Correctness Proof of a Middleware GSI

Certification-Based Replication Protocol
J.R. Gonzalez de Mendivil, J.E. Armendariz, F.D. MuiibR. Garitagoitia

Dpto. Ing. Matemaética e Informéatica - Univ. Plblica deviiaa - Pamplona (Spain)
Instituto Tecnolbgico de Informatica - Valencia (Spain)

{mendivil,enrique.armendariz,josef@unavarra.es, fmunyoz@iti.upv.es

Technical Report ITI-ITE-07/17

ITI-ITE-07/17

J.R. Gonzalez de Mendivil et al.Correctness Proof of a Middleware GSI Certification-BasegliRation Protocol

Correctness Proof of a Middleware GSI Certification-BasegIRation
Protocol

J.R. Gonzalez de Mendivil, J.E. Armendariz, F.D. MufibR. Garitagoitia

Dpto. Ing. Matematica e Informatica - Univ. PUblica devilaa - Pamplona (Spain)
Instituto Tecnoldgico de Informatica - Valencia (Spain)

Technical Report ITI-ITE-07/17
e-mail: {mendivil,enrique.armendariz,josej@unavarra.es, fmunyoz@iti.upv.es

December 14, 2007

Abstract

This paper provides a formal specification and proof of adrress of a basiGeneralizedSI certification-based data
replication protocol for database middleware architezgurlt has been modeled using a state transition system, las we
as the main system components, allowing a perfect matchthéttusual deployment in a middleware system. The proof
encompasses both safety and liveness properties, as misonly done for a distributed algorithm. This approach éemb
the analysis of multiple specific variations on this basmgcol, that have been included in previous works. Furtloeena
crash failure model has been assumed for the correctnes§ pithough recovery analysis is not the aim of this pages, t
allows an easy extension towards a crash-recovery modpbsuin future works. Notice that most of previous works have
focused in the safety part, here it is considered the livepast too, in particular, the uniform commit: if a site hasunitted
a transaction the rest of sites will either commit it or havasbed.

1 Introduction

Replication is a common technique for improving the avalitgbof both data and processes. Data and their associated
processes are very important for many kinds of enterprisgs. So, database replication has received a lot oftaiteim

the academical field for years [47, 11, 2, 37, 49, 26, 35] asd by thedatabase systefbBS) companies [34, 48] although
the latter tend to use more conservative and safer strategie

Recent papers [50] have compared the performance of diffeleabase replication protocols and have shown that those
based on a certification strategy and total-order broadsfaspdates performed by a transaction, featured by a Group
Communication SystenGC9), provide the best performance (i.e., minimal response)iim most system configurations.
Certification-based protocols rely on the local executibthe transaction operations on its delegate replica. Wherlient
application requests the transaction commit, its updatesdted as writeset) and its read operations (respectiezgset)
are collected in two different sets and multicast in totales to all replicas. Once such sets are delivered, theyextdied
against a historic list of previously committed transagti@and, if no conflict arises, the transaction is applied amdnitted
in each replica. Otherwise, the transaction is abortederdtegate replica and discarded in the other ones. Notitdhh
certification process is symmetric and can be independerdguted in each replica, providing the same results. Dtlegp
no additional voting phase is needed to decide whether adcion should commit or abort.

Despite their short transaction completion time, certff@abased replication protocols are not a clear best apftio
managing transactions in the serializable isolation lesigice readsets need to be collected and propagated in exedh |
However, things are quite better in terapshot isolatiofi7] (SI, for short) level: readsets are not needed in the certifioati
process when a multi-version concurrency control mechmaissused by the underlyingBS. AlthoughSl is more relaxed
than serializable there have been some works [18] that ibesicow to ensure serializable executions using3hlevel. So,
multiple replication protocols [26, 51, 30, 17, 33] haveeeablished using such combination: a certification-basetbpol
providing the snapshot isolation level. There are goodaes$or this: besides a shorter completion time (since tadwe

not collected, nor transferred, nor evaluated in the cediion process), the isolation achieved is almost as stsi¢h the
serializable case, and read operations are never blocldditidnally, when aeneralizeds! (GSI) level is used, as proposed
by [17] and followed by most other academical worksSintransaction start does not need to block [19] further inaprg
the protocol performance.

In order to improve their portability andBS independence, many replication protocols [43, 3, 12, 380535, 22, 33]
have been implemented in a middleware [9] layer. This peaaltheir performance and demands some additional support
at the middleware layer for managing several protocol tkethiat could have been easily implemented atDigsS core
(concurrency control, readset and writeset collection).. This is partially overcome with the help of standard netem
for reusing the underlyin@®BS support at the middleware layer, as [33] describes for weiteconflict detection, and by
the middleware enhanced portability. Thus, without marfgres, the middleware system can work in a heterogeneous
environment where differemBSs are being used in the system nodes.

Actually, most of replication protocols [33, 30, 17, 51, 231, 40] that providesS|, or other different Sl flavors, for
replicated environments are certification based [33, 3051Fwith several enhancements to increase their perfocsang.
concurrent execution of disjoint writesets as in [30], thatnot carefully pay attention to maintain their correcgid2arallel
to this, most of them ensure that they can afford replicafas but, to the best of our knowledge, lack of any correstpesof
about this fact; even for the most intuitive and simple scerguch as the crash failure. Due to these two importantaspe
in this paper we propose a formal specification and corresstipeoof of a basic certification-based replication protoco
providingGSl. This has been done by way of a state transition system, asmesl in [46]. This formalism has permitted us
to represent independently each component involved in tideleware database replication system (i.e. DigsS, the GCS
and the Replication ProtocdRP) modules) and the interaction and composition of their eissed events. For instance, this
assures that the interaction between the replication pobtnd the underlyin@BS only uses a few standard operations, and
that no core-dependebBS facility is available to the replication protocol.

In this work, it has been followed the traditional approachidentifying and verifying safety and liveness properties
for a distributed system. Moreover, there are some additipractical issues that must be considered for ensuriegégs
properties such as in the case of application of an alreadified writeset. Under this scenario, this writeset must be
committed and this will not be possible unless Rredoes not take some control over transactions already begwuéed in
theDBS. We are not aware of previously research works that haventdiese side-effects into account.

RP follows the basic certification-based approach [50]; ndHfer optimization has been considered since our aim is to
emphasize several correctness details throughout all titk. wA transaction is firstly executed at its delegate rep(ihat
transaction is denoted as local) and, thus, obtains itstlateapshot version which does not necessarily be the Btstsm
version. When the commit operation is requested, its agtatiwriteset is sent, along with its snapshot version, lto al
available replicas using the total-order broadcast [13lotuthe delivery of the message, each server executes anilgittic
certification phase that decides the final outcome of thes&retion (either aborted or committed). In the case®f[17], RP
maintains the sequence of already certified transactiaiddts it to determine whether it intersects with any of thigegets
of transactions with version numbers higher than the sr@gbiten by the delivered writeset. If so, the transactieads
to be aborted. Otherwise, all intersections are empty, tieset can be committed and is applied as a remote trangd(ti
only needs to be committed at its delegate).

Thus, the contributions of this paper are: (a) formal speaiifon of a basic certification-basegidata replication protocol
along with the rest of components of a middleware architecfsuch as th®BS and theGCS), (b) its formal correctness
proof assuming a crash failure model, distinguishing yediet liveness properties as in any other distributed algar; (c)
to provide the basis —using the two previous issues— forygtigdseveral variations of this basic protocol that enhatse
performance without incurring in the violation of its coctaess, and, (d) to ensure that the formalization givens@piate
for a middleware architecture.

The rest of this paper has been structured as follows. Se2taescribes the system model and the formalism being used
in the protocol specification. Since a middleware architexts being assumed and such middleware needs some underlyi
services, Sections 3 and 4 describe the two system commomeviding such services: tlzBS and theGCS respectively.
Later, Section 5 specifies and comments the proposed réphiqgaotocol. Such protocol is proven correct in Sectiosdine
related work is described in Section 8, and the paper is calec in Section 9.

2 System Model and Presentation Formalism

The system (Figure 1) considered in this paper is an abgiract a middleware database replication architecture.shiséem
is composed byN| sites (or nodes), beingy the set of site identifiers, which communicate among themguaGCS[13].

Each siten € N contains a Database SystemHsS,,) including a copy of the entire database schema. We assunigy/a f
replicated system where each site runs a Replication Rybf&®). Figure 1 describes how components interact with each
other at a siteT is the set of transaction identifiers. Each transactien” contains a unique identifier that points out the
site where the transaction is firstly started (its delegepdica) denoted assite € N.

We distinguish among three different components in ourssysBesides the underlyingB.S,, each site: € N has a copy
of RP being used and has also access to the system-@adeNote that transactions are started by client applicatibns
the execution flow of a transaction is managed byrirecomponent and no user application componentis distingdisgo,
client actions are delegated on tR@ and the latter is the agent that starts transactions ibth8,, component. Modeling
client applications introduces no benefit, since our airo jsrove that thez P actions comply with the correctness criteria of
a certification-based replication protocol, and othemtl&ctions are not relevant for this.

In this paper, we will assume that databases progid&]. Regarding failures, we assume no Byzantine failurezsigc
i.e., sites do not behave in a malicious manner. A site behaweording to its specification until it possibly crashefieAa
crash event components of a site stop their activity. Werassapartially synchronous distributed systemwhich up tof
sites may fail; i.e. there is at legt| — f correct sites. A site isorrectif it never fails, in other case it is taulty site. The
setCorrect(N) holds all correct sites in the system. This set does not sad@sbe the same or known in advance, it merely
simplifies the way certain properties are specified.

We also assume that ti&CSis able to guarantee treomic broadcasf21] communication primitive with the additional
property of preventing the contamination phenomenon [ffprmally, this means that if a site delivers a messagafter
m then another site delivers’ only afterm has been delivered. Therefore, there are no gaps in theedgliwocess at any
site.

The RP coordinates the execution of transactions among diffesiées to ensure the replica consistency and to guarantee
theGSllevel [17]. In the next subsection, we overview the formahfiework used to specify components and to define the
RP.

(RP) broadcast,(m) (C; Cw S)

]

delivet(m) Group Communication
System

r

Replication Protocol

. crashy

b

¥

begin,{t)

crashy

tif}-'“(t,op,l{a('tive,
aborted},data)

I

=
=

o, commity(t)

abort,(t)

submit,(t,op)

Database System
(DBS,)

crashy,

SITE n

Figure 1: Main components of the system.

2.1 The Formal Framework

Figure 1 shows our system as a set of interacting compon@ntformalization is based on the work of Shankar [46], where
a distributed system is modeled using a state transitiagiesyand properties can be proven on the executions of therayst
Although such paper does not discuss any composition midelggests a composition approach that is followed in this
document. In a nutshell, outP is a state transition system which models the compositicaildhe RP instances in each
site. EachR P instance at each site € N interacts with its locaD BS,, and with the globally sharedCS Since this work

is not interested on the implementation details of iheS,, and theGCScomponents, only the relevant properties of these
components have been considered.

In the following, we introduce the framework used here.

Component Specificatiomn order to model the specification of a system componéntye give itsexternal interfaceand

a collection oftrace properties. The external interface @f denotedEvents(C), defines the possible events the component
may engage. A trace is a finite or infinite sequence of evengewach event belongs #vents(C). The set of traces af’

is denoted ag'races(C). A finite trace is denoted = w72 ... 7;, an infinite trace ag = mim2...7;...; and a prefix of length

j, being|3| > j > 0, of a traces by 3[j]. Properties over traces are modeled as assumptions. Theoo@mt satisfies its
specification if each possible trace verifies the set of ddfassumptions.

State Transition Systeriie now outline the model in [46] based on state transitiossesys for concurrent and distributed
systems. A state transition systelris defined by:

e Variables(C). A set of variables and their domains.
e Initial(C). An initial condition onVariables(C).
e FEvents(C). A set of events.

e For each event € Events(C):

— enabled(r), an enabling condition (a predicateWuriables(C)); and
— action(r), an action (sequential program that updatesiables(C));

e A finite description of fairness requirements.

Each possible value assignmentiteriables(C) defines a particular state of the transition sys&mThus, the set of
states of” is the cartesian product of the variable domains. Part afels¢ates are initial configurations and they are defined
by Initial(C). We assume that the set of initial states is non-empty. Fadn esentr, its associated enabling condition,
enabled(r), and actionaction(r), define a set o$tate transitions More formally, the set of state transitions is defined as
{(p,m,q): p,q are system stateg; satisfiesenabled(r); andgq is the result of executingction(r) in p}. For each event,
action(r) is executed atomically and always terminates.

An executionis a sequence of the formi = somis1...7m.s.... Where thes.’s are system states, the's are events,
so is an initial state, and every(1,7.,s.) is a transition ofr.. The content of a state variableyr, at a given system
state,s., is denoted as..var. If the action(r.) does not modify a given state variabler’, it will keep its previous value
(sz.var’ = s,—1.var’). An execution can be infinite or finite. By definition, a finggecution ends in a state. The final state
of a finite execution is aachablestate. Note that for any executian every finite prefix ofa ending in a state is also an
execution. A finite executioa ending in the reachable statewill be denoted ag|z].

In the following, we assume that each event is weak-faiormflly, it means that if an evertis enabled continuously
in an execution, then it eventually occurs (see [46] for agrformal definition). Thus, a fair execution 6fis an execution
verifying the fairness requirement 6f. The set of all possible fair executions@fis sufficient for defining its liveness and
safety properties.

Finally, as we are describing a distributed system, we us#scsipt for each state variable and event to denote where th
state variable belongs to and in which site the event is @rdcrespectively.

Component Interaction A state transition systerd' is able to interact with other componeat via executing an event
7' € Events(C") of the component as part of effects of @mion(w) beingr € Events(C). In that case, we require that be
non-blocking in order to guarantee the terminatiom@fon(w). Thus, the event’ is simply “a call” fromC’s point of view.
In the same way, the componefritis able to interact with a state transition syst€niia executing an eveat € Events(C')
which is also an event af', ' € Events(C). In this case, it is required thatabled(r’) =t rue in C. So, the event’ of C
can be considered an “upcall” frogi’s point of view.

Composition Let C be a state transition system acdl a component that is used loy. The complete system is formed
by (C,C’). If ¢ andC’ follow the component interaction rules previously intradd, then for each executienof C the
following sequenced(a) € Traces(C’) can be associated to eagh The 3(«) is built from « in the following manner: by
collecting the events correspondingd6from the corresponding action and eventswdh the same order they are executed

in a. In other words, letr € Events(C) and part of the effects aition(w) include the execution of a (actually, ordered) set of
events{v;: v; € Events(C’)} then for each occurrence 6fin o the sequence of(«) is appended withv; : v; € Events(C)}

in the very same order they are invoked. It is worth noting tha. is a reachable state of we have thaty[z] <! « and
B(alz]) = B(a). As a concluding remark, the properties verifiedd¥yupcalls can be used i in order to prove the safety
and liveness properties of the whole system.

3 Database System Specification

We assume that each sitec NV in the distributed system stores a copy of the dataliaBg which contains a collection of
uniquely identified itemsitems(DB,). The same data itenX € items(DB,), may have several different versions in the
database. A transactiare T creates a versiol, of data itemX by performing a write operation on it, this version will be
installed when the transaction is committed ande D B,,. This database is managed by a database sygvgm,(). In this
case, at any time the curretatabase snapshatcludes only the latest committed versions of all data gemtil that time.

A transaction will read objects from the snapshot gottenmibhbegan (including its own updates), i.et ifeads data itenx

it reads the version gotten by its snapsiet € DB, with ¢’ the latest transaction that wrote ohbeforet started. At each
siten € N the RP instance running at it interacts with thieB.S,, using the interface shown in Figure 1, namely to execute
transactions. Th®BS,, supports the concurrent execution of these transactiomsmg undeiS| [7] level. In what follows,

we provide the details of thB BS,, behavior.

A transaction¢ € T, is a sequence of operations, € OP, on database items ended by a commit or abort operation.
Each non-final operation may be of type read or writge(op) € {read,wite}, and may access to a set of data items,
items(op) C items(DB,,). Each transaction, starts with éegin,, (¢) initial action. After that, the transaction may submit an
operationpp, usingsubmit,, (¢, op) event. Furthermore, inside each transaction, a new operesin only be submitted once
the previous one has been terminated; in our case biydti€y , (¢, op, result, data) event. The parameteesult contains the
final effect of the operation and the transaction can be,rimdeof its status, eithetctive oOr aborted. In the first case, the
transaction may go on in its activity; otherwise, it has bakarted by the database which corresponds to, e.g., a ttéorsa
that does not fulfill the isolation level requirements. Thegmeterata contains the versions of the database items read
by the transaction, we will use it when necessary (i.e. rgagtations). A transactioncan be aborted by theP at any
time using theabort,, (¢) event. In our model, we assume that if the last operation mdrasaction has gesult = active the
transaction can be committed at any time by¢heamit,, (t) event. TheRP at each site sees these actions as the primitives
to access the local database. The evbaggn,, (t), submit,, (¢, op), commit, (¢) andabort,, (¢) invoked by theR P instance
atn € N always terminate. The actiaibtify,, (¢, op, result, data) is an upcall executed by theBS,, upon the receipt of a
result for the operationp of ¢. Finally, thecrash,, event models the failure of theB.S,, component.

We can think of each operatiop € OP as equivalent to a sing&QL statement. We can assume that multiple consecutive
SQL statements can be logically integrated into a sisglemit,, (¢, op). The notification event for this group of statements,
via notify,, (¢, op, result, data), Will be active if all of their respective sentences were successfullyiagpland, otherwise
aborted.

Therefore, at each sitec N, the DBS,, has the following set of event&vents(DBS,,) =

{begin,, (t), commit, (t),abort,(t) |t € T} U

{submit, (t,0op) |t € T,op € OP} U

{notify,, (¢,op, result,data) | t € T,op € OP,result € {active, aborted},data C DB, } U
{crash,}

The traces of theédBS,, are finite or infinite sequences of events fr@ments(DBS,). The set of all possible traces is
denoted ag'races(DBS,). One can note that the first parameter of each event difféoatiiash,, is a transaction in T
We define the functionran : Events(DBS,) — T which returns the transaction which an event makes referémcin the
following, we show what assumptions traces verify in ordesatisfy the specification of theBS,,. Every assumption takes
atrace3, € Traces(DBS,), as a parameter, and we suppose it is implicit. The quarttdicaf some of the free variables
in the assumptions are clear from its context. In the nexiragsion we state the well-formed behaviors of traces and use
prev_event(i, j, t) as a predicate which is true iff is the immediate previous event beferefor transaction in a traces,, .

1The < symbol stands for prefix order.
2By : prev_event(i, j,t) =i < j Atran(v;) = tran(vj) =t A Pki<k<j:tran(v,) =t

Assumption 1 (Well-formed traces)Let3, = viva...vp... and g, € Traces(DBS,,), thens, will be a well-formed trace
if it satisfies the next:

tran(v;) € T = Pk, k <i: vy = crash,
v; = begin, (t) = Vk, k < i:t# tran(vy)

v; € {commit, (t), abort, (¢), notify , (¢, op,aborted) | op € OP} = Vk,k > i: t # tran(vy)

1.
2.
3.
4. v; = submit, (¢, 0p) = prev_event(i, j,t) A v; € {notify, (¢, op’, active), begin, (t) | op’ € OP}
5. v; = notify,, (¢, op, result) = prev_event(i, j,t) A v; = submit, (¢, op)

6.

vj = commit, (t) = prev_event(i, j,t) A v; € {notify, (¢, op, active) | op € OP}

In the previous Assumption (1.1) reflects the fact that afiaash,, event theDBS,, stops its activity; (1.2) indicates that
the first event of a transactians begin,, (¢); (1.3) states that after commit or abort there is no event;f(ir.4) indicates that
an operation can be submitted if the result of the previowsisactive or the transaction is at the beginning; (1.5) states that
a notification of an operation follows its submission; arid6] reflects the main fact that tkemmit.,(¢) event only can be
provided if the transaction is active.

Notice that after aubmit, (¢, 0p) the transaction gets blocked until its associaiedify,, (¢, op, active) event happens.
The next Definition is introduced in order to capture theatiint states a transaction may switebt{ve, blocked, committed
andaborted). In the definition,T(3,) refers to transactions i such that they have started ih; i.e. t € T(3,) iff there
exists the everibegin,, (¢) in 3,,.

Definition 1 (Transaction states)_et 3, be a trace ofl'races(DBS,,). For everyg,[j], 0 < j < |8x|, the transaction states
of the transaction € T are defined as follows:

1. idiea(t, j) = (t € T\ T(Bulj]))

2. activen(t,j) = 34,1 < j: (v; € {notify, (¢, op,active),begin, (t) | op € OP} AV k,i < k < j:t#tran(v))

3. blocked,, (t,op,7) = Fi,i < j: (v; = submit, (t,op) AVEk,i <k <j:t+#tran(vg))

4. committed,(t,j) = 34,1 < j: v; = commity, (1)

5. abortedy(t,j) = 3Ji,i < j: (v € {notify, (¢, op,abort), abort, (t)}V (v; = crash, A (blocked, (t,op, 1)V active,(t,1))))

The meaning of all items described in the previous definitiofairly intuitive but not the last one. In concrete, Defini-
tion 1.5 implies that a transaction can be explicitly abotig: theD BS,,; an explicit abort; or, @rash,, event. The failure of
aDBS, is modeled, from the transaction point of view, as if all @ntly executing transactions are settorted. However,
when a crash occurs, all previous committed and aborteddrdtions, as they are already finished, remain unaltered.

The Figure 2 shows the possible state transitions conageniransaction € T In the figure, dashed lines represent state
transitions which rely on the behavior of other transaciand the underlying concurrency control; and, solid liregsesent
transitions exclusively depending on the transaction avdee RP. If we focus on the continuous transition betweenive
andaborted, it is due to ambort,(t). This action, as we are not modeling application explictirgbwill only be invoked
by therRP.

As we have indicated at the beginning of the section, we denshat the database has a multiversion concurrency dontro
algorithm providingsI. Under this level of isolation, reading from a snapshot nsehat a transactionsees all the changes
made by transactions that committed befostarted with its first operation; in our case thegin, (¢) event. The results
of its updates are installed when the transaction commitsve¥er, a transactionsuccessfully commits iff there is not a
concurrent transactioti that has already committed and some of the written items bye also written by. The previous
rule can be reached following two equivalent —though déferin the way updates are treated—fing-updater-winsor first-
committer-wingule [7]. Most commercial databases, suchPastgreSQL [42] or Oracle [34], implement the former and,
hence, we provide a specification for the former one. To shm6t definition, we need the definition of theritesetof a
transaction and also the definition of whadreapshotneans.

Definition 2 (Writeset) Let 3, be a trace ofl'races(DBS,,). For everys,[j], 0 < j < |B.], the writeset of a transaction
t € T at j is defined as followsW S,, (¢,) = {op € OP | 3i,i < j: v; = submit, (¢,0p) A type(op) = wri t e}.

commit (t)

begin, (t)

notify,(t, op, active)

- -

notify, (t, op, aborted)

- ~

blocked aborted

submit,(t, op)

abort(t)
abort,(ty

Figure 2: State transitions for a transacttoa 7.

Two writesets intersect if both contain at least one writeragion over the same database itéins,, (¢, ;) "N W S, (t', k) #
0 =3Jop € WSa(t,j),op" € WSn(t', k): items(op) Nitems(op’) # 0. We abuse the notation for indicating that a data item
X € items(DB,) belongs to a writesél’' S, (¢, j), X € WSy(t,), iff Jop,op € WS,(t,5): X € items(op).

In the next Definition, the concept shapshots introduced. Thenapshotf the DB,, at some point of a trace comprises
the latest versions of the data items until that point. THatsst versions for each data item correspond to the lasthdbm
operation on each data item till that point of the trace.

Definition 3 (Snapshot) Let 5, be a trace ofl'races(DBS,). For eachg,[j], 0 < j < |8.|, the snapshot 0D B,, at j is
defined as follows:

SnapShOt(ﬂ” []]) = UXGitems(DBn) latestVer(X, ﬁn[]]) Where

latestVer(X, Bnlj]) = {X: € DBy, |
34,1 < j: (vi = commit, (t) A X € WS,(t,i) AVE,i <k <j:uv, ¢ {commit,(t') |t € T,X e WS,(t',k)})}

The following assumption provides conditions that a traae to verify in order to bsl:
Assumption 2(Snapshot Isolation - Safety).etr; = begin,, (¢):

1. v; = notify,, (t, op, active, data) A type(op) = r ead = data C Snapshot(3,[i])®

2. vj = commit, (t) = Vk,i: <k < j: vy ¢ {commit, (') | t' € T,WSn(t,j) "N WS,(t' k) # 0}

Assumption (2.1) indicates that a transaction reads thsioms installed by committed transactions by the time of the
begin,, () event; and, (2.2) shows that two concurrent transactiomsiowed to make the commit if they have not write-

conflicts.
The latter Assumption (2.2) is obtained as a consequendeditt that the database system proviflesith the first-

updater-wingule. This rule enforces that concurrent write-conflictoygerations remain blocked and only one (i.e. the first
that performed the update) is allowed to continue its exenut

Assumption 3(First-Updater-Wins) v; = begin,, (t)Aactiven(t,j) = (Vk,i < k < j: vy ¢ {commit, (t')|t' € T, WS, (¢,)N
WSa(t' k) £ 0}) ANt € T(Bulf]) A —(committed,(t',) V aborted, (', j)) AW Sn(t,7) NWSh(t',j) # 0: blocked, (t', j))

The first part of the previous implication states that onbysihtransactionsthat have no conflict with an active transaction
t may perform a commit; while the second one, says that thereeger exist another active transacttdconflicting with

the active one.

3To be precise thelata subset defined in the consequent exclusively contains tiatesiread by the transaction and, thus, it will not contaamre
operations over its own updates. The condition is given ahsuway for the sake of simplicity.

Until now previous assumptions are actually safety reaquéets for a trace. However, the specification requires terdet
mine progress properties for traces. More precisely, wel neelerive the next state transitions (see Figure 2): fobiked
to aborted; and, fromblocked to active. In the next assumption, we consider that there is not an@xabort,,(¢) event for
a transactiorn nor crash,,. This fact simplifies the presentation though it does notiwiish the correctness of the proposed
results.

Assumption 4(Snapshot Isolation - Livenesslety; = begin,, (t):

1. blocked,(t,op,j) NI k,i <k < j: v, € {commit,(t') | t' € T,WS,(t,j) N WS,(t' k) # 0}
= 3z,2 > j: v. = notify,, (¢, op, aborted)

2. blocked,, (t,op,j) A type(op) =read = Jz,z > j: v. = notify, (¢, op, active)

3. blocked,, (t,op,) A type(op) =write
AVEkyi<k<j:uv, ¢ {commit,(t') |t € T,WS,(t,j) "N WS,(t' k) # 0}
AVt € T A (active,(t', 7) V blocked,, (t',5)): WSn(t',5) N W S,(t,5) =0
= 3z,2 > j: (v. = notify,, (¢, op, active)V
v. € {notify,, (', op’, active), commit, (¢') | t' € T,op’ € OP, W S, (t,j) "W S, (t',z) # 0})

Assumption (4.1) states that a transaction gets eventablyted if some conflictive transaction commits when it is
blocked; (4.2) says that a transaction gets eventuallyagthen it submits a read operation; and, (4.3) considetsitha
a transaction is blocked by a write operation and there ateang concurrent transactions which are in conflict with the
transaction, and this situation persists, then the traimsaeventually gets active. Note that Assumption (4.2)estdhat
read-only transactions never get blocked. So, for the s&kanplicity this kind of transactions are not consideredtbe
sequel.

The previous rules do not prevent the deadlock occurrencéenha group of transactions are deadlocked, and this
situation is detected by theBS,,, one of them is aborted (which one is left to the decision effB.S,,) in order to resolve
the situation. When that situation happens, s, generates aotify, (¢, op, aborted) for one (or more than one) chosen
transactiort.

Finally, we introduce the definition of theg of committed transactions in theBS,,. Each element in the log is a tuple
including the transaction identifier, its writeset untietbommit; and a number indicating the order in thg. This number
may be interpreted as the snapshot version because eaca tiaresaction commits a new snapshot is installed inii, .

Definition 4. Let 3, be atrace off'races(DBS,,). For all 8,[j], 0 < j < |3/, the log ofDBS,, at j is recursively defined as
follows:

* 10g(Ba[0]) = empty
o log(Balj + 1]) = log(Bali]) - (1. WS(t,), [10g(BaliD] + 1) iff B[+ 1] = B 7] - commite,(1).

o log(Balj + 1]) = log(B.[4]) in other case.

4 Group Communication System Specification

In this section, we introduce ti&CSspecification. Th& P requires for its correct behavior that all messages argeteld in
the same order to all available replicas which is providethigatomic broadcastommunication primitive provide by@cs
The uniform total order broadcast provides the followinggerties[13, 15, 21]:i] delivery integrity; ¢:) no duplication; {i7)
uniform total order; {v) validity; and, ¢) uniform agreement. However, all these properties do ne¢cthe R P necessities
since we are assumirggashfailures. In particular, the strongest specification (amf agreement and uniform total order) of
this communication primitive does not prevent the contation phenomenon [15]. This case consistsfaudty replica that
reaches an inconsistent state (e.g., because it has natblego deliver a previously broadcast message) and thewbasts
a total-order message before crashing and, thus, conttenitiee rest of correct replicas. Hence, it is needed thatrfptwo
replicas the set of delivered messages must be one prefie afttier, or viceversa. This property is knownpasfix ordef
delivery [15]. All these interesting properties will be foalized later on in an assumption.

4An alternative definition for this phenomenongap free It does not allow gaps in the delivery sequence. This aitem is more appropriate when a
crash-recoverynodel is considered, since prefix order precludes the jginfmew nodes [15].

In the following, M denotes the set of possible messages. We will consider easbagen < M is different. TherP
at siten € N makes use of two primitives which conform the set of possiivients of this componeniroadcast,, (m) and
deliver, (m). The former one is used byP at siten to broadcast in total order a messageThe second one allows theP
instance at site to receive in total order the messagepreviously broadcast by some replica. Thus, the set of evarihe
GCSis, Events(GCS)=

{broadcast,(m)n € N,m &€ M} U
{deliver, (m)|n € N,m € M} U
{crash,|n € N}

In the following, we provide the assumptions the set of tsa€eaces(GCS), verifies. We define the functiofite: Events(GCS) —
N which returns the site at which an event occurs. 1.ee a trace offraces(GCS). For each sites € N we definemess,
as the sequence of messages delivered at sitev.

Definition 5. Let~ be a trace ofl'races(GCS). For everyy[j], 0 < j < |v|, the set of delivered messages in site N by
theGCSat j is recursively defined as follows:

o messn(v[0]) = empty
o messa(rlj + 1)) = messa(r{j]) - (m) i ALj + 1] = 1[j] - deliver, (m)
e mess,(v[j + 1]) = mess,(v[j]) in other case

In the following assumption we establish and formalizeta properties ensured by t&€Scomponentin order to satisfy
the requirements of thAP.

Assumption 5(Prefix Order Atomic Broadcast)TlheGCScomponent satisfies the following properties:
. (Crash Failureskite(v;) = n = 3k, k < i: vx = crash,

. (Message Unigueness)= broadcast,(m) A v; = broadcast,, (m) =i = j

. (Delivery Integrity); = deliver,,(m) = 3n’ € N: (34,7 < i: v; = broadcast,, (m))

. (No Duplication); = deliver, (m) A v; = deliver,(m) = i=j

a A W N B

. (Prefix Order) For ally[i], 0 < i < |y|, and for any two sites,n’ € N, eithermess,(v[i]) < mess, (y[i]), o
mess, (Y[i]) < messn(7[i])

6. (Validity)n € Correct(N) A v; = broadcast, (m) = Vn',n’ € Correct(N): (35,5 > i: v; = deliver,,(m))
7. (Uniform Agreement); = deliver,(m) = Vn',n’ € Correct(N): (3j: v; = deliver,,(m))

In the previous assumption condition (5.1) states that aféeash,, event the site: € N stops its activity; (5.2) indicates
that messages are different; (5.3) and (5.4) state thay siterdelivers a message at most once and only if it was pusiyio
sent by some site; (5.5) guarantees that messages areeelinehe same total order without gaps even for faulty psses
that always are a prefix of a correct site; (5.6) indicates ifre correct site invokes a broadcast event then all cosges
will eventually deliver the message; and, (5.7) statesifteasite (correct or faulty) delivers a message then all ecirsites
will eventually deliver it.

5 Replication Protocol Description

In this Section theR P is described using a state transition system as introduc8&ection 2.1. Th&P at each siter € N
uses for its execution the components introduced in theiguesections. Thus, for message exchange empl@GSand
for programming transactions uses its associated datayasemDBS,,.

As a rough outline of our P proposal behavior, let us say that it is an eager update etene one [20]. A transaction
is firstly executed at its delegate replica, which is detaedibyt.site = n with n € N. There is no message exchange and

Types
INFO = struct{start € ZT,WS € 20F lend € ZT}
M =T x INFO [l Message type
SITE_STATE = {alive, crashed
STATUS = {idle, active, blocked aborted committedt

Variables:
Vn € N: channel, = queue_of (M), initially channel,, = empty.
Vn € N,Vt € T: infon(t) € INFO,initially infon(t).start =0,

infon(t).end = 0,infon(t).WS = 0.

Vn € N,Vt € T: sentn(t) € {true, false}, initially sent,(t) = false
Vn € N: SEQn = queue-of (M), initially SEQ, = empty.
Vn € N: site_state, € SITE_STATE,initially site_state,, = alive.
Vn € N,Vt € T: statusy(t) € STATUS, initially statusn, (¢t) = idle.
Vn € N: Ver, € ZT,initially Ver, = 0.
Vn € N: ws_run, € {true, false}, initially ws_run,, = false.

Events=
{crash, | n € N} U {deliver,,(m) |n € N,m € M} U {discard_ws, (t) | n € N,t € T} U
{end_commit, (t) | n € N,t € T} U {execute_op,,(t,op) | n € N,t € T,op € OP,t.site =n}U
{execute.ws,(t) | n € N,t € T, t.site #n}U
{notify,, (¢, op, result,data) | n € N,t € T,op € OP,result € {active, aborted, data C DB, } U
{request_commit,, (t) | n € N,t € T,t.site = n}.

Transitions:
deliver, (m)
execute_op,, (t, op) action = channel,, « channel, - m.
enabled= statusy (t) € {idle, active} A site_state,, = alive
A =sentn (t) A —(ws_runy A type(op) = write). execute_wsy, (t)

action =if statusy (t) = idle then enabled= status, (t) = idle A site_state, = alive
infon(t).start «— Very, A (t,info(t)) = headchannely)
begin,, (t) A certification({(t,info(t)), SEQn).
if type(op) = write then action = Vt' € getConflicts({t,info(t))) :
infon(t).WS «— infon(t).WS U {op} abort, (t')
submity, (¢, op) statusy (') < aborted
statusy (t) < blocked. infon(t) =info(t)
begin,, (t); submity, (¢, infon (t).W.S)
notify,, (¢, op, result, data) statusn (t) < blocked
action = statusn (t) < result. ws_runy, < true.
request_commit,, (¢) discard_ws, ()
enabled= statusy (t) = active A —senty (t) enabled= site_state, = alive A (t,info(t)) = headchannel,)
A site_state,, = alive. A —certification({t,info(t)), SEQn).
action = senty(t) «— true action = channel,, < tail(channel,)

broadcast, ((t, infon(t))).
end_commity (t)

crash, enabled= statusy (t) = active A site_state,, = alive
action = site_state,, — crashed A (t,info(t)) = headchannely).

Yt € T, statusy (t) € {active blocked; : action = channel,, < tail(channel,)

statusn (t) < aborted Vern «— Vern +1

channel,, — empty infon(t).end «— Very

ws_run, «— undef SEQn «— SEQn - (t,infon(t))

vVt € T: infon(t) < undef commity, (t)

Yt € T': sentn(t) < undef. statusn (t) < committed

ws_run, « false.

Auxiliary Functions:
getConflicts((t,info(t))) =
{t' € T|statusy, (t") € {active blocked} A infon(t').WSNinfo(t). WS # 0}.

certification((t,info(t)), SEQ) =
At info(t)) in SEQ: info(t').end > info(t).start A info(t').WS Ninfo(t). WS # 0.

Figure 3: State transition system for tig".

10

all operations are issued on the lo¢aBs,, that constitutes ¢écal transaction When theRr P requests the commit of the
transaction, the interaction with the rest of sites is startAll the updates are grouped (writeset) and sent, usie@ttbmic
broadcast, to the rest of available replicas. Upon its deivit is needed to pass a test, caltatification just to check if
the incoming writeset can be applied or not. The certifiegtroughly speaking, consists in detecting if there are amjlict
between concurrent, though committed (and, hence, cadamthelog of the DBS,,) writesets and the incoming one. If
so, the message will be discarded (in the case of its delegpliea the transaction will be rolled back) and, otherwise
remote transactiorns started to apply, and commit, the writeset of transacti@in the case of the delegate site it will be
committed). Thanks to the total-order delivery, the outearfithe certification will be the same for every delivered sagg.
Thus, transactions will be committed in the same order aditds and the database logs grow in in the same order. In this
section, we will explain in the following subsections theighles, initial values, events, and transitions that cosepsuch
state transition system in a more detailed manner.

5.1 Variables and Initial Values

The variables being used by ti& at each site, € N are:

e status,(t): This variable holds the current state of each one of the krtomnsactions € T in each replica. Valid states
are:idle (transaction not startedj¢tive (active transactionhlocked (the transaction is waiting for the completion of
a given operationjborted (the transaction has been aborted);@nrmitted (the transaction has been committed). All
transactions are initialized to théle status value.

e info,(t): Each replica keeps track, as a data structure, of somearglattributes of a transactiane 7. Such
attributes are thetart andend logical timestamps (needed for certification purposes), the writeset associated to
such a transaction (attribut&.S). Initially, the logical timestamps are set to zero, andithg is an empty set.

e sent,(t): Boolean flag that holds a true value when the writeset ofr@stretiont € T has already been broadcast. It
holds a false initial value for all transactions.

e channel,: This variable models the incoming channel of deliveredsagss in each site. Such channel is represented
by a queue of messages, since delivery order is importaatready described in Section 4. The uskald() andtail()
functions for queues are used to handle this variable. Thuagl() returns the first element of the queue, whilst ()
returns all queue elements excepting the first one. Eachagessc M in channel,, contains the valueg, info(t))
wheret is the transaction identifier and fo(t) is the value ofin fo. si:. (t) when the message was sent. Initially, this
queue is assumed empty.

e Ver,: The database version at each site. Such database versionsr@ased each time a transaction is committed.
This variable plays the role of a logical timestamp. Whenevgansaction starts at its delegate replicasite = n,
Ver, is stored ininfo, (t).start. The initial value of this variable is zero at all sites.

e SEQ.,: This variable models a local queue of already committedsations in each replica. Such queue is needed
for certifying the incoming messages. Each element coethinSEQ., is of the form(¢, info(t)) that corresponds to
a transaction, and its respectiven fo,, (¢) when it committed at site € . Its main difference with the information
received in the message is that theo, (t).end field stores thé er,, value when the transaction committed. Initially,
it is an empty queue in each site.

e ws_run,: This is a boolean variable initially false that is set toetmhilst any remote transaction is being applied at
a given site. This variable gives priority to the applicatiof remote transactions; thus, preventing new local write
accesses from progressing. Initially, as there are no remvdtesets, it is set to false.

e site_state,: It holds the current state of each replica site. Valid stalees areilive or crashed. All system sites are
assumed initiallyalive.

We assume that afteraash,, event some variables keep their associated values, thilissfes the presentation of some
properties. More precisely, theatus, (t), Ver, andSEQ.,, are are assumed to be kept in stable storage. All other Jasiab
are lost in case of crash failure and getiarde f or empty value in such case, as it can be seen in the action assoadtes t
crash,, event.

11

5.2 Events

The events ik P are shown in the corresponding section of Figure 3. Thera greup of events such agecute_op,, (¢, op)
andrequest_commit , (¢) events which are only allowed to be executed at the deleggtea oft, i.e. t.site = n. The
execute_ws, (t) event will be executed at all sitessuch that.site # n. This fact enforces the different performance of local
transactions versus remote ones.

5.3 Transitions

We are going to describe, in a more detailed manner than tead described at the beginning of this section, the differ
transitions presented in Figure 3.

A local transactiort, t.site = n, is started by the first invocation of thececute_op,, (¢, op), this changestatus,,(t)
from idle to active and the associatea fo,, (t).start iS set toVer,. As it will be explained later, this action can not be
invoked if ws_run, = true and the requested operation is an update ones.af, = true. Additionally, thebegin,, (¢)
event of the underlyin@BS,, component is used in order to start the transaction. Fintds/operation is submitted to the
DBS,, component and the transaction status is seéfdeked. Notice that the writeset of is dynamically built provided
that the operation submitted is a write. The transactionaiamblocked until the underlyin® BS,, component fires its
notify, (¢, op, result) event which is paired to the same event in the, i.e. no enabling condition is needed for this event.
When this happens, the transacti@atus is set to the-esult parameter of such event. This implies that the transactss g
againactive or that it has beeaborted. Note that thexecute_op,, (¢, op)-notify , (¢, op, result) pair of events can be repeated
many times for the transaction.

The request_commit,, (t) event will be called, once all operations of the local traisa have finished. To enable
such event, such replica should &eve, the transaction must hetive (i.e., all its previous operations have received their
notification event), and the:nt, () flag should be false. This event sends the transaction fantivith its associated data
structurein fo, (t) to the rest of available replicas using the atomic broad@edditionally, the variableent,, (t) is set to true
and, thus, prevents to perform new operations inftigs,, or sending several messages for the same transacfidrus, the
writeset sent int,info(t)) message will be the same for transacti@nd this message will be unique at every site.

The message will be eventually delivered by @@Scomponent to all available replica$ using itsdeliver,(m) event
that matches the same event of the. The delivered message is appended tocthenel,,, local queue variable. Once the
message is delivered and no prior message exists iththewel,,, variable, it can follow different execution paths in the
depending on whether the transaction is local or remoteus& etart with the latter, the writeset containediio(t). WS must
be certified. Thewertification({t,info(t)), SEQ,) function (which is formally shown as a logical predicate iiglre 3)
is in charge of this, returning true if the given writeset daet intersect with any of the writesets of transactiong, sa
t' € SEQ,, whoset’.end value is greater thaim fo(t).start; otherwise, returning false. If the certification failsettnessage
will be discarded by way ofliscard_ws, (t). In other case, the included writesetiinfo(t) has to be applied, by way of
execute_ws,, (t), as a remote transaction. It is worth noting that there caloded transactions potentially conflicting with
info(t).W S that are detected by thetConflicts({t,info(t))) function (see its formal definition in Figure 3). Each local
transaction returned ipetCon flicts({t,info(t))) iS aborted in order to avoid the potential blocking of theai®n of the
remote transaction by a conflict with a local transactionc®awriteset is certified, its associated remote transantigst be
eventually committed. In addition, the valuew$_run,, is set to true avoiding that non-aborted local transactperform
update operations and, again, avoiding the existence otnaflicts with the remote transaction. Once the writesetiess
applied, its respectivaotify,, (¢, op, result) event will be executed, and, it is important to emphasizassociatedesult
will be active. Hence, theend_commit,,. () will be eventually called to commit the transaction in thelerlying DBS,,,
component, increase the versidre(,.), and allowing the execution of update operations or thdieguon of new remote
transactions inlDBS,,.. In the case of the delivery of the message to its delegateagpe. n = t.site, it can follow two
different paths as well. If the associated message reabbdgdt position of-hannel,, and transaction is still active, i.e.,
no other previous delivered transaction has a conflict witthe transaction will be directly committed (it does not dee
a certification) by way of thend_commit,, (t) event with exactly the same effects as in the case of a remasdaction.
Otherwise, the certification of another previously conentrdelivered remote transaction has a conflict withat resulted
in the abortion of. Thus, message will be discarded by the invocation ofitikeard ws,, (¢).

The variableSEQ,, has to be built so that all replicas reach the same decisiadh@derti fication({t,info(t)), SEQn)
function. TheSEQ,, variable is only modified when a transaction is committesl, in theend_commit,,(¢) event, and the
respectivet, info,(t)) is appended at the end. Transactions are applied and cadrinitthe order they were certified. This
order is completely determined by the total-order deliyengvided by thesCScomponent. Therefore, it is easy to show that

12

the way elements are appended is the same thanks to the w&pPtlegecute transactions (this will be formally shown in
Section 7).

Regarding to fault-tolerance issues, we should conside¢rfish,, event that matches the one provided in GeSand
DBS,, interfaces, and that is generated by the environment arigedpp all the system components at once. When such event
is generated, the correspondisige_state,, variable is set terashed and this means that all P events become disabled. This
reflects the case when a given a replica becomes unavailathlecenpletely stops its activity. To complete the desavipti
of the state transition system &fP we assumeveak-fairnesg31] for the events:execute_-ws,(t), discard-ws, (t) and
end_commit,, (t).

6 Correctness Criteria

In this Section, we introduce the safety and liveness caititre whole systemi{P, GCSand for alln € N their respective
DBS,,), following the interaction and composition rules depitteefore, must satisfy to ensure its correct behavior. The
safety criterion, establishes that for any pair of sitesltigeof committed transactions in their respective databasesysis
either the prefix of the other or viceversa. As database systEovideS|, this criterion implies that each database replica
at every site has installed (or generated) the same snap@®it has been seen in Definition 3) in the very same order.
Therefore, each database reaches the same state, at comenior every executed transaction. The liveness critenmst
ensure that if a site commits a transaction, it will be evatjucommitted at every correct replica. Under this criver; all
correct and available databases do not lose any commitaten any database of the system.

Let us formalize the previous criteria according to the comgnts present in the replicated system: &tie the GCS and,
forall n € N, the DBS,.. Leta be a fair execution of th&P ands, a reachable state of. Now, we assume that for all
n € N, B.(a) € Traces(DBS,,), i.e. they verify every assumption given in Section 3.

Safety Criterion (Database Prefix Order Consistencl@r every fair executiom of the RP, every reachable state of «
and for any pair of sites, n’ € N: eitherlog (5, («[z])) < log(Bn (a[z])) or viceversa.

Liveness Criterion (Uniform Commit) For every fair executionv of the RP and for alln € N: v; = commit,(¢) in
Bn(a) = Vn',n’ € Correct(N): commit,,(t) in 8, (a).

The safety criterion is also very important to determinefthal isolation level achieved by theP for committed trans-
actions. We have stated at the beginning of this work thatprovidesGSI [17]. Actually, GSIis an extension ol best
suited for replicated environments. TG level allows the use aflder snapshots of the database, facilitating its replicated
implementation. A transaction may receive a snapshot tappéned in the system before the time of its first operation
(instead of its current snapshot asSn. To commit a transaction it is necessary, asinthat no other update operation of
recently committed transactions conflicts with its updqterations. Thus, a transaction can observe an older snapishe
database but the write operations of the transaction drgaltd update operations for the database at commit timany/of
the desirable properties &f remain also irGS|, in particular, read-only transactions never became ldd@ad neither they
cause update transactions to block or abort.

Let us see how the previous conceptGsl level can be applied to the system. Suppose that a transacsi@arts its
execution at its delegate replicasite = n) where no update operations have occurred, i.eVis, = 0. Prior to this,

a transactiort’, whose delegate replicaig # n, has been certified and committed at all available replicas:pdue to,
e.g., a communication delay in the propagation of messagdslsCSto n. Let us assume that the associatetb(t').W S
contains data itemxX’ and, hence, a new version of this itei,() has been installed in the system. If transactiogads data
item X it will read the versionx, instead of the already committed and installed in the sysMareover, if a transactiott’
concurrently starts at’, though aftet’ has been committed, it will read versiafy. . Itis easy to see that as transactions firstly
performs their operations at their delegate replica, it @erlikely to occur that they will get older snapshots thaa dmes
already installed in the system. A& follows the sequential commit of transactions in the ortieytare committed, and is
a kind of ROWAA protocol [20], it satisfies the safety criterion for the exsd transactions which is a sufficient condition
for obtainingGSl level for the committed transactions. The proof of this faajiven in [19].

13

7 Correctness Proof

In the following, it is developed the correctness proofr¥f. We have split the correctness proof into two parts “Safety
Criterion” and “Liveness Criterion” as defined in the prevsoSection. In order to tackle with this we have defined a set of
Properties and Lemma that will help in the proof of both ciée All of them, have been proved and their proof is either
shown in the body of this work, whenever it contributes to d¢hegity of the correctness criteria, or, otherwise, at thd,eén
Appendix A.

Let us start with the verification of the “Safety CriteriorPirstly, it is needed to check that the state of a transactian
the DBS,, is properly maintained by th2 P instance running at. Hence, when the message containing the the updates of
is received, it is becausaequested the commit at its delegate replica. Moreoverpdate information remains exactly the
same when is committed. As these messages are delivered in the saraeatrall replicas, then we have that for every two
replicas, say: andr’, that delivered the update message, it must be shown thiditbe committed (or discarded) in both.
Moreover, as this process is done in the very same order thteicoof theSEQ,, SEQ,,. will be the same at the moment the
message afis delivered. Of course, this does not imply a synchronotsfication process between all replicas: transactions
are processed at different speed on different replicastamndize of the sequencers varies. Nevertheless, it is needgbdw
with the aid of all of the mentioned features that the seqgereassociated to a replica constitutes the prefix of anotheioo
viceversa.

Regarding to the “Liveness Criterion”, its first mission ésdheck that if & is successfully certified then it is active and
its associated update message is in the first position of éhieeded messages queue. Of course, it must be ensured that
this message will get eventually processed, i.e. preceti@gsages are certified and removed from the queue of dalivere
messages or the replica will crash. In the same way, it misstrerthat if for any replicais committed then it will eventually
get committed at the rest of correct replicas which is therna@soning of ourUniform Commit property. To be completed

7.1 Preliminaries

The RP uses theDBS,, component at each site € N to execute transactions at that site. We consider that &deh,
verifies the assumptions provided in Section 3 for its trakksvever, it is necessary that ti preserves the Assumption 1
in order to ensure a correct usage of that component. Thefiogierty indicates that a transaction is active in Hreat site

n € N when theDBS, component notifies such a fact. The second property staa¢shidR P preserves the well-formed
traces assumption for ea¢hBS,, component.

Property 1. Leta = somis1...s.-1m.5. ... be an arbitrary execution of the P:

sz.statusy(t) = active= 321 < z : m;, = notify,, (¢, op, active) for someop € OP.

Property 2. Let« be an arbitrary execution of th&P and g3.(a), n € N, be its associated sequencefdfents(DBSy).
Bn () verifies the Assumption 1.

If the transactions submitted by ti#&P to eachDBS,, component are well-formed, then theBS,, behaves accordingly
with its specification and the rest of assumptions provige8ection 3 are preserved by tiRe. In what follows, for each
arbitrary executior of the RP andn € N: 3,(«) € Traces(DBS,).

The RP also uses theCSfor message communication among sites. The traces @d@dsverify the assumption given in
Section 4. We also prove that tiiP preserves those assumptions in order to guarantee thetosage of this component.
In this case, we only need to prove the Assumptions 5.1 (Jfagbres) and 5.2 (Message Uniqueness).

Property 3. Leta be an arbitrary execution of theP and~(«) be its associated sequencemfents(GCS). ~(a) verifies
Assumptions 5.1 and 5.2.

In what follows, for each arbitrary executi@nof the RP: v(a) € Traces(GCS).

7.2 Proof of Safety Criterion

Some variables of th&P are used to keep track the underlying information aboutrduesactions executed atBS,, for a
siten € N. The next property indicates that the informati®pR maintains about th® BS,, is compatible with the definitions

14

given in Section 3. In order to simplify the presentation, wake use of an auxiliary variableOG,, in the next property.
The content of this variable is exactly the same asthe).,, with the exception of thén fo(t).start value of a committed
transactiort.

Property 4. Leta = somis1...5._17m.s. ... be an arbitrary execution of theP. Letg,(«)[j]° € Traces(DBS,),n € N, be
its associated trace dfvents(DBS,) until s.. The next properties hold:

1. s..status,(t) = idle = idle,(t, 5)

. sz.statusy () = active = activen(t,)

. Sz.Statusn,(t) = blocked = blocked, (t,op, j) for someop € OP

. sz.statusy(t) = committed = committedy (¢, j)

. sz.statusy(t) = aborted = aborted,(t, j)

sz.site_state, = alive At.site = n/A\s;.status,(t) # idle = s..infon(t).start = |log(Bn(a)[i])| Ai < j A vi = beging(t)
. Sz.site_staten, = alive A s;.status,(t) # idle = s..infon(t). WS = W Sh(t,5)

. s..site_state, = alive A s..statusy(t) = committed = s..infon (t).end = |log(Bn(a)[i])] A i < j A vi = commity, (t)

. s2.Very, = |log(Bn(a)[j])]
10. 5..LOG,, = log(Bn(a)[4])

Property 4 indicates that the information regarding to entistate of a transaction that is being executed @B, is
properly kept by the? P instance executed at sitec N. Besides, information about committed transactions,afappearing
in the respectivéog is also kept inSEQ.,.

The next property states that if(g info(t)) message is received at any site in the system it is nece$sdriransaction
t has requested its commit at its delegate replicaté = n). The different values contained in the message must a®gnci
with their respective values when the transaction was drelclEvery message has its associdatetd(t).end = 0 since this
value will only be modified, in its respective variable, whhe transaction is committed.

Property 5. Leta = somis1...s.-1m.5. ... be an arbitrary execution of the P.

(t,info(t)) € sz.channel, A t.site = n = F 21 < 22 < z3 < 24 < z : 7, = executeop,, (¢, firstopoft) A
T, = notify, (¢ lastopoft,active) A 7., = request.commit,(t) A 7, = deliver, ({¢,info(t))) ANinfo(t).start =
Sz, infon(t).start A info(t). WS = s.,.infon(t). WS A info(t).end = 0.

Proof. As (t,info(t)) € s..channel,:, then3z, < z: m,, = deliver,, ({(t,info(t))). By Assumption 5.4 (No Duplica-
tion) this event is the only one making such effeckat By Assumption 5.3 (Delivery Integrity) there exists a goas
broadcast,, ({t,info(t))) such that it is part of the actiot,, = request_commit,, (¢) because this is the only one that broad-
cast that message beingite = n. By Assumption 5.2 and Property 3 this action is the only omiding such an effect. In
addition,zs < z4. At s.,_1, statusn(t) = active A —sent,(t). By Property 13z, < z3: ., = notify,, (¢, last op oft, active).

By definition, =, is the last one for transactian As s.,.sent,(t) = f al se, there is no possibility foexecute_op,, (¢, op)
after z;. As those events are the only ones being able to modify Varialfo, (t).WW S with t.site = n, theninfo(t) =
Szg.infon(t). WS = s.,.info, (t).WS.

By Assumption 1.5, there exists a previcusmit,, (¢, last op oft) for which notify,, (¢, last op oft, active) has been produced.
Thus, by Assumption 1.4, there exists a unigtgn., (¢) which is part of the action of the event, = execute_op,, (¢, first op oft).
Obviously, z1 < z.. By the effects ofr.,, s.,.info,(t).start = s.,.Ver,. This event is the only one that modifies
infon(t).start, SOinfo(t).start = s.,.info,(t).start. All this reasoning is valid since there is R9: = crash,, in o with

2’ < z3 NOr,, = crash,, with 2’ < z. O

S1tis worth noting thaiB,, («[z]) is equivalent g3, (a)[j].

15

Before anend_commit,, (¢) event the information concerning fo(t).start andin fo(t).W .S included in the message of
the transaction to be committed coincides with the current values of theénfo,, (t).start ands,.info, (t).W S variables
respectively. The proof is trivial from the previous onedaknto account that at sitesite = n variablesent, (t) = f al se
and afterrequest_commit,, (t) such variables have not been modified; and atsitee # n’ the eventexecute_ws,,/(t)
copiesinfo(t) into info, (t) variable and it will not be modified until the executionefd_commit,, (¢). This is stated in
the next property in a slightly weaker form.

Property 6. Leta = somis1...s.—1m.5. ... be an arbitrary execution of the P.

sz.statusy(t) # idle A s..site_state, = alive A (t,info(t)) € s..channel, = info(t).start = s..info,(t).start A
info(t). WS = s..infon(t). WS Ninfo(t).end = s..infon(t).end

The (t,info(t)) information included inSEQ,, contains the same values as their corresponding varialiiea the trans-
actiont is committed.

Property 7. Leta = somis1...s.—1m.s. ... be an arbitrary execution of the P.

(t,info(t)) € $..SEQ, = 321 < z: 7, = end_commit, (t) Ainfo(t) = s.,.infon(t)

We can prove that if a transaction has been committed at ti@s:sin’ € N, part of the information of the transaction
stored at eacl§ FQ,, and SEQ,,. variables respectively is the same. In fact, using Propeitye next property concludes
that if (t,info(t)) € s..SEQ., theninfo(t).W S is the writeset of the transaction executed at its deleggited.site by the
time of request the commit, aridfo(t).start is the version of the databageB s, ;.. when the transaction executed its first
operation.

Property 8. Leta = somis1...s.-1m.5. ... be an arbitrary execution of the P.

(t,info(t)) € 5..SEQx A {t,info (1)) € 5..SEQ, = info(t).start = info' (t).start Ainfo(t). WS = info' (t).WS

Proof. By Property 7,321,222 (< 2): m,;, = end_commit,(t) A 7., = end_.commit,(t) A info(t) = s.,.infon(t) A
info'(t) = szy.infon(t).

By Property 6, at., 1 ands.,_1, which are the states at whieh, andr., are enabled respectively, it is verified:
(t,m(t)) = head(ss,—1.channely,) N m(t).start = s.,—1.infon(t).start A m(t). WS = s.,—1.infon(t).WS A m(t).end =
Szy—1.infon(t).end, and

(t,m'(t)) = head(szy—1.channel,) A m/(t).start = s,,_1.infon (t).start A m/(t).WS = s.,_1.info, (t).WS A m/(t).end =
Szg—1.infop (t).end.

By Property 5, ast, m(t)) = head(s.,—1.channel,) and(t, m’(t)) = head(s.,—1.channel,/) then({t,m(t)) = (t,m’(t)).

Due to the fact that., andr., do not modify the variables:.fo., (t).start, info, (t).start, info,(t).W.S andin fo, (t).W S,
then

info(t).start = s,,.infon(t).start = s,,_1.info,(t).start = m(t).start = m'(t).start = s.,—1.info, (t).start = s.,.in-

fon(t).start = info'(t).start, and
info(t).WS = s.,.infon(t) WS = s, —1.info,(t) WS =m(t).WS=m'(t). WS = s.,—1.info, (t).WS = s.,.info, (t)WS =
info' (t).WS O

If we move what it has been stated in Property 8 to the upd&esnmed by a transaction in the database, it is equivalent
to say that if they appear at two different sites they will baatly the same. To end the proof of the safety criterion, it
is necessary to prove that transactions have been comrinitteé same order. This fact can be shown thanks toGh8s
properties that ensure the delivery of messages in the weng order to all sites and thieP since it processes messages in
the same order they have been delivered.

In the next, we introduce a set of auxiliary variables in oitiat will help us during the correctness proof. Wetivered,,
be an auxiliary variable containing the delivered messagesiten € N by the evendeliver, (m); that is,delivered,, «—
delivered,, - m. Letreceived,, be an auxiliary variable containing the messages the dhgois events have handled at site
n € N, in particularend_commit, (t) anddiscard_ws,, (t) events. Whemn is removed fronhead(channel,), it is included
iN receivedy, 1.€. received,, «— received, - m.

These new auxiliary variables have the initial valuggelivered, = so.received,, = empty. Taken into account theCs
properties, thek P guarantees that the set of messages processed by it aldnthe/get of pending messages constitutes the
set of messages delivered by thes

16

Property 9. Let o = somisi...s.—17m.s.... be an arbitrary execution of th&P. Let~(a[z]) € Traces(GCS), be its
associated trace afvents(GCS) until s.. For eachn € N the next properties hold:

1. s..delivered, = mess,(v(az]))
2. s..received, - s..channel, < s..delivered,

Thanks to the last property and the total-order delivery esaages, the set of processed messages by a replica is a prefix
of the processed messages of another one or viceversa.

Property 10. Leta = somis1...s.—17:5. ... be an arbitrary execution of theP. For all pairs of sitesn,n’ € N, either
s..received, = s..received, s Or Viceversa.

Proof. By Property 9s..received,, - s..channel,, < mess,(y(alz])) ands..received,, - s..channel, < mess,:(y(a[z])). By
Assumption 5.5 (Prefix Ordenpess, (v(alz])) < mess,(v(alz])) Or viceversa.
Therefores..received, < s..received,, Or viceversa. O

The next property is the most important one introduced satfatates that a transaction is certified (or discardeghees
tively) in the same order at all available sites. Note thatdbrtification process is asynchronous. Hence, one regdina
be faster (i.e. process more messages) and certify morsaitdons. Nevertheless, the decision (commit or abortg&mwh
certified transaction at every replica will be the same.

Property 11. Leta = somis1...s.—17.5s. ... be an arbitrary execution of theP. For all pairs of sitesz, n’ € N:
sz.received, X s;.received,, = 321 < z2:5..SEQn = 55, .SEQ, N s..received, = sz, .received,, .

Proof. By induction over the length af.
e Basis At a = sg; for all n € N: so.received,, = empty, andsg.SEQ,, = empty. The property holds.
e HypothesisAssume the property holds &t.

e Induction Step Let (s.,7.+1,s.4+1) be a transition of th&zP. We study all the events. ., affecting the variables of
the property in the following cases:
Case 1. .received, = s..received,, andr.,, at siten’.
Case 2. .received,, < s..received,, andr.,, at siten.
Case 3. .received,, = s,.received,, andw,., at siten.
Case 43, .received,, = s,.received,, andr.,, at siten’.
It is sufficient to prove cases 1 and 2 because cases 3 and yhamaesric by interchanging by »’ in the Property 11.

— Case li7.11 € {end_commit,(t),discard-ws,,(t)}. By its effects,s..received, = s.i1.received, and
say1.received, = ss.received, - (t,info(t)). ThuSs,ii.received, < s.i1.received, . By induction Hypoth-
esis and the fact..SEQ, = s.+1.SEQ, does not change by the executionmf ;, the same., considered in
the induction Hypothesis makes the property true.at.

— Case 2,41 € {end_commit, (t), discard_ws, (t)}.

x .11 = end_commit, (¢). By the effects of its action:
$s41.meceived, = s,.received, - (t,info(t)) ands.;1.SEQ, = s..SEQ, - (t,s.+1.info(t)). Recall that
certification({t,info(t)),s..SEQ,) = true.
By induction Hypothesisiz, < z: 5..SEQ., = s:,.SEQ,s A s..received, = s.,.received,, .
Therefore, as. .received,, < s..received,,, thens,1.received, =< s.11.received,, .
Notice: s., .received,, - (t,info(t)) = s..received, - (t,info(t)) < s.41.received,,.
Let ., be the event at’ such thats.,.received,,, = s.,.received, - {t,info(t)). No other event modifying
received,,, has been executed betwegrandz.. Actually, what we do know, by inspection of the algorithm’s
code, is that the following does not change:_i.channel,s = s.,.channel,; A $:5—1.SEQ,+ = $:,.SEQ .
Thus,s.,—1 = s.,, in particular(t,info(t)) = head(s.,—1.channel,). The possible events takénin fo(t))
into s.,.received, arer., € {end_commit,, (¢), discard_ws,, (t)}. Only r., = end_commit,, (¢) IS POSSI-
ble becauseertification({t,info(t)), s:o—1.SEQ.) = certification((t,info(t)), s..SEQ.). Therefore, by
the effects of the event’s action,:

17

820-SEQur = 835,—1.SEQu-(t, 5.5 info(t)); 825.Very = s.,—1.Very+1;and,s,, .info, (t).end = s.,.Ver,.
By Property 8:s.y1.infoy, (t).start = s.,.info, (t).start; sy41.infon (t). WS = s.,.info, (t).WS.

AS [5:41.SEQn| = |52,.SEQ,/| (Recall| SEQ.| = Ver,) thens.41.infon(t).end = sz,.info, (t).end.

In conclusion:

Say1.recetved, = Sy41.received,

=

dzo < z+1:

Szt1.1eceivedn = sz.receivedy - (t,info(t)) = s.,.received, N

$241.9EQn = $:.SEQn - (t, s241.info(t)) = $25.SEQ,.

x m,11 = discard_ws, (t). By the effects of its action:
Sz41.received, = s..received, - (t,info(t)). Notice thatcerti fication((t,info(t)),s..SEQ,) = f al se.
By induction Hypothesisiz < z: s..SEQ, = s:,.SEQ,/ A s..received, = s, .received,,.
Therefore, as. .received,, < s..received,, thens.i.received, =< s.11.received,, .
Notice: s., .received,, - (t,info(t)) = s..received, - (t,info(t)) < s.41.received,,.
Letr., be the event at’ such thats.,.received,,, = s.,.received,, - {t,info(t)). No other event modifying
received,,, has been executed betweanandz.. Following the same reasoning as before, we obtain that
S29—1 = Sz,, IN particular(t,info(t)) = head(s.,—1.channel,:). The possible events takéninfo(t)) into
$2,.TeCEIVEd, Al€T., € {end-commit,,(t),discard_ws, (t)}. Only ., = discard_ws,,(t) iS possible
becauseertification((t,info(t)), s.,—1.SEQ.) = certification({t,info(t)), s..SEQ,). Therefore, by the
effects of the event’s actiof.,
$29-SEQ, = 8.,-1.5EQ,. In conclusion:
Syr1.received, = Sy41.received,
=
dzog < z+1:
Szt1.1eceived, = sz.receivedy - (t,info(t)) = s.,.received, A
S$241.5EQn = $:.SEQn = 5.,.SEQ,,.

O

To conclude this part of the correctness proof, it is needeshbw that the way successfully certified transactions are
stored inSEQ,, and constitute, thanks to the Property 11, with any othdia@p’ a prefix SEQ. < SEQ.,./) or viceversa is
reflected in the way these transactions are committed inakedse. In other words, it is needed to show that the daabas
logs of committed transactions associated with any paiepficasDBS,, and DBS,,, either one is the prefix of the other
(LOG,, < LOG,,) or viceversa.

Theorem 1 (Safety - Database Prefix Order Consistencye RP verifies the safety criterion: “Database Prefix Order
Consistency”.

Proof. Let o = somisi...7.s.... be an arbitrary execution of theP. By Property 11, for all pair of sites,n’ € N:
s..received, = s..received, = s,.SEQ, = s..SEQ, . By Property 10, eithes. .received, = s..received, Or viceversa.
LetB,(a) € Traces(DBS,,) ands, (a) € Traces(DBS,,) be the associated tracesiofents(DBS,,) andEvents(DBS,,)
respectively. ByLOG,, definition, eithers..LOG,, < s..LOG, or viceversa and by Property 4.10 (recall that.OG,, =
log(Ba(al2]))): log(Ba(alz])) = log(B. (al2])) or viceversa. O

7.3 Proof of Liveness Criterion

Upon the total-order delivery of a message, it is needed dogthat the writeset contained in it is processed in the same
order at all available replicas. Hence, we need to studyfullyehe role of the certification decision. By the specifica of

RP, it is proved that the precondition of and_commit, (t) event implies that the evaluation of the-tification(t, SEQ,)
function is true. On the other hand, it is worth noting thata&t delegate site of a transaction, the protocol does nakdhe
certification function if the transaction is active befaiedommit (i.e. no other previous successfully certifiedsaction has
aborted it). The next property states that given a transacti its associatedtatus, (t) is equal to active and its associated

18

message is in the first position of the sequence of messades poocessed (i.e. it is ready to commit) then it has been
successfully certified.

Property 12. Leta = somis1...s.-17.5s. ... be an arbitrary execution of the P.

sz.status, (t) = active A (t,info(t)) = heads..channel,) = certification({t,info(t)), s..SEQy).

From the last property, it can be inferred that every conedittansaction has been successfully certified. Howeuslisth
not enough to guarantee that every successfully certifeatsérction is eventually committed. The following propegronts
out this fact: for every satisfyingly certified transactitthve RP ensures that its status becomes active and, hence, is able to
commit.

Property 13. Leta = somis1...s.-17.5. ... be an arbitrary execution of the P.

t.site =n A (t,info(t)) = heads..channel,) A certification((t,info(t)),s..SEQn) = s..status,(t) = active

Based on Properties 12 and 13, it is shown the execution flame$actions at each site whenever a writeset is about to be
applied. TheR P must ensure that the transaction commits so it alters theutios flow of the rest of local transactions. This
task is split into two parts: all conflicting transactions anmediately aborted; and, on the other hand, all locak&ations
attempting to update a data item are stopped (thus, avoidingconflicting sources) until the writeset is applied.

Lemma 1. Leta be a fair execution of th&P and lets. be a reachable state in.

certification({t,info(t)),s:.SEQn) A (t,info(t)) = head(s..channel,) = 32’ > z: s,r.statusp(t) = committed V
s, .site_state,, = crashed.

Proof. By contradiction. We assume the Lemma does not held:> z: s.,.status,(t) # committed A s,..site_state, =
alive. We consider the following cases:

e Case l.t.site = n. Let s, be the first state verifying the antecedent. By Propertysl3tatus,(t) = active. The
eventend_commit, (t) iS enabled at.. No other action, excepfrash,, or end_commit, (t), can modify the variable
channel, When(t,info(t)) = head(s..channel,); Of status,(t). Recall,vz' > z: s./.site_state,, = alive, andcrash,,
event does not happen in The same happens witthd_commit, (t) because..status,(t) # committed. Thus,
V2 > 2, the eventend_commit, () iS enabled at... By weak-fairness ofy, 32" > 2: 7., = end_commit, ().
Therefores., .status,(t) = committed. The Lemma is verified in such a case.

e Case 2. t.site # n. Let s, be the first state verifying the antecedent. Thenstatus,(t) = idle. The event
execute_ws,(t) iS enabled at.. No other action, excepirash,, Or end_commit, (¢), can modify the variable
channel, When(t,info(t)) = head(s..channel,), SEQ., ws_run,, Of status,(t). ASY 2’ > z: s,.site_state, = alive,
thecrash,, event does not happendn The same happens witihnd_commit,, (t) because...status, (t) # committed.
Thus,v 2’ > z, the evenexecute-ws, (¢) is enabled at... By weak-fairness of, 321 > z: 7., = execute_ws,(t).
Let 3.(a)[j] € Traces(DBS,) be the associated trace doat the reachable statg, _, (the previous state before,
execution). We consider now the effects of the executios. of
Vi e getConflicts((t,info(t))): abort,(t'), sz, .status,(t') = aborted
Sz, infon(t) = info(t)
begin,, (t), submit, (¢, s, .infon (t))

Sz, -Statusny (t) = blocked
Sz, ws_run, =true.

We consideft}, ..., t;,} = getConflicts((t,info(t))). Notice thayetCon flicts({t,info(t)}) is evaluated at., —1. Thus,
the associated tragk («) at the reachable state, is (' = j + k + 2):
Bn()[j'] = Bn(a)[j] - abort, (t;) - - - - - abort, (t},) - begin,, (t) - submit, (¢,info(t).WS).

In the traces, (o) of the DBS,,, it is verified the following at’:
(@) blocked., (t,info(t). WS, j') A type(info(t)WS)=write
(b)AVE, 7 —1 <k <j: v ¢ {commit,(t') | t' € T,WSn(t,j) NWS,(t, k) # 0}

19

(c) AVt € T being(active,(t',j') V blocked,(t',5)): WSn(t', i) N WS, (t,5") = 0.

The condition (a) is trivial by Property 4 and Definition 2. &hondition (b) is verified by construction @f, (a)[;']

because/;; = submit,(¢,info(t).WS). We need further explanation in condition (c). Considet € T being
(activen (t',§) V blocked, (t',5')): WSn(t', 7)NW S, (¢, ') # 0. By construction o, («)[j'], t’ verifies(activen (t', j) V

blocked, (t',5)) N WS,(t',5) N WS,(t,j') # 0. By Property 4 and the fact that' s, (¢, ;') = info(t).W S, the next
holds:

It € T: s.,-1.statusy, (t') € {active, blocked} A s.,—1.infon(t').WSNinfo(t). WS # (.

By definition of getCon flicts((t,info(t))) ats.,—1, thent’ € getConflicts((t,info(t))) andt’ € {t},...,t;}. There-
fore,aborted, (t', j'). This is against the initial supposition @ftive, (t', ;') V blocked,(t',j").

The conditions (a), (b) and (c) are the antecedent of Assomgt3. Following the Assumption 4.3:
35" > j': vy = notify (¢, info(t).W S, active) V
vin € {notify, (t', op', active),commit, (') | op’ € OP,t' € T,WSyn(t,j") N WS, (¢',5") # 0}.

Recall thatnd_commit,, (t) does nothappenin. Thenyz" > z1: s.,.ws_run =true A (t,info(t)) = head(s,,.chan-
nel,); then,n,, # end_commit, (t') for any¢ € T. This last consideration yields thaf, # commit, (¢') for any
t' e T. If v, = notify, (¢, op’, active) for somet’ € T, by Assumption 1.4, the previous evenisisbmit,, (¢', op’)
and type(op’) = write. This event can not be g, (a)[j] if WS.(t,) N WS,(¢,5") # 0 because by a simi-
lar reasoning as in the case (c) aboveg getConflicts({t,info(t))). Thus,submit,(¢',op’) happens after event
vj in Bn(a). There must exist the everkecute_op,,(t',0p’) after =., in « for which submit, (¢',0p’) is part
of its action. But asws_run = true andtype(op’) = write, this event is disabled forever. Therefoig,
notify, (¢',0p’, active). As Assumption 4.3 holds iB,(«), v;» = notify,, (¢,info(t).W S, active) and thus, there
existsz: > z such thatr., = notify ,(¢,info(t).W S, active). By its effects,s.,.status, (t) = active. In conclusion,
V2z' > 2z, the evenend_commit,(¢) is enabled at... By weak-fairness ok, 3z’ > z22: 7., = end_commit, ().
Therefores., .status,(t) = committed. The Lemma is verified in such a case.

O

Itis also needed to show that all delivered messages arg tmhbe processed. Some messages will fail in the certificatio
process (where messages are discarded, seéitherd_ws, action in Figure 3) while others not. By Lemma 1, those
messages that have passed the certification phase will In¢uellg committed and the next message will be processed.
Let us define a functiod(m, head(channel,)) = k € Z* that represents the distance between the position of a gessa
in channel, to its head, measured by the number of preceding messagesneki Property ensures that a message will
eventually get processed provided that the site is a cositgtin terms of the new functio#(m, head(channel,,)) < k with
k decreasing as more preceding messages are processed.

Property 14. Let« be a fair execution of th&P and lets. be a reachable state .

d(m, head(s..channel,)) =k > 0= 32 > z: d(m, head(s.:.channel,)) < k V s, .site_state, = crashed.

Proof. By contradiction. We assume the property does not hold:> z: d(m, head(s.,.channel,,)) > k A s,:.site_state, =
alive.

As k > 0, there existst,info(t)) = head(s..channel,,). We only need to prove that there is’a> » such that.,.received,
includes(t, info(t)). In such a wayd(m, head(s,:.channel,)) < k.

At s, the following holds:

o Case lcertification((t,info(t)), sz.SEQn).
The enabled condition of = discard_ws,(t) IS true ats.. No other event can modify such a condition due the
fact (t,info(t)) = head(s..channel,) andr is the only event able to modifshannel,, in such a situation. A¥ 2" >
z: s,.site_state, = alive, 7w IS enabled s... This is not possible becauaés a fair execution. By weak fairness, there
existsr., = discard-ws, (t) in a. By its effectss...received,, includes(t,info(t)).

e Case 2certification({t,info(t)), s:.SEQn.).
By the conditions of Lemma 1 and the fact thad’ > z: s,..site_state, = alive, then3z’ > z: s, .status,(t) =

20

committed. By Property 7,3z1,z < z1 < 2': 7., = end_commit,(t). By its effects,s.,.received,, includes

(t,info(t)).
O

The next lemma states that if a transaction has committedyatea site, it will get eventually committed at the rest of
correct sites. This lemma is the origin of theriform commit property.

Lemma 2. Leta be a fair execution of th& P and lets. be a reachable state in.

sz.statusy(t) = committed = Vn' € N: (32': s,/.status, (t) = committed V s..site_state, = crashed)

Proof. By contradiction. We assume the Lemma does not hold; thatris,e N: (Vz': s.:.status,(t) # committed A
s.s.site_state,, = alive). In that casep’ € Correct(N).

Let s. be the first state imv such thats,.status,(t) = committed. By Property 7,m. = end_commit,(t). Its enabled
condition ats,_; verifiess._1.status,(t) = active, and{t,info(t)) = head(s.—1.channel,). By Property 12, it also verifies
certification({t,info(t)), s..SEQ,) =t r ue. Notice that by its effect&, info(t)) € s..received,.

By Property 5 (following its notation)j zs4,z4 < z — 1: ., = deliver,((¢,info(t))). In the associated tracga) €
Traces(GCS), the eventdeliver, ({t,info(t))) appears in it. Thus by Assumption 5.7 (Uniform Agreement) Assump-
tion 5.4 (No Duplication), there exists i#(a) a unique eventleliver, ({(t,info(t))) because)’ € Correct(N). There-
fore, in o there exists a unique,, = deliver, ({t,info(t))). By its effects,s.,.channel,, > (t,info(t)). By Property 14:
32"2" > 2" {t,info(t)) = head(s,».channel,).

We consider the following cases taking into account PrgpEdtand the relation betweefi andz — 1:

Case 12" > z — 1 ands,».received,;y = s, .receivedy,.
Case 22" > z — 1 ands,».received, =< s, .received,, .
Case 32" < z—1 ands,».received,;y < s, .received,.
Case 42" < z—1 ands,».received, < s, .received,, .

Only Case 2 is not possible becausénfo(t)) € s..received,, and itis notincluded iR, .received, . In the rest of cases,
by applying Property 11 it is concluded the following:,.SEQ,., = s.-1.SEQn A s.i.received, = s._1.receiveds,.
Thereforecertification((t,info(t)), s.n.SEQ,+) = certification((t,info(t)), s..SEQ.,) =t r ue. The conditions of Lemma 1
hold: (t,info(t)) = head(s..channel,) A certification({t,info(t)}, s.m.SEQu:).

By Lemma 13z2" > 2": s, .status, (t) = committed. The Lemma is proved. O

Finally, the following theorem translates what it has bestrup by Lemma 2 for th& P to the DBS,,. Itis a must that for
every committed transaction in the associalggls,, of a site, it will eventually get committed in the remaindet sf DBS,,,
with »’ belonging to the set aforrect(N).

Theorem 2(Liveness - Uniform Commit) The R P verifies the liveness criterion: Uniform Commit.

Proof. Leta = somis1...m.s. ... be an arbitrary execution of theP. If s..status(t) = committed then3z,,z1 < z: 7., =
end_commit, (¢). By Lemma 2;r. = end_commit, (t) = Vn’,n’ € N: 32": 7., = end-commit,, () V 7., = crash,,. In
other words, if we narrow the second term for all correctssite’, n’ € Correct(N): 32': 7, = end_commit,, (t).
Let3.(a) € Traces(DBS,) andg, (a) € Traces(DBS,,) be the associated tracesifents(DBS,) andEvents(DBS,./)
respectively, with' € Correct(N). By the effects ofr., = end_commit, (¢), thecommit, (¢) eventis presentig,(«) and,
hence, this will imply that n’, n’ € Correct(N): commit, (t) in 3,.(«). Hence, the Theorem is proved. O

8 Discussion

About the writeset extractiorfirst of all, we have not consider&@L statements throughout all the paper, we merely pointed
out that we read (or write) a data item versidn, palue)). Writeset extraction of a transaction is a well known pesblin

the replicated database community and of particular istere middleware approaches due to the heterogeneiyBsf
used. It can be achieved through different mechanisms Sk&ing SQL statements [24, 36]; using triggers to extract the
changes [22]; and, reading changes from &S log [30]. Each one of these techniques presents its own aalyes and

21

drawbacks that will be outlined in the following. Thus, fotanple, in the first technique an inconsistent state candmhes
with non-deterministiSQL statements, such as those setting up the current timestanmgn@ others) that will be different at
each replica and must be re-written on the fly (or properly ifiediat the time the writeset is multicast) [40]. Howeversth
technique is the most straightforward one as update statsraee stored at the middleware layer of the transactioegaddd
replica as they are issued. Trigger based extraction iheratandard approach. This alternative presents thegarobl the
overhead imposed at theBS,, as more write operations are needed for each individuaévaiteration performed bysQL
statement. Nevertheless, this approach avoids the irstensies across replicas present in the previous solioally, the
most attractive way to achieve this is by reading the logattansaction delegate replica. Therefore, no overheadisried
by this read operation. However, though e®@&s offers its own interface for accessing the log, this is noeasy task (at
least from a middleware approach point of view), since ithhygdepends on the kind @BS considered and even version
changes of theBS may lead to a whole redefinition of this mechanism [25, 51] tése aspects have thoroughly discussed
from a practical point of view in [38].

n | |
n | |
[] []
n | |
n | |

Replica #1 <Xi> = <X> Replica #1 <Xy> v </
n | |
[] []
n | |
n | |
[] []
n | |

Replica #2 <X2> - <X1 > Replica #2 <Z4> - <XS>
[] []
n | |
n | |
[] []

Very=10 Ver,=1 Ver,=2 Very=10 Very=1 Ver,=2
a) Invalid Process of Altering the Commit Sequence b) Correct Process of Altering The Commit Sequence

Figure 4: Altering the Commit Ordering at Two Different Riegals

Prefix-Order Consistency of the Sequencer Correctnesgri@nit In order to ensure its correctneg®? needs that remote
writeset application follows a sequential order —beinghsarder identical in all sites— which has been shown in [19%as
sufficient condition for generating a GSl isolation leveldyided that individuabD BS,, areSl). This is a very strong require-
ment for generating a one-copy equivalence schedulerdastctions in a replicated database. Actually, transactian be
applied in any order under certain circumstances. Let ughgsavith an example, given four transactioqd, s, Ts, T4 }
that respectively write data item&;, X», X3, Z4. T1 andT: are executed in different order at two replicas, while intheo
system execution only; andT; are executed in different order (as it can be seen in Figueeard 4.b). From the execution
depicted above, we can say that if the final snapshot of teesalisequence is the same then it will not matter whether they
are committed or not in the same order (as it is shown in 4.b)s @pproach has been considered in [30]fedés appearing

in the associated EQ; variable. Nevertheless, in order to maintain its corressn¢he beginning of new local transactions
should be avoided as long as there are holegHy;, since they will get an inconsistent snapshot for their igaerations. A
slight variation of this enhancement is to concurrentlylgpn-conflicting transactions and commit them in the orttiely
were certified. The impact of this modification has not begreexnentally tested yet.

Garbage Collection of the Sequencer and Fault-Toleransads with the Crash-Recovery Mad¬her closely related
issue is the need of a sequencer variable to store the whiotd saccessfully certified transactions. This variablensee

to infinitely grow along a system execution. A straightford/golution to avoid this is by piggybacking the number of the
last applied writeset in the writesets regularly broadtgseach replica. Thus, the sequencer can be trimmed acgbydin
by removing until the minimum version received. This tecju@ has been discussed in [50]. Of course, in case of a replica
that crashes, the number of collected version numbers neystdperly modified so the process of garbage collectionef th
sequencer may continue without interruptions. Sequersageaihas been shown as an interesting tool for the crashiengco
model in replicated databases [27, 44, 4]. Though thisraggenario has not been considered in this paper, it cancoenac

22

plished by considering the view synchrony properties festy theGCS[13]. Most of these recovery solutions follow the
same philosophy, once a replica fails the process of garbaitgrtion of the sequencer is stopped. Hence, when thedfail
node rejoins the system, a recoverer replica must be chogegrorm the data transfer of the missing part of the seqgelenc
A comparing evaluation of recovery techniques is given i [4

Commitment of a Successfully Certified Writeddp to our knowledge, something that has not been careftdiynally)
considered is the fact that after a writeset has been sufotigssertified, it must be committed. Nevertheless, theaa c
exist several (local ones fromP’s point of view) transactions that may conflict with the @&t writeset. Hence, it may
happen that the transaction applying a writeset may becdookdd, or worse aborted. This last point was studied in.[30]
They propose a time-out approach for blocking time and teagpt the transaction just in case of time-out expiratiother
transaction is rolled back by theBS,,. Another alternative approach, presented in [33], is tqpkeack at the middleware
layer of the metadata conflict table contained in iheS,, so they can be aborted as soon as possible (i.e. before thase t
actions reach theequest_commit, (t) event witht being local at replica). Moreover, both approaches do not prevent the
fact that the writeset can be endlessly aborted by, due to new write operations unless the replication prottaics
some more control actions. It needs to stop the executiorwiwrite operations of currently executing transactions tue
beginning of new transactions that may potentially writéhia database. This last fact has been considered in thendesig
formalization of RP. Another approach, totally orthogonal to the previous gmesented here, is to define a conflict aware
load balancing technique by way of conflict classes [35, 3, B der this assumption, though it is full replicated, olie
have to pre-declare the set of data items about to be readramditen by a transaction which is denoted as a conflictsclas
Each replica is the owner of one or several conflict classestebler, a transaction can potentially access severaliconfl
classes and, typically, it is statically assigned to oneterag he goal here is to minimize inter-replica conflicts,iethis

left to the masters of the respective conflict classes, amthitoughput of applying remote transactions is maximiiédre
precisely, transactions are broadcast (using the toti+garimitive) to all replicas. Master sites execute tratisas, while
the rest just apply the resulting writesets in the orderdaations were delivered. However, this last alternativesents
the inconvenience of its high dependence of the databadieatgn considered: an evolution of the database schenya ma
convert the workload distribution policy into a useless.oRmally, a second possible optimization is presented &) &hd

it consists in uniting transaction ordering with transactdurability in a replicated setting. This may be achievitides at
the middleware layer, or at the database one, generatipgctgely theTashkentMw andTashkentAPI systems described
in that paper. In both cases, multiple writesets are growgreticommitted at once. This also enhances throughput since
many intermediate commits are eliminated, as it is usuallyedin isolatedBSs. Moreover, this optimization is also able to
preserve the initial ordering without many problems.

Transaction Isolation Level Reached with the Prefix-Orden€§istency in the Replicated Database v8tiDBS. The prefix-
consistency order imposed by ttiP and the usage abBS,, providing SI have been shown as a sufficient condition to
provideGSI [19] or weaksSl in terms of [14]. RP does not support eithestrong sessiosl [14, 40] where clients always
see their own updates. Unless they access all the time the ggptica, which is not necessarily true in the case of a crash
failure. Moreover, clients are not guaranteed to see irsingesnapshots when the same client executes consecuéviegu
on different replicas that are not equally up-to-date. Ténme problem appears in [17, 30, 33]. This problem can be cir-
cumvented by including some meta-information on the clg@aé about the latest version seen by him, upon reception of a
qguery the replica can check its current database versiomeayddecide to execute the query if the proper version is given
forward it to another replica or block the transaction utfig proper snapshot version of the client is reached. It kasb
shown in [17, 19] that there is no non-blocking implemermtatihat provides conventional (or strong [14]) Though this
fact can be taken as a chance to consider data freshness\vatygo either to obtain a given snapshot by selecting thegsrop
replica that holds the requested snapsreysion(or timestampp [41] or trying to define an interval of validity of a given
shapshot, such dsboundGsI [6] where astart message (containing the snapsheision is broadcast (using total-order)
at the beginning of the transaction. Upon its receptiondhiscked against the last committed transaction if its difiee is
greater thark which is a parameter chosen by the database application.

Practical Considerations with CommerciaBSs that provide Different Isolation Level3he certification process proposed
here is a distributed and replicated version of fing-committer-wingFCW) rule of SI [7]. Note that most ofbBS,, com-
mercial implementations (such &sstgreSQL [42] and Oracle [34]) use another different flavor of this rule callfeicht-
updater-wingFUW) rule. Only the first transaction performing a write opevatover the same data item with other update
transactions is allowed to proceed while the others remiaickied. At the moment when the former one commits the rest

23

will be aborted. Recall the conflict detection mechanisnhwdtcal transactions while applying a remote writeset that w
have previously discussed [33] that becomes speciallyulgéth a DBS,, using theFUW though correctness is not affected
either by using a>BS,, with a FUW or aFCW rule. Read-CommittedR(C) is a weaker isolation level rather than the one
provided bySI [7]. Actually, it is the default isolation level provided BostgreSQL and Oracle. For each read operation
executed by a transaction executed under this isolaticgl, lévis performed over the current database snapshotoreeti
the moment it is issued (i.e. non-repeatable reads arelpedgi). Whereas the commitment rule for a transaction unde
RC is done by relaxing th€UW rule, whenever the transaction holding the update lock oata lem commits, the rest
of blocked transactions are re-evaluated but they do noalgetted as opposed &JW underSl. Thus, if we want to run
RP with all DBS,, providingRC there is no need for a sequencer, the certification of a trdiesais done by way of the
total-order delivery of the writeset by ti&CS Of course, it is still needed to control the execution flowanfal transactions
as inGSl has been done and will imply some abortions of local traisast reaching &eneralizedRC isolation level for
the replicated database [8]. Moreover, the certificatiamcpss was originally proposed to obtain One-Copy-Seahliity
(1C9 [10, 36] with eachDBS,, providing the serializable isolation level. AgaiRr can providelCSif it propagates the
readsets along with the writesets in the message being taegdas it has been used in [35, 28, 3&LS can also be
reached with the usage ofBS,, featuringSl either: statically (i.e. forcing transactions to genetattories where there are
no intersection between readsets and writeset) [18]; arathjcally by shifting read operations into write operat¢h7] (a
“SELECT” SQL statement can be modified into®ELECT ... FOR SHARE'ora“SELECT ... FOR UPDATE’statement).

Integrity Constraints on Replicated Databas@ne topic that has not been covered yet, to the best of owrlkdge, is in-
tegrity constraintsIC) at replicated databases. At this point a transaction caibeed by amC operation (i.e. it may obtain
anotifyn(t,op, result, data) With result = abort due to aniC restriction violation). Furthermore, a transaction ajpdya
remote writeset may be aborted due to this fact too. One Iplessiy to overcome this is to serially execute transactibas
executdC operations [1]. Thus, the message containing the writesétsf certification must also include all data items that
have been involved ifC operations and, thanks to this, observe@lin the replicated database. Of course, there are some
possible optimizations in the certification function, tigbuthis was not one of the scopes of the paper, such &s-sead
operation over the same data item between two or more caitransactions is totally compatible.

Alternative Approaches for the Correctness Prodhe first approach of setting up a correctness criteriorrdpticated
data was formally stated in [10]. It was established theatigdtion theory for a replicated system by giving the niotid
one copy equivalence that derived, by the usageraf DBSreplicas, to thelCS correctness criterion. A given solution
is said to belCSif its associated serialization graph is acyclic [10]. Thiaés been commonly used in previous works in
order to prove the validity of the solutions proposed. Tkane the solutions proposed in [28, 36, 24, 35] share theesam
characteristic: transactions are executed at their dedegplicas and writesets are broadcast, using the totirdacility, to

the rest of replicas and differ in the way transactions amiteated (either weak-voting or distributed certificati@®]) to
guarantee they areCS The total-order (that can also be ficgitimistically[28, 35] delivered) delivery of writesets ensures
that the way the serialization graph is built prevents thpaajion of any cycle. A good example of this is the solution
presented in [28] for a kernel-based and [35] for a middlenanchitecture where the whole transaction (e.g. defined as a
stored procedure pretty much like a web data-sheet formjdadrast. Nevertheless, most of commerbias do provide

Sl and several attempts [17, 30, 19] have been done to providditaans and define a correctness criterion pretty similar
to the notion ofLiCS Therefore, in [19, 17] the notion of prefix-ordsr consistency is defined which is considered as a
sufficient condition to providslI histories [19] as we have depicted above, i.e. it disallowseshistories that are also valid
Sl histories. A centralized and a distributed certificatiogoaithm are presented in [17] based on the previous concept a
transactions obtaigSI. The correctness proof for the distributed certificatiomigh is somehow equivalent to o&P) is
based on the total order delivery of messages containingitiheset [17]. Concurrently to [17], an equivalent notiam 8l
replicas is given in [30] which is called 1-cofgl-stating that a set of replicas provides it if there iR@WA [20] function
that maps how transactions are executed at all replicasterd £xists &l history that respects the commit ordering of
write-write conflicting transactions and the start ordgrof write-read conflicting transactions. They propose #rithisted
certification algorithm for a middleware architecture tisalbased on the sequential execution of writesets that takdader
delivered. Therefore, it is easy to show that it follows theg approach as in [17]. To the best of our knowledge, norteeof t
previous works, either fotCS[28, 36, 24, 35] 0iGSI[17, 30], have used a typical approach for verifying the ectmess of
distributed systems such @kA+ [29], the state transition systems [46] or the Input/Ouguutbmata theory [32]. Moreover,
1CSsolutions present new algorithms, with independent spatifins, analysis and correctness proofs, though the same ¢
not be said foiGSI protocols where the correctness criterion and algorithresregroduced in the same whole unit[17, 30].

24

Moreover, all previous algorithms proposals base theia dansistency on the total order delivery facility provideda
GCSthough they do not cope with the crash failure of a replica lhow it affects its correctness. In our work, we have
formally introduced a replication protocol for a databasplication middleware architecture wihi replicas as a state
transition system that deals with crash failures which ioaehapproach. More recently, a formalization of the defdrr
update technique for database replication with serialezalatabases is proposed in [45] where some characteréstits
limitations of such technique are presented. They set ughleaermination protocol must totally order globally coritted
transactions, similar to the approach presented in our Wotkhis is a sufficient condition fal. They have also shown that
it is only needed to preserve the serializability order dolythose transactions that modify the database withoumgakto
account read-only transactions, also similar to the predimsistency correctness criterion presented here an®irL[Z] for

SI. Finally, they have checked their specifications usingTiwe+ model checker which is also a novel approach since they
use distributed system tools to verify the correctness tdlusse replication protocols.

9 Conclusions

In this paper, it has been formalized a certification-basgdluhse replication protocak) as a state transition system. This
represents a novel approach, since none of the previousagpes has used distributed-system-specific tools to eltsur
correctness. Moreover, they have introduced their spetifios of replication protocols using independent speatifinis,
analysis and correctness proofs. We have establisheq sdégabase prefix order consistendgr each pair of replicas the
database of one of them constitutes the prefix of the otheiceversa) and liveness correctnegaiform commit if a site
commits a transaction then every site will commit this tesst®n or has crashed) criteria that needs to be verified By

RP has beenintroduced in a middleware architecture whichriggased by the replication protocol itself, a set of database
replicas (0BS,) and a group communication syste@dS). Hence, our formalization has to introduce a compositida of
the different components in order to define the executionis®$ystemR P represents a very basic version of a certification-
based replication protocol, in the sense that it is an eagdate everywhere replication protocol where transactemes
sequentially certified and committed thanks to the totakodeklivery of writesets performed by tl&CS Our main aim is
to ensure its correct behavior (i.e. database prefix ordesistency and uniform commit) using a state transitionesyst
even in the presence of crash failures, something thatetdéist of our knowledge, has been missed in previous praposal
Transactions executed withP, as shown in [19, 17], obtai@SI provided that eaclv BS,, used isSI.

Finally, it has been discussed the limitationgaf and proposed several optimizations, many of them alreazydied in
several works. Another phenomenon that was not discussedpth yet is the way a writeset is applied at a remote replica
and how it deals with possible conflicts between local tratigas. We also provide an extension of the replicationquot
to cope with growth of the sequencer and the crash-recovedein The alternative approaches of correctness critesea u
in other works have been depicted and discussed too.

Acknowledgments

This work has been supported by FEDER and the Spanish Goestnmder research grantC2006-14738-C02

References

[1] Atul Adya. Weak Consistency: A Generalized Theory and Optimisticémphtations for Distributed Transactions
PhD thesis, Massachusetts Institute of Technology, Ma®&9 1

[2] Divyakant Agrawal, Gustavo Alonso, Amr El Abbadi, andatea Stanoi. Exploiting atomic broadcast in replicated
databases (extended abstract). In Christian LengauetjrMariebl, and Sergei Gorlatch, editosuro-Par, volume
1300 ofLecture Notes in Computer Scienpages 496-503. Springer, 1997.

[3] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. Dibtrted versioning: Consistent replication for scaling beac
end databases of dynamic content web sites. In Markus EadteDouglas C. Schmidt, editofgiddleware volume
2672 ofLecture Notes in Computer Scienpages 282—-304. Springer, 2003.

25

[4] José Enrique Armendariz-lfiigo, José Rambon Ggdtta, Francesc D. Mufioz-Escoi, and José Ramon Genzke
Mendivil. MADIS-SI: A database replication protocol wigasy recovery. Technical Report ITI-ITE-06/05, Instituto
Tecnolbgico de Informatica, June 2006.

[5] José Enrique Armendariz-Ifiigo, José Ramon Geezae Mendivil, and Francesc D. Mufoz-Escoi. A lockdths
algorithm for concurrency control and recovery in a middieg replication software architecture. HICSS page
291a. IEEE Computer Science, 2005.

[6] José Enrique Armendariz-lfligo, José Ramon Jedtedriguez, José Ramon Gonzalez de Mendivil, H&ridecker,
and Francesc D. Mufloz-EscoK-bound GSI: a flexible database replication protocol. In ko Cho, Roger L.
Wainwright, Hisham Haddad, Sung Y. Shin, and Yong Wan Kodpesl SAG pages 556-560. ACM, 2007.

[7] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Meltdlizabeth J. O’'Neil, and Patrick E. O'Neil. A critique of
ANSI SQL isolation levels. In Michael J. Carey and Donovarsghneider, editor§IGMOD Conferencgages 1-10.
ACM Press, 1995.

[8] Josep M. Bernabé-Gisbert, Rall Salinas-Monteagudis, Irin-Briz, and Francesc D. Mufioz-Escoi. Managing/tm
ple isolation levels in middleware database replicatiartqrols. In Minyi Guo, Laurence Tianruo Yang, Beniamino Di
Martino, Hans P. Zima, Jack Dongarra, and Feilong TangpegjitSPA volume 4330 ol ecture Notes in Computer
Sciencepages 511-523. Springer, 2006.

[9] Philip A. Bernstein. Middleware: A model for distribudesystem servicesCommun. ACMV39(2):86-98, 1996.

[10] Philip A. Bernstein, Vassos Hadzilacos, and Nathandbo@an. Concurrency Control and Recovery in Database Sys-
tems Addison Wesley, 1987.

[11] Michael J. Carey and Miron Livny. Conflict detection deoffs for replicated data ACM Trans. Database Syst.
16(4):703-746, 1991.

[12] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaeyedp C-JDBC: Flexible database clustering middleware. In
USENIX Annual Technical Conference, FREENIX Traeges 9-18. USENIX, 2004.

[13] Gregory Chockler, Idit Keidar, and Roman Vitenberg.o@ communication specifications: a comprehensive study.
ACM Comput. Sury33(4):427-469, 2001.

[14] Khuzaima Daudjee and Kenneth Salem. Lazy databaseatph with snapshot isolation. MLDB, Seoul, Korea,
September 2006.

[15] Xavier Défago, André Schiper, and Péter Urban.alotder broadcast and multicast algorithms: Taxonomy aneey.
ACM Comput. Sury36(4):372—-421, 2004.

[16] Sameh Elnikety, Steven Dropsho, and Fernando Pedoashk&nt: Uniting durability with transaction ordering for
high-performance scalable database replicatio®M@M EurosysLeuven, Belgium, April 2006.

[17] Sameh Elnikety, Fernando Pedone, and Willy ZwaenapDatabase replication using generalized snapshot isalati
In SRDSIEEE Computer Society, 2005.

[18] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’NeRatrick O’'Neil, and Dennis Shasha. Making snapshot ismiati
serializable ACM Trans. Database SysB0(2):492-528, 2005.

[19] José Ramobn Gonzalez de Mendivil, José Enrique ek@riz-Ifigo, Francesc D. Mufioz-Escoi, Luis IrlnzB
José Ramon Garitagoitia, and José Ramoén Juarezidrmdr, Non-blocking ROWA protocols implement GSI using
Sl replicas. Technical Report ITI-ITE-07/10, Institutochelbgico de Informéatica, May 2007.

[20] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis §te The dangers of replication and a solution. In H. V.
Jagadish and Inderpal Singh Mumick, edit@85MOD Conferencepages 173-182. ACM Press, 1996.

[21] Vassos Hadzilacos and Sam Toueg. A modular approadutttblerant broadcasts and related problems. Technical
Report TR94-1425, Dep. of Computer Science, Cornell Usitgrithaca, New York (USA), May 1994.

26

[22] Luis IrGn-Briz, Hendrik Decker, Rubén de Juan-MarFrancisco Castro-Company, Jose E. Armendariz-Ifégal
Francesc D. Mufioz-Escoi. MADIS: A slim middleware for @ladse replication. In José C. Cunha and Pedro D.
Medeiros, editorszuro-Par, volume 3648 of_ecture Notes in Computer Scienppages 349-359. Springer, 2005.

[23] José Ramobn Juarez-Rodriguez, José Enrique Adéarerililigo, José Ramoén Gonzalez de Mendivil, FemtcD.
Mufioz-Escoi, and José Ramoén Garitagoitia. A weak gptiatabase replication protocol providing different isola
tion levels. INOTERE’07 2007.

[24] Bettina Kemme. Database Replication for Clusters of Workstations (ETH IN#864) PhD thesis, Swiss Federal
Institute of Technology, Zurich, Switzerland, 2000.

[25] Bettina Kemme and Gustavo Alonso. Don't be lazy, be test: Postgres-R, a new way to implement database
replication. In Amr El Abbadi, Michael L. Brodie, Sharma Gnavarthy, Umeshwar Dayal, Nabil Kamel, Gunter
Schlageter, and Kyu-Young Whang, editov&DB, pages 134-143. Morgan Kaufmann, 2000.

[26] Bettina Kemme and Gustavo Alonso. A new approach to ldpieg and implementing eager database replication
protocols.ACM Trans. Database Sys25(3):333—-379, 2000.

[27] Bettina Kemme, Alberto Bartoli, an@zalp Babaoglu. Online reconfiguration in replicated dasais based on group
communication. IrDSN pages 117-130. IEEE-CS Press, 2001.

[28] Bettina Kemme, Fernando Pedone, Gustavo Alonso, &BdHiper, and Matthias Wiesmann. Using optimistic atomic
broadcast in transaction processing systelfaEE Trans. Knowl. Data Eng15(4):1018-1032, 2003.

[29] Leslie Lamport.Specifying Systems: The TLA+ Language and Tools for Harelaad Software Engineer&ddison
Wesley Professional, 2002.

[30] YiLin, Bettina Kemme, Marta Patifio-Martinez, anccRido Jiménez-Peris. Middleware based data replicatiovighr
ing snapshot isolation. ISIGMOD Conference005.

[31] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correess proofs for distributed algorithms. RODC, pages
137-151, 1987.

[32] Nancy A. Lynch and Mark R. Tuttle. An introduction to iaffoutput automata. Technical Report MIT/LCS/TM-373,
Massachusetts Institute of Technology, 1988.

[33] Francesc D. Mufioz-Escoi, Jerbnimo Pla-Civera, islédoia Ruiz-Fuertes, Luis Irtn-Briz, Hendrik Deckeosé& En-
riqgue Armendariz-lfligo, and José Ramon Gonzalez dadiigl. Managing transaction conflicts in middleware-bas
database replication architectures SRDS pages 401-410, 2006.

[34] Oracle Corporation. OraclélgRelease 1. Accessible in URht t p: // downl oad. or acl e. coml docs/ cd/
B28359.01/ server. 111/ b28318. pdf, 2007.

[35] Marta Patifio-Martinez, Ricardo Jiménez-PeridtiBa Kemme, and Gustavo Alonso. MIDDLE-R: Consistent dasz
replication at the middleware leveACM Trans. Comput. Sys23(4):375-423, 2005.

[36] Fernando PedoneThe database state machine and group communication is3iese N. 2090) PhD thesisEcole
Polytecnique Fédérale de Lausanne, Lausanne, Switzk1899.

[37] Fernando Pedone, Rachid Guerraoui, and André Schifeploiting atomic broadcast in replicated databases. In
Euro-Par, 1998.

[38] Christian PlattneiGanymed: A Platform for Database Replication (ETH Nr. 169#HD thesis, Swiss Federal Institute
of Technology, Zurich, Switzerland, 2006.

[39] Christian Plattner and Gustavo Alonso. Ganymed: 3eleeplication for transactional web applications. In kan
Arno Jacobsen, editoMiddleware volume 3231 ofLecture Notes in Computer Sciengages 155-174. Springer,
2004.

27

[40] Christian Plattner, Gustavo Alonso, and M. Tarersu. Extending DBMSs with satellite databaséhe VLDB
Journal 2006.

[41] Christian Plattner, Andreas Wapf, and Gustavo AlorSearching in time. In Surajit Chaudhuri, Vagelis Hristidiad
Neoklis Polyzotis, editorsSIGMOD Conferenggages 754—756. ACM, 2006.

[42] PostgreSQL. The world’s most advance open source datalveb site. Accessible in URIht t p: / / www.
post gresqgl . org, 2007.

[43] Luis Rodrigues, Hugo Miranda, Ricardo Almeida, Jddartins, and Pedro Vicente. The GlobData fault-tolerant
replicated distributed object database EurAsia-ICT, pages 426—-433, 2002.

[44] Maria ldoia Ruiz-Fuertes, Jerbnimo Pla-Civera,&Jasrique Armendariz-Iiiigo, José Ramon Gonzalez @adivil,
and Francesc D. Mufioz-Escoi. Revisiting certificati@sdd replicated database recovery. In Robert Meersman and
Zahir Tari, editorsOTM Conferences (1yolume 4803 of ecture Notes in Computer Scienpages 489-504. Springer,
2007.

[45] Rodrigo Schmidt and Fernando Pedone. A formal anabyfdise deferred update technique. Technical Report LABOS-
REPORT-2007-00Zcole Polytechnique Fédérale de Lausanne (EPFL), 2007.

[46] A. Udaya Shankar. An introduction to assertional reasg for concurrent system#ACM Comput. Sury25(3):225—-
262, 1993.

[47] Michael Stonebraker. Concurrency control and coesisy of multiple copies of data in distributed ingréSEE Trans.
Software Eng.5(3):188-194, 1979.

[48] Sybase, Inc. Replication strategies: Data migratthstribution and synchronization. White paper, Novemh@d2
30 pages.

[49] Matthias Wiesmann, Fernando Pedone, André Schiftirh Kemme, and Gustavo Alonso. Understanding reptinati
in databases and distributed systemddDCS pages 464—-474, 2000.

[50] Matthias Wiesmann and André Schiper. Comparison tdlofase replication techniques based on total order breadca
IEEE TKDE 17(4):551-566, April 2005.

[51] Shuging Wu and Bettina Kemme. Postgres-R(SI): Conmnigingéplica control with concurrency control based on snap-
shot isolation. INCDE, pages 422—-433. IEEE Computer Society, 2005.

[52] Vaide Zuikeviciute and Fernando Pedone. Conflict aviea€e balancing techniques for database replicatior23iral
ACM Symposium on Applied Computing (ACM SAC 2088M, 2008. Accepted for Publication.

A Appendix
A.1 Proof of Property 1

Proof. Let s. be the first state being..status,(t) = active. The only action making..status,(t) = active iS 7.
notify (¢, op, active) for someop € OP. O

A.2 Proof of Property 2

Proof. If =, = crash,, thens,.site_state, = crashed. NO event of siten € N is enabled by thezP, and asr, <
Events(DBS,), the Assumption 1.1 is preserved.

In order to prove the rest of Assumption 1, we have to studydhewing cases:

28

e Lety; = begin, (t) be an event ird,(«), then there exists. € {execute_op, (t,op),execute-ws,(t) | op € OP}
in o such thaty; is part of its action. The enabling condition fer requires that._i.status, (t) = idle. No other
eventr.,, 2/ < z is enabled being its parameter. By its effects;z’ > 2 — 1: s./.status,(t) # idle. Therefore,
Vi< j:t#tran(v;) in By (o), and Assumption 1.2 holds.

e Lety; € {commit,(t),abort,(t), notify, (¢, op, abort)} in B3, (a), then there exists. € {end_commit,(t), execute_ws,, (t'),
notify,, (¢, op,abort) | t' € T} in o such that; is part of its action. The actions of such events maketatus,(t) €
{committed, aborted}. Thus, no other event,,, 2’ > z is enabled being its parametervi > j: ¢t # tran(v;) and
Assumption 1.3 holds.

e Letv; = submit,(t,0p) in B,(a), then there exists. € {execute_op, (¢, op), execute-ws,(¢)} in a such that; is
part of its action. Ifs._1.status, (t) = idle then the previous event fotin 3, («) is begin,, (¢) as the respective action
indicates. Ifs._1.status,(t) = active, the previous action fot.. in « which is the only one making._;.status, (t) =
active iS notify,, (t,op’, active) for someop’ € OP as Property 1 indicatés Thus,3i < j: prev_event(i,j, t) A vi €
{begin, (t), notify, (¢, op’, active) | op’ € OP} and Assumption 1.4 holds.

e Lety; = notify, (¢, op, result) in B, («). This eventis under control of theBS,, component which is used to commu-
nicate to ther P the result of an operation submitted to thésS,,. The RP guarantees that its enabling condition is
true. Thus, the Assumption 1.5 is preserved.

e Letv;, = commit,(t) in B.(«), then there exists. = end-commit,(¢) in « such thaty; is part of its action. By
Property 1,3z < z: m., = notify, (¢, op,active) for someop € OP in a. Letr;, be the last one, theh: <
j: prev_event(i, j,t) A v; € {notify, (¢,op,active) | op € OP} and Assumption 1.6 holds.

O

A.3 Proof of Property 3

Proof. If 7, = crash,,, thens,.site_state, = crashed. NO event of siten € N is enabled by the&k P automaton, and as
. € Events(GCS), the Assumption 5.1 is preserved.

In orderto prove that Assumption 5.2 is preserved, we cargidoes not holdi; = broadcast,,(m)Av; = broadcast,, (m) =
i # jiny(a). The only event in th&k P that is able to broadcast a messagseiguest_commit,, (¢) with t.site = n. Thus,
there exist ino the eventsr. = request_commit,, (¢) andr,, = request_commit,, (¢) such that,; andv, are part of their
actions respectively being = (¢,info(t)). In the case of. # n/, t.site # t.site IS a contradiction. In the case af= »’, if

z < ', thens,.sent, (t) =t r ue andenabled(r..) is false. O

A.4 Proof of Property 4

Proof. By induction over the length of. One can note that,(a[z]) = 8.(a)[j]. We have chosen the second notation in
behalf of keeping the correctness proof simpler. In the nN&xi[0]) = B, (a)[0] = empty. If (s., 741, 5:41) IS & Step of the
RP, Bn(afz+1]) = Bu(a)[z] - vig1 - Vjgz - - vitr, Wherev;1 ... vj1 are the events divents(DBS,) executed by the event
m.+41 Of the RP as part of its action. Thus, we also writg(alz + 1]) = Bn()[j + k.

e Basis Leta = sy be the initial state. Forall € T andn € N: so.status,(t) = idle, so.site_state, = alive,
so.infon(t) = (0,0,0), so.Ver, = 0, andso.SEQ., = empty. The Property holds a.
The associated trace i («)[0] = empty. By definitions provided in Section 3: (Notice tha{s3, («)[0]) = @) For all
t e T,idlen(t,0), WS(t,0) = 0; andlog(Bn()[0]) = empty.

e HypothesisAssume the Property 4 holdsat and lets, («)[j] be its associated trace.

e Induction Step Let (s.,m.+1,s.+1) be a transition of thekP. We study how each possibte ;; event affects the
property; we only consider the events modifying the vagalihe property states.

6Note that there can be other, events that maintain thective status for a given transaction, concretely thejuest_commit,, (¢) event, but such
events do not extend th®, («) trace. In the last item will happen the same.

29

— 7.+1 = execute_op,, (t, op) With t.site = n.
By its enabled conditions,.site_state, = alive and (@)s,.status,(t) = idle Or (D) s..status,(t) = active.
Proving the case (a) is sufficient because the action forgldluded in (a). In that cases,(a)[j + 2] =
Bn(a)[j] - begin,, (t) - submit, (¢, 0p). In the next obtained state by the action:
So+1.5tatus, (t) = blocked. By Definition 1,blocked(t, j + 2) and Property 4.3 holds.
Szt+1.infon(t).start = s,.Ver,. By Hypothesis and Definition 4dQ), s..Ver, = [log(B.(a)[j])| = |log(Bn () [5 +
)| A vjt1 = begin, (t). No other event will modifyin fo, (t).start. Property 4.6 holds.
Se1.infon(t). WS = s..infon(t). WS U {op} if type(op) = wri te. By Hypothesis and Definition 2 (writeset)
Saq1.infon(t). WS = WS(t,5) U{op} = WS(t,j + 2). Property 4.7 holds.
The rest of cases in Property 4 hold trivially.

— 7.4+1 = notify, (¢, op, result).
In this cases, (a)[j + 1] = Bn(@)[j] - notify,, (¢, op, result). If s.i1.status,(t) = active then by Definition 1 of
transaction statesctive(t,j + 1) and Property 4.2 holds. K.;i.status,(t) = aborted then by Definition 1 of
transaction statesorted(t, j + 1) and Property 4.5 holds. The rest of cases in Property 4 higidlty.

— my+1 = crash,.
In this case,3.(a)[j + 1] = Bn(a)[j] - crash,. By the effects of the actions.i.status,(t) = aborted if
sz.statusy (t) € {blocked, active}. By Definition 1,aborted(t, j+1) and Property 4.5 holds. AlsQ. 1 .site_state, =
crashed and the rest of cases in Property 4 hold.

— 7,41 = execute_ws, (t) With t.site # n.
In this cases, (a)[j + k] = Bn(a)[j] - abort, (t1) - - - abort, (tx—2) - begin,, (t) - submit, (¢, s;+1.infon (t).WS)
beingt, ..., t,—2 € getConflicts((t,info(t))).
Sa+1.status, (t;) = aborted,i: 1.. k— 2 then by Definition 1 of transaction stat@srted(t, j + k) and Property 4.5
holds.
s.+1.status, (t) = blocked then by Definition 1 of transaction stat@scked(t, j + k) and Property 4.3 holds.
AS s, 1.info,(t). WS = WS, (t,j + k), by Definition 2, Property 4.7 holds.
The rest of cases in Property 4 trivially hold.

— 741 = end_commit, (¢).
In this cases,, (a)[j+ 1] = Bn(a)[j] - commit, (t). By Definition 4,log(8,(a)[j +1]) = log(Bn(a)[4]) - (t, W S(t, 5),
[log(Bn(c)[j + 1])]). We study the effects of the event over the next state.
s.+1.status, (t) = committed and by Definition 1 of transaction statesnmitted(t,j + 1). Property 4.4 holds.
s.41.Ver, = s..Ver, + 1. By Hypothesis..Ver,, + 1 = [log(Bn(a)[5])| + 1 = |log(Bn(a)[j + 1])|. Property 4.9
holds.
Saq1.infon(t).end = s.41.Ver, = |log(Bn(a)lj + 1])] andv;+1 = commit, (¢). Then Property 4.8 holds due to
the fact that no other event can modify the variahlgo,, (¢).end.
$:41.SEQn = 3:.SEQn-{t,s.41.infon(t)). ThUS,5.41.LOG,, = 5,.LOG-(t, s, 41.inf0n (t). W S, s.41.infon (t).end).
By Hypothesis and the value ef..info, (t).end:
$241.LOGr = log(Bn()[f]) - (¢, sz41.infon(t).W S, |log(Bn(a)[j + 1])[).
We only need to prove that . 1.info,(t).WS = WS(t, j).
In this cases. t1.info, (t).WS = s..info,(t).WS = WS,(t,5) by induction Hypothesis (Property 4.7), and the
fact thats..site_state,, = alive, end_commit,,(t) does not modifys..info, (t).W S, andv;+1 = commit, (t)
does not modifyV S, (¢, 7).
Therefores.+1.LOG,, = log(Bn(a)[j]) - (¢, W Sn(t, 1), |[log(Bn ()i + 1])|) = log(Bn(a)[j + 1]), and Property 4.10
holds.
The rest of cases in Property 4 hold.

A.5 Proof of Property 9
Proof. By induction over the length af.
e Basis At a = so, y(a[0]) = empty. Thus,so.delivered,, = so.received, = so.channel, = mess,(y(a[0])) = empty.

The property is verified at the initial state.

30

e HypothesisAssume the Property 9 is verified at

e Induction stepLet(s.,m.+1,5.+1) be a transition step of theP. The events affecting the variables of the property are
m.4+1 € {deliver, (m),end_commit, (t), discard_ws,(t), crash,, |t € T,m € M}.

— 741 = deliver, (m).
In the associated trace,alz + 1]) = ~(«lz]) - deliver,(m); and, by Definition 5,mess,(v(alz + 1])) =
messn(y(alz]))-m. By the effects ofr. .1, s.+1.delivered,, = s..delivered,-m, ands.,1.channel, = s..channel,-
m. By induction Hypothesis, the property holds.

— m.+1 € {end_commit, (¢), discard_-ws, (t) | t € T'}.
In the associated tracealz + 1]) = ~(alz]). In both cases{t,info(t)) = head(s..channel,). By their
effects, s,+1.delivered,, = s..delivered,, s.i1.received, = s..received, - (t,info(t)), ands,,i.channel, =
tail(s..channel,). Thus,s.41.received,, - s.41.channel,, = s..received, - s..channel,,. By induction Hypothesis
the property holds.

— m.+1 = crash,. By its effectss..channel,, = empty, the rest of variables are not modified. By Hypothesis the
property holds.

O

A.6 Proof of Property 12

Proof. We consider the following cases. The proof is made by corttiad.

e Case 1t.site # n. By Property 132, < z: 7., = notify, (¢, op,active). Then3 2, < 21: 1., = execute.ws, (t), this
is the event makingubmit,, (t, op) ats., (Assumption 1.5). Thus.,_1 verifies(t,info(t)) = head(s.,—1.channel,)
andcerti fication(t, s.,—1.SEQ,). The only action that is able to modify,_1.channel,, ands.,—1.SEQ, iS 7., =
end_commit,(t), beingz < 21 < z3. m., has not been executed, accordingly_:.SEQ, = s..SEQ., and
certification(t, s..SEQy,) holds.

e Case 2t.site = n. Following Property 5 (and its notation), by the effectsgf, info(t).start = s., .infon(t).start. By
Property 4.6 and Property 4 8,fo(t).start = s.,.Ver,. AS—certification ((t,info(t)), s..SEQ.) then3(t',info(t")) €
s:.SEQ, such thatnfo(t').end > info(t).start andinfo(t').WS Ninfo(t). WS # 0. By Property 73z5 < z : 7, =
end_commit,(t') A info(t') = s...info,(t'). By the effects ofr.., info(t').end = s.,.Ver,. Thus,s., .Ver, <
$25.Ver, < s..Ver, and obviously;; < z5 < 2.

We consider the associated tracefoBsS,, 10 «, i.e. 3, («). We also consides, (a[z]) = Bn(a)[j]. In B.()[j] taking
into account; < zs < z, there exits < k < j such that; = begin,, (t), vx = commit,, (t') andactive, (t, j).

By Property 5, Property 6, and Property 4ihfo(t). WS = s.,.info,(t).WS = WS,(t,j) holds. By Property 7,
Property 4.10 and Definition 4nfo(t').WS = s.,.infon(t') WS = WS, (t', k). Thus,WS,(¢,5) N WS,(t', k) # 0.
Assumption 3 (First-Updater-Wins) is violated By(«). A contradiction is given.

O

A.7 Proof of Property 13

Proof. The proof is made by contradiction. Assume the property dagshold; i.e. s..status,(t) # active. By Prop-
erty 5 (following its notation);r., = request_commit,, (t). AS s.,.status,(t) = active ands.,.sent,(t) = true, then
s..status, (t) ¢ {idle, active, blocked, committed}. In conclusions..status,(t) = aborted. The only possible event making
s..status, (t) = aborted at siten € N (t.site = n) IS 7., = execute_ws, (') for somet’ € T. In addition,z; < z5 < z. At
s.5—1, the state in whichr., is enableds., _1.status,(t) = active (it can not beidie, blocked, committed NOr aborted by the
fact s.,.status, (t) = active) ands.,_1.infon (t).WS Ninfo(t').WS #) where(t',info(t')) = head(s.;—1.channel,). AS

t € getConflicts((t',info(t'))) thens.,.status, (t) = aborted.

Notice that(t',info(t')) # head(s..channel,) = (t,info(t)). This is only possible ifr., = end_commit,(¢') with

23 < z5 < 26 < z.

By the effects Ofr.,, (¢, s2.infon(t')) € 8:4.SEQn, $z5-infon(t').end = s.,.Ver,, and by Properties 6 andsZ,.in fo, (t').WS =
info(t').WS.

31

Itis also simple to show that, .info, (t).start = s., .Vern, < sz;.Vern, = sz4.infon(t').end.
Again by Properties 5 and &, fo(t).start = s.,.infon (t).start andinfo(t).W.S = s.;_1.infon (t).WS.
Therefore (', s.g.infon(t')) € $:.SEQn : sz5.infon(t').end > info(t).start A s.;.infon(t'). WS Ninfo(t).start # 0. In

conclusionqcertification({t,info(t)), s:.SEQx). A contradiction is obtained.
O

32

