj3 happen inβ. By Criterion 1.(a),
the same actions are inβ|EDBn in the same order. By Assumption 2.2, there isπj4 = abortedsite(t)(t).
A contradiction is obtained. Therefore,βt = beginsite(t)(t) only if there is the actioncrashsite(t) in β.
After crashsite(t) no other action happens in that site by Assumption 2.1.
(3). Let πi = beginsite(t)(t) in β. By the previous proof (2), ifsite(t) is correct (nocrashsite(t) in
β) then πj ∈ {committedsite(t)(t), abortedsite(t)(t)} with i < j. If πj = abortedsite(t)(t) then,

12

by Criterion 1.(a) and Assumption 1.2, there will be no otheraction with parametert in the site(t)
after abortedsite(t)(t). If there is any other action with parametert in other siten 6= site(t), then
by Criterion 1.(b) (and Property 1) the transaction is remote in such a site. By Assumption 1.2, any
remote transaction fort starts with the actionapplyn(t, ws). By Criterion 4.(b) (Uniform Decision),
β|{applyn(t, ws) : n ∈ N, ws ∈ 2V } = empty; therefore,βt = beginsite(t)(t) · abortedsite(t)(t) holds.
If site(t) is faulty eitherπj = abortedsite(t)(t) beforecrashsite(t) and the property holds, or there is
not abortedsite(t)(t). In this last case either (2), withβt = beginsite(t)(t), or the sequence in (4) will be
obtained.
(4). Let πi = beginsite(t)(t) in β. By the proof (2), ifsite(t) is correct (nocrashsite(t) in β) then
πj ∈ {committedsite(t)(t), abortedsite(t)(t)}. Let πj = committedsite(t)(t) in β. By Criterion 4.(a)
(Uniform Decision): ∀n ∈ N : (∃ k : πk ∈ {commitn(t, wst), applyn(t, wst), crashn}). By Crite-
rion 1.(a) and Assumption 1.2,πj1 = commitsite(t)(t, wst) with i < j1 < j occurs inβ. As t is local only
in site(t), thenπj1 is unique inβ. Then,∀n ∈ N : n 6= site(t) : (∃ k : πk ∈ {applyn(t, wst), crashn}).
Notice, that each possibleapplyn(t, wst) occurs afterdeliverwssite(t)(t, wst) as Criterion 1.(c) indicates,
and by Assumption 1.2, also occurs afterbeginsite(t)(t). Letπk = apply(t, wst) in β. By Lemma 1, there
is πk1

∈ {committedn(t), crashn} with k < k1. If πk1
= committedn(t), theni < k1. There is no

other restriction in the potential ordering and number ofcommittedn(t). If crashn happens, by Assump-
tion 1.1 no event is provided by the siten. Therefore,βt = beginsite(t)(t) · γct

beingγct
a proper prefix

of committedn1
(t) . . . committedn|N|

(t) with (n1, . . . , n|N |) a permutation of the site identifiers. In the
considered caseγct

includescommittedsite(t)(t).
If site(t) is faulty (crashsite(t) in β) eitherπj = committedsite(t)(t) in β beforecrashsite(t) and the
same result,βt = beginsite(t)(t) · γct

, is obtained, or it does not occur inβ. However, by Criterion 1.(c)
may beπi3 = applyn(t, ws) andπi2 = deliverwssite(t)(t, ws) with i < i2 < i3 in β. If there is not ac-
tion crashn in β (this is possible by the fact that|N | > f) then, by Lemma 1,πi4 = committedn(t)
(i < i4) and by Criterion 4.(a):∀n′ ∈ N : (∃ k : πk ∈ {applyn′(t, wst), crashn′}). In this case,
βt = beginsite(t)(t) · γct

but committedsite(t) is not in γct
. Finally, if no appyn(t, ws) occurs being

n a correct site, thenβt = beginsite(t)(t). �

We say that atransactiont ∈ T is committed inβ if βt includes an actioncommittedn(t) for some site
n ∈ N . In βt, the first site where the transactiont is committed is denoted asn1(t). LetFC (that stands for
First Committed) be the set of actions{beginsite(t)(t), committedn1(t)(t) : t is a committed transaction in
β}. For each behaviorβ ∈ behs(RDBS), we define the sequenceβFC = β|FC. In this ideal se-
quence, we assign to each transactiont as its readset the one obtained from its delegate replica (i.e.,
rst ⊆ Snapshot(β|EDBsite(t)(i)) whereπi = beginsite(t) in β|EDBsite(t)); and, as its writeset the
value ofwst at the time it committed, respectively.

Lemma 2 Letβ be a behavior ofRDBS. It holds thatlog(β|EDBn) � log(βFC), for all n ∈ N .

Proof: Let β(j) be a finite prefix ofβ for some indexj ∈ Z+. By induction overj ≥ 0.

Basis. j = 0. β(0)|EDBn = β(0)|FC = empty, by Definition 1,log(β(0)|EDBn) = log(β(0)|FC) =
empty.
Hypothesis. j > 0 andlog(β(j)|EDBn) � log(β(j)|FC).
Induction Step. We only consider the eventsπj+1 affecting the property.

- πj+1 = committedn1(t)(t) andn1(t) = n. By Hypothesis,log(β(j)|EDBn) � log(β(j)|FC). The
only possible case islog(β(j)|EDBn) = log(β(j)|FC).
Considerlog(β(j)|EDBn) ≺ log(β(j)|FC). There is at least one different element〈t′, wst′〉 in log(β(j)|FC).
Thus,β(j) includesπj′ = committedn1(t′)(t

′) with j′ < j. This action is also inβ(j)|FC but not
in β(j)|EDBn. By Criterion 3 (Uniform Prefix Order Database Consistency), there is some replica
(n1(t

′) = n′) n′ 6= n such thatlog(β(j′)|EDBn) ≺ log(β(j′)|EDBn′). Then,log(β(j)|EDBn) ≺
log(β(j)|EDBn′). By Definition 1, asβ(j + 1)|EDBn = β(j)|EDBn · πj+1 andβ(j + 1)|EDBn′ =
β(j)|EDBn′ thenlog(β(j + 1)|EDBn) � log(β(j + 1)|EDBn′) that leads to a contradiction with Cri-
terion 3. As a conclusion,log(β(j)|EDBn) = log(β(j)|FC). As β(j + 1)|EDBn = β(j)|EDBn ·πj+1

13

andβ(j + 1)|FC = β(j)|FC · πj+1. By Definition 1,log(β(j + 1)|EDBn) = log(β(j + 1)|FC) holds.

- πj+1 = committedn1(t)(t) andn1(t) 6= n. By Hypothesis,log(β(j)|EDBn) � log(β(j)|FC). As
β(j + 1)|EDBn = β(j)|EDBn andβ(j + 1)|FC = β(j)|FC · πj+1, then by Definition 1,log(β(j +
1)|EDBn) ≺ log(β(j + 1)|FC) holds.

- πj+1 = committednk
(t) andnk = n, beingnk 6= n1(t). By Theorem 1, there exitsj′ < j such

that πj′ = committedn1(t)(t) in β(j)|FC. This action is inβ(j)|FC but not inβ(j)|EDBn (Crite-
rion 1.(a), Assumption 1.2). By induction Hypothesis,log(β(j′)|EDBn) ≺ log(β(j′)|FC) and also
log(β(j)|EDBn) ≺ log(β(j)|FC). Thus, asβ(j + 1)|EDBn = β(j)|EDBn ·πj+1 andβ(j + 1)|FC =
β(j)|FC, by Definition 1log(β(j + 1)|EDBn) � log(β(j + 1)|FC).

- πj+1 = committednk
(t) andnk 6= n, beingnk 6= n1(t). In this case,β(j + 1)|EDBn = β(j)|EDBn

andβ(j + 1)|FC = β(j)|FC. Thus, trivially log(β(j + 1)|EDBn) � log(β(j + 1)|FC) by induction
Hypothesis.

Thus, in the limitj → ∞: log(β|EDBn) � log(β|FC) holds. �

We say that two behaviorsβ, β′ of RDBS are equivalent,β ≡ β′ if the following conditions hold:
- t is committed inβ ⇔ t is committed inβ′. For each committed transactiont:
- rst in β ⇔ rst in β′

- wst in β ⇔ wst in β′

- beginsite(t)(t)committedn1(t)(t) � βt ⇔ beginsite(t)(t)committedn′
1
(t)(t) � β′

t

In the replicated system, each transaction can be submittedto any replica (actually,site(t) is an arbi-
trary mapping); every pattern of failures is possible except for the restriction|N | > f , and eachEDBn

behaves in the same way, though independent of each other. Inaddition, Theorem 1 indicates thatn1(t) is
some non faulty site. Thus, for eachβ ∈ behs(RDBS) there is someβ′ ∈ behs(RDBS) such thatβ ≡ β′

being eachn1(t) different ton′
1(t). For eachβ ∈ behs(RDBS) we defineβ′|FC′ such thatβ ≡ β′ and

FC′ = {beginsite(t)(t), committedn′
1
(t)(t) : t is a committed transaction inβ′ andn′

1(t) = site(t)}.
Finally,β1C is obtained fromβ′|FC′ by renaming each actionbeginsite(t)(t) asbegin(t) andcommittedsite(t)(t)
ascommitted(t). The sequenceβ1C is the one-copy version ofβ. In β1C , the readset oft is rst of t in β

and the writeset oft is wst of t in β.

Theorem 2 Let β be a behavior ofRDBS. β1C verifies that for each transactiont ∈ T such thatπi =
begin(t) andπj = committed(t) in β1C , there exits an index0 ≤ s ≤ i such that the two next conditions
hold:

1. rst ⊆ Snapshot(β1C(s))

2. ¬conflict(t′, t, s, j, β1C) for all t′ ∈ T

Proof: Let πi = begin(t). It verifiesrst ⊆ Snapshot(β′(i′)|EDBsite(t)) by definition ofβ1C and the
given equivalenceβ ≡ β′ beingπi′ = beginsite(t) in β′. By Lemma 2:log(β′|EDBsite(t)) � log(β1C).
Therefore, by Definition 1 (Log) and Definition 2 (Snapshot),it follows that there is some index0 ≤ s ≤ i,
such thatSnapshot(β′(i′)|EDBsite(t)) = Snapshot(β1C(s)). The condition (1) holds for everyt.
In order to prove the condition (2) we firstly prove the following: Consider there isπk = committed(t′)
such thati < k < j andwst ∩ wst′ 6= ∅. Let πk′ = committedsite(t′)(t

′) andπj′ = committedsite(t)(t)
in β′. By Criterion 3:log(β′(k′)|EDBsite(t)) ≺ log(β′(k′)|EDBsite(t′)) andlog(β′(j′)|EDBsite(t′)) ≺
log(β′(j′)|EDBsite(t)). This is becauseπk′ andπj′ are the first committed actions in the system. There-
fore, the two previous conditions are only possible ifk′ < j′ and〈t′, wst′〉 is also inlog(β′(j′)|EDBsite(t));
i.e.,committedsite(t)(t

′) is beforecommittedsite(t)(t) in β′(j′)|EDBsite(t). There existsπk′′ = committedsite(t)(t
′)

in β′ such thatk′ < k′′ < j′. In addition, asβ1C preserves the relative order of actions inβ′, i′ < k′ <

j′ holds. Then,i′ < k′ < k′′ < j′. In conclusion,β′(j′)|EDBsite(t) will contain beginsite(t)(t),
committedsite(t)(t

′) and committedsite(t)(t) in such order withwst′ ∩ wst 6= ∅. By Criterion 1.(a),

14

β′|EDBsite(t) ∈ behs(EDBsite(t)), and by Assumption 1.3 every committed transaction insite(t) ver-
ifies the Snapshot Isolation level. A contradiction with thefact thatwst ∩ wst′ 6= ∅ In conclusion:
¬conflict(t′, t, i, j, β1C) for all t′ ∈ T .
If a transactiont verifies the condition (1) fors = i then by the previous proof it also verifies the condition
(2). Thus, we consider a transactiont such that condition (1) is verified for0 ≤ s < i. In this case, we
need to prove¬conflict(t′, t, s, j, β1C) for every transactiont′. If condition (1) holds for0 ≤ s < i, by
Definition 2, it must be a transactiont′ in β1C such thatπk = committed(t′) with s < k < i < j and
rst ∩ wst′ 6= ∅. Thus, inβ′ there are the actionsπk′ = committedsite(t′)(t

′), πi′ = beginsite(t)(t),
πj′ = committedsite(t)(t) such thatk′ < i′ < j′. Again by Criterion 3: log(β′(k′)|EDBsite(t)) ≺
log(β′(k′)|EDBsite(t′)) andlog(β′(j′)|EDBsite(t′)) ≺ log(β′(j′)|EDBsite(t)). This is becauseπk′ and
πj′ are the first committed actions in the system. Therefore, there existsπk′′ = committedsite(t)(t

′)
in β′ such thatk′ < k′′ < j′. However, theSnapshot(β′(i′)|EDBsite(t)) does not contain the ver-
sionπk′′ produces. Thus,k′ < i′ < k′′ < j′ holds. Asβ′(j′)|EDBsite(t) will contain beginsite(t)(t),
committedsite(t)(t

′) andcommittedsite(t)(t) in such order, then by By Criterion 1.(a),β′|EDBsite(t) ∈
behs(EDBsite(t)), and by Assumption 1.3 every committed transaction insite(t) verifies the Snapshot
Isolation level. In conclusion:wst′ ∩wst = ∅ and¬conflict(t′, t, s, j, β1C). Any other transactiont′′ that
is committed afterπk and beforeπj falls betweeni′ andj′ in β′ and also verifies¬conflict(t′′, t, s, j, β1C).
The Theorem holds. �

15

