SIRC, a Multiple Isolation Level Protocol for
Middleware-based Data Replication
R. Salinas, J.M. Bernabé, F.D. Mufoz, J.E. Armendarz, Gonzalez de Mendivil

Instituto Tecnolodgico de Informéatica
Camino de Vera s/n
46022 Valencia, Spain

{rsalinas, jbgisber, fmunyg®iti.upv.es{enrique.armendariz, menviyi@unavarra.es

Technical Report TR-ITI-ITE-07/14

TR-ITI-ITE-07/14

SIRC, a Multiple Isolation Level Protocol for Middlewaraded Data Replication

R. Salinas et al.:

SIRC, a Multiple Isolation Level Protocol
for Middleware-based Data Replication

R. Salinas, J.M. Bernabé, F.D. Mufoz, J.E. Armendariz, Gonzalez de Mendivil

Instituto Tecnologico de Informatica

Camino de Vera s/n
46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/14

e-mail: {rsalinas, jbgisber, fmunyg®iti.upv.es
{enrique.armendariz,menviyi@unavarra.es

June 25, 2007

Abstract

One of the weaknesses of database replication protocatspa@d to centralized DBMSs, is that
they are unable to manage concurrent execution of trasesctt different isolation levels. In the last
years, some theoretical works related to this researcthiave appeared but none of them has proposed
and implemented a real replication protocol with supponntdtiple isolation levels. This paper takes
advantage of our MADIS middleware and one of its impleme@edpshot Isolation protocols to design
and implement SIRC, a protocol that is able to execute coently both Generalized Snapshot Isolation
(GSI) and Generalized Loose Read Committed (GLRC) traimectWe have also made a performance
analysis to show how this kind of protocols can improve th&ey performance and decrease the trans-
action abortion rate in applications that do not requirediietest isolation level in every transaction.

1 Introduction

Nowadays, database applications often require supportittipie isolation levels. Actually, this necessity
has been included as one of the several standard benchnpdidagipns proposed byPC. TPC-C[16]. In
such benchmark, itsew-Order, Payment, Delivery andOrder-Status transactions require th&NSs| serial-
izablelevel [3, 1], and the same set of transactions requires thatr eransactions accessing the same data
(besides the&stock-Level one, that is also included in the benchmark) userdpeatable readevel [3, 1],
whilst its Stock-Level transaction only demands thead committedRC) level [3]. Modern centralized
Database Management Systerd81S) can deal with that kind of applications but replicated oass
normally one isolation level oriented or, in the best casas, support multiple protocols with different
isolation levels but only one of them can be used at a time.

Few studies have been made about how to construct rephgatadocols with multiple isolation level
support [4, 10, 2] but, as far as we know, none of them have ioalted in the implementation of such a
protocol in a real system.

In this paper we present a protocol, calledRC, to be run inMADIS [9], a middleware that currently
usesPostgreSQLas its underlyinddBMS. SincePostgreSQLonly supports thesl andRC isolation levels,
SIRCis able to manage botSI [7] and Generalized.ooseRC (GLRC) [5] levels. We have chosen these
isolation levels since they are the natural extensionSl@ndRC semantics to a replicated setting. It is
important to note that both allow to read from older comnditiersions as opposite to the latest one as
provided in most commercial (i.e., also centralize@®MSs. MoreoverRC, as proposed in [3] makes use

of shortread locks for reading implying the potential blocking oddeoperations as opposed3bwhere
only write operations do block.

The SIRC protocol has been designed according to the instructiossritied in [4] which consist in
following a few steps. In the first one, a protocol with théctest required isolation level must be selected.
We have taken theIR-SBDprotocol presented in [13] because it was already impleetkeimt ourMADIS
middleware. In the next steps, this protocol has to be matlifieorder to propagate the isolation level
throughout the system, to ensure that we always know thatieallevel requested by every transaction.
Finally, we need to modify the transaction validation rutesonsider the isolation level of all transactions
being checked. We have also implemented the protocADIS, to prove that our protocol reduces
the abortion rate, specially in histories having a high @t&LRC transactions. In the same way, it is
interesting to check whether this low abortion rate is agdeat the risk of introducing higher overheads
that penalize the response time of transactions.

This paper is structured as follows: the model being usetiisygaper is described in Section 2. In
Section 3 theSIR-SBDprotocol is presented as the basis of 8IRC with support for two isolation levels,
outlined in Section 4. An analysis of its performanceMADIS, i.e. the transaction response time and
abortion rate, is shown in Section 5. Section 6 provides atineuof the correctness of our approach.
Finally, conclusions end the paper.

2 System Model

The MADIS middleware [9] provides the necessary support to impleraesite of replication protocols
in an interchangeable manner and serve as a testbed for thémdeveloped in Java and hasiaBC
interface to communicate with external applications, st they will remain unaware of the replicated
system.MADIS is also linked with the Spread [15] group communication eystvhich provides a total
order multicast [6]. We assume a fully replicated systempased ofV replicas (1, ..., Ry) where each
replica has an underlyinpBMS that stores a physical copy of the databaRestgresQL [14] has been
used. ThiDBMS is a multiversion one (i.e. a new database version is gestbeich time a transaction
is committed, we assume the version number is stored in diephca variable calledastcommitted_tid)
that locally supports the concurrent executiorRafandSl transactions. To keep consistent copies of the
database a replication protocol is executed; in our casessenae that it follows th&eadOne Write All
Available ROWAA) approach [8]: a transaction is firstly executed at its dategeplica and at commit
time its changes (denoted as writesets) are propagated teshof sites. FinallyyADIS includes a block
detection mechanism that will be very useful to apply remetigesets for theSIR-SBD and, hence, to
the SIRC protocols. In the rest of the paper, we will uSeand GSI (respectivelyRC and GLRC) in an
interchangeable manner when referring to transactionsut®d in a replicated setting. Hence, otherwise
stated SI, andRC, will refer to the isolation level provided by tHeBMS and the replication protocol.

3 SIR-SBD Protocol

SIR-SBDis based on &0OWAA certification-based [17] replication protocol, callsdRep, proposed for a
middleware replicated database architecture in [12]. Whentransaction requests its commitment (for
simplicity, we do not consider aborted transactions), itéaset is locally collected and sent to all replicas
using the total-order multicast. Since all replicas mamia log of deliveredvalidatedwritesets, and
using a given decentralized validation technique, theyaate to certificate such incoming transaction. If
the validation succeeds, the incoming writeset is addetieéddg, and the delivered writeset is applied
and committed (the delegate replica will directly commiQtherwise, the writeset is discarded and the
transaction is aborted in all replicas (indeed, only iteedate replica needs to abort it).

This protocol, presented in [13], was developed to take aihepe of the block detection procedure
presented in the same paper. This procedure is a per regiiagomechanism meant to detect local
blocks between transactions at each replica. In order tdhdt every running transaction must have a
priority assigned by the protocol, which can be dynamicatigdified during the transaction execution
(i.e., while it is being executed at the delegate replica, hrmadcast the updates, is a remote one, ...).

Initialisation: a. release wsmutex
1. lastvalidated_tid := 0 b. if T; is local then abort T; at Ry,
2. lastcommitted_tid := 0 c. else discard
3. ws_list := 0 3. else
4. tocommit_queue k :=(a. T;.end := ++lastvalidated_tid
I. Upon operation request for T; from local client b. append T; to ws_list
1. If select, update, insert, delete c. append T, to tocommit_queue_k
a. if first operation of T, d. release wsmutex
- T,.start := lastcommitted_tid Ill. T; := head(tocommit_queue k)
- T;.priority := 0 1.if T; is remote at Ry,
- Ti.IL :=get.il(); a. begin T, at Ry,
b. execute operation at R, and return to client b. apply T;. WS to Ry,
2. else [* commit */ C.VT;:Tjislocalin Ry
a. T;.WS := getwriteset(T;x) from local Ry, AT, WSNT, WS #0
b. if T,.WS =, then commit and return [*if T; has broadcast its WS; */
c. T;.priority :=1 /* it must follow its path */
d. multicast T; using total order - abort T,
II. Upon receiving T; in total order 2. commit T;; at Ry,
1. obtain wsmutex 3. ++lastcommitted_tid
2.if3T; € ws_list: T;.start < T;.end A 4. remove T; from tocommit_queue_k
T, WSNT;,WS#0AT,.IL=SI

Figure 1:SIRCalgorithm at replica R

When the block detector finds a block between two transagtitie one with lowest priority is aborted. If
both have the same priority it will be up to the replicatioofarcol to decide which transaction should be
aborted. This will be explained in the following.

SIR-SBD simplifies theSI-Rep protocol by taking advantage of the block detection seh@wravoid
deadlocks in the latter between the middleware instancergpleca and its underlyin@BMS [12]. This
deadlock may appear, e.g. if we uBestgresQL [14], due to the use of write locks in thedt schedulers.
This approach increases the performance since conflickbeihormally detected earlier. The block de-
tector can detect them during the transaction executiomanéh the certification step, once the commit
operation is requested.

In this protocol (shown in Figure 1 without considering Halckd lines), a transaction has initially
the lowest priority () and gets a snapshot from its delegate repliGastart = lastcommitted_tid). Once
the application requests its commit, its priority increase1 before its writeset is broadcast (itenin
Figure 1) using the total-order primitive. Once a writesetiélivered (iteml) it must be validated against
previously validated concurrenttransactions. The véiliseprocess foBl transactions consists in applying
the First Committer Wingule, i.e. there is an empty writeset intersection betweamcarrent, though
already validated, transactions;(end # L AT;.start < T;.end: T; € ws_list); otherwise, the transaction got
aborted, at the delegate replica or silently discardetgnest of replicas. If it succeeds thstvalidated_tid
will be increased and assignedTaend and the writeset will be enqueuedws_list and in another list
(to_commit_queue). The latter governs the asynchronous application and doment of the validated
transaction at each replica. As mentioned before, the seitapplication will abort all possible local
transactions thanks to the block detector (itéin Finally, thelastcommitted_tid got increased.

4 SIRC Protocol

This protocol (introduced in Figure 1) has been designedpgsrt the concurrent execution of transactions
with two possible isolation levelgzSI[7] or GLRC[5]. Recall, as we have mentioned before, that this fits
better than current replication solutions to applicatithveg do not need a higher isolation level for all of
their transactions. We have followed the four step processiibed in [4] to constru@®IRC.

The first step consists in selecting a replication protocovigling the strictest level we need to support.

This protocol will be modified to allow more relaxed isolatilevels. In our case study, the highest isolation
level we want to provide i€SIso we have selected tiseR-SBDprotocol presented in Section 3.

In the second step, the selected protocol is modified to erthat it is able to know the isolation level
of every transaction being executeglRCincludes an additional field in the transactian.[L € {SI,RC}
see item.1l.a in Figure 1) that is filled at transaction start time. Henbe, transaction is also executed at
each replica with the proper isolation level.

In the third step, it must be ensured that every writeset dizast has its transaction isolation level
attached which it has been already done in itdna. This is necessary to apply the correct validation rules
for each isolation level, once the writeset is delivered tegica. Recall that the isolation level had been
written into T; at the moment the client set it; hence, as it is multicast Withwriteset, the replication
protocol has access to it at any time during the lifetim& of

Finally, the fourth step, the writeset validation procesasstrboe modified to consider the isolation level
of all transactions being checked. In our protoca) avriteset must be validated as in the origis#R-SBD
protocol. On the other hand, a delive®@ writeset will be directly validated since the total-ordetidery
avoids dirty writes [3]. The clue is that local conflictingrsactions running und&c will get aborted
(item 1ll.1.c in Figure 1), no matter whether they have multicast theitegets or not. In the case of a
local RC transactions still in their read and write phase it will bedbd and the user will get notified by
this fact and, hence, re-attempted. Otherwise, when timsadrdion writeset has already been broadcast,
the transaction is silently rolled back, i.e. the user dagsget notified, since such transaction must be
successfully applied (and committed) at the moment of t-torder delivery [6]. The correctness of this
behavior will be argued in Section 6.2. Note thatRg a transactiorT; will be able to overwrite the
updates of another concurrent ong)(if T; has always read committed values aichas committed.

5 Performance Results

We wanted to prove that, in histories containing transastivaving different isolation requirements, using
two levels -instead of just the highest one- leads to lowertan rates, and thus to a better performance.
For the performance tests we have used a cluster consistidighodes. Each node runsMADIS
server [9] working on the top of BostgreSQL 8.1 DBMS [14]. A client is run on every server node. Every

client performs exactly the same amount of work.

Each client keeps a dynamic pool of working threads, thatdryatisfy a targeted number of transac-
tions per second.

Each transaction consists of 8 writes on a single table @inta10000 data items. The whole row set
is divided into a hot-spot [11] and a non-conflicting regidhe non-conflicting region is statically divided
among the different clients, so that the conflict level caat®irately determined by means of the hot-spot
parameters. In our case we have had one conflicting writefol.0

If a transaction is aborted because of a concurrency praltésretried until its commitment, without
waiting.

An inter-update delay summing up 500 ms per transaction Baa lmtroduced in order to extend the
total transaction lifetime, which models some kind of wod at the client side, and increases the conflict
rate without yielding a too heavy system load, which woutditeo produce less stable time measurements.
We have teste8IRC under different loads, namely a total of 2 and 4 transactperssecond in the global
system.

As we see in Figure 2.b, the abortion rate can be significatgtreased by usingC when we do not
need a higher level. There is a low percentage®transactions that abort. Note that in a replicated system
there can be multiple transactions that might concurrarglyate the same datum in different replicas and
that lead to the abortion of some of these transactions whey are validated at commit time. This
is an inherent problem of the certification-based replaatprotocols, as already explained in [17]. In
a centralized setting, this does not happen since the larawrency control blocks such concurrent
accesses and all conflicting transactions can commit.

Additionally, theRC transaction response time is also better tharstiseone. In Figure 2.a, we can see
that such response time ranges from 1040 ms for Sl trans&aiio/40 ms foRC ones, with a global load
of 2 TPS So, if some application that could have uggtitransactions is compelled to use thidevel due

to the lack of support for more than one level in the commor dasreplicated architectures, it is paying
around a 40% of unnecessary overhead in the response tirnelotransactions. Moreover,T2Sis a very
light load. Things are still more favorable to multi-leveipport when load is increased. Thus, withiES
the RC response time remains almost the same (765 ms) bigitbee is increased till 1295 ms. In this
second case, such overhead reaches almost 70% BiCtiene. Such overhead is partially explained by
the abortion rate, that leads Sl transactions to be rettilsihg a transaction load with null abortion rate,
the response time differences between the two considestatien levels would not have been so big, but
when there are any conflicts it is worth providing supportrasltiple isolation levels. For instance, with
an 80% ofRCtransactions, there is a 4% abortion rate (caused entiyelyeSI transactions) and the mean
response time is still a 6% greater than for pe@transactions (for both loads, 2 andra9). This still
implies that for such abortion ra& transactions had a 30% bigger response time R@anes, since they
were a 20% of the overall transaction population. &8 0.2 = 0.06 and this provides the justification of
such 6% overhead.

As we expected, regardless of the system load, allowinghfouse of a less strict isolation level yields
a better performance, while transactions requiring a hidgneel still get their consistency requirements
fulfilled.

1300 - T T T 03 T T T T T

1200 025 |\ 1

T
!

moo 1 02 J

1000

ms
abort rate
o
i
@
T
!

900 01l B

800

700 L L L L 0 L L L L L L L L L
0 20 40 60 80 100 0 10 20 30 40 50 60 70 80 90 100

%RC %RC

a) Response time. b) Abortion rate.

Figure 2: Experimental results SiRC.

6 Correctness Discussion

In order to prove the correctness of this kind of algorithtris hecessary to prove that every isolation re-
guirement of every transaction is guaranteed. Since we areagingSl andRC in our protocol, the proof

is divided into two parts, one for each isolation level. Birst of all, we are going to give some definitions
and some remarks useful to the demonstration process. Aaieag before, every transactidnis initially
executed at its delegate repliain SIRC. The execution begins when the first operatiomodirrives tor;.

Definition 1 (Transaction Begin Operation)Ve defind; as the first operation of transaction.

Onceb; arrives toR;, lastcommitted_tid value is stored irT;.start as the start timestamp af. The
lastcommitted_tid variable is incremented in the algorithm every time a tratiea is committed (itentil.3)
and its initial value i®. Therefore, it has in every node the number of locally corteditransactions.
WhenT;.W S is delivered, if its validation process succeeldstvalidated_tid is stored inT;.end as the
validation timestamp. Henckstvalidated_tid has in every node the number of locally validated writesets.

Notice that all validated writesets are enqueued icommit_queue (item11.3.c of Figure 1) in the same
order they are validated. In item, the writesets are applied keeping the same order they hdkie gqueue.

Remark 1 (Commit Ordering) Transactions are committed in the same order they are veditla

It is important to note that when a transactibnis committed, itsT;.end will be equal tolastcommit-
ted_tid. This is formally stated in the next lemma.

Lemma 1. When some writes@t.WS is applied in some nodg,,T;.end = lastcommitted_tid in Ry.

Proof. WhenT,; is validated in some nodey, lastvalidated_tid has the number of writesets validated until
this moment (including;.WS) and its value is assigned Tg.end. On the other handastcommitted_tid has

the number of transactions committedin at every moment. As writesets are committed in the same order
they are validated and all validated writesets commit, tiraes set of transactions have committed when
T, commits than transactions have been validated whea validated. So, whem; commits,T;.end =
lastcommitted_tid. O

Lemma 2 (Start and Commit Order)Given two transaction$; andT;, and beingR; the delegate replica
of T;, T, commits inR; beforeT,; starts iffT,.start > T;.end in R;.

Proof. Proof 1: ifT; commits inR; beforeT; starts therir;.start > T,.end in R;. As previously said, when
some transaction; starts atr;, T,.start = lastcommitted_tid. We also know thal;.end = lastcommitted._tid
whenT,; commits. Sincé&; commits beforel; starts andastcommitted_tid is only incremented and never
decremented in the protocdl;.start > T;.end in R;.

Proof 2: if T;.start > T,.end in R; thenT; commits inR; beforeT; starts Recall thatT,.start =
lastcommitted_tid whenb; arrives toR;, T;.end = lastcommitted_tid whenT; commits (including the incre-
ment produced by ;'s commit) andastcommitted_tid is only incremented when some transaction commits.
SinceT;.start > T;.end, T; Sees atits start iR, at least the same number of commits thasees ink; when
commits, including its own commit.;.start must observe ;'s commit increment otastcommitted_tid and,
hence;T; must have committed iR; whenT; starts. O

Notice that all nodes deliver writesets in the same ordee, tutotal order broadcast, validate them
in delivery order and validated ones are applied in val@atrder. Therefore, if for every writeset all
nodes reach to the same decision in its validation procéssy@es will commit the same writesets in the
same order and, hence, all nodes will see the same databyagmgeand the sameastcommitted _tid values.

A given transaction writesdt;.WS validation process (item.2 of Figure 1) depends on the following
validation actions (i.€T; is aborted iff these 3 conditions are true):

1. Result ofT;, WS N T,;.WS # 0 for at least one writesat; WS € ws._list.
2. Result ofT; .start < T;.end for at least one of thg; that made Condition 1 true.
3. Isolation level ofT; is SI.

Lemma 3(Validation Decision) Given a transactiof;, all nodes arrive to the same decision abouws
in the validation process.

Proof. By induction over the length ofis_list.

¢ Induction base: The property holds for the initial state, ws_list = ¢, andT;.WS is the first total-
order delivered writesetvs_list is empty wherr;.WS reaches at the validation process so the checking of
conditions 1 and 2 fails in all nodes amdws is validated.

¢ Induction step: We assume thas_list is the same for all the replicas whén — 1)-th writeset was
validated (i.e. they have validated the same set of wris¢setdT; WS is then-th writeset being total-order
delivered. Therefore, validation action 1 comparison aillive to the same decision aboutws in all
nodes since it depends on the contenwelist. Recall that all validated writesets are applied and védida

in the same delivering order, so al}.WS e ws_list will have the sam&;.end. T;.start is established by
T, delegate replicar;, and included inT,.WS when it is broadcast, so all replicas see the sapmtart
value andT;.start < T;.end comparison will produce the same result in all nodes. Fmnall isolation
level is assigned also in delegate replica and propagatedWws, so again all replicas see the same value.
Conclusion: all nodes arrives to the same decision; iwS validation process. O

Definition 2 (Concurrent Transactions)lwo transaction§; and T, are concurrent ifT;.start < T;.end
andT;.start < T;.end.

Definition 3 (Overlapping Transactions)lwo transactiong; and T, overlap if T, andT; are concurrent
andT;.WSNT;.WS # (.

Since all nodes apply the same writesets in the same delierder (Lemma 3), all nodes will produce
equivalent histories. Therefore, if every transactiorid@son level guarantees are also ensured then our
protocol must be correct.

6.1 All Sl transaction isolation guarantees are ensured inIRC

Given aslI transactiornT;, we must guarantee that:

1. T, sees every data written by transactions that committedediie start of the former.

2. T, does not see maodifications carried out by transactions &t hot finished before its starting moment.
3. A Sl transactiorT; aborts if it overlaps with some concurrent validated tratisa T, (First Committer
Wing.

Lemma 4 (Snapshot 1) T; sees every data written by transactions that committedrédfe start of the
former.

Proof. Suppose thar; is T, delegate replica. By Lemma 2, for &l committed inR,; beforeT, starts,
T,.start > T;.end. Since ther, local DBMS providesSl|, T, will see in its snapshot all updates madeTyy
since it has committed befotg arrives at the locabBMS. O

Lemma 5 (Snapshot 2) T; does not see modifications carried out by transactions thaemot finished
before the starting moment.

Proof. In this case, by Lemma 2, for alfl, committed aftefT; started, i.e.T,.start < T;.end. Again, the
local DBMS ensures thar; does not seg; if the last one has committed aftey started. O

Lemma 6 (First Committer Wins) A SI transactionT; aborts if overlaps with some concurrent validated
transactionT;.

Proof. If T; overlaps withT; andT; is validated befor&, reaches the validation proce3s,end > T,.start
andT;. WS N T;WS # 0. In T;.WS validation processT;.WS will also be inws_list (by definition, T}

is a validated writeset) so validation actions 1 and 2 are.tr8inceT; is a Sl transaction by definition,
validation action 3 is also true and henttews will be discarded in all nodes and aborted at its delegate
replica, as explained in item2 of Figure 1. O

Theorem 1(SI Theorem) All SI transaction isolation guarantees are ensure&IRC

Proof. By Lemmas 3- 6, we have proved this theorem. O

6.2 All RC transaction isolation guarantees are ensured in IRC

In aT, RC transaction the following conditions must be guaranteed:
1. T; never sees uncommitted data of another transagtion
2. T, never overwrites uncommitted data of another transadtjon

Lemma 7 (Uncommitted Reads)T; never sees uncommitted data of another transadtion

Proof. As we said in previous sections, eveDBMS is supposed to provide locally the isolation level
needed by every transaction. This ensures Thatever will see uncommitted data in reads performed in
its delegate replica. Since our protocol iR@WAA one, all the reads of a given transaction are performed
in the local node and hence the loeBMS ensures that this data belongs to a committed state and hence
the first restriction is guaranteed. O

Lemma 8 (Uncommitted Writes) T; never overwrites uncommitted data of another transaction

Proof. In this case, writes are performed in all nodes so we needstonduish between local and remote
transactions:

o T, andT; are local: the locabBMS resolves the conflict locally since it providBs.

o T, is local andT; is remote: if both transactions do not overlap, none of thamayerwrite uncommitted
data of the other so, from now on, we suppose Thatverlaps withT ;. If T, tries to overwrite data written
by T;, localDBMS will block T; until T; finishes, so it will never overwrite uncommitted dataT}ffinds
aT,; write, the localDBMS will block T, and our block detection procedure in itetnl.c of Figure 1 will
abortT;. If this happens after; has sent its own writeser,;.WS will be eventually delivered and applied
afterT;. In other case, i.e. wheR is still in its read and write phas&; abortion will be forwarded to the
client. In both cases, the uncommitted data overwrite iscdamch

¢ T, is remote and; is local: is equivalent to the previous case.

e T, andT, are remoteT,.WS andT,.WS will be applied in delivery order and, hence, none of them can
overwrite any uncommitted data from the other (since thewssiten data was already committed). [J

Theorem 2(RC Theorem) All RC transaction isolation guarantees are ensure&iRC
Proof. Itis proved with Lemmas 3, 7 and 8. O

Notice that no validation process is needed to en&@rén the algorithm and this is the reason why
validation process conditions are only taken into accoust transactions.

7 Conclusions

In this paper we have presented an algoritBRC, which is an evolution 081R-SBD[13], originally suited
for executingGSlItransactions [7]SIRC supports the concurrent execution®fandRC transactionsSIRC
reflects that it is possible to design a single replicatiastqgerol supporting different isolation levels. We
have shown that this solution decreases the abortion raeglcations with a high rate ¢fC transactions

in a replicated setting; reflecting a similar behaviolR0 in a centralized environment. Moreov&iRC
does not increase the overhead introduce&I®+SBD NeverthelessSIRCis a basic replication protocol
that can include several optimizations. We have introdutedthis way because we wanted to empha-
size the correctness of our approach in the definitiogi&iC. Hence, it serves as a starting point for the
development of new optimized replication protocols sugipgrthese two isolation levels.

References

[1] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Gengzad isolation level definitions. [T1CDE,
March 2000.

[2] José Enrique Armendariz, José Ramon Juarez, Bas&dn Gonzalez de Mendivil, Hendrik Decker,
and Francesc Daniel Mufioz. k-Bound GSI: A flexible datalvapbcation protocol. IISAC ACM,
2007.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Naild P. O'Neil. A critique of ANSI SQL
isolation levels. I'SIGMOD, 1995.

[4] Josep M. Bernabé, Raul Salinas, Luis Irtn, and Fraad2. Muiioz. Managing multiple isolation
levels in middleware database replication protocoldSIPA LNCS. Springer, 2006.

[5] Josep Maria Bernabé, José Enrique Armendariz, Ral@eJuan, and Francesc Daniel Mufioz. Provid-
ing read committed isolation level in non-blocking ROWA aladise replication protocols. €SO
2007. Accepted for publication.

[6] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Gpacommunication specifications: a com-
prehensive studyACM Comput. Sury33(4):427-469, 2001.

[7] S. Elnikety, F. Pedone, and W. Zwaenepoel. Databasécegjgin providing generalized snapshot
isolation. INSRD$ 2005.

[8] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Staas The dangers of replication and a
solution. INSIGMOD, 1996.

[9] L. Irtn, H. Decker, R. de Juan, F. Castro, J. E. Armemg&nd F. D. Mufiloz. MADIS: a slim
middleware for database replication. Euro-Par, LNCS. Springer, 2005.

[10] José Ramon Juérez, José Ramobn Gonzéalez de Meddisé Ramon Garitagoitia, José Enrique Ar-
mendariz, and Francesc Daniel Mufioz. A middleware dabeplication protocol providing differ-
ent isolation levels. IfEuroMicro-PDP. Work in Progress Sessj@d07.

[11] Bettina Kemme and Gustavo Alonso. Don't be lazy, be ttest: Postgres-R, a new way to imple-
ment database replication. WYLDB, pages 134-143, 2000.

[12] V. Lin, B. Kemme, M. Patifio-Martinez, and R. Jimésfegris. Middleware-based data replication
providing snapshot isolation. BRIGMOD 2005.

[13] Francesc D. Mufioz, J. Pla, Maria Idoia Ruiz, Luisnrédendrik Decker, José Enriqgue Armendariz,
and J. R. Gonzalez de Mendivil. Managing transaction cdsfitmiddleware-based database repli-
cation architectures. IBRD$2006.

[14] PostgreSQL. PostgreSQL, the world’s most advanced cgmirce databasehtt p:// ww.
post gresql . or g, 2007.

[15] Spread. The Spread toolkit t p: / / www. spr ead. or g, 2007.

[16] Transaction Processing Performance Council. TPC Berack C - standard specification. Version
5.8.http://ww.tpc. org, 2007.

[17] Matthias Wiesmann and André Schiper. Comparison tdloizse replication techniques based on total
order broadcasiEEE TKDE, 17(4):551-566, 2005.

