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Abstract

The construction and implementation of consistency protocols supporting multiple isolation levels
in replicated databases has remained an unexplored field for a long time. Research in the last years has
proved that the ability to use the most suited isolation level for every single transaction yields perfor-
mance improvements and lower abort rates.

This paper takes advantage of our MADIS middleware and one of its implemented Snapshot Isola-
tion protocols to design, implement and analyze the performance of K-Bound, a protocol that is able to
concurrently execute Generalized Snapshot Isolation (GSI), optimistic Strict Snapshot Isolation (SSI),
K-Bound —a non-standard SI level limiting the outdateness of transactions wanting to commit—, Se-
rializable (using weak-voting), and Generalized Read Committed (GRC) transactions. The obtained
performance results show that supporting multiple isolation levels does not introduce a significant over-
head in transaction completion time. Moreover, the abortion rate of the relaxed levels is smaller than the
strict ones. This allows an important abortion rate reduction if each transaction selects the most relaxed
level than ensures its intended isolation.

Our paper is the first one that mixes transactions managed with a weak voting strategy with other
ones using a certification-based technique. The experimental results show that weak voting manage-
ment introduces performance penalties on certification-based transactions. Moreover, a first optimistic
implementation of the strict snapshot isolation level is presented and its results are comparable to those
obtained by fully serializable transactions, both in abortion rate and completion time.

1 Introduction
Database replication protocols have existed for years, and practically all of them have only supported a
single isolation level. There are very few exceptions to this rule [2, 16]. However, if a database replication
system supports more than one level, applications will be able to select the most appropriate isolation
level for each transaction, as it can be done in centralized systems. In [16], we already implemented a
protocol that supported Snapshot Isolation (SI) and Read Committed (RC) levels, proving that this reduces
the abortion rate of those transactions that can be run using a relaxed isolation level like RC.

In this paper, we extend such an approach, implementing the ideas outlined in [2] as extensions of
the protocol presented in [16]. Thus, the resulting protocol is able to support full serializability [1]1, an
optimistic strict snapshot (SSI), a generalized snapshot (GSI) [6], and generalized read committed (GRC)
[3], besides a k-bound [2] series of levels that are intermediate between SSI (k=0) and GSI (k=∞).

1The resulting level is not as strict as “full serializability”, but is quite similar to it. It is based on adding the SELECT FOR SHARE
clause on all queries.
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The aims of this protocol (and, as we will see in the paper contents, its contributions) are: (a) to prove
that supporting multiple isolation levels does not introduce a significant overhead on transactions’ com-
pletion time, (b) to provide a first non-blocking implementation of the SSI level –although this raises its
abortion rate, since such level demands to block transactions on their start in order to get an appropriate
snapshot–, (c) to test the effects of a hybrid implementation of different isolation levels using different pro-
tocol families, since full serializability is implemented using a weak-voting [18] protocol whilst all other
levels have been implemented with a certification-based [18] class, and (d) to extend tha main conclu-
sions of [16], i.e., that relaxed isolation levels reduce abortion rates, to protocols supporting more than two
levels. This leads to replication deployments that are able to compete with their centralized counterparts,
since we have implemented all this support in our MADIS [9] middleware using PostgreSQL as its un-
derlying DBMS. Note that PostgreSQL natively supports the RC and SI levels, but no other, although full
serializability2 could be “implemented” [7] following the same approach we have used in our protocol; i.e.,
extending queries with the SELECT FOR SHARE clause.

This paper is structured as follows: the system model being used in this paper is described in Section 2.
In Section 3 the K-Bound protocol is presented. For building it, we took our SIRC with support for two
isolation levels as the basis. An analysis of its performance in MADIS, i.e. the transaction response time
and abortion rate, is shown in Section 5. Finally, conclusions end the paper.

2 System Model
The MADIS middleware [9] provides the necessary support to implement a suite of replication protocols
in an interchangeable manner and serve as a testbed for them. It is developed in Java and has a JDBC
interface to communicate with external applications, so that they will remain unaware of the replicated
system. MADIS is also linked with the Spread [17] group communication system which provides a total
order multicast [5]. We assume a fully replicated system composed of N replicas (R1, . . . , RN ) where
each replica has an underlying DBMS that stores a full physical copy of the database.; PostgreSQL [15]
has been used to this end. This DBMS is a multiversion one (i.e. a new database version is generated
each time a transaction is committed, we assume the version number is stored in a local replica variable
called lastcommitted tid) that locally supports the concurrent execution of RC and SI transactions. To keep
consistent copies of the database a replication protocol is executed; in our case we assume that it follows
the Read One Write All Available (ROWAA) approach [8]: a transaction is firstly executed at its delegate
replica and at commit time its updates (denoted as writeset) are propagated to the rest of sites. A writeset
is a list with the modified rows, having each one an associated global object identifier which is consistent
throughout the cluster. Finally, MADIS includes a block detection mechanism [13] that greatly simplifies
the application of remote writesets. It also improves the performance by earlier aborting local transactions
having conflicts with validated transactions, even before the commit request.

3 Protocol Description
In addition to the levels supported by SIRC (GSI and GRC), the K-Bound protocol supports both a
certification-based SI with different degrees of optimistic outdateness limitation (being k = 0 a partic-
ular case resulting in Strict Snapshot Isolation), and a SER using weak voting [4]. Despite the fact that
all new levels have been bundled together, their implementation could have been made in a completely
independent manner.

In Figure 1, the K-Bound [2] protocol is shown in pseudocode. Starting from the SIRC [16] protocol,
we extended it as follows.

3.1 Supporting k-Bound SI
K-Bound SI is an isolation level defined in [2] that checks how many conflicts arise between the snapshot
assigned to transaction T (that is local to its delegate node, and could be quite “old”) and the writesets of

2We will refer to this isolation level as SER on the sequel.
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Initialization:
1. lastvalidated tid := 0; 2. lastcommitted tid := 0;
3. ws list := ∅; 4. tocommit queue := ∅

I. Upon operation request for Ti from local client
1. if select, update, insert, delete
a. if first operation of Ti // Ti includes 〈k, tables read〉 //
- Ti.conflicts := 0
- Ti.decision := commit
- Ti.RS := ∅
- Ti.aborted := FALSE
- Ti.si := FALSE
- Ti.start := lastcommitted tid
- multicast Ti.ID in total order

b. if Ti.aborted = FALSE
- execute operation at Rn

c. return to client
2. else /* commit */
a. if Ti.aborted = FALSE
- Ti.WS := getWriteset(Ti) from local Rn

- if Ti.k=-1, then Ti.RS := getReadset(Ti) from local Rn

- if Ti.WS = ∅, then commit and return
- multicast Ti using total order

II. Upon receiving Ti.id
1. if Ti is local in Rn

a. append Ti.id to tocommit queue
2. else discard message

III. Upon receiving Ti

0. if Ti is local at Rn∧ Ti.k = -1
a. if ∃Tj ∈ wslist: Ti .start < Tj .end ∧Ti.RS ∩ Tj .WS 6= ∅

then Ti.decision := abort
b. multicast Ti.decision

1. if Ti.k 6= −1 ∧ Ti.k 6= RC ∧ ∃ Tj ∈ ws list : Ti.start < Tj .end ∧
Ti.WS ∩ Tj .WS 6= ∅

a. if Ti is local then abort Ti at Rn else discard

2. else
a. Ti.end := ++lastvalidated tid
b. append Ti to ws list and tocommit queue

3. ∀ Tj : Tj is local in Rn ∧ Tj .si = FALSE
∧ Tj .aborted = FALSE

a. Tj .conflicts := Tj .conflicts + getConflicts(Ti.WS, Tj .tables read)
b. if Tj .k 6= -1 then Tj .aborted := (Tj .conflicts > Tj .k)

IV. Ti := head(tocommit queue)
1. remove Ti from tocommit queue
2. if Ti is a T.ID message
a. Ti.si := TRUE
b. if Ti.aborted = TRUE

- restart Ti /* All its operations must be restarted */
/* and this also includes step I.1.a. */

c. return
3. if Ti is remote at Rn

a. begin Ti at Rn

b. apply Ti.WS to Rn

c. ∀ Tj : Tj is local in Rn ∧ Tj .WS ∩ Ti.WS 6= ∅
∧ Tj has not arrived to step III
- abort Tj

d. ∀ Tj : Tj is local in Rn ∧ Tj .k = -1 ∧ Tj .RS ∩ Ti.WS 6= ∅
∧ Tj has not arrived to step IV
- abort Tj

- Tj .decision := abort /* The Tj .decision messages */
/* are only sent if Tj arrives to step IV. */

4. if Ti.k = -1
a. if Ti is local in Rn

then multicast Ti.decision // Reliable //
else wait until Ti.decision delivered

b. if Ti.decision = abort then
- abort Ti

- return
6. commit Ti at Rn

7. ++lastcommitted tid

Figure 1: k-bound GSI algorithm at replica Rn

remote transactions that requested their commit in any system node prior to T ’s start. So, each transaction
needs to request its intended value for the k parameter; i.e., the amount of tolerated conflicting writesets.
Thus, every time a new transaction is certified, the presence of conflicts between its writeset and the readset
of every local transaction is checked. If conflicts are present, the conflict count for that local transaction is
increased. If the resulting count exceeds its maximum acceptable k, the transaction is aborted. Note that a
zero value for k means that such transaction is requesting a strict SI (SSI), whilst an infinite k value is like
the GSI level defined in [6].

Different metrics can be used to measure the outdateness in K-Bound. In our case we have used the
amount of committed writesets modifying the declared read tables. This implies that transactions must tell
the middleware, when setting the isolation level, which tables they are about to read. A manual declaration
of the readset is needed because this information has to be ready in advance, before the client starts working.

Whereas read-only transactions are never aborted in SI, this can in Kbound-SI indeed happen, if the
transaction reads some data that were modified by an already validated transaction whose changes had not
been applied by the time the former transaction took the snapshot at its delegate replica.

It is worth noting some implementation details of this isolation level:

• Before the actual execution of the first instruction of every k-bound transaction, a total-order broad-
cast (of a T.ID message, see last line in step I.1.a of Figure 1) is performed in order to note the version
of the taken snapshot. After the broadcast, the operation is executed, and that is the moment when
the snapshot is taken. The client can work without delay while this message is processed.

When the delegate replica receives a T.ID message of its own, the message is enqueued into the
tocommit list. The rest of the nodes ignore this message.

• Every time a transaction is validated, the delegate replica controls the conflicts between its write-
set and the readsets of those k-bounded transactions in progress whose T.ID message has not been
received yet, increasing the conflict count if needed. If such count reaches k, the associated local
transaction is aborted.
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• When processing a T.ID message from the tocommit queue for a transaction T, the transaction is
marked, so that it will not be considered when evaluating conflicts with new arriving transactions.

At this moment, the accumulated conflict count is the number of transactions Ti that satisfy that
T.start < Ti.tid and Ti.writeSet.conflictsWith(T.readTables) = true (the number of transac-
tions accessing our read tables that committed between the time we started and the time that pending
certified transactions applied their writeset on the delegate replica). For k = 0 (SSI), a single conflict
of this kind will result in an abortion.

When a T.ID message is extracted from the tocommit queue, every transaction that had asked for
commit before T started has now had its changes applied onto the database. The actual snapshot T
is reading from is not the one it should have but the one that there was by the time T started working,
and that is what the k-bounded SI bounds.

• Any updating k-bound transaction wanting to commit needs to wait for T.si to become true. This
wait could be non null in very short transactions.

3.2 Supporting SER
SER support has been built on top of SIRC’s RC support, by adding a new restriction to it. Namely, checks
take place in order to guarantee that no items read by a SER transaction (its readset, defined as a list of
object identifiers) Ti have been modified by any concurrent transaction Tj (regardless of its level). This
verification is performed by controlling the recovered items (not the accessed ones).

The SER level is implemented in our protocol with a weak-voting termination strategy. Since readsets
are usually much bigger than writesets, weak voting saves the network and memory cost of broadcasting
the readsets. Read-write conflicts are only checked at the delegate replica, using the object identifier lists.

The read-write conflict avoidance is enforced by two different mechanisms. The main one checks the
readset of SER transactions against the writeset of concurrently committed transactions. In order to do that,
the readset has to be extracted at commit time, along with the writeset. MADIS performs this task at the
ResultSet. Queries are rewritten by the middleware so that every returned row includes a hidden column
with the associated global object identifier. In spite of having been returned by a query, rows that have not
been seen by the client code are not taken into account in order to construct the readset. This would be only
important when trying to avoid predicate phenomena, which SER does not intend.

The second mechanism is actually an optimization meant to abort read-write conflicting transactions
before they arrive to commit time, which is the moment when the readset is available. This is done by
setting read locks on the read items. The middleware rewrites the queries so that SELECTs include the
clause “FOR SHARE”. This feature is implemented by most of the modern DBMSes. The semantics of
PostgreSQL’s “FOR SHARE” is the following: for each row returned by a query, a shared lock (read lock,
compatible with other shared locks but incompatible with write, exclusive locks) is set. When a transaction
Ti reads some object X , it gets a shared lock on it. If a concurrently running transaction Tj writes on this
object X, at the moment that its commit time arrives at the delegate replica, the remote transaction will not
be able to get a write lock on X, and therefore it will have to wait. The block detector will eventually detect
a validated transaction waiting for a local transaction, and it will kill the local one. Apart from the intended
consequence that the remote transaction Tj will be able to progress, some time is saved for Ti, which will
have to abort anyway at commit time due to a read-write conflict.

When processing a broadcast SER transaction message, the delegate replica performs the aforemen-
tioned read-write conflict check by using the GOID lists. Then, it broadcasts the outcome reliably. Total
order is not needed for this purpose.

When consuming a SER transaction from the tocommit list, replicas other than the delegate one will
wait for the final decision from the delegate replica. The latter does not need to wait for its own broadcast
message with the termination decision.

While the shared lock optimization mechanism is redundant and its absence would not affect the seman-
tic properties of the consistency protocol, the GOID-based readset-writeset check is absolutely mandatory
in a multiversioned DBMS such as PostgreSQL. Otherwise, when leaving the read-write control to the lock
system, chances are that a transaction could read from an obsolete object, that was modified between the
time the snapshot was taken and the time it actually accessed the object.
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As always done in multilevel protocols supporting certification-based levels, the writesets of SER trans-
actions are added to the wslist, so that certification-based transactions can be certified against the former
ones.

4 Test conditions
Keeping the conflict rate –and thus the abortion rate– between reasonable limits is necessary to compare
the performance of different replication protocols. Overloaded systems will yield unstable results, with
an excessive variance to get any significative conclusions. In underloaded systems, the aborts related to
conflicts will occur so seldom that most protocols will yield negligible time penalties.

In order to simplify the seek of a certain conflict rate we used the hotspot approach [11]. In this model,
the entire database is split up into two sections: the hot spot and the low-conflicting area. Two parameters
define the usage of the hotspot: the fraction of the total number of elements in the database and the fraction
of the sentences that will access elements in this area of high concurrency access.

Before starting the tests, the database is populated. The total amount of items in the database has been
fixed at 10000 rows.

At each node, a client is run, which uses the local server. Each client process launches a variable number
of threads that try to satisfy a certain transaction rate (specified later for each experiment). If the queue of
pending jobs grows beyond a certain threshold, the system is considered to be overloaded under the load
being tested, and the experiment is aborted. The results taken are based upon a stationary regime. The time
measurements of the first transactions are discarded, in order to dodge the initial glitch. PostgreSQL shows
a remarkable worsening in the timings after the first transactions. In order to get minimally stable results,
each experiment has run 10000 transactions in total.

The test performed was to run a series of “jobs”, each job consisting of the following operations:
(a) A certain number of reads on two randomly chosen tables, out of four available in total. (b) A 100
milliseconds wait. (c) A certain number of updates on two randomly chosen tables. After each write, a
small wait (100 ms divided by the number of writes) is done.

Transactions are not retried when aborted.
In our tests we analyzed the following characteristics of the performance:

• Response time. Average amount of time needed for succeeding transactions to complete.

• Abort time. Average amount of time used by aborted transactions.

• Abort rate (0..1).

We kept the block detector poll interval at one second, which yields a reasonable response to deadlocks
between the DBMS and the middleware while not overloading the DBMS.

5 Performance Results
We wanted to analyze the performance of this protocol when running transactions at the different isola-
tion levels it supports. We were specially interested in finding out how this hybrid protocol, using both
certification and weak-voting strategies, performs when serving a hybrid load.

We performed different experiments that are described in the following sections.

5.1 Varying the k Parameter in k-Bound SI
We studied the variation of the job completion time, the abort time and the abort rate as the k parameter
varies. The TPS were fixed at 16, and the k varied between 0 (SSI) and 7.

In the three plots of Figure 2 we can quite clearly distinguish a threshold value of k (kthres), from which
GSI and k-Bound SI behave equally. This is strongly related to the average length of the tocommit queue.
As that queue tends to get longer, the shift between the start moment of new transactions, and the actual
snapshot they are getting becomes bigger. In an ideal, irrealistic case where local and remote transactions
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Figure 2: K-bound with different k values.

could be applied in a null period of time, the snapshot taken would always be the one wanted, and the
k-bounding would make no difference whatsoever, except for the small overhead created by sending a total
order broadcast, and by processing the message.

In the plot 2.a we can see that the completion time varies very little, between 662 ms and 672 ms,
which is a negligible 1.51%, showing no difference between GSI and k-Bound SI. So, transactions that
successfully finish do not exhibit timing differences.

Regarding plot 2.b we observe that the abort time in the k-Bound level is smaller than that of GSI
transactions in the smallest values of k. Indeed, it is only 20% of GSI’s one for k = 0; i.e., for SSI
transactions. Note that in k-Bound level the abortion depends on the number of conflicting writesets that
have been applied whilst a k-Bound transaction is still running (see steps III.3.a and III.3.b, in Fig. 1).
Thus, with a single delivered conflicting writeset a 0-Bound SI transaction should abort, whilst in GSI such
abortion is delayed until certification time; i.e., until the transaction to be aborted requests its commit and
its writeset is broadcast and delivered in all replicas. Note that the MADIS block detector [13] can be tuned
for aborting as soon as possible GSI transactions, but we have used it with a long interval in these tests in
order to only ensure liveness, leaving abortion decisions to the replication protocol. As soon as the k values
are increased, the k-Bound abort time is also increased until it gets values like those of GSI, once the kthres

value is reached. Such value has been 3 in the tested MADIS configuration with the load described above.
Finally, plot 2.c shows that the abortion rate decreases as the k increases. The maximum value is

30.5% for SSI whilst GSI achieved 11% with the same load and transaction sequence. However, once the k
parameter exceeds its kthres value, the abortion rate differences are minor than 2% between both isolation
levels. Note that in this experiment we have used the same sequence of transactions for both isolation levels
for each given k value, but that sequence was different between different k values.

5.2 Combining SER and GSI
In the second experiment, GSI and SER transactions were mixed. System load was set at 16 TPS again.
Note that this also compares how a weak-voting (SER) and a certification-based (GSI) technique behave
when they are combined.

Plot 3.a shows both completion and abortion time of transactions as the proportion of GSI and SER
transactions varies. To begin with, we should look at the extreme values in the horizontal axis; i.e., using
only GSI transactions (value 0) or only SER transactions (value 100). Thus, if the load is composed of only
GSI transactions, their average completion time is 681 ms, whilst their average abortion time is 568 ms.
On the other hand, with only SER transactions both times are quite bigger: 1171 ms as their completion
time and 702 ms as their abortion time. This confirms the trend shown in [18], where certification-based
protocols were able to provide the best completion time. However, when both kinds of transactions are
mixed, the results are not so clear. Surprisingly, GSI transactions need more time than SER in both cases,
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Figure 3: Combining SER and GSI levels.

abortion and successful completion. In general, weak-voting management (SER) needs to hold transactions
for a longer time than a certification-based protocol, since they need to wait for a decision message that
is broadcast and processed once the delegate replica has determined the fate of such transactions. In
case of mixing transactions of both kinds, certification-based ones (in this case, GSI ones) need to wait
until their preceding weak-voting ones have been completely managed. This implies that the protocol
should know whether a SER transaction has committed or not before certifying any of its successors in the
tocommit queue. This is a first factor to explain the SER-GSI behavior regarding completion time. Besides
this, we should also consider that the SER level has an additional condition under which its transactions are
aborted, that is namely read-write conflicts. So, the longer a SER transaction life is, the more probable it
is that it will have a conflict with other transactions, being SER a level with more chances for conflict, the
probability that a SER transaction will survive decreases as the transaction lifetime increases, so average
completion times are shorter for SER. This constitutes a second factor for explaining the SER-GSI trends.

Regarding abortion rate, in plot 3.b we can see that the abort rate is higher for SER. This is what we
expected to find, since although both types of transactions mixed in these experiments perform the same
amount of random reads at the beginning, these reads are a source of conflict only in SER (this is done by
means of adding the clause “FOR SHARE” to the SELECTs).

Considering again completion time, in order to discern which of the two mentioned factors is more
important, we have repeated the previous experiment using write-only transactions; i.e., eliminating the
effects of the second factor presented above. The results can be found in Figure 4. As we can see, when
transactions do not read any item, the abort rate for SER transactions is similar to that of GSI ones, and as a
result, their completion time gets also smaller than in Figure 3. As a result, the gap between GSI and SER in
a given mix is very small (or even negative) in Figure 4 whilst it was close to 40 ms in all cases considered
in Figure 3. Note, however, that the extreme values follow the same trend shown above; i.e., in the case of
all SER transactions, their completion time (568 ms) is still bigger than that of the all-GSI-transactions one
(542 ms), and this is explained by the first factor introduced above.

To sum up, running SER transactions –that use weak voting– introduces time penalties into the system,
not only in SER transactions, but in every other transaction concurrently run. The execution time of the
reliable broadcast notifying the transaction fate does not defer the commitment or abortion at the delegate
replica. However, every other replica will have to wait for the message with the decision. This makes
the transactions in the tocommit list to experience an accumulative delay that grows significatively as the
proportion of serializable transactions increases.

5.3 Combining All Isolation Levels
In this experiment, transactions at every level offered by this protocol were concurrently run, in the same
proportion. The transaction rate varied from 8 to 22 TPS. For the k-Bound SI transactions we chose the
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Figure 4: Combining SER and GSI (write-only transactions).

levels SSI (k = 0), k = 1 and k = 2. Because of the reasons explained about the kthres, using a higher
k would provide little useful information on the behavior of this protocol; i.e., its results would have been
equal to those obtained with GSI.
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Figure 5: Combining transactions at all levels.

On the plot 5.a (completion time) we see that there are no great gaps between different levels.
In general, the trend is that SER and SSI provide the best results regarding completion time, and their

differences are minimal. On a second group, we can find 1-Bound and 2-Bound SI with the GSI levels.
Finally, GRC provides the worst results, since it demands local abortions and self-writeset application in
order to ensure liveness, as discussed in [16]. The explanation for this behavior is also provided by the
first factor described in Section 5.2 in order to explain the completion time in a SER-GSI mix: weak-
voting levels (SER, in this paper) introduce a penalization in all certification-based levels (all the other).
Additionally, the SER level is not affected by such penalization and artificially gets better results than all
other levels, since it gets its results in its delegate replica without waiting for the decision message delivery,
that penalizes all remaining transactions already present in its local tocommit queue. Differences among
all other levels are not significant and are very dispersed, since their completion times mainly depend on its
sequence number being assigned by the atomic broadcast protocol in the resulting total order. Some times,
they are able to get the best places, some other, they will receive the worst ones, and their completion time
always depends on their position in such total order.

Regarding abortion times (Figure 5.b), the shortest times appear in SSI (i.e., 0-Bound SI) transactions.
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K-Bound SI transactions abort as soon as their T.ID message is taken from the tocommit queue and con-
sumed, if conflicting writesets were committed in the meanwhile. Then comes 1-Bound SI and 2-Bound SI,
confirming the trend already shown in Figure 2.b. Later GSI, and SER providing the expected mix between
the results of Figures 2.b and 3.b. Finally, GRC provides the worst times, due to the same reason discussed
for its completion time: transactions need to be locally aborted first, being certified later on; when such
certification fails, the client is notified about their abortion, but this can not be done before.

Considering abortion rates (Figure 5.c), the experimental results confirm what was already presented
in previous figures about SER, k-Bound SI, and GSI and in [16] regarding GRC. Moreover, the results
show an increasing trend that directly depends on the load being supported, although such effect is bigger
in some levels (e.g., in 2-Bound SI it reaches a 371% relative increase) than in other ones (e.g., in GRC).
So, the strictest the isolation level is, the bigger its abortion level will be. As a result, SER generates the
biggest abortion rate, ranging from 22% to 46%. SSI is close to it and more dispersed, ranging from 16%
to 45.5%. In a second bunch, we can find 1-Bound SI (from 7.5% to 32.5%), 2-Bound SI (from 7% to
26%) and GSI (from 6.5% to 14%). Finally, the abortion rates of GRC range from 0.8% to 2%.

5.4 Combining All Levels without SER
Let us now show the effects of removing the SER level in the experiments described in Section 5.3. To this
end, the same loads used in such experiments are re-used here, but distributing them among five isolation
levels instead of six.
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Figure 6: Combining transactions at all levels, without SER.

Figure 6.a plots the commit time for such isolation levels. The trend is almost equivalent to that shown
in Figure 5.a; i.e., GRC obtains the worst times, but all other levels can be bunched together since no
clear winner can be found. Recall that such variation depends on the ordering being set by the group
communication service, and its results are random. Note however that an important conclusion can be
extracted from these results once they are compared with those of Figure 5.a: in that figure the times for
non-GRC levels ranged from 656 ms to 740 ms, whilst in this figure the values are comprised in the range
646 ms through 686 ms; i.e., they are a bit better. This shows again that weak voting techniques penalize
the results of certification-based ones, as it already happened in Fig. 3.a.

Regarding abortion time (Figure 6.b), the lowest times (i.e., best results) correspond to the most restric-
tive isolation level (SSI) and the worst ones to the most relaxed one (GRC). This can be easily explained
due to the evaluation conditions being used in each level, as already detailed above. No significant gain can
be observed in this case, comparing its results with those of Figure 5.b. Note that abortion times depend
only on the arrival rate for conflicting transactions, and this does not depend on the way each protocol
accepts transactions for committing; i.e., the criteria and steps being used for abortion is the same in all
levels, whilst the criteria and algorithm for accepting transactions was different between SER and all other
levels.
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Finally, the abortion rates shown in Figure 6.c follow the same trends already observed in Figure 5.c.
All isolation levels can be ordered in the same way: the most relaxed the isolation level is, the lowest
abortion rate can be obtained. A single difference can be found: all abortion rates are slightly lower in this
case.

5.5 Recapitulation
We have implemented and tested a consistency protocol that provides different isolation levels, allowing
each single transaction to request the required isolation guarantees, depending on the intended kind of
work. Whereas certification-based transactions running at different isolation levels can coexist without in-
terference (different certification rules are used for each level), the introduction of weak-voting transactions
(offering the SER level) strongly hinders the overall performance. Manual application of the techniques to
prevent serialization anomalies [7], or using automatic procedures [10] will certainly yield a better perfor-
mance.

The snapshot outdateness limitation given in the k-Bound SI levels makes the abort rate much higher,
especially in highly loaded systems. Being able to declare the readset with a finer resolution would reduce
such abort rates. The extreme case consists in using a 0-Bound SI level; i.e., a strict SI level that provides,
up to our knowledge, the first implementation of a practical strict SI replication protocol in a middleware
system, providing similar performance results to those of a fully serializable [1] (or SER) level. Such SER
level differs to those reported in other papers (e.g., [12, 14]) in checking also for write-write conflicts,
instead of only for read-write ones.

6 Conclusions
In this paper we have analyzed the performance of k-Bound, implemented as an extension of the SIRC
protocol, originally suited for executing GSI and GRC transactions. By supporting a variant of Snapshot
Isolation called k-Bound SI –which establishes a limit on the outdateness on the snapshot taken by trans-
actions wanting to commit– and a weak-voting serializable, k-Bound shows that it is possible to design a
replication protocol supporting multiple isolation levels using different transaction termination approaches
(both certification and weak voting).

The performance analysis has shown that SER transactions (using weak-voting and therefore needing
a final message broadcast from the delegate replica with the transaction outcome) slow down the whole
database system remarkably, affecting not only weak-voting transactions but also certification-based ones.
Our experiments conclude that weak voting scales worse than certification.

The k-Bound protocol offers Strict Snapshot Isolation. Despite its convenience for applications sen-
sitive to their read updateness, care must be taken when using k-Bound SI, since the coarse granularity
worked with (table level) severely hinders the abort rate. In addition to that, k-Bound SI requires explicit
declaration of the tables to be read.

The overall results show that multiple isolation levels can be supported at once in a single replication
protocol. This does not compromise the overall performance. Additionally, application programmers
can select the most appropriate isolation level for each transaction, reducing the abortion rate of those
transactions that can now be managed with relaxed levels.
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Muñoz-Escoı́. k-Bound GSI: A flexible database replication protocol. In SAC. ACM, 2007.

10
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[4] J. M. Bernabé-Gisbert, R. Salinas-Monteagudo, L. Irún-Briz, and F. D. Muñoz-Escoı́. Managing
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