
SIRC, a Multiple Isolation Level Protocol for

Middleware-based Data Replication
R. Salinas, J.M. Bernabé, F.D. Muñoz, J.E. Armendáriz, J.R. González de Mendı́vil

Instituto Tecnológico de Informática
Camino de Vera s/n

46022 Valencia, Spain

{rsalinas, jbgisber, fmunyoz}@iti.upv.es{enrique.armendariz,menvivil}@unavarra.es

Technical Report TR-ITI-ITE-07/14

R
.S

al
in

as
et

al
.:

S
IR

C
,a

M
u

lti
p

le
Is

o
la

tio
n

L
ev

e
lP

ro
to

co
lf

o
r

M
id

d
le

w
a

re
-ba
se

d
D

a
ta

R
e

p
lic

a
tio

n
T

R
-I

T
I-

IT
E

-0
7

/1
4

SIRC, a Multiple Isolation Level Protocol
for Middleware-based Data Replication

R. Salinas, J.M. Bernabé, F.D. Muñoz, J.E. Armendáriz, J.R. González de Mendı́vil

Instituto Tecnológico de Informática
Camino de Vera s/n

46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/14

e-mail:{rsalinas, jbgisber, fmunyoz}@iti.upv.es
{enrique.armendariz,menvivil}@unavarra.es

June 25, 2007

Abstract

One of the weaknesses of database replication protocols, compared to centralized DBMSs, is that
they are unable to manage concurrent execution of transactions at different isolation levels. In the last
years, some theoretical works related to this research linehave appeared but none of them has proposed
and implemented a real replication protocol with support tomultiple isolation levels. This paper takes
advantage of our MADIS middleware and one of its implementedSnapshot Isolation protocols to design
and implement SIRC, a protocol that is able to execute concurrently both Generalized Snapshot Isolation
(GSI) and Generalized Loose Read Committed (GLRC) transactions. We have also made a performance
analysis to show how this kind of protocols can improve the system performance and decrease the trans-
action abortion rate in applications that do not require thestrictest isolation level in every transaction.

1 Introduction

Nowadays, database applications often require support to multiple isolation levels. Actually, this necessity
has been included as one of the several standard benchmark applications proposed byTPC: TPC-C[16]. In
such benchmark, itsNew-Order, Payment, Delivery andOrder-Status transactions require theANSI serial-
izablelevel [3, 1], and the same set of transactions requires that other transactions accessing the same data
(besides theStock-Level one, that is also included in the benchmark) use therepeatable readlevel [3, 1],
whilst its Stock-Level transaction only demands theread committed(RC) level [3]. Modern centralized
Database Management Systems (DBMS) can deal with that kind of applications but replicated onesare
normally one isolation level oriented or, in the best cases,can support multiple protocols with different
isolation levels but only one of them can be used at a time.

Few studies have been made about how to construct replication protocols with multiple isolation level
support [4, 10, 2] but, as far as we know, none of them have culminated in the implementation of such a
protocol in a real system.

In this paper we present a protocol, calledSIRC, to be run inMADIS [9], a middleware that currently
usesPostgreSQLas its underlyingDBMS. SincePostgreSQLonly supports theSI andRC isolation levels,
SIRC is able to manage bothGSI [7] andGeneralizedLooseRC (GLRC) [5] levels. We have chosen these
isolation levels since they are the natural extensions ofSI andRC semantics to a replicated setting. It is
important to note that both allow to read from older committed versions as opposite to the latest one as
provided in most commercial (i.e., also centralized)DBMSs. Moreover,RC, as proposed in [3] makes use

1

of short read locks for reading implying the potential blocking of read operations as opposed toSI where
only write operations do block.

The SIRC protocol has been designed according to the instructions described in [4] which consist in
following a few steps. In the first one, a protocol with the strictest required isolation level must be selected.
We have taken theSIR-SBDprotocol presented in [13] because it was already implemented in ourMADIS
middleware. In the next steps, this protocol has to be modified in order to propagate the isolation level
throughout the system, to ensure that we always know the isolation level requested by every transaction.
Finally, we need to modify the transaction validation rulesto consider the isolation level of all transactions
being checked. We have also implemented the protocol inMADIS, to prove that our protocol reduces
the abortion rate, specially in histories having a high rateof GLRC transactions. In the same way, it is
interesting to check whether this low abortion rate is achieved at the risk of introducing higher overheads
that penalize the response time of transactions.

This paper is structured as follows: the model being used in this paper is described in Section 2. In
Section 3 theSIR-SBDprotocol is presented as the basis of ourSIRCwith support for two isolation levels,
outlined in Section 4. An analysis of its performance inMADIS, i.e. the transaction response time and
abortion rate, is shown in Section 5. Section 6 provides an outline of the correctness of our approach.
Finally, conclusions end the paper.

2 System Model

The MADIS middleware [9] provides the necessary support to implementa suite of replication protocols
in an interchangeable manner and serve as a testbed for them.It is developed in Java and has aJDBC
interface to communicate with external applications, so that they will remain unaware of the replicated
system.MADIS is also linked with the Spread [15] group communication system which provides a total
order multicast [6]. We assume a fully replicated system composed ofN replicas (R1, . . . , RN) where each
replica has an underlyingDBMS that stores a physical copy of the database;PostgreSQL [14] has been
used. ThisDBMS is a multiversion one (i.e. a new database version is generated each time a transaction
is committed, we assume the version number is stored in a local replica variable calledlastcommitted tid)
that locally supports the concurrent execution ofRC andSI transactions. To keep consistent copies of the
database a replication protocol is executed; in our case we assume that it follows theReadOneWrite All
Available (ROWAA) approach [8]: a transaction is firstly executed at its delegate replica and at commit
time its changes (denoted as writesets) are propagated to the rest of sites. Finally,MADIS includes a block
detection mechanism that will be very useful to apply remotewritesets for theSIR-SBDand, hence, to
the SIRC protocols. In the rest of the paper, we will useSI andGSI (respectivelyRC andGLRC) in an
interchangeable manner when referring to transactions executed in a replicated setting. Hence, otherwise
stated,SI, andRC, will refer to the isolation level provided by theDBMS and the replication protocol.

3 SIR-SBD Protocol

SIR-SBDis based on aROWAA certification-based [17] replication protocol, calledSI-Rep, proposed for a
middleware replicated database architecture in [12]. Whenthe transaction requests its commitment (for
simplicity, we do not consider aborted transactions), its writeset is locally collected and sent to all replicas
using the total-order multicast. Since all replicas maintain a log of deliveredvalidatedwritesets, and
using a given decentralized validation technique, they areable to certificate such incoming transaction. If
the validation succeeds, the incoming writeset is added to the log, and the delivered writeset is applied
and committed (the delegate replica will directly commit).Otherwise, the writeset is discarded and the
transaction is aborted in all replicas (indeed, only its delegate replica needs to abort it).

This protocol, presented in [13], was developed to take advantage of the block detection procedure
presented in the same paper. This procedure is a per replica polling mechanism meant to detect local
blocks between transactions at each replica. In order to do that, every running transaction must have a
priority assigned by the protocol, which can be dynamicallymodified during the transaction execution
(i.e., while it is being executed at the delegate replica, has broadcast the updates, is a remote one, . . .).

2

Initialisation:
1. lastvalidated tid := 0
2. lastcommitted tid := 0
3. ws list := ∅
4. tocommit queue k := ∅

I. Upon operation request for Ti from local client
1. If select, update, insert, delete

a. if first operation of Ti

- Ti.start := lastcommitted tid
- Ti.priority := 0
- Ti.IL := get il();

b. execute operation at Rk and return to client
2. else /* commit */

a. Ti.WS := getwriteset(Tik) from local Rk

b. if Ti.WS = ∅, then commit and return
c. Ti.priority := 1
d. multicast Ti using total order

II. Upon receiving Ti in total order
1. obtain wsmutex
2. if ∃ Tj ∈ ws list : Ti.start < Tj .end ∧

Ti.WS ∩ Tj .WS 6= ∅ ∧ Ti.IL = SI

a. release wsmutex
b. if Ti is local then abort Ti at Rk

c. else discard
3. else

a. Ti.end := ++lastvalidated tid
b. append Ti to ws list
c. append Ti to tocommit queue k
d. release wsmutex

III. Ti := head(tocommit queue k)
1. if Ti is remote at Rk

a. begin Tik at Rk

b. apply Ti.WS to Rk

c. ∀ Tj : Tj is local in Rk

∧ Tj .WS ∩ Ti.WS 6= ∅
/* if Tj has broadcast its WSj */
/* it must follow its path */
- abort Tj

2. commit Tik at Rk

3. ++lastcommitted tid
4. remove Ti from tocommit queue k

Figure 1:SIRCalgorithm at replica Rk

When the block detector finds a block between two transactions, the one with lowest priority is aborted. If
both have the same priority it will be up to the replication protocol to decide which transaction should be
aborted. This will be explained in the following.

SIR-SBDsimplifies theSI-Rep protocol by taking advantage of the block detection schema to avoid
deadlocks in the latter between the middleware instance at areplica and its underlyingDBMS [12]. This
deadlock may appear, e.g. if we usePostgreSQL [14], due to the use of write locks in theirSI schedulers.
This approach increases the performance since conflicts will be normally detected earlier. The block de-
tector can detect them during the transaction execution andnot in the certification step, once the commit
operation is requested.

In this protocol (shown in Figure 1 without considering boldfaced lines), a transaction has initially
the lowest priority (0) and gets a snapshot from its delegate replica (Ti.start = lastcommitted tid). Once
the application requests its commit, its priority increases to 1 before its writeset is broadcast (itemI in
Figure 1) using the total-order primitive. Once a writeset is delivered (itemII) it must be validated against
previously validated concurrent transactions. The validation process forSI transactions consists in applying
the First Committer Winsrule, i.e. there is an empty writeset intersection between concurrent, though
already validated, transactions (Tj .end 6= ⊥∧Ti.start < Tj .end: Tj ∈ ws list); otherwise, the transaction got
aborted, at the delegate replica or silently discarded,in the rest of replicas. If it succeeds thelastvalidated tid
will be increased and assigned toTi.end and the writeset will be enqueued inws list and in another list
(to commit queue). The latter governs the asynchronous application and commitment of the validated
transaction at each replica. As mentioned before, the writeset application will abort all possible local
transactions thanks to the block detector (itemIII). Finally, thelastcommitted tid got increased.

4 SIRC Protocol

This protocol (introduced in Figure 1) has been designed to support the concurrent execution of transactions
with two possible isolation levels:GSI [7] or GLRC [5]. Recall, as we have mentioned before, that this fits
better than current replication solutions to applicationsthat do not need a higher isolation level for all of
their transactions. We have followed the four step process described in [4] to constructSIRC.

The first step consists in selecting a replication protocol providing the strictest level we need to support.

3

This protocol will be modified to allow more relaxed isolation levels. In our case study, the highest isolation
level we want to provide isGSI so we have selected theSIR-SBDprotocol presented in Section 3.

In the second step, the selected protocol is modified to ensure that it is able to know the isolation level
of every transaction being executed.SIRC includes an additional field in the transaction (Ti.IL ∈ {SI, RC}

see itemI.1.a in Figure 1) that is filled at transaction start time. Hence, the transaction is also executed at
each replica with the proper isolation level.

In the third step, it must be ensured that every writeset broadcast has its transaction isolation level
attached which it has been already done in itemI.1.a. This is necessary to apply the correct validation rules
for each isolation level, once the writeset is delivered to areplica. Recall that the isolation level had been
written into Ti at the moment the client set it; hence, as it is multicast withthe writeset, the replication
protocol has access to it at any time during the lifetime ofTi.

Finally, the fourth step, the writeset validation process must be modified to consider the isolation level
of all transactions being checked. In our protocol, aSI writeset must be validated as in the originalSIR-SBD
protocol. On the other hand, a deliveredRC writeset will be directly validated since the total-order delivery
avoids dirty writes [3]. The clue is that local conflicting transactions running underRC will get aborted
(item III.1.c in Figure 1), no matter whether they have multicast their writesets or not. In the case of a
local RC transactions still in their read and write phase it will be aborted and the user will get notified by
this fact and, hence, re-attempted. Otherwise, when the transaction writeset has already been broadcast,
the transaction is silently rolled back, i.e. the user does not get notified, since such transaction must be
successfully applied (and committed) at the moment of its total-order delivery [6]. The correctness of this
behavior will be argued in Section 6.2. Note that inRC a transactionT1 will be able to overwrite the
updates of another concurrent one (T2) if T1 has always read committed values andT2 has committed.

5 Performance Results

We wanted to prove that, in histories containing transactions having different isolation requirements, using
two levels -instead of just the highest one- leads to lower abortion rates, and thus to a better performance.

For the performance tests we have used a cluster consisting of 4 nodes. Each node runs aMADIS
server [9] working on the top of aPostgreSQL 8.1DBMS [14]. A client is run on every server node. Every
client performs exactly the same amount of work.

Each client keeps a dynamic pool of working threads, that tryto satisfy a targeted number of transac-
tions per second.

Each transaction consists of 8 writes on a single table containing 10000 data items. The whole row set
is divided into a hot-spot [11] and a non-conflicting region.The non-conflicting region is statically divided
among the different clients, so that the conflict level can beaccurately determined by means of the hot-spot
parameters. In our case we have had one conflicting write out of 40.

If a transaction is aborted because of a concurrency problem, it is retried until its commitment, without
waiting.

An inter-update delay summing up 500 ms per transaction has been introduced in order to extend the
total transaction lifetime, which models some kind of workload at the client side, and increases the conflict
rate without yielding a too heavy system load, which would tend to produce less stable time measurements.
We have testedSIRCunder different loads, namely a total of 2 and 4 transactionsper second in the global
system.

As we see in Figure 2.b, the abortion rate can be significantlydecreased by usingRC when we do not
need a higher level. There is a low percentage ofRC transactions that abort. Note that in a replicated system
there can be multiple transactions that might concurrentlyupdate the same datum in different replicas and
that lead to the abortion of some of these transactions when they are validated at commit time. This
is an inherent problem of the certification-based replication protocols, as already explained in [17]. In
a centralized setting, this does not happen since the local concurrency control blocks such concurrent
accesses and all conflicting transactions can commit.

Additionally, theRC transaction response time is also better than theSI’s one. In Figure 2.a, we can see
that such response time ranges from 1040 ms for SI transactions to 740 ms forRC ones, with a global load
of 2 TPS. So, if some application that could have usedRC transactions is compelled to use theSI level due

4

to the lack of support for more than one level in the common case for replicated architectures, it is paying
around a 40% of unnecessary overhead in the response time or such transactions. Moreover, 2TPSis a very
light load. Things are still more favorable to multi-level support when load is increased. Thus, with 4TPS
the RC response time remains almost the same (765 ms) but theSI one is increased till 1295 ms. In this
second case, such overhead reaches almost 70% of theRC time. Such overhead is partially explained by
the abortion rate, that leads SI transactions to be retried.Using a transaction load with null abortion rate,
the response time differences between the two considered isolation levels would not have been so big, but
when there are any conflicts it is worth providing support formultiple isolation levels. For instance, with
an 80% ofRC transactions, there is a 4% abortion rate (caused entirely by the SI transactions) and the mean
response time is still a 6% greater than for pureRC transactions (for both loads, 2 and 4TPS). This still
implies that for such abortion rateSI transactions had a 30% bigger response time thanRCones, since they
were a 20% of the overall transaction population. So,0.3 ∗ 0.2 = 0.06 and this provides the justification of
such 6% overhead.

As we expected, regardless of the system load, allowing for the use of a less strict isolation level yields
a better performance, while transactions requiring a higher level still get their consistency requirements
fulfilled.

 700

 800

 900

 1000

 1100

 1200

 1300

 0 20 40 60 80 100

m
s

%RC

2 tps
4 tps

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

ab
or

t r
at

e

%RC

2 tps
4 tps

a) Response time. b) Abortion rate.

Figure 2: Experimental results ofSIRC.

6 Correctness Discussion

In order to prove the correctness of this kind of algorithms it is necessary to prove that every isolation re-
quirement of every transaction is guaranteed. Since we are managingSI andRC in our protocol, the proof
is divided into two parts, one for each isolation level. But,first of all, we are going to give some definitions
and some remarks useful to the demonstration process. As explained before, every transactionTi is initially
executed at its delegate replicaRi in SIRC. The execution begins when the first operation ofTi arrives toRi.

Definition 1 (Transaction Begin Operation). We definebi as the first operation of transactionTi.

Oncebi arrives toRi, lastcommitted tid value is stored inTi.start as the start timestamp ofTi. The
lastcommitted tid variable is incremented in the algorithm every time a transaction is committed (itemIII.3)
and its initial value is0. Therefore, it has in every node the number of locally committed transactions.
WhenTi.WS is delivered, if its validation process succeeds,lastvalidated tid is stored inTi.end as the
validation timestamp. Hence,lastvalidated tid has in every node the number of locally validated writesets.

Notice that all validated writesets are enqueued into commit queue (item II.3.c of Figure 1) in the same
order they are validated. In itemIII, the writesets are applied keeping the same order they have in the queue.

5

Remark 1 (Commit Ordering). Transactions are committed in the same order they are validated.

It is important to note that when a transactionTi is committed, itsTi.end will be equal tolastcommit-
ted tid. This is formally stated in the next lemma.

Lemma 1. When some writesetTi.WS is applied in some nodeRk,Ti.end = lastcommitted tid in Rk.

Proof. WhenTi is validated in some nodeRk, lastvalidated tid has the number of writesets validated until
this moment (includingTi.WS) and its value is assigned toTi.end. On the other hand,lastcommitted tid has
the number of transactions committed inRk at every moment. As writesets are committed in the same order
they are validated and all validated writesets commit, the same set of transactions have committed when
Ti commits than transactions have been validated whenTi is validated. So, whenTi commits,Ti.end =

lastcommitted tid.

Lemma 2 (Start and Commit Order). Given two transactionsTi andTj , and beingRi the delegate replica
of Ti, Tj commits inRi beforeTi starts iffTi.start ≥ Tj .end in Ri.

Proof. Proof 1: ifTj commits inRi beforeTi starts thenTi.start ≥ Tj .end in Ri. As previously said, when
some transactionTi starts atRi, Ti.start = lastcommitted tid. We also know thatTj .end = lastcommitted tid
whenTj commits. SinceTj commits beforeTi starts andlastcommitted tid is only incremented and never
decremented in the protocol,Ti.start ≥ Tj .end in Ri.
Proof 2: if Ti.start ≥ Tj .end in Ri then Tj commits inRi before Ti starts. Recall thatTi.start =

lastcommitted tid whenbi arrives toRi, Tj .end = lastcommitted tid whenTj commits (including the incre-
ment produced byTj ’s commit) andlastcommitted tid is only incremented when some transaction commits.
SinceTi.start ≥ Tj .end, Ti sees at its start inRi at least the same number of commits thatTj sees inRi when
commits, including its own commit.Ti.start must observeTj ’s commit increment onlastcommitted tid and,
hence,Tj must have committed inRi whenTi starts.

Notice that all nodes deliver writesets in the same order, due to total order broadcast, validate them
in delivery order and validated ones are applied in validation order. Therefore, if for every writesetTi all
nodes reach to the same decision in its validation process, all nodes will commit the same writesets in the
same order and, hence, all nodes will see the same database versions and the samelastcommitted tid values.

A given transaction writesetTi.WS validation process (itemII.2 of Figure 1) depends on the following
validation actions (i.e.Ti is aborted iff these 3 conditions are true):
1. Result ofTi.WS ∩ Tj .WS 6= ∅ for at least one writesetTj .WS ∈ ws list.
2. Result ofTi.start < Tj .end for at least one of theTj that made Condition 1 true.
3. Isolation level ofTi is SI.

Lemma 3(Validation Decision). Given a transactionTi, all nodes arrive to the same decision aboutTi.WS
in the validation process.

Proof. By induction over the length ofws list.
• Induction base: The property holds for the initial state, i.e. ws list = ∅, andTi.WS is the first total-
order delivered writeset.ws list is empty whenTi.WS reaches at the validation process so the checking of
conditions 1 and 2 fails in all nodes andTi.WS is validated.
• Induction step: We assume thatws list is the same for all the replicas when(n − 1)-th writeset was
validated (i.e. they have validated the same set of writesets) andTi.WS is then-th writeset being total-order
delivered. Therefore, validation action 1 comparison willarrive to the same decision aboutTi.WS in all
nodes since it depends on the content ofws list. Recall that all validated writesets are applied and validated
in the same delivering order, so allTj .WS ∈ ws list will have the sameTj .end. Ti.start is established by
Ti delegate replicaRi and included inTi.WS when it is broadcast, so all replicas see the sameTi.start
value andTi.start < Tj .end comparison will produce the same result in all nodes. Finally, Ti isolation
level is assigned also in delegate replica and propagated inTi.WS, so again all replicas see the same value.
Conclusion: all nodes arrives to the same decision inTi.WS validation process.

Definition 2 (Concurrent Transactions). Two transactionsTi and Tj are concurrent ifTi.start < Tj .end
andTj .start < Ti.end.

6

Definition 3 (Overlapping Transactions). Two transactionsTi andTj overlap ifTi andTj are concurrent
andTi.WS ∩ Tj .WS 6= ∅.

Since all nodes apply the same writesets in the same delivering order (Lemma 3), all nodes will produce
equivalent histories. Therefore, if every transaction isolation level guarantees are also ensured then our
protocol must be correct.

6.1 All SI transaction isolation guarantees are ensured in SIRC

Given aSI transactionTi, we must guarantee that:
1. Ti sees every data written by transactions that committed before the start of the former.
2. Ti does not see modifications carried out by transactions that have not finished before its starting moment.
3. A SI transactionTi aborts if it overlaps with some concurrent validated transaction Tj (First Committer
Wins).

Lemma 4 (Snapshot 1). Ti sees every data written by transactions that committed before the start of the
former.

Proof. Suppose thatRi is Ti delegate replica. By Lemma 2, for allTj committed inRi beforeTi starts,
Ti.start ≥ Tj .end. Since theRi local DBMS providesSI, Ti will see in its snapshot all updates made byTj

since it has committed beforebi arrives at the localDBMS.

Lemma 5 (Snapshot 2). Ti does not see modifications carried out by transactions that have not finished
before the starting moment.

Proof. In this case, by Lemma 2, for allTj committed afterTi started, i.e.Ti.start < Tj .end. Again, the
localDBMS ensures thatTi does not seeTj if the last one has committed afterTi started.

Lemma 6 (First Committer Wins). A SI transactionTi aborts if overlaps with some concurrent validated
transactionTj .

Proof. If Ti overlaps withTj andTj is validated beforeTi reaches the validation process,Tj .end > Ti.start
andTi.WS ∩ Tj .WS 6= ∅. In Ti.WS validation process,Tj .WS will also be inws list (by definition,Tj

is a validated writeset) so validation actions 1 and 2 are true. SinceTi is a SI transaction by definition,
validation action 3 is also true and henceTi.WS will be discarded in all nodes and aborted at its delegate
replica, as explained in itemII.2 of Figure 1.

Theorem 1(SI Theorem). All SI transaction isolation guarantees are ensured inSIRC.

Proof. By Lemmas 3- 6, we have proved this theorem.

6.2 All RC transaction isolation guarantees are ensured in SIRC

In a Ti RC transaction the following conditions must be guaranteed:
1. Ti never sees uncommitted data of another transactionTj .
2. Ti never overwrites uncommitted data of another transactionTj.

Lemma 7 (Uncommitted Reads). Ti never sees uncommitted data of another transactionTj .

Proof. As we said in previous sections, everyDBMS is supposed to provide locally the isolation level
needed by every transaction. This ensures thatTi never will see uncommitted data in reads performed in
its delegate replica. Since our protocol is aROWAA one, all the reads of a given transaction are performed
in the local node and hence the localDBMS ensures that this data belongs to a committed state and hence
the first restriction is guaranteed.

Lemma 8 (Uncommitted Writes). Ti never overwrites uncommitted data of another transactionTj .

7

Proof. In this case, writes are performed in all nodes so we need to distinguish between local and remote
transactions:
• Ti andTj are local: the localDBMS resolves the conflict locally since it providesRC.
• Ti is local andTj is remote: if both transactions do not overlap, none of them can overwrite uncommitted
data of the other so, from now on, we suppose thatTi overlaps withTj . If Ti tries to overwrite data written
by Tj , localDBMS will block Ti until Tj finishes, so it will never overwrite uncommitted data. IfTj finds
a Ti write, the localDBMS will block Tj and our block detection procedure in itemIII.1.c of Figure 1 will
abortTi. If this happens afterTi has sent its own writeset,Tj .WS will be eventually delivered and applied
afterTj . In other case, i.e. whenTi is still in its read and write phase,Ti abortion will be forwarded to the
client. In both cases, the uncommitted data overwrite is avoided.
• Ti is remote andTj is local: is equivalent to the previous case.
• Ti andTj are remote:Ti.WS andTj .WS will be applied in delivery order and, hence, none of them can
overwrite any uncommitted data from the other (since the overwritten data was already committed).

Theorem 2(RC Theorem). All RC transaction isolation guarantees are ensured inSIRC.

Proof. It is proved with Lemmas 3, 7 and 8.

Notice that no validation process is needed to ensureRC in the algorithm and this is the reason why
validation process conditions are only taken into account in SI transactions.

7 Conclusions

In this paper we have presented an algorithm,SIRC, which is an evolution ofSIR-SBD[13], originally suited
for executingGSI transactions [7].SIRCsupports the concurrent execution ofSI andRC transactions.SIRC
reflects that it is possible to design a single replication protocol supporting different isolation levels. We
have shown that this solution decreases the abortion rate inapplications with a high rate ofRC transactions
in a replicated setting; reflecting a similar behavior toRC in a centralized environment. Moreover,SIRC
does not increase the overhead introduced bySIR-SBD. Nevertheless,SIRC is a basic replication protocol
that can include several optimizations. We have introducedit in this way because we wanted to empha-
size the correctness of our approach in the definition ofSIRC. Hence, it serves as a starting point for the
development of new optimized replication protocols supporting these two isolation levels.

References

[1] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized isolation level definitions. InICDE,
March 2000.

[2] José Enrique Armendáriz, José Ramón Juárez, JoséRamón González de Mendı́vil, Hendrik Decker,
and Francesc Daniel Muñoz. k-Bound GSI: A flexible databasereplication protocol. InSAC. ACM,
2007.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,and P. O’Neil. A critique of ANSI SQL
isolation levels. InSIGMOD, 1995.

[4] Josep M. Bernabé, Raúl Salinas, Luis Irún, and Francesc D. Muñoz. Managing multiple isolation
levels in middleware database replication protocols. InISPA, LNCS. Springer, 2006.

[5] Josep Maria Bernabé, José Enrique Armendáriz, Rubén de Juan, and Francesc Daniel Muñoz. Provid-
ing read committed isolation level in non-blocking ROWA database replication protocols. InJCSD,
2007. Accepted for publication.

[6] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a com-
prehensive study.ACM Comput. Surv., 33(4):427–469, 2001.

8

[7] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication providing generalized snapshot
isolation. InSRDS, 2005.

[8] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers of replication and a
solution. InSIGMOD, 1996.

[9] L. Irún, H. Decker, R. de Juan, F. Castro, J. E. Armendáriz, and F. D. Muñoz. MADIS: a slim
middleware for database replication. InEuro-Par., LNCS. Springer, 2005.

[10] José Ramón Juárez, José Ramón González de Mendı́vil, José Ramón Garitagoitia, José Enrique Ar-
mendáriz, and Francesc Daniel Muñoz. A middleware database replication protocol providing differ-
ent isolation levels. InEuroMicro-PDP. Work in Progress Session, 2007.

[11] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-R, a new way to imple-
ment database replication. InVLDB, pages 134–143, 2000.

[12] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris. Middleware-based data replication
providing snapshot isolation. InSIGMOD, 2005.

[13] Francesc D. Muñoz, J. Pla, Marı́a Idoia Ruiz, Luis Irún, Hendrik Decker, José Enrique Armendáriz,
and J. R. Gonzalez de Mendivil. Managing transaction conflicts in middleware-based database repli-
cation architectures. InSRDS, 2006.

[14] PostgreSQL. PostgreSQL, the world’s most advanced open source database.http://www.
postgresql.org, 2007.

[15] Spread. The Spread toolkit.http://www.spread.org, 2007.

[16] Transaction Processing Performance Council. TPC Benchmark C - standard specification. Version
5.8.http://www.tpc.org, 2007.

[17] Matthias Wiesmann and André Schiper. Comparison of database replication techniques based on total
order broadcast.IEEE TKDE, 17(4):551–566, 2005.

9

