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Technical Report ITI-ITE-07/17

e-mail:{mendivil,enrique.armendariz,joserra}@unavarra.es, fmunyoz@iti.upv.es

December 14, 2007

Abstract

This paper provides a formal specification and proof of correctness of a basicGeneralizedSI certification-based data
replication protocol for database middleware architectures. It has been modeled using a state transition system, as well
as the main system components, allowing a perfect match withthe usual deployment in a middleware system. The proof
encompasses both safety and liveness properties, as it is commonly done for a distributed algorithm. This approach enables
the analysis of multiple specific variations on this basic protocol, that have been included in previous works. Furthermore, a
crash failure model has been assumed for the correctness proof, although recovery analysis is not the aim of this paper, this
allows an easy extension towards a crash-recovery model support in future works. Notice that most of previous works have
focused in the safety part, here it is considered the liveness part too, in particular, the uniform commit: if a site has committed
a transaction the rest of sites will either commit it or have crashed.

1 Introduction

Replication is a common technique for improving the availability of both data and processes. Data and their associated
processes are very important for many kinds of enterprise services. So, database replication has received a lot of attention in
the academical field for years [47, 11, 2, 37, 49, 26, 35] and also by thedatabase system(DBS) companies [34, 48] although
the latter tend to use more conservative and safer strategies.

Recent papers [50] have compared the performance of different database replication protocols and have shown that those
based on a certification strategy and total-order broadcastof updates performed by a transaction, featured by a Group
Communication System (GCS), provide the best performance (i.e., minimal response time) in most system configurations.
Certification-based protocols rely on the local execution of the transaction operations on its delegate replica. When the client
application requests the transaction commit, its updates (denoted as writeset) and its read operations (respectively, readset)
are collected in two different sets and multicast in total-order to all replicas. Once such sets are delivered, they are certified
against a historic list of previously committed transactions and, if no conflict arises, the transaction is applied and committed
in each replica. Otherwise, the transaction is aborted in the delegate replica and discarded in the other ones. Notice that the
certification process is symmetric and can be independentlyexecuted in each replica, providing the same results. Due tothis,
no additional voting phase is needed to decide whether a transaction should commit or abort.

Despite their short transaction completion time, certification-based replication protocols are not a clear best option for
managing transactions in the serializable isolation level, since readsets need to be collected and propagated in such level.
However, things are quite better in thesnapshot isolation[7] (SI, for short) level: readsets are not needed in the certification
process when a multi-version concurrency control mechanism is used by the underlyingDBS. AlthoughSI is more relaxed
than serializable there have been some works [18] that describe how to ensure serializable executions using theSI level. So,
multiple replication protocols [26, 51, 30, 17, 33] have been published using such combination: a certification-based protocol
providing the snapshot isolation level. There are good reasons for this: besides a shorter completion time (since readsets are



not collected, nor transferred, nor evaluated in the certification process), the isolation achieved is almost as strictas in the
serializable case, and read operations are never blocked. Additionally, when aGeneralizedSI (GSI) level is used, as proposed
by [17] and followed by most other academical works onSI, transaction start does not need to block [19] further improving
the protocol performance.

In order to improve their portability andDBS independence, many replication protocols [43, 3, 12, 39, 5,30, 35, 22, 33]
have been implemented in a middleware [9] layer. This penalizes their performance and demands some additional support
at the middleware layer for managing several protocol details that could have been easily implemented at theDBS core
(concurrency control, readset and writeset collection, . .. ). This is partially overcome with the help of standard mechanism
for reusing the underlyingDBS support at the middleware layer, as [33] describes for writeset conflict detection, and by
the middleware enhanced portability. Thus, without many efforts, the middleware system can work in a heterogeneous
environment where differentDBSs are being used in the system nodes.

Actually, most of replication protocols [33, 30, 17, 51, 23,14, 40] that provideGSI, or other different SI flavors, for
replicated environments are certification based [33, 30, 17, 51] with several enhancements to increase their performance, e.g.
concurrent execution of disjoint writesets as in [30], thatdo not carefully pay attention to maintain their correctness. Parallel
to this, most of them ensure that they can afford replica failures but, to the best of our knowledge, lack of any correctness proof
about this fact; even for the most intuitive and simple scenario such as the crash failure. Due to these two important aspects,
in this paper we propose a formal specification and correctness proof of a basic certification-based replication protocol
providingGSI. This has been done by way of a state transition system, as presented in [46]. This formalism has permitted us
to represent independently each component involved in the middleware database replication system (i.e. theDBS, theGCS
and the Replication Protocol (RP) modules) and the interaction and composition of their associated events. For instance, this
assures that the interaction between the replication protocol and the underlyingDBSonly uses a few standard operations, and
that no core-dependentDBS facility is available to the replication protocol.

In this work, it has been followed the traditional approach on identifying and verifying safety and liveness properties
for a distributed system. Moreover, there are some additional practical issues that must be considered for ensuring liveness
properties such as in the case of application of an already certified writeset. Under this scenario, this writeset must be
committed and this will not be possible unless theRPdoes not take some control over transactions already being executed in
theDBS. We are not aware of previously research works that have taken these side-effects into account.

RP follows the basic certification-based approach [50]; no further optimization has been considered since our aim is to
emphasize several correctness details throughout all the work. A transaction is firstly executed at its delegate replica (that
transaction is denoted as local) and, thus, obtains its latest snapshot version which does not necessarily be the latestsystem
version. When the commit operation is requested, its associated writeset is sent, along with its snapshot version, to all
available replicas using the total-order broadcast [13]. Upon the delivery of the message, each server executes a deterministic
certification phase that decides the final outcome of the transaction (either aborted or committed). In the case ofGSI [17], RP
maintains the sequence of already certified transactions that lets it to determine whether it intersects with any of the writesets
of transactions with version numbers higher than the snapshot gotten by the delivered writeset. If so, the transaction needs
to be aborted. Otherwise, all intersections are empty, the writeset can be committed and is applied as a remote transaction (it
only needs to be committed at its delegate).

Thus, the contributions of this paper are: (a) formal specification of a basic certification-basedGSIdata replication protocol
along with the rest of components of a middleware architecture (such as theDBS and theGCS), (b) its formal correctness
proof assuming a crash failure model, distinguishing safety and liveness properties as in any other distributed algorithm, (c)
to provide the basis –using the two previous issues– for studying several variations of this basic protocol that enhanceits
performance without incurring in the violation of its correctness, and, (d) to ensure that the formalization given is appropriate
for a middleware architecture.

The rest of this paper has been structured as follows. Section 2 describes the system model and the formalism being used
in the protocol specification. Since a middleware architecture is being assumed and such middleware needs some underlying
services, Sections 3 and 4 describe the two system components providing such services: theDBS and theGCS, respectively.
Later, Section 5 specifies and comments the proposed replication protocol. Such protocol is proven correct in Section 7,some
related work is described in Section 8, and the paper is concluded in Section 9.

2 System Model and Presentation Formalism

The system (Figure 1) considered in this paper is an abstraction of a middleware database replication architecture. Thesystem
is composed by|N | sites (or nodes), beingN the set of site identifiers, which communicate among them using aGCS [13].
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Each siten ∈ N contains a Database System (DBSn) including a copy of the entire database schema. We assume a fully
replicated system where each site runs a Replication Protocol (RP ). Figure 1 describes how components interact with each
other at a site.T is the set of transaction identifiers. Each transactiont ∈ T contains a unique identifier that points out the
site where the transaction is firstly started (its delegate replica) denoted ast.site ∈ N .

We distinguish among three different components in our system. Besides the underlyingDBSn each siten ∈ N has a copy
of RP being used and has also access to the system-wideGCS. Note that transactions are started by client applications, but
the execution flow of a transaction is managed by theRP component and no user application component is distinguished. So,
client actions are delegated on theRP and the latter is the agent that starts transactions in theDBSn component. Modeling
client applications introduces no benefit, since our aim is to prove that theRP actions comply with the correctness criteria of
a certification-based replication protocol, and other client actions are not relevant for this.

In this paper, we will assume that databases provideSI [7]. Regarding failures, we assume no Byzantine failures occur;
i.e., sites do not behave in a malicious manner. A site behaves according to its specification until it possibly crashes. After a
crash event components of a site stop their activity. We assume apartially synchronous distributed systemin which up tof

sites may fail; i.e. there is at least|N | − f correct sites. A site iscorrect if it never fails, in other case it is afaulty site. The
setCorrect(N) holds all correct sites in the system. This set does not necessarily be the same or known in advance, it merely
simplifies the way certain properties are specified.

We also assume that theGCSis able to guarantee theatomic broadcast[21] communication primitive with the additional
property of preventing the contamination phenomenon [15].Informally, this means that if a site delivers a messagem′ after
m then another site deliversm′ only afterm has been delivered. Therefore, there are no gaps in the delivery process at any
site.

TheRP coordinates the execution of transactions among differentsites to ensure the replica consistency and to guarantee
theGSI level [17]. In the next subsection, we overview the formal framework used to specify components and to define the
RP .

Figure 1: Main components of the system.

2.1 The Formal Framework

Figure 1 shows our system as a set of interacting components.Our formalization is based on the work of Shankar [46], where
a distributed system is modeled using a state transition system and properties can be proven on the executions of the system.
Although such paper does not discuss any composition model,it suggests a composition approach that is followed in this
document. In a nutshell, ourRP is a state transition system which models the composition ofall theRP instances in each
site. EachRP instance at each siten ∈ N interacts with its localDBSn and with the globally sharedGCS. Since this work
is not interested on the implementation details of theDBSn and theGCScomponents, only the relevant properties of these
components have been considered.
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In the following, we introduce the framework used here.

Component Specification.In order to model the specification of a system component,C, we give itsexternal interfaceand
a collection oftraceproperties. The external interface ofC, denotedEvents(C), defines the possible events the component
may engage. A trace is a finite or infinite sequence of events where each event belongs toEvents(C). The set of traces ofC
is denoted asTraces(C). A finite trace is denotedβ = π1π2 . . . πj, an infinite trace asβ = π1π2...πj ...; and a prefix of length
j, being|β| ≥ j ≥ 0, of a traceβ by β[j]. Properties over traces are modeled as assumptions. The component satisfies its
specification if each possible trace verifies the set of defined assumptions.

State Transition System.We now outline the model in [46] based on state transitions systems for concurrent and distributed
systems. A state transition systemC is defined by:

• V ariables(C). A set of variables and their domains.

• Initial(C). An initial condition onV ariables(C).

• Events(C). A set of events.

• For each eventπ ∈ Events(C):

– enabled(π), an enabling condition (a predicate inV ariables(C)); and

– action(π), an action (sequential program that updatesV ariables(C));

• A finite description of fairness requirements.

Each possible value assignment toV ariables(C) defines a particular state of the transition systemC. Thus, the set of
states ofC is the cartesian product of the variable domains. Part of these states are initial configurations and they are defined
by Initial(C). We assume that the set of initial states is non-empty. For each eventπ, its associated enabling condition,
enabled(π), and action,action(π), define a set ofstate transitions. More formally, the set of state transitions is defined as
{(p, π, q) : p, q are system states;p satisfiesenabled(π); andq is the result of executingaction(π) in p}. For each eventπ,
action(π) is executed atomically and always terminates.

An executionis a sequence of the form:α = s0π1s1 . . . πzsz . . . where thesz ’s are system states, theπz ’s are events,
s0 is an initial state, and every (sz−1, πz, sz) is a transition ofπz. The content of a state variable,var, at a given system
state,sz, is denoted assz.var. If the action(πz) does not modify a given state variablevar′, it will keep its previous value
(sz.var′ = sz−1.var′). An execution can be infinite or finite. By definition, a finiteexecution ends in a state. The final state
of a finite execution is areachablestate. Note that for any executionα, every finite prefix ofα ending in a state is also an
execution. A finite executionα ending in the reachable statesz will be denoted asα[z].

In the following, we assume that each event is weak-fair. Informally, it means that if an eventπ is enabled continuously
in an execution, then it eventually occurs (see [46] for a more formal definition). Thus, a fair execution ofC is an execution
verifying the fairness requirement ofC. The set of all possible fair executions ofC is sufficient for defining its liveness and
safety properties.

Finally, as we are describing a distributed system, we use a subscript for each state variable and event to denote where the
state variable belongs to and in which site the event is executed, respectively.

Component Interaction.A state transition systemC is able to interact with other componentC′ via executing an event
π′ ∈ Events(C′) of the component as part of effects of anaction(π) beingπ ∈ Events(C). In that case, we require thatπ′ be
non-blocking in order to guarantee the termination ofaction(π). Thus, the eventπ′ is simply “a call” fromC’s point of view.
In the same way, the componentC′ is able to interact with a state transition systemC via executing an eventπ′ ∈ Events(C′)

which is also an event ofC, π′ ∈ Events(C). In this case, it is required thatenabled(π′) ≡ true in C. So, the eventπ′ of C

can be considered an “upcall” fromC′’s point of view.

Composition. Let C be a state transition system andC′ a component that is used byC. The complete system is formed
by (C, C′). If C andC′ follow the component interaction rules previously introduced, then for each executionα of C the
following sequenceβ(α) ∈ Traces(C′) can be associated to eachα. Theβ(α) is built from α in the following manner: by
collecting the events corresponding toC′ from the corresponding action and events ofα in the same order they are executed
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in α. In other words, letπ ∈ Events(C) and part of the effects ofaction(π) include the execution of a (actually, ordered) set of
events{νi : νi ∈ Events(C′)} then for each occurrence ofπ in α the sequence ofβ(α) is appended with{νi : νi ∈ Events(C′)}

in the very same order they are invoked. It is worth noting that if sz is a reachable state ofα we have thatα[z] �1 α and
β(α[z]) � β(α). As a concluding remark, the properties verified byC′ upcalls can be used inα in order to prove the safety
and liveness properties of the whole system.

3 Database System Specification

We assume that each siten ∈ N in the distributed system stores a copy of the databaseDBn which contains a collection of
uniquely identified items,items(DBn). The same data item,X ∈ items(DBn), may have several different versions in the
database. A transactiont ∈ T creates a versionXt of data itemX by performing a write operation on it, this version will be
installed when the transaction is committed andXt ∈ DBn. This database is managed by a database system (DBSn). In this
case, at any time the currentdatabase snapshotincludes only the latest committed versions of all data items until that time.
A transaction will read objects from the snapshot gotten when it began (including its own updates), i.e. ift reads data itemX
it reads the version gotten by its snapshotXt′ ∈ DBn with t′ the latest transaction that wrote onX beforet started. At each
siten ∈ N theRP instance running at it interacts with theDBSn using the interface shown in Figure 1, namely to execute
transactions. TheDBSn supports the concurrent execution of these transactions running underSI [7] level. In what follows,
we provide the details of theDBSn behavior.

A transaction,t ∈ T , is a sequence of operations,op ∈ OP , on database items ended by a commit or abort operation.
Each non-final operation may be of type read or write,type(op) ∈ {read,write}, and may access to a set of data items,
items(op) ⊆ items(DBn). Each transaction,t, starts with abeginn(t) initial action. After that, the transaction may submit an
operation,op, usingsubmitn(t, op) event. Furthermore, inside each transaction, a new operation can only be submitted once
the previous one has been terminated; in our case by thenotifyn(t, op, result, data) event. The parameterresult contains the
final effect of the operation and the transaction can be, in terms of its status, eitheractive or aborted. In the first case, the
transaction may go on in its activity; otherwise, it has beenaborted by the database which corresponds to, e.g., a transaction
that does not fulfill the isolation level requirements. The parameterdata contains the versions of the database items read
by the transaction, we will use it when necessary (i.e. read operations). A transactiont can be aborted by theRP at any
time using theabortn(t) event. In our model, we assume that if the last operation of a transaction has aresult = active the
transaction can be committed at any time by thecommitn(t) event. TheRP at each site sees these actions as the primitives
to access the local database. The eventsbeginn(t), submitn(t, op), commitn(t) andabortn(t) invoked by theRP instance
at n ∈ N always terminate. The actionnotifyn(t, op, result, data) is an upcall executed by theDBSn upon the receipt of a
result for the operationop of t. Finally, thecrashn event models the failure of theDBSn component.

We can think of each operationop ∈ OP as equivalent to a singleSQLstatement. We can assume that multiple consecutive
SQL statements can be logically integrated into a singlesubmitn(t, op). The notification event for this group of statements,
via notifyn(t, op, result, data), will be active if all of their respective sentences were successfully applied; and, otherwise
aborted.

Therefore, at each siten ∈ N , theDBSn has the following set of events,Events(DBSn) =

{beginn(t),commitn(t),abortn(t) | t ∈ T} ∪

{submitn(t, op) | t ∈ T, op ∈ OP} ∪

{notifyn(t, op, result, data) | t ∈ T, op ∈ OP, result ∈ {active, aborted}, data ⊆ DBn} ∪

{crashn}

The traces of theDBSn are finite or infinite sequences of events fromEvents(DBSn). The set of all possible traces is
denoted asTraces(DBSn). One can note that the first parameter of each event differentto crashn is a transactiont in T .
We define the functiontran : Events(DBSn) → T which returns the transaction which an event makes reference to. In the
following, we show what assumptions traces verify in order to satisfy the specification of theDBSn. Every assumption takes
a trace,βn ∈ Traces(DBSn), as a parameter, and we suppose it is implicit. The quantification of some of the free variables
in the assumptions are clear from its context. In the next assumption we state the well-formed behaviors of traces and use
prev event(i, j, t) as a predicate which is true iffνi is the immediate previous event beforeνj for transactiont in a traceβn

2.

1The� symbol stands for prefix order.
2βn : prev event(i, j, t) ≡ i < j ∧ tran(νi) = tran(νj) = t ∧ ∄k, i < k < j : tran(νk) = t
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Assumption 1 (Well-formed traces). Let βn = ν1ν2 . . . νp . . . andβn ∈ Traces(DBSn), thenβn will be a well-formed trace
if it satisfies the next:

1. tran(νi) ∈ T ⇒ ∄ k, k < i : νk = crashn

2. νi = beginn(t)⇒ ∀ k, k < i : t 6= tran(νk)

3. νi ∈ {commitn(t),abortn(t),notifyn(t, op, aborted) | op ∈ OP} ⇒ ∀ k, k > i : t 6= tran(νk)

4. νj = submitn(t, op)⇒ prev event(i, j, t) ∧ νi ∈ {notifyn(t, op′, active),beginn(t) | op′ ∈ OP}

5. νj = notifyn(t, op, result)⇒ prev event(i, j, t) ∧ νi = submitn(t, op)

6. νj = commitn(t)⇒ prev event(i, j, t) ∧ νi ∈ {notifyn(t, op, active) | op ∈ OP}

In the previous Assumption (1.1) reflects the fact that afteracrashn event theDBSn stops its activity; (1.2) indicates that
the first event of a transactiont is beginn(t); (1.3) states that after commit or abort there is no event fort; (1.4) indicates that
an operation can be submitted if the result of the previous one isactive or the transaction is at the beginning; (1.5) states that
a notification of an operation follows its submission; and, (1.6) reflects the main fact that thecommitn(t) event only can be
provided if the transaction is active.

Notice that after asubmitn(t, op) the transaction gets blocked until its associatednotifyn(t, op, active) event happens.
The next Definition is introduced in order to capture the different states a transaction may switch (active, blocked, committed

andaborted). In the definition,T (βn) refers to transactions inT such that they have started inβn; i.e. t ∈ T (βn) iff there
exists the eventbeginn(t) in βn.

Definition 1 (Transaction states). Let βn be a trace ofTraces(DBSn). For everyβn[j], 0 ≤ j ≤ |βn|, the transaction states
of the transactiont ∈ T are defined as follows:

1. idlen(t, j) ≡ (t ∈ T \ T (βn[j]))

2. activen(t, j) ≡ ∃ i, i ≤ j : (νi ∈ {notifyn(t, op, active),beginn(t) | op ∈ OP} ∧ ∀ k, i < k ≤ j : t 6= tran(νk))

3. blockedn(t, op, j) ≡ ∃ i, i ≤ j : (νi = submitn(t, op) ∧ ∀ k, i < k ≤ j : t 6= tran(νk))

4. committedn(t, j) ≡ ∃ i, i ≤ j : νi = commitn(t)

5. abortedn(t, j) ≡ ∃ i, i ≤ j : (νi ∈ {notifyn(t, op, abort),abortn(t)}∨ (νi = crashn∧ (blockedn(t, op, i)∨activen(t, i))))

The meaning of all items described in the previous definitionis fairly intuitive but not the last one. In concrete, Defini-
tion 1.5 implies that a transaction can be explicitly aborted by: theDBSn; an explicit abort; or, acrashn event. The failure of
aDBSn is modeled, from the transaction point of view, as if all currently executing transactions are set toaborted. However,
when a crash occurs, all previous committed and aborted transactions, as they are already finished, remain unaltered.

The Figure 2 shows the possible state transitions concerning a transactiont ∈ T . In the figure, dashed lines represent state
transitions which rely on the behavior of other transactions and the underlying concurrency control; and, solid lines represent
transitions exclusively depending on the transaction codeor theRP . If we focus on the continuous transition betweenactive

andaborted, it is due to anabortn(t). This action, as we are not modeling application explicit aborts will only be invoked
by theRP .

As we have indicated at the beginning of the section, we consider that the database has a multiversion concurrency control
algorithm providingSI. Under this level of isolation, reading from a snapshot means that a transactiont sees all the changes
made by transactions that committed beforet started with its first operation; in our case thebeginn(t) event. The results
of its updates are installed when the transaction commits. However, a transactiont successfully commits iff there is not a
concurrent transactiont′ that has already committed and some of the written items byt′ are also written byt. The previous
rule can be reached following two equivalent –though different in the way updates are treated– thefirst-updater-winsor first-
committer-winsrule [7]. Most commercial databases, such asPostgreSQL [42] or Oracle [34], implement the former and,
hence, we provide a specification for the former one. To show theSI definition, we need the definition of thewritesetof a
transaction and also the definition of what asnapshotmeans.

Definition 2 (Writeset). Let βn be a trace ofTraces(DBSn). For everyβn[j], 0 ≤ j ≤ |βn|, the writeset of a transaction
t ∈ T at j is defined as follows:WSn(t, j) = {op ∈ OP | ∃ i, i ≤ j : νi = submitn(t, op) ∧ type(op) = write}.
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Figure 2: State transitions for a transactiont ∈ T .

Two writesets intersect if both contain at least one write operation over the same database item:WSn(t, j)∩WSn(t′, k) 6=

∅ ≡ ∃ op ∈ WSn(t, j), op′ ∈ WSn(t′, k) : items(op) ∩ items(op′) 6= ∅. We abuse the notation for indicating that a data item
X ∈ items(DBn) belongs to a writesetWSn(t, j), X ∈ WSn(t, j), iff ∃ op, op ∈ WSn(t, j) : X ∈ items(op).

In the next Definition, the concept ofsnapshotis introduced. Thesnapshotof theDBn at some point of a trace comprises
the latest versions of the data items until that point. Theselatest versions for each data item correspond to the last commit
operation on each data item till that point of the trace.

Definition 3 (Snapshot). Let βn be a trace ofTraces(DBSn). For eachβn[j], 0 ≤ j ≤ |βn|, the snapshot ofDBn at j is
defined as follows:

Snapshot(βn[j]) ≡ ∪X∈items(DBn) latestV er(X, βn[j]) where

latestV er(X,βn[j]) = {Xt ∈ DBn |

∃ i, i ≤ j : (νi = commitn(t) ∧X ∈ WSn(t, i) ∧ ∀ k, i ≤ k ≤ j : νk /∈ {commitn(t′) | t′ ∈ T, X ∈WSn(t′, k)})}

The following assumption provides conditions that a trace has to verify in order to beSI:

Assumption 2(Snapshot Isolation - Safety). Letνi = beginn(t):

1. νj = notifyn(t, op, active, data) ∧ type(op) = read⇒ data ⊆ Snapshot(βn[i])3

2. νj = commitn(t)⇒ ∀ k, i ≤ k ≤ j : νk /∈ {commitn(t′) | t′ ∈ T, WSn(t, j) ∩WSn(t′, k) 6= ∅}

Assumption (2.1) indicates that a transaction reads the versions installed by committed transactions by the time of the
begin

n
(t) event; and, (2.2) shows that two concurrent transactions are allowed to make the commit if they have not write-

conflicts.
The latter Assumption (2.2) is obtained as a consequence of the fact that the database system providesSI with thefirst-

updater-winsrule. This rule enforces that concurrent write-conflictingoperations remain blocked and only one (i.e. the first
that performed the update) is allowed to continue its execution.

Assumption 3(First-Updater-Wins). νi = beginn(t)∧activen(t, j)⇒ (∀ k, i ≤ k ≤ j : νk /∈ {commitn(t′)|t′ ∈ T, WSn(t, j)∩

WSn(t′, k) 6= ∅}) ∧ (∀ t′, t′ ∈ T (βn[j]) ∧ ¬(committedn(t′, j) ∨ abortedn(t′, j)) ∧WSn(t, j) ∩WSn(t′, j) 6= ∅ : blockedn(t′, j))

The first part of the previous implication states that only those transactionst′ that have no conflict with an active transaction
t may perform a commit; while the second one, says that there can never exist another active transactiont′ conflicting with
the active one.

3To be precise thedata subset defined in the consequent exclusively contains data items read by the transaction and, thus, it will not contain read
operations over its own updates. The condition is given in such a way for the sake of simplicity.
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Until now previous assumptions are actually safety requirements for a trace. However, the specification requires to deter-
mine progress properties for traces. More precisely, we need to derive the next state transitions (see Figure 2): fromblocked

to aborted; and, fromblocked to active. In the next assumption, we consider that there is not an explicit abortn(t) event for
a transactiont norcrashn. This fact simplifies the presentation though it does not diminish the correctness of the proposed
results.

Assumption 4(Snapshot Isolation - Liveness). Let νi = beginn(t):

1. blockedn(t, op, j) ∧ ∃ k, i < k ≤ j : νk ∈ {commitn(t′) | t′ ∈ T, WSn(t, j) ∩WSn(t′, k) 6= ∅}

⇒ ∃ z, z > j : νz = notifyn(t, op, aborted)

2. blockedn(t, op, j) ∧ type(op) = read⇒ ∃ z, z > j : νz = notifyn(t, op, active)

3. blockedn(t, op, j) ∧ type(op) = write

∧ ∀ k, i < k ≤ j : νk /∈ {commitn(t′) | t′ ∈ T, WSn(t, j) ∩WSn(t′, k) 6= ∅}

∧ ∀ t′, t′ ∈ T ∧ (activen(t′, j) ∨ blockedn(t′, j)) : WSn(t′, j) ∩WSn(t, j) = ∅

⇒ ∃ z, z > j : (νz = notifyn(t, op, active)∨

νz ∈ {notifyn(t′, op′, active), commitn(t′) | t′ ∈ T, op′ ∈ OP, WSn(t, j) ∩WSn(t′, z) 6= ∅})

Assumption (4.1) states that a transaction gets eventuallyaborted if some conflictive transaction commits when it is
blocked; (4.2) says that a transaction gets eventually active when it submits a read operation; and, (4.3) considers that if
a transaction is blocked by a write operation and there are not any concurrent transactions which are in conflict with the
transaction, and this situation persists, then the transaction eventually gets active. Note that Assumption (4.2) states that
read-only transactions never get blocked. So, for the sake of simplicity this kind of transactions are not considered onthe
sequel.

The previous rules do not prevent the deadlock occurrence. When a group of transactions are deadlocked, and this
situation is detected by theDBSn, one of them is aborted (which one is left to the decision of theDBSn) in order to resolve
the situation. When that situation happens, theDBSn generates anotifyn(t, op, aborted) for one (or more than one) chosen
transactiont.

Finally, we introduce the definition of thelog of committed transactions in theDBSn. Each element in the log is a tuple
including the transaction identifier, its writeset until the commit; and a number indicating the order in thelog. This number
may be interpreted as the snapshot version because each timea transaction commits a new snapshot is installed in theDBn.

Definition 4. Let βn be a trace ofTraces(DBSn). For all βn[j], 0 ≤ j ≤ |βn|, the log ofDBSn at j is recursively defined as
follows:

• log(βn[0]) = empty

• log(βn[j + 1]) = log(βn[j]) · 〈t, WS(t, j), |log(βn[j])| + 1〉 iff βn[j + 1] = βn[j] · commitn(t).

• log(βn[j + 1]) = log(βn[j]) in other case.

4 Group Communication System Specification

In this section, we introduce theGCSspecification. TheRP requires for its correct behavior that all messages are delivered in
the same order to all available replicas which is provided bytheatomic broadcastcommunication primitive provide by aGCS.
The uniform total order broadcast provides the following properties[13, 15, 21]: (i) delivery integrity; (ii) no duplication; (iii)
uniform total order; (iv) validity; and, (v) uniform agreement. However, all these properties do not cover theRP necessities
since we are assumingcrashfailures. In particular, the strongest specification (uniform agreement and uniform total order) of
this communication primitive does not prevent the contamination phenomenon [15]. This case consists in afaultyreplica that
reaches an inconsistent state (e.g., because it has not beenable to deliver a previously broadcast message) and then broadcasts
a total-order message before crashing and, thus, contaminates the rest of correct replicas. Hence, it is needed that forany two
replicas the set of delivered messages must be one prefix of the other, or viceversa. This property is known asprefix order4

delivery [15]. All these interesting properties will be formalized later on in an assumption.

4An alternative definition for this phenomenon isgap free. It does not allow gaps in the delivery sequence. This alternative is more appropriate when a
crash-recoverymodel is considered, since prefix order precludes the joining of new nodes [15].
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In the following,M denotes the set of possible messages. We will consider each messagem ∈ M is different. TheRP

at siten ∈ N makes use of two primitives which conform the set of possibleevents of this component:broadcastn(m) and
delivern(m). The former one is used byRP at siten to broadcast in total order a messagem. The second one allows theRP

instance at siten to receive in total order the messagem previously broadcast by some replica. Thus, the set of events of the
GCSis, Events(GCS)=

{broadcastn(m)|n ∈ N, m ∈M}∪

{delivern(m)|n ∈ N, m ∈M} ∪

{crashn|n ∈ N}

In the following, we provide the assumptions the set of traces,Traces(GCS), verifies. We define the functionsite : Events(GCS)→

N which returns the site at which an event occurs. Letγ be a trace ofTraces(GCS). For each siten ∈ N we definemessn

as the sequence of messages delivered at siten ∈ N .

Definition 5. Let γ be a trace ofTraces(GCS). For everyγ[j], 0 ≤ j ≤ |γ|, the set of delivered messages in siten ∈ N by
theGCSat j is recursively defined as follows:

• messn(γ[0]) = empty

• messn(γ[j + 1]) = messn(γ[j]) · 〈m〉 iff γ[j + 1] = γ[j] · delivern(m)

• messn(γ[j + 1]) = messn(γ[j]) in other case

In the following assumption we establish and formalize all the properties ensured by theGCScomponent in order to satisfy
the requirements of theRP .

Assumption 5(Prefix Order Atomic Broadcast). TheGCScomponent satisfies the following properties:

1. (Crash Failures)site(νi) = n⇒ ∄ k, k < i : νk = crashn

2. (Message Uniqueness)νi = broadcastn(m) ∧ νj = broadcastn′(m)⇒ i = j

3. (Delivery Integrity)νi = delivern(m)⇒ ∃n′ ∈ N : (∃ j, j < i : νj = broadcastn′(m))

4. (No Duplication)νi = delivern(m) ∧ νj = delivern(m)⇒ i = j

5. (Prefix Order) For allγ[i], 0 ≤ i ≤ |γ|, and for any two sitesn, n′ ∈ N , either messn(γ[i]) � messn′(γ[i]), or
messn′(γ[i]) ≺ messn(γ[i])

6. (Validity)n ∈ Correct(N) ∧ νi = broadcastn(m)⇒ ∀n′, n′ ∈ Correct(N) : (∃ j, j > i : νj = delivern′(m))

7. (Uniform Agreement)νi = delivern(m)⇒ ∀n′, n′ ∈ Correct(N) : (∃ j : νj = delivern′(m))

In the previous assumption condition (5.1) states that after a crashn event the siten ∈ N stops its activity; (5.2) indicates
that messages are different; (5.3) and (5.4) state that every site delivers a message at most once and only if it was previously
sent by some site; (5.5) guarantees that messages are delivered in the same total order without gaps even for faulty processes
that always are a prefix of a correct site; (5.6) indicates that if a correct site invokes a broadcast event then all correctsites
will eventually deliver the message; and, (5.7) states thatif a site (correct or faulty) delivers a message then all correct sites
will eventually deliver it.

5 Replication Protocol Description

In this Section theRP is described using a state transition system as introduced in Section 2.1. TheRP at each siten ∈ N

uses for its execution the components introduced in the previous sections. Thus, for message exchange employs aGCSand
for programming transactions uses its associated databasesystemDBSn.

As a rough outline of ourRP proposal behavior, let us say that it is an eager update everywhere one [20]. A transaction
is firstly executed at its delegate replica, which is determined byt.site = n with n ∈ N . There is no message exchange and
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Types:
INFO = struct{start ∈ Z+, WS ∈ 2OP , end ∈ Z+}
M = T × INFO // Message type
SITE STATE = {alive, crashed}
STATUS = {idle, active, blocked, aborted, committed}

Variables:
∀n ∈ N : channeln = queue of(M), initially channeln = empty.
∀n ∈ N,∀ t ∈ T : infon(t) ∈ INFO, initially infon(t).start = 0,

infon(t).end = 0, infon(t).WS = ∅.
∀n ∈ N,∀ t ∈ T : sentn(t) ∈ {true, false}, initially sentn(t) = false.
∀n ∈ N : SEQn = queue of(M), initially SEQn = empty.
∀n ∈ N : site staten ∈ SITE STATE, initially site staten = alive.
∀n ∈ N,∀ t ∈ T : statusn(t) ∈ STATUS, initially statusn(t) = idle.
∀n ∈ N : V ern ∈ Z+, initially V ern = 0.

∀n ∈ N : ws runn ∈ {true, false}, initially ws runn = false.

Events=
{crashn | n ∈ N}∪ {delivern(m) | n ∈ N, m ∈M}∪ {discard wsn(t) | n ∈ N, t ∈ T}∪
{end commitn(t) | n ∈ N, t ∈ T}∪ {execute opn(t, op) | n ∈ N, t ∈ T, op ∈ OP, t.site = n}∪
{execute wsn(t) | n ∈ N, t ∈ T, t.site 6= n}∪
{notifyn(t, op, result, data) | n ∈ N, t ∈ T, op ∈ OP, result ∈ {active, aborted}, data ⊆ DBn}∪
{request commitn(t) | n ∈ N, t ∈ T, t.site = n}.

Transitions:

execute opn(t, op)
enabled≡ statusn(t) ∈ {idle, active} ∧ site staten = alive

∧¬sentn(t) ∧ ¬(ws runn ∧ type(op) = write).
action ≡ if statusn(t) = idle then

infon(t).start← V ern

beginn(t)
if type(op) = write then

infon(t).WS ← infon(t).WS ∪ {op}
submitn(t, op)
statusn(t)← blocked.

notifyn(t, op, result, data)
action ≡ statusn(t)← result.

request commitn(t)
enabled≡ statusn(t) = active ∧ ¬sentn(t)

∧ site staten = alive.
action ≡ sentn(t)← true

broadcastn(〈t, infon(t)〉).

crashn

action ≡ site staten ← crashed
∀t ∈ T, statusn(t) ∈ {active, blocked} :

statusn(t)← aborted
channeln ← empty
ws runn ← undef
∀t ∈ T : infon(t)← undef
∀t ∈ T : sentn(t)← undef.

delivern(m)
action ≡ channeln ← channeln ·m.

execute wsn(t)
enabled≡ statusn(t) = idle ∧ site staten = alive

∧ 〈t, info(t)〉 = head(channeln)
∧ certification(〈t, info(t)〉, SEQn).

action ≡ ∀t′ ∈ getConflicts(〈t, info(t)〉) :
abortn(t′)
statusn(t′)← aborted

infon(t) = info(t)
beginn(t); submitn(t, infon(t).WS)
statusn(t)← blocked
ws runn ← true.

discard wsn(t)
enabled≡ site staten = alive ∧ 〈t, info(t)〉 = head(channeln)

∧¬certification(〈t, info(t)〉, SEQn).
action ≡ channeln ← tail(channeln)

end commitn(t)
enabled≡ statusn(t) = active ∧ site staten = alive

∧ 〈t, info(t)〉 = head(channeln).
action ≡ channeln ← tail(channeln)

V ern ← V ern + 1
infon(t).end← V ern

SEQn ← SEQn · 〈t, infon(t)〉
commitn(t)
statusn(t)← committed
ws runn ← false.

Auxiliary Functions :
getConflicts(〈t, info(t)〉) =
{t′ ∈ T |statusn(t′) ∈ {active, blocked} ∧ infon(t′).WS ∩ info(t).WS 6= ∅}.

certification(〈t, info(t)〉, SEQ) ≡
∄〈t′, info(t′)〉 in SEQ : info(t′).end > info(t).start ∧ info(t′).WS ∩ info(t).WS 6= ∅.

Figure 3: State transition system for theRP .
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all operations are issued on the localDBSn that constitutes alocal transaction. When theRP requests the commit of the
transaction, the interaction with the rest of sites is started. All the updates are grouped (writeset) and sent, using the atomic
broadcast, to the rest of available replicas. Upon its delivery, it is needed to pass a test, calledcertification, just to check if
the incoming writeset can be applied or not. The certification, roughly speaking, consists in detecting if there are any conflict
between concurrent, though committed (and, hence, contained in thelog of theDBSn) writesets and the incoming one. If
so, the message will be discarded (in the case of its delegatereplica the transaction will be rolled back) and, otherwise, a
remote transactionis started to apply, and commit, the writeset of transactiont (in the case of the delegate site it will be
committed). Thanks to the total-order delivery, the outcome of the certification will be the same for every delivered message.
Thus, transactions will be committed in the same order at allsites and the database logs grow in in the same order. In this
section, we will explain in the following subsections the variables, initial values, events, and transitions that compose such
state transition system in a more detailed manner.

5.1 Variables and Initial Values

The variables being used by theRP at each siten ∈ N are:

• statusn(t): This variable holds the current state of each one of the known transactionst ∈ T in each replica. Valid states
are: idle (transaction not started),active (active transaction),blocked (the transaction is waiting for the completion of
a given operation),aborted (the transaction has been aborted), orcommitted (the transaction has been committed). All
transactions are initialized to theidle status value.

• infon(t): Each replica keeps track, as a data structure, of some relevant attributes of a transactiont ∈ T . Such
attributes are thestart andend logical timestamps (needed for certification purposes), and the writeset associated to
such a transaction (attributeWS). Initially, the logical timestamps are set to zero, and theWS is an empty set.

• sentn(t): Boolean flag that holds a true value when the writeset of a transactiont ∈ T has already been broadcast. It
holds a false initial value for all transactions.

• channeln: This variable models the incoming channel of delivered messages in each site. Such channel is represented
by a queue of messages, since delivery order is important, asalready described in Section 4. The usualhead() andtail()

functions for queues are used to handle this variable. Thus,head() returns the first element of the queue, whilsttail()

returns all queue elements excepting the first one. Each messagem ∈ M in channeln contains the values〈t, info(t)〉

wheret is the transaction identifier andinfo(t) is the value ofinfot.site(t) when the message was sent. Initially, this
queue is assumed empty.

• V ern: The database version at each site. Such database versions are increased each time a transaction is committed.
This variable plays the role of a logical timestamp. Whenever a transactiont starts at its delegate replica,t.site = n,
V ern is stored ininfon(t).start. The initial value of this variable is zero at all sites.

• SEQn: This variable models a local queue of already committed transactions in each replica. Such queue is needed
for certifying the incoming messages. Each element contained inSEQn is of the form〈t, info(t)〉 that corresponds to
a transactiont, and its respectiveinfon(t) when it committed at siten ∈ N . Its main difference with the information
received in the message is that theinfon(t).end field stores theV ern value when the transaction committed. Initially,
it is an empty queue in each site.

• ws runn: This is a boolean variable initially false that is set to true whilst any remote transaction is being applied at
a given site. This variable gives priority to the application of remote transactions; thus, preventing new local write
accesses from progressing. Initially, as there are no remote writesets, it is set to false.

• site staten: It holds the current state of each replica site. Valid statevalues arealive or crashed. All system sites are
assumed initiallyalive.

We assume that after acrashn event some variables keep their associated values, this facilitates the presentation of some
properties. More precisely, thestatusn(t), V ern andSEQn are are assumed to be kept in stable storage. All other variables
are lost in case of crash failure and get anundef or empty value in such case, as it can be seen in the action associated to the
crashn event.
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5.2 Events

The events inRP are shown in the corresponding section of Figure 3. There area group of events such asexecute opn(t, op)

andrequest commitn(t) events which are only allowed to be executed at the delegate replica of t, i.e. t.site = n. The
execute wsn(t) event will be executed at all sitesn such thatt.site 6= n. This fact enforces the different performance of local
transactions versus remote ones.

5.3 Transitions

We are going to describe, in a more detailed manner than the already described at the beginning of this section, the different
transitions presented in Figure 3.

A local transactiont, t.site = n, is started by the first invocation of theexecute opn(t, op), this changesstatusn(t)

from idle to active and the associatedinfon(t).start is set toV ern. As it will be explained later, this action can not be
invoked if ws runn = true and the requested operation is an update one orsentn = true. Additionally, thebegin

n
(t)

event of the underlyingDBSn component is used in order to start the transaction. Finally, the operation is submitted to the
DBSn component and the transaction status is set toblocked. Notice that the writeset oft is dynamically built provided
that the operation submitted is a write. The transaction remains blocked until the underlyingDBSn component fires its
notifyn(t, op, result) event which is paired to the same event in theRP , i.e. no enabling condition is needed for this event.
When this happens, the transactionstatus is set to theresult parameter of such event. This implies that the transaction gets
againactive or that it has beenaborted. Note that theexecute opn(t, op)-notifyn(t, op, result) pair of events can be repeated
many times for the transaction.

The request commitn(t) event will be called, once all operations of the local transaction have finished. To enable
such event, such replica should bealive, the transaction must beactive (i.e., all its previous operations have received their
notification event), and thesentn(t) flag should be false. This event sends the transaction identifier t with its associated data
structureinfon(t) to the rest of available replicas using the atomic broadcast. Additionally, the variablesentn(t) is set to true
and, thus, prevents to perform new operations in theDBSn or sending several messages for the same transactiont. Thus, the
writeset sent in〈t, info(t)〉 message will be the same for transactiont and this message will be unique at every site.

The message will be eventually delivered by theGCScomponent to all available replicasn′, using itsdelivern′(m) event
that matches the same event of theRP . The delivered message is appended to thechanneln′ local queue variable. Once the
message is delivered and no prior message exists in thechanneln′ variable, it can follow different execution paths in theRP

depending on whether the transaction is local or remote. Letus start with the latter, the writeset contained ininfo(t).WS must
be certified. Thecertification(〈t, info(t)〉, SEQn′) function (which is formally shown as a logical predicate in Figure 3)
is in charge of this, returning true if the given writeset does not intersect with any of the writesets of transactions, say
t′ ∈ SEQn′ , whoset′.end value is greater thaninfo(t).start; otherwise, returning false. If the certification fails, the message
will be discarded by way ofdiscard wsn′(t). In other case, the included writeset ininfo(t) has to be applied, by way of
execute wsn′(t), as a remote transaction. It is worth noting that there can belocal transactions potentially conflicting with
info(t).WS that are detected by thegetConflicts(〈t, info(t)〉) function (see its formal definition in Figure 3). Each local
transaction returned ingetConflicts(〈t, info(t)〉) is aborted in order to avoid the potential blocking of the execution of the
remote transaction by a conflict with a local transaction. Once a writeset is certified, its associated remote transaction must be
eventually committed. In addition, the value ofws runn′ is set to true avoiding that non-aborted local transactionsperform
update operations and, again, avoiding the existence of newconflicts with the remote transaction. Once the writeset hasbeen
applied, its respectivenotifyn′(t, op, result) event will be executed, and, it is important to emphasize itsassociatedresult

will be active. Hence, theend commitn′(t) will be eventually called to commit the transaction in the underlyingDBSn′

component, increase the version (V ern′), and allowing the execution of update operations or the application of new remote
transactions inDBSn′ . In the case of the delivery of the message to its delegate replica, i.e. n = t.site, it can follow two
different paths as well. If the associated message reaches the first position ofchanneln and transactiont is still active, i.e.,
no other previous delivered transaction has a conflict witht, the transaction will be directly committed (it does not need
a certification) by way of theend commitn(t) event with exactly the same effects as in the case of a remote transaction.
Otherwise, the certification of another previously concurrent delivered remote transaction has a conflict witht that resulted
in the abortion oft. Thus, message will be discarded by the invocation of thediscard wsn(t).

The variableSEQn has to be built so that all replicas reach the same decision onthe certification(〈t, info(t)〉, SEQn)

function. TheSEQn variable is only modified when a transaction is committed, i.e. in theend commitn(t) event, and the
respective〈t, infon(t)〉 is appended at the end. Transactions are applied and committed in the order they were certified. This
order is completely determined by the total-order deliveryprovided by theGCScomponent. Therefore, it is easy to show that
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the way elements are appended is the same thanks to the way theRP execute transactions (this will be formally shown in
Section 7).

Regarding to fault-tolerance issues, we should consider the crashn event that matches the one provided in theGCSand
DBSn interfaces, and that is generated by the environment and applied in all the system components at once. When such event
is generated, the correspondingsite staten variable is set tocrashed and this means that allRP events become disabled. This
reflects the case when a given a replica becomes unavailable and completely stops its activity. To complete the description
of the state transition system ofRP we assumeweak-fairness[31] for the events:execute wsn(t), discard wsn(t) and
end commitn(t).

6 Correctness Criteria

In this Section, we introduce the safety and liveness criteria the whole system (RP , GCSand for alln ∈ N their respective
DBSn), following the interaction and composition rules depicted before, must satisfy to ensure its correct behavior. The
safety criterion, establishes that for any pair of sites thelog of committed transactions in their respective database systems is
either the prefix of the other or viceversa. As database systems provideSI, this criterion implies that each database replica
at every site has installed (or generated) the same snapshots (as it has been seen in Definition 3) in the very same order.
Therefore, each database reaches the same state, at commit time, for every executed transaction. The liveness criterion must
ensure that if a site commits a transaction, it will be eventually committed at every correct replica. Under this criterion, all
correct and available databases do not lose any committed update in any database of the system.

Let us formalize the previous criteria according to the components present in the replicated system: theRP ; theGCS; and,
for all n ∈ N , theDBSn. Let α be a fair execution of theRP andsz a reachable state ofα. Now, we assume that for all
n ∈ N , βn(α) ∈ Traces(DBSn), i.e. they verify every assumption given in Section 3.

Safety Criterion (Database Prefix Order Consistency). For every fair executionα of theRP , every reachable statesz of α

and for any pair of sitesn, n′ ∈ N : either log(βn(α[z])) � log(βn
′(α[z])) or viceversa.

Liveness Criterion (Uniform Commit). For every fair executionα of theRP and for all n ∈ N : νi = commitn(t) in
βn(α)⇒ ∀n′, n′ ∈ Correct(N) : commitn′(t) in βn′(α).

The safety criterion is also very important to determine thefinal isolation level achieved by theRP for committed trans-
actions. We have stated at the beginning of this work thatRP providesGSI [17]. Actually, GSI is an extension ofSI best
suited for replicated environments. TheGSI level allows the use ofoldersnapshots of the database, facilitating its replicated
implementation. A transaction may receive a snapshot that happened in the system before the time of its first operation
(instead of its current snapshot as inSI). To commit a transaction it is necessary, as inSI, that no other update operation of
recently committed transactions conflicts with its update operations. Thus, a transaction can observe an older snapshot of the
database but the write operations of the transaction are still valid update operations for the database at commit time. Many of
the desirable properties ofSI remain also inGSI, in particular, read-only transactions never became blocked and neither they
cause update transactions to block or abort.

Let us see how the previous concept ofGSI level can be applied to the system. Suppose that a transaction t starts its
execution at its delegate replica (t.site = n) where no update operations have occurred, i.e. itsV ern = 0. Prior to this,
a transactiont′, whose delegate replica isn′ 6= n, has been certified and committed at all available replicas but n, due to,
e.g., a communication delay in the propagation of messages by theGCSto n. Let us assume that the associatedinfo(t′).WS

contains data itemX and, hence, a new version of this item (Xt′) has been installed in the system. If transactiont reads data
itemX it will read the versionX0 instead of the already committed and installed in the system. Moreover, if a transactiont′′

concurrently starts atn′, though aftert′ has been committed, it will read versionXt′ . It is easy to see that as transactions firstly
performs their operations at their delegate replica, it is more likely to occur that they will get older snapshots than the ones
already installed in the system. AsRP follows the sequential commit of transactions in the order they are committed, and is
a kind ofROWAA protocol [20], it satisfies the safety criterion for the executed transactions which is a sufficient condition
for obtainingGSI level for the committed transactions. The proof of this factis given in [19].
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7 Correctness Proof

In the following, it is developed the correctness proof ofRP . We have split the correctness proof into two parts “Safety
Criterion” and “Liveness Criterion” as defined in the previous Section. In order to tackle with this we have defined a set of
Properties and Lemma that will help in the proof of both criteria. All of them, have been proved and their proof is either
shown in the body of this work, whenever it contributes to theclarity of the correctness criteria, or, otherwise, at the end, in
Appendix A.

Let us start with the verification of the “Safety Criterion”.Firstly, it is needed to check that the state of a transactiont in
theDBSn is properly maintained by theRP instance running atn. Hence, when the message containing the the updates oft

is received, it is becauset requested the commit at its delegate replica. Moreover, this update information remains exactly the
same whent is committed. As these messages are delivered in the same order at all replicas, then we have that for every two
replicas, sayn andn′, that delivered the update message, it must be shown thatt will be committed (or discarded) in both.
Moreover, as this process is done in the very same order the content of theSEQn SEQn′ will be the same at the moment the
message oft is delivered. Of course, this does not imply a synchronous certification process between all replicas: transactions
are processed at different speed on different replicas and the size of the sequencers varies. Nevertheless, it is neededto show
with the aid of all of the mentioned features that the sequencer associated to a replica constitutes the prefix of another one or
viceversa.

Regarding to the “Liveness Criterion”, its first mission is to check that if at is successfully certified then it is active and
its associated update message is in the first position of the delivered messages queue. Of course, it must be ensured that
this message will get eventually processed, i.e. precedingmessages are certified and removed from the queue of delivered
messages or the replica will crash. In the same way, it must ensure that if for any replicat is committed then it will eventually
get committed at the rest of correct replicas which is the main reasoning of our “Uniform Commit” property.To be completed

7.1 Preliminaries

The RP uses theDBSn component at each siten ∈ N to execute transactions at that site. We consider that eachDBSn

verifies the assumptions provided in Section 3 for its traces. However, it is necessary that theRP preserves the Assumption 1
in order to ensure a correct usage of that component. The firstproperty indicates that a transaction is active in theRP at site
n ∈ N when theDBSn component notifies such a fact. The second property states that theRP preserves the well-formed
traces assumption for eachDBSn component.

Property 1. Letα = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP :

sz.statusn(t) = active⇒ ∃z1 ≤ z : πz1
= notifyn(t, op, active) for someop ∈ OP .

Property 2. Let α be an arbitrary execution of theRP andβn(α), n ∈ N , be its associated sequence ofEvents(DBSn).
βn(α) verifies the Assumption 1.

If the transactions submitted by theRP to eachDBSn component are well-formed, then theDBSn behaves accordingly
with its specification and the rest of assumptions provided in Section 3 are preserved by theRP . In what follows, for each
arbitrary executionα of theRP andn ∈ N : βn(α) ∈ Traces(DBSn).

TheRP also uses theGCSfor message communication among sites. The traces of theGCSverify the assumption given in
Section 4. We also prove that theRP preserves those assumptions in order to guarantee the correct usage of this component.
In this case, we only need to prove the Assumptions 5.1 (CrashFailures) and 5.2 (Message Uniqueness).

Property 3. Let α be an arbitrary execution of theRP andγ(α) be its associated sequence ofEvents(GCS). γ(α) verifies
Assumptions 5.1 and 5.2.

In what follows, for each arbitrary executionα of theRP : γ(α) ∈ Traces(GCS).

7.2 Proof of Safety Criterion

Some variables of theRP are used to keep track the underlying information about the transactions executed atDBSn for a
siten ∈ N . The next property indicates that the informationRP maintains about theDBSn is compatible with the definitions
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given in Section 3. In order to simplify the presentation, wemake use of an auxiliary variableLOGn in the next property.
The content of this variable is exactly the same as theSEQn with the exception of theinfo(t).start value of a committed
transactiont.

Property 4. Letα = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP . Letβn(α)[j]5 ∈ Traces(DBSn), n ∈ N , be
its associated trace ofEvents(DBSn) until sz. The next properties hold:

1. sz.statusn(t) = idle⇒ idlen(t, j)

2. sz.statusn(t) = active⇒ activen(t, j)

3. sz.statusn(t) = blocked⇒ blockedn(t, op, j) for someop ∈ OP

4. sz.statusn(t) = committed⇒ committedn(t, j)

5. sz.statusn(t) = aborted⇒ abortedn(t, j)

6. sz.site staten = alive∧t.site = n∧sz.statusn(t) 6= idle⇒ sz.infon(t).start = |log(βn(α)[i])| ∧ i ≤ j ∧ νi = beginn(t)

7. sz.site staten = alive ∧ sz.statusn(t) 6= idle⇒ sz.infon(t).WS = WSn(t, j)

8. sz.site staten = alive ∧ sz.statusn(t) = committed⇒ sz.infon(t).end = |log(βn(α)[i])| ∧ i ≤ j ∧ νi = commitn(t)

9. sz.V ern = |log(βn(α)[j])|

10. sz.LOGn = log(βn(α)[j])

Property 4 indicates that the information regarding to current state of a transaction that is being executed at aDBSn is
properly kept by theRP instance executed at siten ∈ N . Besides, information about committed transactions, those appearing
in the respectivelog is also kept inSEQn.

The next property states that if a〈t, info(t)〉 message is received at any site in the system it is necessary that transaction
t has requested its commit at its delegate replica (t.site = n). The different values contained in the message must coincide
with their respective values when the transaction was executed. Every message has its associatedinfo(t).end = 0 since this
value will only be modified, in its respective variable, whenthe transaction is committed.

Property 5. Letα = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP .

〈t, info(t)〉 ∈ sz.channeln′ ∧ t.site = n ⇒ ∃ z1 < z2 < z3 < z4 ≤ z : πz1
= execute opn(t, first op of t) ∧

πz2
= notifyn(t, last op of t, active) ∧ πz3

= request commitn(t) ∧ πz4
= delivern′(〈t, info(t)〉) ∧ info(t).start =

sz1
.infon(t).start ∧ info(t).WS = sz2

.infon(t).WS ∧ info(t).end = 0.

Proof. As 〈t, info(t)〉 ∈ sz.channeln′ , then∃ z4 ≤ z : πz4
= delivern′(〈t, info(t)〉). By Assumption 5.4 (No Duplica-

tion) this event is the only one making such effect atsz4
. By Assumption 5.3 (Delivery Integrity) there exists a previous

broadcastn(〈t, info(t)〉) such that it is part of the actionπz3
= request commitn(t) because this is the only one that broad-

cast that message beingt.site = n. By Assumption 5.2 and Property 3 this action is the only one providing such an effect. In
addition,z3 < z4. At sz3−1, statusn(t) = active ∧ ¬sentn(t). By Property 1:∃ z2 < z3 : πz2

= notifyn(t, last op oft, active).
By definition, πz2

is the last one for transactiont. As sz3
.sentn(t) = false, there is no possibility forexecute opn(t, op)

after z3. As those events are the only ones being able to modify variable infon(t).WS with t.site = n, then info(t) =

sz3
.infon(t).WS = sz2

.infon(t).WS.
By Assumption 1.5, there exists a previoussubmitn(t, last op oft) for whichnotifyn(t, last op oft, active) has been produced.
Thus, by Assumption 1.4, there exists a uniquebeginn(t) which is part of the action of the eventπz1

= execute opn(t, first op oft).
Obviously, z1 < z2. By the effects ofπz1

, sz1
.infon(t).start = sz1

.V ern. This event is the only one that modifies
infon(t).start, so info(t).start = sz1

.infon(t).start. All this reasoning is valid since there is noπz′ = crashn in α with
z′ ≤ z3 norπz′ = crashn′ with z′ ≤ z.

5It is worth noting thatβn(α[z]) is equivalent toβn(α)[j].
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Before anend commitn(t) event the information concerninginfo(t).start andinfo(t).WS included in the message of
the transactiont to be committed coincides with the current values of thesz.infon(t).start andsz.infon(t).WS variables
respectively. The proof is trivial from the previous one taken into account that at sitet.site = n variablesentn(t) = false

and afterrequest commitn(t) such variables have not been modified; and at sitet.site 6= n′ the eventexecute wsn′(t)

copiesinfo(t) into infon′ (t) variable and it will not be modified until the execution ofend commitn′(t). This is stated in
the next property in a slightly weaker form.

Property 6. Letα = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP .

sz.statusn(t) 6= idle ∧ sz.site staten = alive ∧ 〈t, info(t)〉 ∈ sz.channeln ⇒ info(t).start = sz.infon(t).start ∧

info(t).WS = sz.infon(t).WS ∧ info(t).end = sz.infon(t).end

The〈t, info(t)〉 information included inSEQn contains the same values as their corresponding variables when the trans-
actiont is committed.

Property 7. Letα = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP .

〈t, info(t)〉 ∈ sz.SEQn ⇒ ∃z1 ≤ z : πz1
= end commitn(t) ∧ info(t) = sz1

.infon(t)

We can prove that if a transaction has been committed at two sitesn, n′ ∈ N , part of the information of the transaction
stored at eachSEQn andSEQn′ variables respectively is the same. In fact, using Property5 the next property concludes
that if 〈t, info(t)〉 ∈ sz.SEQn, theninfo(t).WS is the writeset of the transaction executed at its delegatedsite t.site by the
time of request the commit, andinfo(t).start is the version of the databaseDBSt.site when the transaction executed its first
operation.

Property 8. Letα = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP .

〈t, info(t)〉 ∈ sz.SEQn ∧ 〈t, info′(t)〉 ∈ sz.SEQn′ ⇒ info(t).start = info′(t).start ∧ info(t).WS = info′(t).WS

Proof. By Property 7,∃ z1, z2 (≤ z) : πz1
= end commitn(t) ∧ πz2

= end commitn′(t) ∧ info(t) = sz1
.infon(t) ∧

info′(t) = sz2
.infon(t).

By Property 6, atsz1−1 andsz2−1, which are the states at whichπz1
andπz2

are enabled respectively, it is verified:
〈t,m(t)〉 = head(sz1−1.channeln) ∧ m(t).start = sz1−1.infon(t).start ∧ m(t).WS = sz1−1.infon(t).WS ∧ m(t).end =

sz1−1.infon(t).end, and
〈t,m′(t)〉 = head(sz2−1.channeln′ ) ∧ m′(t).start = sz2−1.infon′ (t).start ∧ m′(t).WS = sz2−1.infon′ (t).WS ∧ m′(t).end =

sz2−1.infon′ (t).end.
By Property 5, as〈t, m(t)〉 = head(sz1−1.channeln) and〈t, m′(t)〉 = head(sz2−1.channeln′ ) then〈t, m(t)〉 = 〈t,m′(t)〉.
Due to the fact thatπz1

andπz2
do not modify the variablesinfon(t).start, infon′ (t).start, infon(t).WS andinfon′ (t).WS,

then
info(t).start = sz1

.infon(t).start = sz1−1.infon(t).start = m(t).start = m′(t).start = sz2−1.infon′ (t).start = sz2
.in-

fon′(t).start = info′(t).start, and
info(t).WS = sz1

.infon(t).WS = sz1−1.infon(t).WS = m(t).WS = m′(t).WS = sz2−1.infon′ (t).WS = sz2
.infon′ (t).WS =

info′(t).WS

If we move what it has been stated in Property 8 to the updates performed by a transaction in the database, it is equivalent
to say that if they appear at two different sites they will be exactly the same. To end the proof of the safety criterion, it
is necessary to prove that transactions have been committedin the same order. This fact can be shown thanks to theGCS
properties that ensure the delivery of messages in the very same order to all sites and theRP since it processes messages in
the same order they have been delivered.

In the next, we introduce a set of auxiliary variables in order that will help us during the correctness proof. Letdeliveredn

be an auxiliary variable containing the delivered messagesat siten ∈ N by the eventdelivern(m); that is,deliveredn ←

deliveredn · m. Let receivedn be an auxiliary variable containing the messages the algorithm’s events have handled at site
n ∈ N , in particularend commitn(t) anddiscard wsn(t) events. Whenm is removed fromhead(channeln), it is included
in receivedn, i.e. receivedn ← receivedn ·m.

These new auxiliary variables have the initial valuess0.deliveredn = s0.receivedn = empty. Taken into account theGCS
properties, theRP guarantees that the set of messages processed by it along with the set of pending messages constitutes the
set of messages delivered by theGCS:
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Property 9. Let α = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP . Let γ(α[z]) ∈ Traces(GCS), be its
associated trace ofEvents(GCS) until sz. For eachn ∈ N the next properties hold:

1. sz.deliveredn = messn(γ(α[z]))

2. sz.receivedn · sz.channeln � sz.deliveredn

Thanks to the last property and the total-order delivery of messages, the set of processed messages by a replica is a prefix
of the processed messages of another one or viceversa.

Property 10. Let α = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP . For all pairs of sitesn, n′ ∈ N , either
sz.receivedn � sz.receivedn′ or viceversa.

Proof. By Property 9,sz.receivedn · sz.channeln � messn(γ(α[z])) andsz.receivedn′ · sz.channeln′ � messn′(γ(α[z])). By
Assumption 5.5 (Prefix Order),messn(γ(α[z])) � messn′(γ(α[z])) or viceversa.
Therefore,sz.receivedn � sz.receivedn′ or viceversa.

The next property is the most important one introduced so far, it states that a transaction is certified (or discarded, respec-
tively) in the same order at all available sites. Note that the certification process is asynchronous. Hence, one replicacan
be faster (i.e. process more messages) and certify more transactions. Nevertheless, the decision (commit or abort) foreach
certified transaction at every replica will be the same.

Property 11. Letα = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP . For all pairs of sitesn, n′ ∈ N :
sz.receivedn � sz.receivedn′ ⇒ ∃z1 ≤ z : sz.SEQn = sz1

.SEQn′ ∧ sz.receivedn = sz1
.receivedn′ .

Proof. By induction over the length ofα.

• Basis. At α = s0; for all n ∈ N : s0.receivedn = empty, ands0.SEQn = empty. The property holds.

• Hypothesis. Assume the property holds atsz.

• Induction Step. Let (sz, πz+1, sz+1) be a transition of theRP . We study all the eventsπz+1 affecting the variables of
the property in the following cases:
Case 1:sz.receivedn = sz.receivedn′ andπz+1 at siten′.
Case 2:sz.receivedn ≺ sz.receivedn′ andπz+1 at siten.
Case 3:sz.receivedn = sz.receivedn′ andπz+1 at siten.
Case 4:sz.receivedn ≻ sz.receivedn′ andπz+1 at siten′.
It is sufficient to prove cases 1 and 2 because cases 3 and 4 are symmetric by interchangingn by n′ in the Property 11.

– Case 1: πz+1 ∈ {end commitn′(t),discard wsn′(t)}. By its effects,sz.receivedn = sz+1.receivedn and
sz+1.receivedn′ = sz.receivedn′ · 〈t, info(t)〉. Thussz+1.receivedn ≺ sz+1.receivedn′ . By induction Hypoth-
esis and the factsz.SEQn = sz+1.SEQn does not change by the execution ofπz+1, the samesz1

considered in
the induction Hypothesis makes the property true atsz+1.

– Case 2:πz+1 ∈ {end commitn(t),discard wsn(t)}.

∗ πz+1 = end commitn(t). By the effects of its action:
sz+1.receivedn = sz.receivedn · 〈t, info(t)〉 and sz+1.SEQn = sz.SEQn · 〈t, sz+1.info(t)〉. Recall that
certification(〈t, info(t)〉, sz.SEQn) = true.
By induction Hypothesis:∃z1 ≤ z : sz.SEQn = sz1

.SEQn′ ∧ sz.receivedn = sz1
.receivedn′ .

Therefore, assz.receivedn ≺ sz.receivedn′ , thensz+1.receivedn � sz+1.receivedn′ .
Notice: sz1

.receivedn′ · 〈t, info(t)〉 = sz.receivedn · 〈t, info(t)〉 � sz+1.receivedn′ .
Let πz2

be the event atn′ such thatsz2
.receivedn′ = sz1

.receivedn′ · 〈t, info(t)〉. No other event modifying
receivedn′ has been executed betweenz1 andz2. Actually, what we do know, by inspection of the algorithm’s
code, is that the following does not change:sz2−1.channeln′ = sz1

.channeln′ ∧ sz2−1.SEQn′ = sz1
.SEQn′ .

Thus,sz2−1 = sz1
, in particular〈t, info(t)〉 = head(sz2−1.channeln′ ). The possible events taken〈t, info(t)〉

into sz2
.receivedn′ areπz2

∈ {end commitn′(t),discard wsn′(t)}. Onlyπz2
= end commitn′(t) is possi-

ble becausecertification(〈t, info(t)〉, sz2−1.SEQn) = certification(〈t, info(t)〉, sz.SEQn). Therefore, by
the effects of the event’s actionπz2

:
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sz2
.SEQn′ = sz2−1.SEQn′ ·〈t, sz2

.info(t)〉; sz2
.V ern′ = sz2−1.V ern′+1; and,sz2

.infon′ (t).end = sz2
.V ern′ .

By Property 8:sz+1.infon(t).start = sz2
.infon′ (t).start; sz+1.infon(t).WS = sz2

.infon′ (t).WS.
As |sz+1.SEQn| = |sz2

.SEQn′ | (Recall|SEQn| = V ern) thensz+1.infon(t).end = sz2
.infon′ (t).end.

In conclusion:
sz+1.receivedn � sz+1.receivedn′

⇒

∃ z2 ≤ z + 1:

sz+1.receivedn = sz.receivedn · 〈t, info(t)〉 = sz2
.receivedn′ ∧

sz+1.SEQn = sz.SEQn · 〈t, sz+1.info(t)〉 = sz2
.SEQn′ .

∗ πz+1 = discard wsn(t). By the effects of its action:
sz+1.receivedn = sz.receivedn · 〈t, info(t)〉. Notice thatcertification(〈t, info(t)〉, sz.SEQn) = false.
By induction Hypothesis:∃ z1 ≤ z : sz.SEQn = sz1

.SEQn′ ∧ sz.receivedn = sz1
.receivedn′ .

Therefore, assz.receivedn ≺ sz.receivedn′ , thensz+1.receivedn � sz+1.receivedn′ .
Notice: sz1

.receivedn′ · 〈t, info(t)〉 = sz.receivedn · 〈t, info(t)〉 � sz+1.receivedn′ .
Let πz2

be the event atn′ such thatsz2
.receivedn′ = sz1

.receivedn′ · 〈t, info(t)〉. No other event modifying
receivedn′ has been executed betweenz1 andz2. Following the same reasoning as before, we obtain that
sz2−1 = sz1

, in particular〈t, info(t)〉 = head(sz2−1.channeln′ ). The possible events taken〈t, info(t)〉 into
sz2

.receivedn′ areπz2
∈ {end commitn′(t),discard wsn′(t)}. Only πz2

= discard wsn′(t) is possible
becausecertification(〈t, info(t)〉, sz2−1.SEQn) = certification(〈t, info(t)〉, sz.SEQn). Therefore, by the
effects of the event’s actionπz2

:
sz2

.SEQn′ = sz2−1.SEQn′ . In conclusion:
sz+1.receivedn � sz+1.receivedn′

⇒

∃ z2 ≤ z + 1:

sz+1.receivedn = sz.receivedn · 〈t, info(t)〉 = sz2
.receivedn′ ∧

sz+1.SEQn = sz.SEQn = sz2
.SEQn′ .

To conclude this part of the correctness proof, it is needed to show that the way successfully certified transactions are
stored inSEQn and constitute, thanks to the Property 11, with any other replica n′ a prefix (SEQn � SEQn′) or viceversa is
reflected in the way these transactions are committed in the database. In other words, it is needed to show that the database
logs of committed transactions associated with any pair of replicasDBSn andDBSn′ either one is the prefix of the other
(LOGn � LOGn′ ) or viceversa.

Theorem 1 (Safety - Database Prefix Order Consistency). TheRP verifies the safety criterion: “Database Prefix Order
Consistency”.

Proof. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of theRP . By Property 11, for all pair of sitesn, n′ ∈ N :
sz.receivedn � sz.receivedn′ ⇒ sz.SEQn � sz.SEQn′ . By Property 10, eithersz.receivedn � sz.receivedn′ or viceversa.

Letβn(α) ∈ Traces(DBSn) andβn′(α) ∈ Traces(DBSn′) be the associated traces ofEvents(DBSn) andEvents(DBSn′)

respectively. ByLOGn definition, eithersz.LOGn � sz.LOGn′ or viceversa and by Property 4.10 (recall thatsz.LOGn =

log(βn(α[z]))): log(βn(α[z])) � log(βn′(α[z])) or viceversa.

7.3 Proof of Liveness Criterion

Upon the total-order delivery of a message, it is needed to prove that the writeset contained in it is processed in the same
order at all available replicas. Hence, we need to study carefully the role of the certification decision. By the specification of
RP , it is proved that the precondition of anend commitn(t) event implies that the evaluation of thecertification(t, SEQn)

function is true. On the other hand, it is worth noting that atthe delegate site of a transaction, the protocol does not check the
certification function if the transaction is active before its commit (i.e. no other previous successfully certified transaction has
aborted it). The next property states that given a transaction t if its associatedstatusn(t) is equal to active and its associated
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message is in the first position of the sequence of messages tobe processed (i.e. it is ready to commit) then it has been
successfully certified.

Property 12. Letα = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP .

sz.statusn(t) = active∧ 〈t, info(t)〉 = head(sz.channeln)⇒ certification(〈t, info(t)〉, sz.SEQn).

From the last property, it can be inferred that every committed transaction has been successfully certified. However, this is
not enough to guarantee that every successfully certified transaction is eventually committed. The following propertypoints
out this fact: for every satisfyingly certified transactiontheRP ensures that its status becomes active and, hence, is able to
commit.

Property 13. Letα = s0π1s1 . . . sz−1πzsz . . . be an arbitrary execution of theRP .

t.site = n ∧ 〈t, info(t)〉 = head(sz.channeln) ∧ certification(〈t, info(t)〉, sz.SEQn)⇒ sz.statusn(t) = active.

Based on Properties 12 and 13, it is shown the execution flow oftransactions at each site whenever a writeset is about to be
applied. TheRP must ensure that the transaction commits so it alters the execution flow of the rest of local transactions. This
task is split into two parts: all conflicting transactions are immediately aborted; and, on the other hand, all local transactions
attempting to update a data item are stopped (thus, avoidingnew conflicting sources) until the writeset is applied.

Lemma 1. Letα be a fair execution of theRP and letsz be a reachable state inα.

certification(〈t, info(t)〉, sz.SEQn) ∧ 〈t, info(t)〉 = head(sz.channeln) ⇒ ∃ z′ > z : sz′ .statusn(t) = committed ∨

sz′ .site staten = crashed.

Proof. By contradiction. We assume the Lemma does not hold:∀ z′ ≥ z : sz′ .statusn(t) 6= committed ∧ sz′ .site staten =

alive. We consider the following cases:

• Case 1.t.site = n. Let sz be the first state verifying the antecedent. By Property 13,sz.statusn(t) = active. The
eventend commitn(t) is enabled atsz. No other action, exceptcrashn or end commitn(t), can modify the variable
channeln when〈t, info(t)〉 = head(sz.channeln); or statusn(t). Recall,∀ z′ ≥ z : sz′ .site staten = alive, andcrashn

event does not happen inα. The same happens withend commitn(t) becausesz′ .statusn(t) 6= committed. Thus,
∀ z′ ≥ z, the eventend commitn(t) is enabled atsz′ . By weak-fairness ofα, ∃ z′ > z : πz′ = end commitn(t).
Therefore,sz′ .statusn(t) = committed. The Lemma is verified in such a case.

• Case 2. t.site 6= n. Let sz be the first state verifying the antecedent. Then,sz.statusn(t) = idle. The event
execute wsn(t) is enabled atsz. No other action, exceptcrashn or end commitn(t), can modify the variable
channeln when〈t, info(t)〉 = head(sz.channeln), SEQn, ws runn, or statusn(t). As∀ z′ ≥ z : sz′ .site staten = alive,
thecrashn event does not happen inα. The same happens withend commitn(t) becausesz′ .statusn(t) 6= committed.
Thus,∀ z′ ≥ z, the eventexecute wsn(t) is enabled atsz′ . By weak-fairness ofα, ∃ z1 > z : πz1

= execute wsn(t).
Let βn(α)[j] ∈ Traces(DBSn) be the associated trace toα at the reachable statesz1−1 (the previous state beforeπz1

execution). We consider now the effects of the execution ofπz1
:

∀ t′ ∈ getConflicts(〈t, info(t)〉) : abortn(t′), sz1
.statusn(t′) = aborted

sz1
.infon(t) = info(t)

beginn(t), submitn(t, sz1
.infon(t))

sz1
.statusn(t) = blocked

sz1
.ws runn = true.

We consider{t′1, ..., t′k} = getConflicts(〈t, info(t)〉). Notice thatgetConflicts(〈t, info(t)〉) is evaluated atsz1−1. Thus,
the associated traceβn(α) at the reachable statesz1

is (j′ = j + k + 2):
βn(α)[j′] = βn(α)[j] · abortn(t′1) · · · · · abortn(t′k) · beginn(t) · submitn(t, info(t).WS).

In the traceβn(α) of theDBSn, it is verified the following atj′:
(a) blockedn(t, info(t).WS, j′) ∧ type(info(t).WS) = write

(b) ∧∀ k, j′ − 1 < k ≤ j′ : νk /∈ {commitn(t′) | t′ ∈ T, WSn(t, j) ∩WSn(t′, k) 6= ∅}
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(c) ∧∀ t′ ∈ T being(activen(t′, j′) ∨ blockedn(t′, j′)) : WSn(t′, j′) ∩WSn(t, j′) = ∅.

The condition (a) is trivial by Property 4 and Definition 2. The condition (b) is verified by construction ofβn(α)[j′]

becauseνj′ = submitn(t, info(t).WS). We need further explanation in condition (c). Consider∃ t′ ∈ T being
(activen(t′, j′) ∨ blockedn(t′, j′)) : WSn(t′, j′)∩WSn(t, j′) 6= ∅. By construction ofβn(α)[j′], t′ verifies(activen(t′, j) ∨

blockedn(t′, j)) ∧ WSn(t′, j) ∩ WSn(t, j′) 6= ∅. By Property 4 and the fact thatWSn(t, j′) = info(t).WS, the next
holds:
∃ t′ ∈ T : sz1−1.statusn(t′) ∈ {active, blocked} ∧ sz1−1.infon(t′).WS ∩ info(t).WS 6= ∅.
By definition ofgetConflicts(〈t, info(t)〉) at sz1−1, thent′ ∈ getConflicts(〈t, info(t)〉) andt′ ∈ {t′1, . . . , t

′

k}. There-
fore,abortedn(t′, j′). This is against the initial supposition ofactiven(t′, j′) ∨ blockedn(t′, j′).

The conditions (a), (b) and (c) are the antecedent of Assumption 4.3. Following the Assumption 4.3:
∃ j′′ > j′ : νj′′ = notifyn(t, info(t).WS, active)∨

νj′′ ∈ {notifyn(t′, op′, active),commitn(t′) | op′ ∈ OP, t′ ∈ T, WSn(t, j′) ∩WSn(t′, j′′) 6= ∅}.

Recall thatend commitn(t) does not happen inα. Then,∀ z′ ≥ z1 : sz′ .ws run = true∧ 〈t, info(t)〉 = head(sz′ .chan-
neln); then,πz′ 6= end commitn(t′) for any t′ ∈ T . This last consideration yields thatνj′′ 6= commitn(t′) for any
t′ ∈ T . If νj′′ = notifyn(t′, op′, active) for somet′ ∈ T , by Assumption 1.4, the previous event issubmitn(t′, op′)

and type(op′) = write. This event can not be inβn(α)[j] if WSn(t, j′) ∩ WSn(t′, j′′) 6= ∅ because by a simi-
lar reasoning as in the case (c) above,t′ ∈ getConflicts(〈t, info(t)〉). Thus,submitn(t′, op′) happens after event
νj′ in βn(α). There must exist the eventexecute opn(t′, op′) after πz1

in α for which submitn(t′, op′) is part
of its action. But asws run = true and type(op′) = write, this event is disabled forever. Therefore,νj′′ 6=

notifyn(t′, op′, active). As Assumption 4.3 holds inβn(α), νj′′ = notifyn(t, info(t).WS, active) and thus, there
existsz2 > z1 such thatπz2

= notifyn(t, info(t).WS, active). By its effects,sz2
.statusn(t) = active. In conclusion,

∀ z′ ≥ z2, the eventend commitn(t) is enabled atsz′ . By weak-fairness ofα, ∃ z′ > z2 : πz′ = end commitn(t).
Therefore,sz′ .statusn(t) = committed. The Lemma is verified in such a case.

It is also needed to show that all delivered messages are going to be processed. Some messages will fail in the certification
process (where messages are discarded, see thediscard wsn action in Figure 3) while others not. By Lemma 1, those
messages that have passed the certification phase will be eventually committed and the next message will be processed.
Let us define a functiond(m,head(channeln)) = k ∈ Z+ that represents the distance between the position of a messagem

in channeln to its head, measured by the number of preceding messages. The next Property ensures that a message will
eventually get processed provided that the site is a correctsite; in terms of the new functiond(m, head(channeln)) < k with
k decreasing as more preceding messages are processed.

Property 14. Letα be a fair execution of theRP and letsz be a reachable state inα.

d(m, head(sz.channeln)) = k > 0⇒ ∃ z′ > z : d(m,head(sz′ .channeln)) < k ∨ sz′ .site staten = crashed.

Proof. By contradiction. We assume the property does not hold:∀ z′ ≥ z : d(m, head(sz′ .channeln)) ≥ k ∧ sz′ .site staten =

alive.
As k > 0, there exists〈t, info(t)〉 = head(sz.channeln). We only need to prove that there is az′ > z such thatsz′ .receivedn

includes〈t, info(t)〉. In such a way,d(m,head(sz′ .channeln)) < k.
At sz the following holds:

• Case 1:¬certification(〈t, info(t)〉, sz.SEQn).
The enabled condition ofπ = discard wsn(t) is true atsz. No other event can modify such a condition due the
fact 〈t, info(t)〉 = head(sz.channeln) andπ is the only event able to modifychanneln in such a situation. As∀ z′ ≥

z : sz′ .site staten = alive, π is enabled∀ sz′ . This is not possible becauseα is a fair execution. By weak fairness, there
existsπz′ = discard wsn(t) in α. By its effects,sz′ .receivedn includes〈t, info(t)〉.

• Case 2:certification(〈t, info(t)〉, sz.SEQn).
By the conditions of Lemma 1 and the fact that∀ z′ ≥ z : sz′ .site staten = alive, then∃ z′ > z : sz′ .statusn(t) =
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committed. By Property 7,∃ z1, z ≤ z1 ≤ z′ : πz1
= end commitn(t). By its effects,sz1

.receivedn includes
〈t, info(t)〉.

The next lemma states that if a transaction has committed at agiven site, it will get eventually committed at the rest of
correct sites. This lemma is the origin of the “uniform commit” property.

Lemma 2. Letα be a fair execution of theRP and letsz be a reachable state inα.

sz.statusn(t) = committed⇒ ∀n′ ∈ N : (∃ z′ : sz′ .statusn′(t) = committed ∨ sz′ .site staten′ = crashed)

Proof. By contradiction. We assume the Lemma does not hold; that is,∃n′ ∈ N : (∀ z′ : sz′ .statusn′(t) 6= committed ∧

sz′ .site staten′ = alive). In that case,n′ ∈ Correct(N).
Let sz be the first state inα such thatsz.statusn(t) = committed. By Property 7,πz = end commitn(t). Its enabled
condition atsz−1 verifiessz−1.statusn(t) = active, and〈t, info(t)〉 = head(sz−1.channeln). By Property 12, it also verifies
certification(〈t, info(t)〉, sz.SEQn) = true. Notice that by its effects〈t, info(t)〉 ∈ sz.receivedn.
By Property 5 (following its notation),∃ z4, z4 ≤ z − 1: πz4

= delivern(〈t, info(t)〉). In the associated traceγ(α) ∈

Traces(GCS), the eventdelivern(〈t, info(t)〉) appears in it. Thus by Assumption 5.7 (Uniform Agreement) and Assump-
tion 5.4 (No Duplication), there exists inγ(α) a unique eventdelivern′(〈t, info(t)〉) becausen′ ∈ Correct(N). There-
fore, in α there exists a uniqueπz′ = delivern′(〈t, info(t)〉). By its effects,sz′ .channeln′ ∋ 〈t, info(t)〉. By Property 14:
∃ z′′, z′′ > z′ : 〈t, info(t)〉 = head(sz′′ .channeln′).
We consider the following cases taking into account Property 10 and the relation betweenz′′ andz − 1:

Case 1.z′′ > z − 1 andsz′′ .receivedn′ � sz′′ .receivedn.
Case 2.z′′ > z − 1 andsz′′ .receivedn � sz′′ .receivedn′ .
Case 3.z′′ ≤ z − 1 andsz′′ .receivedn′ � sz′′ .receivedn.
Case 4.z′′ ≤ z − 1 andsz′′ .receivedn � sz′′ .receivedn′ .

Only Case 2 is not possible because〈t, info(t)〉 ∈ sz.receivedn and it is not included insz′′ .receivedn′ . In the rest of cases,
by applying Property 11 it is concluded the following:sz′′ .SEQn′ = sz−1.SEQn ∧ sz′′ .receivedn′ = sz−1.receivedn.
Therefore,certification(〈t, info(t)〉, sz′′ .SEQn′) = certification(〈t, info(t)〉, sz.SEQn) = true. The conditions of Lemma 1
hold: 〈t, info(t)〉 = head(sz′′ .channeln′ ) ∧ certification(〈t, info(t)〉, sz′′ .SEQn′).
By Lemma 1,∃ z′′′ > z′′ : sz′′′ .statusn′(t) = committed. The Lemma is proved.

Finally, the following theorem translates what it has been set up by Lemma 2 for theRP to theDBSn. It is a must that for
every committed transaction in the associatedDBSn of a site, it will eventually get committed in the remainder set ofDBSn′

with n′ belonging to the set ofCorrect(N).

Theorem 2(Liveness - Uniform Commit). TheRP verifies the liveness criterion: Uniform Commit.

Proof. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of theRP . If sz.status(t) = committed then∃ z1, z1 ≤ z : πz1
=

end commitn(t). By Lemma 2,πz = end commitn(t)⇒ ∀n′, n′ ∈ N : ∃ z′ : πz′ = end commitn′(t) ∨ πz′ = crashn′ . In
other words, if we narrow the second term for all correct sites: ∀n′, n′ ∈ Correct(N) : ∃ z′ : πz′ = end commitn′(t).

Letβn(α) ∈ Traces(DBSn) andβn′(α) ∈ Traces(DBSn′) be the associated traces ofEvents(DBSn) andEvents(DBSn′)

respectively, withn′ ∈ Correct(N). By the effects ofπz1
= end commitn(t), thecommitn(t) event is present inβn(α) and,

hence, this will imply that∀n′, n′ ∈ Correct(N) : commitn′(t) in βn′(α). Hence, the Theorem is proved.

8 Discussion

About the writeset extraction. First of all, we have not consideredSQLstatements throughout all the paper, we merely pointed
out that we read (or write) a data item version (〈x, value〉). Writeset extraction of a transaction is a well known problem in
the replicated database community and of particular interest in middleware approaches due to the heterogeneity ofDBS
used. It can be achieved through different mechanisms like:storingSQL statements [24, 36]; using triggers to extract the
changes [22]; and, reading changes from theDBS log [30]. Each one of these techniques presents its own advantages and
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drawbacks that will be outlined in the following. Thus, for example, in the first technique an inconsistent state can be reached
with non-deterministicSQLstatements, such as those setting up the current timestamp (among others) that will be different at
each replica and must be re-written on the fly (or properly modified at the time the writeset is multicast) [40]. However, this
technique is the most straightforward one as update statements are stored at the middleware layer of the transaction delegate
replica as they are issued. Trigger based extraction is a rather standard approach. This alternative presents the problem of the
overhead imposed at theDBSn as more write operations are needed for each individual write operation performed by aSQL
statement. Nevertheless, this approach avoids the inconsistencies across replicas present in the previous solution.Finally, the
most attractive way to achieve this is by reading the log at the transaction delegate replica. Therefore, no overhead is incurred
by this read operation. However, though eachDBS offers its own interface for accessing the log, this is not aneasy task (at
least from a middleware approach point of view), since it highly depends on the kind ofDBS considered and even version
changes of theDBSmay lead to a whole redefinition of this mechanism [25, 51]. All these aspects have thoroughly discussed
from a practical point of view in [38].

a) Invalid Process of Altering the Commit Sequence b) Correct Process of Altering The Commit Sequence

Figure 4: Altering the Commit Ordering at Two Different Replicas

Prefix-Order Consistency of the Sequencer Correctness Criterion. In order to ensure its correctness,RP needs that remote
writeset application follows a sequential order –being such order identical in all sites– which has been shown in [19] asa
sufficient condition for generating a GSI isolation level (provided that individualDBSn areSI). This is a very strong require-
ment for generating a one-copy equivalence scheduler for transactions in a replicated database. Actually, transactions can be
applied in any order under certain circumstances. Let us seethis with an example, given four transactions:{T1, T2, T3, T4}

that respectively write data items:X1, X2, X3, Z4. T1 andT2 are executed in different order at two replicas, while in another
system execution onlyT3 andT4 are executed in different order (as it can be seen in Figures 4.a and 4.b). From the execution
depicted above, we can say that if the final snapshot of the altered sequence is the same then it will not matter whether they
are committed or not in the same order (as it is shown in 4.b). This approach has been considered in [30] as “holes” appearing
in the associatedSEQi variable. Nevertheless, in order to maintain its correctness, the beginning of new local transactions
should be avoided as long as there are holes inSEQi, since they will get an inconsistent snapshot for their readoperations. A
slight variation of this enhancement is to concurrently apply non-conflicting transactions and commit them in the orderthey
were certified. The impact of this modification has not been experimentally tested yet.

Garbage Collection of the Sequencer and Fault-Tolerance Issues with the Crash-Recovery Model. Another closely related
issue is the need of a sequencer variable to store the whole set of successfully certified transactions. This variable seems
to infinitely grow along a system execution. A straightforward solution to avoid this is by piggybacking the number of the
last applied writeset in the writesets regularly broadcastby each replica. Thus, the sequencer can be trimmed accordingly
by removing until the minimum version received. This technique has been discussed in [50]. Of course, in case of a replica
that crashes, the number of collected version numbers must be properly modified so the process of garbage collection of the
sequencer may continue without interruptions. Sequencer usage has been shown as an interesting tool for the crash-recovery
model in replicated databases [27, 44, 4]. Though this failure scenario has not been considered in this paper, it can be accom-
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plished by considering the view synchrony properties featured by theGCS[13]. Most of these recovery solutions follow the
same philosophy, once a replica fails the process of garbagecollection of the sequencer is stopped. Hence, when the failed
node rejoins the system, a recoverer replica must be chosen to perform the data transfer of the missing part of the sequence.
A comparing evaluation of recovery techniques is given in [44].

Commitment of a Successfully Certified Writeset. Up to our knowledge, something that has not been carefully (formally)
considered is the fact that after a writeset has been successfully certified, it must be committed. Nevertheless, there can
exist several (local ones fromRP ’s point of view) transactions that may conflict with the certified writeset. Hence, it may
happen that the transaction applying a writeset may become blocked, or worse aborted. This last point was studied in [30].
They propose a time-out approach for blocking time and re-attempt the transaction just in case of time-out expiration orthe
transaction is rolled back by theDBSn. Another alternative approach, presented in [33], is to keep track at the middleware
layer of the metadata conflict table contained in theDBSn so they can be aborted as soon as possible (i.e. before these trans-
actions reach therequest commitn(t) event witht being local at replican). Moreover, both approaches do not prevent the
fact that the writeset can be endlessly aborted by theDBSn due to new write operations unless the replication protocoltakes
some more control actions. It needs to stop the execution of new write operations of currently executing transactions and the
beginning of new transactions that may potentially write inthe database. This last fact has been considered in the design and
formalization ofRP . Another approach, totally orthogonal to the previous onespresented here, is to define a conflict aware
load balancing technique by way of conflict classes [35, 3, 52]. Under this assumption, though it is full replicated, clients
have to pre-declare the set of data items about to be read and/or written by a transaction which is denoted as a conflict class.
Each replica is the owner of one or several conflict classes. Moreover, a transaction can potentially access several conflict
classes and, typically, it is statically assigned to one master. The goal here is to minimize inter-replica conflicts, which is
left to the masters of the respective conflict classes, and the throughput of applying remote transactions is maximized.More
precisely, transactions are broadcast (using the total-order primitive) to all replicas. Master sites execute transactions, while
the rest just apply the resulting writesets in the order transactions were delivered. However, this last alternative presents
the inconvenience of its high dependence of the database application considered: an evolution of the database schema may
convert the workload distribution policy into a useless one. Finally, a second possible optimization is presented in [16] and
it consists in uniting transaction ordering with transaction durability in a replicated setting. This may be achieved either at
the middleware layer, or at the database one, generating respectively theTashkent-MW andTashkent-API systems described
in that paper. In both cases, multiple writesets are groupedand committed at once. This also enhances throughput since
many intermediate commits are eliminated, as it is usually done in isolatedDBSs. Moreover, this optimization is also able to
preserve the initial ordering without many problems.

Transaction Isolation Level Reached with the Prefix-Order Consistency in the Replicated Database withSI DBSs. The prefix-
consistency order imposed by theRP and the usage ofDBSn providing SI have been shown as a sufficient condition to
provideGSI [19] or weakSI in terms of [14]. RP does not support eitherstrong sessionSI [14, 40] where clients always
see their own updates. Unless they access all the time the same replica, which is not necessarily true in the case of a crash
failure. Moreover, clients are not guaranteed to see increasing snapshots when the same client executes consecutive queries
on different replicas that are not equally up-to-date. The same problem appears in [17, 30, 33]. This problem can be cir-
cumvented by including some meta-information on the clientside about the latest version seen by him, upon reception of a
query the replica can check its current database version andmay decide to execute the query if the proper version is given,
forward it to another replica or block the transaction untilthe proper snapshot version of the client is reached. It has been
shown in [17, 19] that there is no non-blocking implementation that provides conventional (or strong [14])SI. Though this
fact can be taken as a chance to consider data freshness in twoways: either to obtain a given snapshot by selecting the proper
replica that holds the requested snapshotversion(or timestamp) [41] or trying to define an interval of validity of a given
snapshot, such ask-boundGSI [6] where astart message (containing the snapshotversion) is broadcast (using total-order)
at the beginning of the transaction. Upon its reception it ischecked against the last committed transaction if its difference is
greater thank which is a parameter chosen by the database application.

Practical Considerations with CommercialDBSs that provide Different Isolation Levels. The certification process proposed
here is a distributed and replicated version of thefirst-committer-wins(FCW) rule of SI [7]. Note that most ofDBSn com-
mercial implementations (such asPostgreSQL [42] and Oracle [34]) use another different flavor of this rule calledfirst-
updater-wins(FUW) rule. Only the first transaction performing a write operation over the same data item with other update
transactions is allowed to proceed while the others remain blocked. At the moment when the former one commits the rest
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will be aborted. Recall the conflict detection mechanism with local transactions while applying a remote writeset that we
have previously discussed [33] that becomes specially useful with aDBSn using theFUW though correctness is not affected
either by using aDBSn with a FUW or a FCW rule. Read-Committed (RC) is a weaker isolation level rather than the one
provided bySI [7]. Actually, it is the default isolation level provided byPostgreSQL and Oracle. For each read operation
executed by a transaction executed under this isolation level, it is performed over the current database snapshot version at
the moment it is issued (i.e. non-repeatable reads are possible [7]). Whereas the commitment rule for a transaction under
RC is done by relaxing theFUW rule, whenever the transaction holding the update lock on a data item commits, the rest
of blocked transactions are re-evaluated but they do not getaborted as opposed toFUW underSI. Thus, if we want to run
RP with all DBSn providing RC there is no need for a sequencer, the certification of a transaction is done by way of the
total-order delivery of the writeset by theGCS. Of course, it is still needed to control the execution flow oflocal transactions
as inGSI has been done and will imply some abortions of local transactions, reaching aGeneralizedRC isolation level for
the replicated database [8]. Moreover, the certification process was originally proposed to obtain One-Copy-Serializability
(1CS) [10, 36] with eachDBSn providing the serializable isolation level. Again,RP can provide1CS if it propagates the
readsets along with the writesets in the message being broadcast, as it has been used in [35, 28, 36].1CS can also be
reached with the usage ofDBSn featuringSI either: statically (i.e. forcing transactions to generatehistories where there are
no intersection between readsets and writeset) [18]; or, dynamically by shifting read operations into write operations [17] (a
“SELECT” SQLstatement can be modified into a “SELECT ... FOR SHARE” or a “SELECT ... FOR UPDATE” statement).

Integrity Constraints on Replicated Databases. One topic that has not been covered yet, to the best of our knowledge, is in-
tegrity constraints (IC) at replicated databases. At this point a transaction can beaborted by anIC operation (i.e. it may obtain
a notifyn(t, op, result, data) with result = abort due to anIC restriction violation). Furthermore, a transaction applying a
remote writeset may be aborted due to this fact too. One possible way to overcome this is to serially execute transactionsthat
executeIC operations [1]. Thus, the message containing the writeset for its certification must also include all data items that
have been involved inIC operations and, thanks to this, observe allIC in the replicated database. Of course, there are some
possible optimizations in the certification function, though this was not one of the scopes of the paper, such as anIC-read
operation over the same data item between two or more concurrent transactions is totally compatible.

Alternative Approaches for the Correctness Proof. The first approach of setting up a correctness criterion forreplicated
data was formally stated in [10]. It was established the serialization theory for a replicated system by giving the notion of
one copy equivalence that derived, by the usage of2PL DBS replicas, to the1CS correctness criterion. A given solution
is said to be1CS if its associated serialization graph is acyclic [10]. Thishas been commonly used in previous works in
order to prove the validity of the solutions proposed. Therefore, the solutions proposed in [28, 36, 24, 35] share the same
characteristic: transactions are executed at their delegate replicas and writesets are broadcast, using the total-order facility, to
the rest of replicas and differ in the way transactions are terminated (either weak-voting or distributed certification[50]) to
guarantee they are1CS. The total-order (that can also be firstoptimistically[28, 35] delivered) delivery of writesets ensures
that the way the serialization graph is built prevents the apparition of any cycle. A good example of this is the solution
presented in [28] for a kernel-based and [35] for a middleware architecture where the whole transaction (e.g. defined as a
stored procedure pretty much like a web data-sheet form) is broadcast. Nevertheless, most of commercialDBS do provide
SI and several attempts [17, 30, 19] have been done to provide conditions and define a correctness criterion pretty similar
to the notion of1CS. Therefore, in [19, 17] the notion of prefix-orderSI consistency is defined which is considered as a
sufficient condition to provideSI histories [19] as we have depicted above, i.e. it disallows some histories that are also valid
SI histories. A centralized and a distributed certification algorithm are presented in [17] based on the previous concept and
transactions obtainGSI. The correctness proof for the distributed certification (which is somehow equivalent to ourRP ) is
based on the total order delivery of messages containing thewriteset [17]. Concurrently to [17], an equivalent notion for SI
replicas is given in [30] which is called 1-copy-SI stating that a set of replicas provides it if there is aROWA [20] function
that maps how transactions are executed at all replicas and there exists aSI history that respects the commit ordering of
write-write conflicting transactions and the start ordering of write-read conflicting transactions. They propose a distributed
certification algorithm for a middleware architecture thatis based on the sequential execution of writesets that are total-order
delivered. Therefore, it is easy to show that it follows the same approach as in [17]. To the best of our knowledge, none of the
previous works, either for1CS[28, 36, 24, 35] orGSI [17, 30], have used a typical approach for verifying the correctness of
distributed systems such asTLA+ [29], the state transition systems [46] or the Input/Outputautomata theory [32]. Moreover,
1CSsolutions present new algorithms, with independent specifications, analysis and correctness proofs, though the same can
not be said forGSI protocols where the correctness criterion and algorithms are introduced in the same whole unit[17, 30].
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Moreover, all previous algorithms proposals base their data consistency on the total order delivery facility providedby a
GCS though they do not cope with the crash failure of a replica andhow it affects its correctness. In our work, we have
formally introduced a replication protocol for a database replication middleware architecture withSI replicas as a state
transition system that deals with crash failures which is a novel approach. More recently, a formalization of the deferred
update technique for database replication with serializable databases is proposed in [45] where some characteristicsand
limitations of such technique are presented. They set up that the termination protocol must totally order globally committed
transactions, similar to the approach presented in our workbut this is a sufficient condition forSI. They have also shown that
it is only needed to preserve the serializability order onlyfor those transactions that modify the database without taking into
account read-only transactions, also similar to the prefix-consistency correctness criterion presented here and in [19, 17] for
SI. Finally, they have checked their specifications using theTLA+ model checker which is also a novel approach since they
use distributed system tools to verify the correctness of database replication protocols.

9 Conclusions

In this paper, it has been formalized a certification-based database replication protocol (RP ) as a state transition system. This
represents a novel approach, since none of the previous approaches has used distributed-system-specific tools to ensure its
correctness. Moreover, they have introduced their specifications of replication protocols using independent specifications,
analysis and correctness proofs. We have established safety (database prefix order consistency: for each pair of replicas the
database of one of them constitutes the prefix of the other or viceversa) and liveness correctness (uniform commit: if a site
commits a transaction then every site will commit this transaction or has crashed) criteria that needs to be verified byRP .

RP has been introduced in a middleware architecture which is composed by the replication protocol itself, a set of database
replicas (DBSn) and a group communication system (GCS). Hence, our formalization has to introduce a composition rule of
the different components in order to define the executions ofthe system.RP represents a very basic version of a certification-
based replication protocol, in the sense that it is an eager update everywhere replication protocol where transactionsare
sequentially certified and committed thanks to the total order delivery of writesets performed by theGCS. Our main aim is
to ensure its correct behavior (i.e. database prefix order consistency and uniform commit) using a state transition system
even in the presence of crash failures, something that, to the best of our knowledge, has been missed in previous proposals.
Transactions executed withRP , as shown in [19, 17], obtainGSI provided that eachDBSn used isSI.

Finally, it has been discussed the limitations ofRP and proposed several optimizations, many of them already included in
several works. Another phenomenon that was not discussed in-depth yet is the way a writeset is applied at a remote replica
and how it deals with possible conflicts between local transactions. We also provide an extension of the replication protocol
to cope with growth of the sequencer and the crash-recovery model. The alternative approaches of correctness criteria used
in other works have been depicted and discussed too.
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[15] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast algorithms: Taxonomy and survey.
ACM Comput. Surv., 36(4):372–421, 2004.

[16] Sameh Elnikety, Steven Dropsho, and Fernando Pedone. Tashkent: Uniting durability with transaction ordering for
high-performance scalable database replication. InACM Eurosys, Leuven, Belgium, April 2006.

[17] Sameh Elnikety, Fernando Pedone, and Willy Zwaenopoel. Database replication using generalized snapshot isolation.
In SRDS. IEEE Computer Society, 2005.

[18] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil,Patrick O’Neil, and Dennis Shasha. Making snapshot isolation
serializable.ACM Trans. Database Syst., 30(2):492–528, 2005.
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A Appendix

A.1 Proof of Property 1

Proof. Let sz be the first state beingsz.statusn(t) = active. The only action makingsz.statusn(t) = active is πz =

notifyn(t, op, active) for someop ∈ OP .

A.2 Proof of Property 2

Proof. If πz = crashn, then sz.site staten = crashed. No event of siten ∈ N is enabled by theRP , and asπz ∈

Events(DBSn), the Assumption 1.1 is preserved.

In order to prove the rest of Assumption 1, we have to study thefollowing cases:
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• Let νj = beginn(t) be an event inβn(α), then there existsπz ∈ {execute opn(t, op), execute wsn(t) | op ∈ OP}

in α such thatνj is part of its action. The enabling condition forπz requires thatsz−1.statusn(t) = idle. No other
eventπz′ , z′ < z is enabled beingt its parameter. By its effects,∀ z′ > z − 1: sz′ .statusn(t) 6= idle. Therefore,
∀ i < j : t 6= tran(νi) in βn(α), and Assumption 1.2 holds.

• Letνj ∈ {commitn(t),abortn(t),notifyn(t, op, abort)} in βn(α), then there existsπz ∈ {end commitn(t), execute wsn(t′),

notifyn(t, op, abort) | t′ ∈ T} in α such thatνj is part of its action. The actions of such events makesz.statusn(t) ∈

{committed, aborted}. Thus, no other eventπz′ , z′ ≥ z is enabled beingt its parameter.∀ i > j : t 6= tran(νi) and
Assumption 1.3 holds.

• Let νj = submitn(t, op) in βn(α), then there existsπz ∈ {execute opn(t, op), execute wsn(t)} in α such thatνj is
part of its action. Ifsz−1.statusn(t) = idle then the previous event fort in βn(α) is beginn(t) as the respective action
indicates. Ifsz−1.statusn(t) = active, the previous action forπz in α which is the only one makingsz−1.statusn(t) =

active is notifyn(t, op′, active) for someop′ ∈ OP as Property 1 indicates6. Thus,∃ i < j : prev event(i, j, t) ∧ νi ∈

{beginn(t),notifyn(t, op′, active) | op′ ∈ OP} and Assumption 1.4 holds.

• Let νj = notifyn(t, op, result) in βn(α). This event is under control of theDBSn component which is used to commu-
nicate to theRP the result of an operation submitted to theDBSn. TheRP guarantees that its enabling condition is
true. Thus, the Assumption 1.5 is preserved.

• Let νj = commitn(t) in βn(α), then there existsπz = end commitn(t) in α such thatνj is part of its action. By
Property 1,∃ z1 ≤ z : πz1

= notifyn(t, op, active) for someop ∈ OP in α. Let πz1
be the last one, then∃ i <

j : prev event(i, j, t) ∧ νi ∈ {notifyn(t, op, active) | op ∈ OP} and Assumption 1.6 holds.

A.3 Proof of Property 3

Proof. If πz = crashn, thensz.site staten = crashed. No event of siten ∈ N is enabled by theRP automaton, and as
πz ∈ Events(GCS), the Assumption 5.1 is preserved.
In order to prove that Assumption 5.2 is preserved, we consider it does not hold:νi = broadcastn(m)∧νj = broadcastn′(m)⇒

i 6= j in γ(α). The only event in theRP that is able to broadcast a message isrequest commitn(t) with t.site = n. Thus,
there exist inα the eventsπz = request commitn(t) andπz′ = request commitn′(t) such thatνi andνj are part of their
actions respectively beingm = 〈t, info(t)〉. In the case ofn 6= n′, t.site 6= t.site is a contradiction. In the case ofn = n′, if
z < z′, thensz.sentn(t) = true andenabled(πz′) is false.

A.4 Proof of Property 4

Proof. By induction over the length ofα. One can note thatβn(α[z]) = βn(α)[j]. We have chosen the second notation in
behalf of keeping the correctness proof simpler. In the next, βn(α[0]) = βn(α)[0] = empty. If (sz, πz+1, sz+1) is a step of the
RP , βn(α[z +1]) = βn(α)[z] · νj+1 · νj+2 · · · · νj+k, whereνj+1 . . . νj+k are the events ofEvents(DBSn) executed by the event
πz+1 of theRP as part of its action. Thus, we also writeβn(α[z + 1]) = βn(α)[j + k].

• Basis. Let α = s0 be the initial state. For allt ∈ T and n ∈ N : s0.statusn(t) = idle, s0.site staten = alive,
s0.infon(t) = (0, ∅, 0), s0.V ern = 0, ands0.SEQn = empty. The Property holds ats0.
The associated trace isβn(α)[0] = empty. By definitions provided in Section 3: (Notice thatT (βn(α)[0]) = ∅) For all
t ∈ T , idlen(t, 0), WS(t, 0) = ∅; andlog(βn(α)[0]) = empty.

• Hypothesis. Assume the Property 4 holds atsz; and letβn(α)[j] be its associated trace.

• Induction Step. Let (sz, πz+1, sz+1) be a transition of theRP . We study how each possibleπz+1 event affects the
property; we only consider the events modifying the variables the property states.

6Note that there can be otherπz′ events that maintain theactive status for a given transaction, concretely therequest commitn(t) event, but such
events do not extend theβn(α) trace. In the last item will happen the same.
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– πz+1 = execute opn(t, op) with t.site = n.
By its enabled condition:sz.site staten = alive and (a)sz.statusn(t) = idle or (b) sz.statusn(t) = active.
Proving the case (a) is sufficient because the action for (b) is included in (a). In that case:βn(α)[j + 2] =

βn(α)[j] · beginn(t) · submitn(t, op). In the next obtained state by the action:
sz+1.statusn(t) = blocked. By Definition 1,blocked(t, j + 2) and Property 4.3 holds.
sz+1.infon(t).start = sz.V ern. By Hypothesis and Definition 4 (log), sz.V ern = |log(βn(α)[j])| = |log(βn(α)[j+

1])| ∧ νj+1 = beginn(t). No other event will modifyinfon(t).start. Property 4.6 holds.
sz+1.infon(t).WS = sz.infon(t).WS ∪ {op} if type(op) = write. By Hypothesis and Definition 2 (writeset)
sz+1.infon(t).WS = WS(t, j) ∪ {op} = WS(t, j + 2). Property 4.7 holds.
The rest of cases in Property 4 hold trivially.

– πz+1 = notifyn(t, op, result).
In this caseβn(α)[j + 1] = βn(α)[j] · notifyn(t, op, result). If sz+1.statusn(t) = active then by Definition 1 of
transaction statesactive(t, j + 1) and Property 4.2 holds. Ifsz+1.statusn(t) = aborted then by Definition 1 of
transaction statesaborted(t, j + 1) and Property 4.5 holds. The rest of cases in Property 4 hold trivially.

– πz+1 = crashn.
In this case,βn(α)[j + 1] = βn(α)[j] · crashn. By the effects of the action,sz+1.statusn(t) = aborted if
sz.statusn(t) ∈ {blocked, active}. By Definition 1,aborted(t, j+1) and Property 4.5 holds. Alsosz+1.site staten =

crashed and the rest of cases in Property 4 hold.

– πz+1 = execute wsn(t) with t.site 6= n.
In this caseβn(α)[j + k] = βn(α)[j] · abortn(t1) · · · · · abortn(tk−2) · beginn(t) · submitn(t, sz+1.infon(t).WS)

beingt1, . . . , tk−2 ∈ getConflicts(〈t, info(t)〉).
sz+1.statusn(ti) = aborted, i : 1 .. k−2 then by Definition 1 of transaction statesaborted(t, j +k) and Property 4.5
holds.
sz+1.statusn(t) = blocked then by Definition 1 of transaction statesblocked(t, j + k) and Property 4.3 holds.
As sz+1.infon(t).WS = WSn(t, j + k), by Definition 2, Property 4.7 holds.
The rest of cases in Property 4 trivially hold.

– πz+1 = end commitn(t).
In this caseβn(α)[j +1] = βn(α)[j] ·commitn(t). By Definition 4,log(βn(α)[j +1]) = log(βn(α)[j]) · 〈t, WS(t, j),

|log(βn(α)[j + 1])|〉. We study the effects of the event over the next statesz+1.
sz+1.statusn(t) = committed and by Definition 1 of transaction statescommitted(t, j + 1). Property 4.4 holds.
sz+1.V ern = sz.V ern + 1. By Hypothesissz.V ern + 1 = |log(βn(α)[j])| + 1 = |log(βn(α)[j + 1])|. Property 4.9
holds.
sz+1.infon(t).end = sz+1.V ern = |log(βn(α)[j + 1])| andνj+1 = commitn(t). Then Property 4.8 holds due to
the fact that no other event can modify the variableinfon(t).end.
sz+1.SEQn = sz.SEQn·〈t, sz+1.infon(t)〉. Thus,sz+1.LOGn = sz.LOGn·〈t, sz+1.infon(t).WS, sz+1.infon(t).end〉.
By Hypothesis and the value ofsz+1.infon(t).end:
sz+1.LOGn = log(βn(α)[j]) · 〈t, sz+1.infon(t).WS, |log(βn(α)[j + 1])|〉.
We only need to prove thatsz+1.infon(t).WS = WS(t, j).
In this casesz+1.infon(t).WS = sz.infon(t).WS = WSn(t, j) by induction Hypothesis (Property 4.7), and the
fact thatsz.site staten = alive, end commitn(t) does not modifysz.infon(t).WS, andνj+1 = commitn(t)

does not modifyWSn(t, j).
Therefore,sz+1.LOGn = log(βn(α)[j]) · 〈t, WSn(t, j), |log(βn(α)[j + 1])|〉 = log(βn(α)[j + 1]), and Property 4.10
holds.
The rest of cases in Property 4 hold.

A.5 Proof of Property 9

Proof. By induction over the length ofα.

• Basis. At α = s0, γ(α[0]) = empty. Thus,s0.deliveredn = s0.receivedn = s0.channeln = messn(γ(α[0])) = empty.
The property is verified at the initial state.
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• Hypothesis. Assume the Property 9 is verified atsz.

• Induction step. Let (sz, πz+1, sz+1) be a transition step of theRP . The events affecting the variables of the property are
πz+1 ∈ {delivern(m),end commitn(t),discard wsn(t), crashn | t ∈ T, m ∈M}.

– πz+1 = delivern(m).
In the associated trace,γ(α[z + 1]) = γ(α[z]) · delivern(m); and, by Definition 5,messn(γ(α[z + 1])) =

messn(γ(α[z]))·m. By the effects ofπz+1, sz+1.deliveredn = sz.deliveredn·m, andsz+1.channeln = sz.channeln·

m. By induction Hypothesis, the property holds.

– πz+1 ∈ {end commitn(t),discard wsn(t) | t ∈ T}.
In the associated trace,γ(α[z + 1]) = γ(α[z]). In both cases,〈t, info(t)〉 = head(sz.channeln). By their
effects,sz+1.deliveredn = sz.deliveredn, sz+1.receivedn = sz.receivedn · 〈t, info(t)〉, andsz+1.channeln =

tail(sz.channeln). Thus,sz+1.receivedn · sz+1.channeln = sz.receivedn · sz.channeln. By induction Hypothesis
the property holds.

– πz+1 = crashn. By its effectssz+1.channeln = empty, the rest of variables are not modified. By Hypothesis the
property holds.

A.6 Proof of Property 12

Proof. We consider the following cases. The proof is made by contradiction.

• Case 1: t.site 6= n. By Property 1,∃ z1 ≤ z : πz1
= notifyn(t, op, active). Then∃ z2 < z1 : πz2

= execute wsn(t), this
is the event makingsubmitn(t, op) at sz2

(Assumption 1.5). Thus,sz2−1 verifies〈t, info(t)〉 = head(sz2−1.channeln)

andcertification(t, sz2−1.SEQn). The only action that is able to modifysz2−1.channeln andsz2−1.SEQn is πz3
=

end commitn(t), being z2 < z1 < z3. πz3
has not been executed, accordinglysz2−1.SEQn = sz.SEQn and

certification(t, sz.SEQn) holds.

• Case 2: t.site = n. Following Property 5 (and its notation), by the effects ofπz1
, info(t).start = sz1

.infon(t).start. By
Property 4.6 and Property 4.9,info(t).start = sz1

.V ern. As¬certification (〈t, info(t)〉, sz.SEQn) then∃〈t′, info(t′)〉 ∈

sz.SEQn such thatinfo(t′).end > info(t).start andinfo(t′).WS ∩ info(t).WS 6= ∅. By Property 7,∃z5 ≤ z : πz5
=

end commitn(t′) ∧ info(t′) = sz5
.infon(t′). By the effects ofπz5

, info(t′).end = sz5
.V ern. Thus, sz1

.V ern <

sz5
.V ern ≤ sz.V ern and obviously,z1 < z5 ≤ z.

We consider the associated trace ofDBSn to α, i.e. βn(α). We also considerβn(α[z]) = βn(α)[j]. In βn(α)[j] taking
into accountz1 < z5 ≤ z, there exitsi < k ≤ j such thatνi = beginn(t), νk = commitn(t′) andactiven(t, j).
By Property 5, Property 6, and Property 4.7,info(t).WS = sz2

.infon(t).WS = WSn(t, j) holds. By Property 7,
Property 4.10 and Definition 4,info(t′).WS = sz5

.infon(t′).WS = WSn(t′, k). Thus,WSn(t, j) ∩WSn(t′, k) 6= ∅.
Assumption 3 (First-Updater-Wins) is violated byβn(α). A contradiction is given.

A.7 Proof of Property 13

Proof. The proof is made by contradiction. Assume the property doesnot hold; i.e. sz.statusn(t) 6= active. By Prop-
erty 5 (following its notation),πz3

= request commitn(t). As sz3
.statusn(t) = active and sz3

.sentn(t) = true, then
sz.statusn(t) /∈ {idle, active, blocked, committed}. In conclusion,sz.statusn(t) = aborted. The only possible event making
sz.statusn(t) = aborted at siten ∈ N (t.site = n) is πz5

= execute wsn(t′) for somet′ ∈ T . In addition,z1 < z5 < z. At
sz5−1, the state in whichπz5

is enabled,sz5−1.statusn(t) = active (it can not beidle, blocked, committed noraborted by the
fact sz3

.statusn(t) = active) andsz5−1.infon(t).WS ∩ info(t′).WS 6= ∅ where〈t′, info(t′)〉 = head(sz5−1.channeln). As
t ∈ getConflicts(〈t′, info(t′)〉) thensz5

.statusn(t) = aborted.
Notice that〈t′, info(t′)〉 6= head(sz.channeln) = 〈t, info(t)〉. This is only possible ifπz6

= end commitn(t′) with
z3 < z5 < z6 ≤ z.
By the effects ofπz6

, 〈t′, sz6
.infon(t′)〉 ∈ sz6

.SEQn, sz6
.infon(t′).end = sz6

.V ern, and by Properties 6 and 7sz6
.infon(t′).WS =

info(t′).WS.
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It is also simple to show thatsz1
.infon(t).start = sz1

.V ern < sz6
.V ern = sz6

.infon(t′).end.
Again by Properties 5 and 6,info(t).start = sz1

.infon(t).start andinfo(t).WS = sz5−1.infon(t).WS.
Therefore,∃〈t′, sz6

.infon(t′)〉 ∈ sz.SEQn : sz6
.infon(t′).end > info(t).start ∧ sz6

.infon(t′).WS ∩ info(t).start 6= ∅. In
conclusion,¬certification(〈t, info(t)〉, sz.SEQn). A contradiction is obtained.
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