Extending Mixed Serialisation Graphs to Replicated Enuinents

Josep M. Bernabé-Gisbert and Francesc D. Mufioz-Escoi

Instituto Tecnologico de Informatica, Universidad P&dnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

{jbgisber, fmunyo@iti.upv.es
Technical Report TR-ITI-ITE-07/20

TR-ITI-ITE-07/20

Josep M. Bernabé-Gisbert et al.Extending Mixed Serialisation Graphs to Replicated Envinents

Extending Mixed Serialisation Graphs to Replicated
Environments

Josep M. Bernabé-Gisbert and Francesc D. Mufioz-Escoi

Instituto Tecnologico de Informatica, Universidad P&dnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/20

e-mail: {jbgisber, fmunyo@iti.upv.es

Abstract

A Database Management System normally deals with a heteeogs set of transactions which do
not necessarily need the same isolation guarantees if &dkconcurrently. Centralised DBMSs can
manage this kind of situations since they normally use laokd every transaction implicitly requests
the necessary locks to ensure its isolation needs. Nevesthean replicated environments this issue is
not solved since the most used replication schemes can reddily adapted to such a heterogeneous
environment as in centralised ones. In fact, it is even hargrove whether a replication protocol is
ensuring every transaction isolation guarantees unlelgsone isolation level at a time is supported. In
this document we extend Adya’s Mixed Serialisation Grapkth wore isolation levels and apply them
to replicated environments to be able to know when a givelicatpn protocol ensures every transaction
guarantees.

1 Introduction

Nowadays, a lot of applications access and modify inforamestored in a database. These operations are
normally packed in transactions which are a sequence ofaaddvrite operations. In theory, a DBMS
must ensure every transaction ACID guarantees: Atomieillydir none transaction effects are applied),
Consistency (integrity constraints are respected), tggiga transaction can not see the effects of any
unfinished concurrent transaction) and Durability (all eoitted transactions changes must be persistent
in the database).

Nevertheless, DBMSes normally allow some relaxed versidisolation guarantee. The more relaxed
isolation level is used, the better performance will theayshave, but some kind of interferences between
concurrent transactions can appear. Obviously, somecgtioihs will tolerate a weaker isolation level but
some others will need a strong one. In fact, some times nataadsactions of the same application will
need the same isolation level. A database can also be addegsifferent applications with different
isolation needs. If our DBMS can manage the concurrent eietaf transactions with different isolation
level we will improve our system performance. If not, allrisactions will be executed with the strictest
isolation level needed and this will increase the averagpaese time of the whole system.

The most used centralised DBMSes use locks to control cosreey. With this technique, every trans-
action operation tries to obtain the required lock to itdaion level. If it conflicts with any other concur-
rent lock, its execution is blocked until that lock is releds

In replicated systems, the use of distributed locks is tqueesive and normally optimistic techniques
are used [12]. With them, a transaction is executed in one notil the commit request is received. Once
this happens, a validation step starts to decide whethertidnsaction has come into conflict with any
other one executed concurrently in other node. This vatidattep will depend on which technique is used
but normally is based on searching conflicts with previowsljdated transactions. In existing protocols,

this conflict detection supposes that all transactions geewded with the same isolation level. In fact,
replication protocols are normally oriented to only ondasion level (Snapshot Isolation or Serialisable,
in most cases). Moreover, the most used theory definesimolivel as what a history (transaction set
execution) must ensure and not a unique transaction so, anwe apply this theory in a heterogeneous
system supporting the concurrent execution of transastidgth different isolation level?

As an example, imagine a Read Committed (RC) transadfjaeading an itenx and, after that, a
Serialisable on&’; writing it but beforeT; commits:H = r;(x) w;(x) ¢; ¢;. Serialisable isolation level
does not allow an item to be written if another uncommittadsaction has read it (which is called a Fuzzy
Read [3]). Nevertheless, in Read Committed this phenominalfowed. So, is this history correct since
T; is RC oris incorrect sincé) is Serialisable?

Adya has been one of the few authors trying to deal with tisised1]. Nevertheless, his main objective
was to give new isolation level definitions independent tptagchnology and without falling in ambiguity,
in contrast to previous proposals [3]. In his work, Adya exte Serialisation Graphs (SG), presented by
Bernstein [6], as a way to represent dependencies betwaeseirtions. Isolation levels where defined as
properties to be accomplished in such graphs. Adya predafge some extension of his own graph. One
of them, named Mixed Serialisation Graph (MSG), able to @spnt dependencies between transaction
with different isolation level. Unfortunately, in MSG grap only the three basic Adya’s isolation levels
(PL-1, PL-2 and PL-3) were supported and no adaptation tlicegipn environments was proposed. In
fact, Snapshot Isolation (PL-SI in Adya work), an isolatiemel used in a lot of replication protocols,
was unsupported. Also, some classical problems in repicatike consistency between replicas, were
impossible to represent since only dependencies betwapsgétctions are considered and no information
about nodes is considered.

The main goal of this work is to extend and adapt Adya’s MSGefdicated environments.

In the following section, we will present the system modetdign this paper. In Section 3 we will
formalise transaction and history concepts and theircapid versions. In the next one (Section 4) we will
present Adya’s work which will be extended in Section 5 topsa Snapshot Isolation level and adapted
to replicated environments in Section 6. In Section 7, weudis about how can be proved the correctness
of a replication protocol supporting more than one isolatevel at a time. An example will be presented
in Section 8. Finally, in Section 9 the paper concludes.

2 System Model

Some definitions and concepts given and used in this work @diélation level definitions) are independent
on whether we have or not an underlying replicated systenthdee cases, we assume the existence of
some kind of database (replicated or not) composed by a #enas which can be read or modified. These
operations are invoked by a client using transactions. As@ationT; is a set of read; and write w;
operations executed atomically (a formal definition is givie section 3), that is, all or none of them are
executed. Every transaction ends with a special operatiiohacan be a commit; or an abortz;. The
commit operation makes persistentBllwrites and the abort one invalidates them. Witte) andw; (x)
we represent &; read or write operation over an item r;(x;) indicates that the value read is the final
modification ofr performed by transactidl;. w;(z;) represents thefi; last modification of:. If the item
value read or written is the I-th modification we represebwit; (x;;) andw;(z;). Finally, o; represents
a'T; operation without specifying its type.

When needed, we will representas$P, Vset(P)) aT; transaction read based on some predidate
V Set(P) represents all the items which are or can bé’is relations. This includes all items, existent or
not when the write is performed, that can be potentially &rddo resolveP, regardless of whether they
fulfill the predicate or not. A write based on a predicate Wwélrepresented as a predicate read followed by
every item write.

In the cases we refer explicitly to a replicated system, wipsge a fully replicated one composed by
N nodes. Since it is fully replicated, every nodg has a copy of every item, represented by“, stored
in a local DBMS. WithT* we represent the operations subsef’péxecuted inV,. Read, write, commit
and abort operations notation is also extended in the sameswaor examples? (w;‘) represents &; read
operation executed in nodé€, over the last modification af; performed byl; in N,. Since all operations

performed in a nodév,, will be over N, item copies, the last example will be also represented @s;).
We suppose that every local DBMS provides locally everyasoh level supported by the whole system.
Replication is provided by a middleware deployed on top ef i BMS. This middleware has access to a
group communication system with atomic broadcast [9] supfow uniform atomic broadcast if failures
are considered).

Notice that this terminology is the same used by Adya in hiskjjb] but extended to easily represent
transactions execution in replicated environments.

3 Definitions

In the system model we have given a brief idea of some basiceqts. In this section we will formalise
them and give some other ones useful to this work.
First of all, we have formalised Adya [1] transaction deforitas a sequence of operations:

Definition 1 (Transaction) A transactionl’; [1] over a set of operations is a total order which:
e c, €T, Va;eT;
o ¢, eTiffa; & T;
o If¢; (a;) € Ti,Vo; # ¢ (a;) € Ty, 0 < ¢; (a;)
e Givenol;,02; € T;,0l; < 02; V 02; < 0l;

A committed transactiois a transaction whose final operation is a commit. In the saayeanaborted
transactionis a transaction which ends with an abort.

Given a set of transactions, its execution result depends on the order the transacsiods$heir oper-
ations are executed. This is normally represented as aryidtde have taken the definition given in [6],
adapting it to fit with the previous transaction definition.

Definition 2 (History) A history H [6] over a set of transaction§” = T3, ..., T, represents a possible
execution of T. Formally, a history is a partial ordery where:

e ForeveryT; € T and every; € T;,0; € H.

e ForeveryT; € T and evenw;,0.2 € T; If 0;1 < 0;2INT;, 051 <gr 0;2in H.

o Ifri(z;) € Hthenw;(x;) € H Aw;(z;) <m ri(z;)).

e Yo,(z),0;(x) € H where at least one of them is a write; (z) < 0;(x) V 0;(z) <m 0;(x).

Notice that a History is a partial order and two operationy mat be ordered. For example, two read
operations of different transactions are never ordereeh éithey are over the same item, since the result
of every one of them never depends on the other one. For exaimgine two concurrent transactions
both reading and writing the item A possible execution history can be:

[ri (o) (1)

rj (o) —w;(z;)

If it is possible, we will represent this sequentially to reatke notation more understandable. For
example, the previous example will be normally represeated

ri(xo)rj (zo)wi(2;)w;(2;).

In a fully replicated environment, a transaction is inigidbrwarded to one of the nodes, namledal
node Nevertheless, all committed transaction writes are apptventually in all nodes. Therefore, given
a transactiofT;, it can be executed only in one node if it is read-only or adxrin other case, at least all
T; writes will be applied in all nodes. We defineldsede Transactioff’* theT; operations subset executed
in nodeN,:

Definition 3 (Node Transaction) Given a transactioff; and a nodeV,, we definel’/* as:
e T¢is asubset of;
o T £0DAci(a;) € Ty:c¥(al) € TS
o If r;(x) € T; ANT;is local toNg: ¢ (x) € T
o If 0;1 < 0;2inT;, andofy, of, € T} theno}y, < oy € T
o If ¢; € T;,Vw;(x) € Ty wi(x) € T

Remember that not all transactions must be executed in ddsi@nly committed non read-only ones).
We wiill refer asT'® the subset of” executed inV,.

We can also define a new kind of replicated histories in a aimvlay as Bernstein does in [6]. In our
work these histories will be named as Replicated Historid®-blistories.

Definition 4 (R-History) An R-HistoryH.,. over a transactions séf and a nodes seV is a partial order
<, where:

o Foreveryl? of T; € T and everyw{ € T}, of € H,.
o Foreveryl? of I; € T and every$,, 0%, € T2 If oy < 0% € T#, 0% <y 0% € H,.
o If ri(x;) € H, thenitexistavj(z;) € H, such thatw§(z;) <, r{(z;).

e VN, € N AVo}(x),0f(z) € H, where at least one of them is a writg (z) <, of(x) V of(z) <,
of(x).

Then, a replicated history, is in fact, the union of every ofi¢he local histories produced by every
node.

4 Mixed Serialisation Graph (MSG)

Since ANSI proposed its SQL isolation level definitions, gamthors have proposed their own ones trying
to eliminate ANSI weaknesses as long as its strengths arte Kepe of the most referenced works is the
revision made by Berenson et al. [3]. This work avoids the igoibies of ANSI definitions at the cost of
losing implementation independence since their defirstimere based on locking techniques. To solve
this, Adya et al. [1] proposed a new set of definitions tryindpé precise and implementation independent
at the same time. To do that, Adya defines a new kind of depegdgnaph (hamedirect Serialisa-
tion Graph), an extension of th&erialisation Graphused by Bernstein in [6], to represent dependencies
between transactions in histories.

In a given historyH DSG, every vertex represents a committed transactioH iand every edge a
dependency between two transactions. There are three éirnpendencies:

¢ Directly Read-Dependg; directly read-dependsnT; if r;(x;) orr; (P, V Set(P))Az; € V Set(P).

¢ Directly Write-DependsT; directly write-dependsn T; if w;(«x;), w;(x;), wi(x;) < w;(x;) and
does not existuy (zr): wi(x;) < wr(zr) < wj(z;).

¢ Directly Anti-DependsT; directly anti-dependsnT; if r;(x¢) A w;(x;) A ri(zo) < w;(x;) and
does not existuy (zx): mi(z0) < wr(xr) < wj(z;). The same holds if;(P, V. Set(P)) < w;(z;)
andz, € VSet(P)).

Notice that we have used the definitions given in [2] instefdti@se proposed in [1].
These dependencies are represented in the DSG as follows:

e T; directly read-dependsn T;: T; *5 T;

e T; directly write-dependsnT}: T; *=5 T;

e T; directly anti-dependenT}: T; =% T;

In general, we will refer aslependencyvhen we do not need to differentiate between direct read-
dependency or direct write-dependency.

As an example, consider the following histolfy = r;(zo)w;(z;)r;i (yo)w; (y;)w;(x;). The associ-
ated DSG will be:

Figure 1: DSG offH;

Adya uses DSGes to define his own basic isolation level defirstPL-1, PL-2 and PL-3. Given a
history H:

e PL-1: DSG(H) can not have any cycle composed by direct vai#gpendencies.

e PL-2: (a) A committed transaction can not read a value writig an aborted one (aborted value
in the sequel), (b) for every;(z;;) € H, T; commits in H, does not exist(x;.,,) with [< m
(intermediate value), and (c) DSG(H) can not have any cyafepnsed by dependency cycles.

e PL-3: PL-2 restrictions extended to any cycle, including-dependencies.

These definitions substitute old Read Uncommitted (RU), R€CSZerialisable (S) respectively, but are
not exactly the same. As an example, PL-2 isolation leveldaker that RC [1, 4].

Notice that this abstraction does not include anythingeeléo Snapshot Isolation (S1) and this level is
the one ensured by most replication protocols ([7, 10, 14 b its optimistic orientation. To support it,
Adya introduces an extension of DSG, named Start-ordealgtion Graph (SSG). This graph includes
all DSG edges and vertices plus start-dependency edgesn @istoryd and1;,7; € H, T; start-
depend®nT; if ¢; <y b;.

Given a history H, H is a PL-SI history if the following conidis hold:

e His a PL-2 history.

e For any dependency edge from any transacfipto any otherT’;, it exists also a start-dependency
from T} to T;.

e Thereis notany cycle in SSG composed only by dependencgeaigiwith a single anti-dependency
one.

Notice that normally the isolation level supported in regtion protocols is not Sl but Generalised Sl
(GSI) [7]. GSI avoids reads to be blocked in replication pouts, nor like strict SI ones [8], by allowing a
transaction to see an older snapshot. In these cases, thiestarefers to the moment the snapshot belongs
and not to the time the first transaction operation is exetutethis paper we will use Sl to refer to both
kinds of protocols.

To study the correctness of a history with different isaatlevel transactions, Adya introduced the
Mixed Isolation Graph concept. This graph is based on DSG&$865). Given a history H, a MSG(H) has
the same vertices than DSG(H) and a subset of DSG(H) edge$S@(B) edge from a given transaction
T; to anothefl); is also in MSG(H) if:

e itis a direct write-dependency edge.
e itis a direct read-dependency edge dnds a PL-2 or PL-3 transaction.
e itis a direct anti-dependency edge dfds a PL-3 transaction.

A history H ensures every transaction isolation level iMSG(H) has not any cycle and there are not
any reads of aborted or intermediate values.

Again, this abstraction does not include Snapshot Isaidd) transactions and, in this case, Adya did
not make any extension to support it. In fact, it is not cleawltan this extension be made. For example,
imagine a cycle with an anti-dependency starting from a Ptrte®saction. Is it valid since PL-SI allows it
or is it invalid since PL-3 does not?

In conclusion, Adya’s proposal is a good starting point idré is still important work to do. In
the following section, we are going to revisit Adya’s MSG défons in order to be able to support SI
transactions. In the next one, we will adapt it to replicat@gironments in order to be a useful tool to
decide whether a given replication protocol produces Vaiktbries.

5 Extended MSG

In a first step, we will give our own Sl definition using DSGsteed of SSGs. With this definition, we will
extend MSG graphs to allow Sl transactions.

5.1 Sllsolation Level
Given a history H, this history is Sl if:
(a) Itis PL-2.
(b) A transactiori; always sees all values written by transactions committéorbd’; start.
(c) Forany dependency edge from any transactipto any othefl’;, T; commits beford’; starts.

It is easy to prove that Sl and PL-SI are equivalent.
A Sl history is also PL-SI. By absurd reduction, suppose that a Sl history exists wisatot PL-SI. A
history is not PL-SI if either:

e Itis not PL-2: if it is not PL-2, it is not Sl by definition, or

o If any edge exists from any transacti@hto any otherl’; then7; does not commit beforg; starts.
If this happens, condition (b) of our previous Sl definitigraiso violated; or, ...

e There is a cycle with a unique anti-dependency edge. Imaihiaethe cycle is composed by
T1;Ts;...; Ty; T1 and the anti-dependency exists frdp to 7;. As we have seen in the previous
point, for all T;, T; 1 joined by a dependency edge we know that b;,1. Since the path frorif;
to T, is joined by dependency edges we know that< by < co < ... < b, < ¢, SO,¢1 < by,.
Since there is an anti-dependency edge fiignto 71, T,, has read a value overwritten Gy but this
is not possible since, < b,, and the second Sl condition says tiigtmust see all’; updates.

So, a Sl history is also PL-SI because we have reached to eadaiion.
A PL-SI history is also SI. Again by absurd reduction; suppose that a PL-SI historytexiiich is not Sl.
This time, a history is not Sl if either:

e Itis not PL-2: ifitis not PL-2, it is not PL-SI by definition.

e A transactionl; does not see at least one value written by a transaction cibetieforel’; start.
If T; does not see a value written by a committed transadtiowe will have an anti-dependency
edge fromT; to T; in SSG. But we said thaf; has committed befor#; starts so there is another
Start-dependency froffi; to T; which closes a cycle with a unique anti-dependency edgerasidst
forbidden in a PL-SI history, or

¢ For any dependency edge from any transaciipto any otherl;, T; commits beforel; starts. This
restriction exists also in PL-SI.

So, again we have reached to a contradiction and we can sayltha and Sl isolation levels are
equivalent.

5.2 Extended MSG

The main advantage of our Sl definition is that it is based oG @Ephs instead of on SSG and forbids
the same cycles than PL-2. This makes MSG graphs easy taddrterder to support Sl transactions. An
Extended Mixed Serialisation Graph (EMSG) is defined as¥edt

Given a history H, an EMSG(H) has the same vertices than D$&tH a subset of DSG(H) edges. A
DSG(H) edge from a given transacti@h to anotherl’; is in EMSG(H) if either:

e itis a direct write-dependency edge,
e it is a direct read-dependency edge dfidis PL-2, PL-3or Sl transaction, or

e itis a direct anti-dependency edge aifidis a PL-3 transaction.

A history H ensures every transaction isolation level ifEfgISG(H) has not any cycle, there are not
reads of aborted or intermediate values, ever{’'Sransaction sees all values written by any transaction
committed befordl; start and, for every dependency edge between a transdttiand a Sl transaction
Tj, c; < bj.

It is easy to see that, given a history H without Sl transasidMSG(H) ensures all H transactions
isolation level iff EMSG(H) ensures it.

6 EMSG in Replicated Systems

As we said in Section 2, a replicated system is composed by &t sedes. Every node must eventually
have a copy of every item value written in the database. Thdies that all write operations of committed
transactions must be transmitted to all nodes but reads egretiormed in only one node. So, given a
committed transactioff;, every nodeN, will execute a subset df; operations, named?, with at least
all its writes.

So, given a sef’ of transactionsH, will represent the history produced iN, due toT* execution
(remember thai'* is the subset of” executed inV,). As we have seen in Section 3, we represent/as
the union of all nodes histories. WitH,., we can construct a graph G similar to EMSG, named RMSG, in
the following way:

e Every committed transaction ifi is a vertex in G.

e Thereis an edge fro; to 7} in G if in at least one EMSG{,) exists an edge frori;* to T7".

A RMSG(H,) is valid if there is not any cycle and, in any nod&: (a) no committed transaction
reads any aborted or intermediate value, (b) for every Sisaation?;, 7;* sees all values written by any
transaction committed befofE* start and, (c) for every dependency edge fronio a Sl transactiofl’;,
in any node, with this dependency;’ < b7.

7 Proving Correctness of Replication Protocols

We say that a replicated system executihnof a set of transactioris is correct if the following conditions
hold:

e Completeness: all committed transaction operations arewggd in at least one node.

Total replication: all nodes execute all committed tratisaonrites.

Consistency: when executing a set of transactibnsall nodes eventually reach to the same final
state.

Isolation: all transactions isolation level guaranteesarsured.

Equivalence: the result of whole system executiofi'a$ equivalent to a correct centralised execu-
tion of T'.

So, a given replication protocol is correct if all of its ex¢ions are also correct, that is, all conditions
are held in any possible history produced by the protocadlhigisection, we are going to study how every
condition can be proven to obtain a list of what must be madmast cases to ensure a given protocol
correctness.

Completeness should be easy to prove because in all schema@saction is totally executed at least
in one node.

To ensure the total replication condition, we have to prina &ll nodes commit the same transactions.
In optimistic replication protocols we normally can enstlis by proving that all nodes receive and validate
the same writesets.

Consistency is ensured by proving that all nodes apply thesarites, which has been proved in total
replication condition, and that all transactions applyftioting writes (writes over the same item) in the
same order. If two nodes apply two conflicting writes in diffiet order, it must exist a cycle in RMSG in-
volving those two write committed transactions. As an exkyipmagine a system composed by two nodes
(A and B) executing three transactions. Every one of thertesithe same item. Both nodes execute all
writes but in different ordersH 4 = w;(z;)w; (z;)wg (zx)cicjer aNdHp = w;(z;)wi (zk)w; (x;)cjcc;.
The EMSGs associated to these histories are:

Figure 2: Node A and B EMSGs

which produce a cycle when the RMSG is constructed:
Figure 3: RMSG

So, if we can prove that any cycle is impossible in RMSG anal tegplication is guaranteed, consis-
tency will be ensured.

To ensure all transactions isolation guarantees, we canaityrrely (as replication protocols normally
do) on supposing that the local DBMS ensures those isoldgiggls locally. In this case, some effects
like reads of aborted or intermediate values will be dirgeatloided by the local DBMS. Proving that any
cycle is impossible in RMSG will do the rest except if Sl leielsupported. In such case, we need to
ensure also that every Sl transaction sees all updates dtedrbiefore its start and never observes those
uncommitted. Recall that the Sl validation process coséisfinding conflicts with writes of previously
validated conflicting transactions. Since two transadtifnand?’; conflictif b; <, ¢; ande; <, b;, this
implicitly defines a global clock able to order at least adirsind commit timestamps of all transactions.
Finding this global clock will help to prove Sl transactiosslation correctness. We will see that in the
next section example.

So, ensuring consistency and isolation conditions caness is hard related on ensuring the absence
of cycles in any RMSG produced by the protocol. To prove thiscan use what we define mgreasing
property. For any edge, say froffi; to 7}, an increasing property is something which is always bigyger
T; than inT;. If this happens, a cycle is impossible since it would drisg¢aia contradiction (a transaction

is bigger and lesser than some other at the same time). Aseane, take now the cycle in Figure 3 and
imagine that every edge implies a commit ordering, thatosahy edge, say frof; to T, ¢; <, ¢;. We
will conclude thate; <, ¢; <, ¢, <, ¢;, Which is a contradiction.

About equivalence, there are two possible equivalenceitefia: view equivalence or conflict equiva-
lence. In the first case we need to prove that the final stateisa¢me in all nodes (which is already ensured
in our consistency condition) and all reads see the samesatall nodes in which are executed. If reads
are executed only in one node, this is automatically ensukbdut conflict equivalence, we need to prove
that if some operation leads to an edge in some node EMSGathe sdge will appear in all nodes where
the operation is performed. Again, if every transactiordseare executed only in one node and consis-
tency is guaranteed, equivalence is automatically pro&ezkntralised one-copy equivalent history can be
constructed maintaining every operation dependencie$I8® and adding all non-dependent operations
respecting only the ordering in its own transaction.

Summarising, to prove the correctness of a replicationquaitwe normally must:

e Ensure that at every committed transaction is totally etextin at least one node.
e Ensure that every local DBMS ensures locally all the isolatevels we want to support globally.
e Ensure that all nodes receive, validate and apply the saiiteswr

e Find an increasing property to ensure that any cycle canappeny possible RMSG produced by
the protocol.

e If Sl is supported, define a global clock and ensure that eSétyansaction sees all and only com-
mitted values of transactions committed before its start.

8 Example

In this section, we will take the SIRC protocol [11] to showwhour theory can be used to prove its
correctness.

8.1 SIRC Protocol

SIRC protocol was presented in [11] as an adaption of the GSIR-SBD protocol presented in [10] in
order to support also GLRC transactions [5] (equivalent tty&s PL-2). This protocol supposes that all
nodes have a local DBMS supporting RC and Sl. It also assumeesxistence of a group communication
system able to broadcast messages in total order.

In SIRC, every transaction, for examglg is initially executed in its local node\;). As a start time for
T;, N; assigns the number of committed transactions dndest operation is received. Once the commit
request arrivesy; gathersl; writeset (/.5;) and broadcasts it to all active nodes (including itselfyielo
the total order guarantees, all transactions will deliVewatesets in the same order. Once a node delivers
a writeset, it is validated to decide if it conflicts with anther concurrent transaction and must be aborted
or can commit. GLRC transactions are directly validated| @%s are validated only if its writes do not
conflict with previous validated concurrent writesets. AtesetIV/S; is concurrent with another previous
validatedWS; if at least one item is written by both and end timelgfis greater than start time df;.
End time of a transactiol; corresponds to the number of validated writesets whefltlome is validated.
Once a writeset is validated, it is enqueued in a list whichdssumed by an asynchronous process in
validation order following a FIFO criterion. Once a writég&consumed, it is automatically applied in the
local database, aborting any local conflicting transastion

8.2 SIRC Correctness Proof

First of all, we need to prove that at all committed transactperations are executed. Notice that every
committed transaction is totally executed in its local nate this property is ensured.

In a second step, we need to be sure that all nodes delivatataland apply the same writes. Total
order multicast ensures that all writesets are received iacive nodes in the same order. Once a node
deliversW.S; it will validate it. If it corresponds to a RC transactioiy,S; is automatically validated. If
it is Sl, it will be validated against concurrent previousblidated writesets. If this process is identical in
all nodes, all of them will validate the same writesets. 8ialt nodes validate writesets in delivery order,
and validation process depends, in the worst case, on piglyivalidated transactions, is easy to see that
all nodes will validate the same writesets. Neverthelesstter proof can be found in [11]. Finally, all
validated writesets are applied in validation order sopalles deliver, validate and apply the same writes.

In a third step, we need to define an increasing property taddasygrles in all RMSG. In this case,
we will use the committing ordering as our increasing proyperfo do that, we need to prove that every
dependency edge from any transactinto any otherI; implies thatc; < c¢;. We will prove first that
this happens with any write-dependency and, in a second wiépread-dependencies. Since SIRC do
not support serialisable, we do not need to take care abdutiependency edges. Remember that all
nodes apply and commit validated writesets in validatiafear Therefore, ifiV.S; overwrites some other
transactiori¥ .S in one node, it will be applied in such order in all nodes anet ¢; in the whole system.

Nevertheless, reads are only performed in its local nodeceSocal DBMS ensures RC and Sl locally,
if a Sl transactioril; reads from anothef;, 7; must have committed beforg; starts in this node so,
c; < by < cjinit. If T} is not a read-only transaction, its writeset will be broada all nodes. Since all
nodes deliver, validate and apply writesets in the samergttey will applyT; writeset beforél’; one so,
inall nodesz; < ¢;. If T is RC, since local DBMS uses locks, it will be locally blocketil 7; commits.
After that, 7); will continue its execution and eventually commits 8p,< ¢; locally. Again, if T; local
node has applied; updates beforg; ones, all nodes will apply its writesets in the same ordergse c;
in all nodes and we have our increasing property:

Increasing property: every dependency edge leads to a commit ordering.

Finally, we need to find our global clock and ensure that attr&isactions see all committed values in
its start and do not see any nhon-committed value.

Recall thatT; start time corresponds to the number of transactions cotaehii 7; local node when
T; first operation arrives. Furthermor€; end time corresponds to the number of committed transagtion
whenT; is committed ([11] proves that this is equivalent to the nemdtif validated transactions whémn
is validated). Notice that this conforms the global clocktirs protocol! Therefore, iff; start timestamp
is greater than another transactifpend timestamp is becau3g sees, when it starts in its local nodg,
commit and its updates must be includedinocal timestamp (local DBMS ensures it). This proves the
first Sl specific condition. Iff; end timestamp is greater thdn start timestamp]’; commit increment
can not be included iff; start timestamp which implies th@} does not se&’; commit when it starts in its
local node and’; updates are not seen (again, local DBMS ensures it). Thizesithe second condition
(a better proof can be again found in [11].

Notice that this protocol works if the underlying DBMS supisdS| and RC locally.

9 Conclusions

As we have seen, some applications do not need to ensureex liglation level in all of their transactions.
If a DBMS can take advantage of this property, performancelmincreased since higher isolation level
checks are only applied when needed and not over all transact Nowadays, centralised DBMS can
easily support that kind of executions due to the use of lodles/ertheless, in replication systems this is
still an unsolved task because replication protocols armally based on optimistic approaches and their
techniques complicate the validation process when moredha isolation level at a time is supported.

In this work, we have taken Adya’s Mixed Serialisation Gragttended it to support Snapshot Isolation
level (ensured by a lot of replication protocols due to itimgic optimistic orientation) and used with one
copy conflict equivalence definition to be able to decide Wweea given replication protocol ensures every
transaction isolation level guarantees.

10

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

A. Adya. Weak Consistency: A Generalized Theory and Optimisticdmphtations for Distributed
Transactions PhD thesis, Massachusetts Institute of Technology, MA8&9.

A. Adya, B. Liskov, and P. O’Neil. Generalized isolatitevel definitions. INEEE Intnl. Conf. on
Data Engineeringpages 67—78, San Diego, CA, USA, March 2000.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Naiid P. O’'Neil. A critique of ANSI SQL
isolation levels. InProc. of the ACM SIGMOD International Conference on Managehof Data
pages 1-10, San Jos€, CA, USA, May 1995.

J. M. Bernabé-Gisbert. Providing support for data iegttion protocols with multiple isolation levels.
In OTM 2007 Workshop¥/ilamoura, Algarbe, Portugal, November 2007. Springer.

J. M. Bernabé-Gisbert, J. E. Armendariz-Iiigo, R.Jd&an-Marin, and F. D. Mufioz-Escoi. Providing
read committed isolation level in non-blocking ROWA datsdeeplication protocols. I#CSO pages
145 - 157, Torremolinos, Malaga, Spain, June 2007.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Gaaal. Concurrency Control and Recovery
in Database Systemaddison-Wesley, 1987.

S. Elnikety, F. Pedone, and W. Zwaenepoel. Databasécetjon providing generalized snapshot
isolation. In24th IEEE Symposium on Reliable Distributed Systgmges 73—84, Orlando, FL,
USA, October 2005.

J. R. Gonzalez de Mendivil, J. E. Armendariz-Ifiige,D. Mufoz-Escoi, L. Irin-Briz, J. R. Gar-
itagoitia, and J. R. Juarez-Rodriguez. Non-blocking ROMbtocols implement GSI using Sl repli-
cas. Technical Report TR-ITI-ITE-06/04, Instituto Teagiob de Informtica, Valencia, Spain, May
2007.

[9] V. Hadzilacos and S. Toueg. Fault-tolerant broadcastsralated problems. In S. Mullender, editor,

[10]

[11]

[12]

Distributed Systemghapter 5, pages 97-145. ACM Press, 2nd edition, 1993.

Francesc D. Mufoz, J. Pla, Maria Idoia Ruiz, Luisnrédendrik Decker, José Enriqgue Armendéariz,
and J. R. Gonzalez de Mendivil. Managing transaction @iefih middleware-based database repli-
cation architectures. IBRD$2006.

R. Salinas-Monteagudo, J. M. Bernabé-Gisbert, F. mifibk-Escoi, J. E. Armendariz-Iiigo, and
J. R. Gonzalez de Mendivil. SIRC: A multiple isolation ééyprotocol for middleware-based data
replication. In22nd International Symposium on Computer Information i8mg Ankara, Turkey,
November 2007. IEEE-CS Press.

Matthias Wiesmann and André Schiper. Comparison tdlatase replication techniques based on total
order broadcastEEE Trans. Knowl. Data Eng17(4):551-566, 2005.

11

