
Process Replication with Log-Based Amnesia Support

Rubén de Juan-Marı́n, Luis Irún-Briz and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática - Universidad Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

{rjuan, lirun, fmunyoz}@iti.upv.es

Technical Report TR-ITI-ITE-07/05

R
u

b
én

d
e

Ju
an

-M
ar

ı́n
et

al
.:

P
ro

ce
ss

R
e

p
lic

a
tio

n
w

ith
L
og

-B
a

se
d

A
m

n
e

si
a

S
u

p
p

o
rt

T
R

-I
T

I-
IT

E
-0

7
/0

5





Process Replication with Log-Based Amnesia Support

Rubén de Juan-Marı́n, Luis Irún-Briz and Francesc D. Muñoz-Escoı́

Instituto Tecnológico de Informática - Universidad Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/05

e-mail:{rjuan, lirun, fmunyoz}@iti.upv.es

Abstract

Process replication is used for providing highly availableand fault-tolerant systems. Traditionally,
for simplicity reasons they have assumed the crash-stop failure model. This paper, instead, encourages
the use of the crash-recovery with partial amnesia failure model when managing large state amounts,
presenting the arising problems of this assumption and outlining how they can be managed. Finally, and
overhead analysis is presented.

1 Introduction

Replicated systems, a subset of distributed systems, are commonly used for providing high available and
fault tolerant applications. Being composed by several nodes, when a replica crashes the remaining alive
members hide this failure to end users, maintaining available their provided services.

As it has been outlined previously, the main advantage of these systems is that they go on working
despite of some replica crashes without compromising the system consistency. In fact, they can be cate-
gorized by the initial number of crash replicas they supportbefore stopping. But this number decreases as
long as original members crash. Then, in order to maintain the fault tolerance level of replicated systems it
is necessary to adopt appropiated measures –recovery protocols– when a crash replica is detected. In this
situation, some replicated systems substitute the crashedreplica by a new one transferring to it the whole
state. Others update the crashed replica once it reconnects.

Process replication based on message-passing systems, focus of this paper, has largely assumed the first
recovery solution [16], based on thecrash-stopfailure model [8], due to its management simplicity and
their accurate behavior for systems with few state (typicalcase in process replication).

This paper, instead, recommends the use of the second solution, based on thecrash-recovery with
partial amnesiafailure model [8] for process replicated systems managing large state amounts, where
transferring the whole state as it is done in the first approach will imply a high cost. This solution is based
on the use of checkpointing and logging ideas widely used in distributed systems [13]. Therefore, when
a crashed node reconnects first restores the checkpoint and applies the received messages before the crash
–amnesia recovery–, and second receives the broadcast messages during its disconnection.

The main proposal problem is that recovery processes must consider theamnesia phenomenonin order
to avoid its associated problems. These problems relate to the information that must be maintained for
applying the messages during theamnesia recoveryprocess in order to: repeat the forgotten work –work
already done before the crash but lost in it–, and do the work not performed before the crash. Moreover, the
amnesia recoveryhas to avoid the repetition of the work already performed andwhich follows the exactly-
once semantics [17] (i.e. state changes with permanent effects). Thus, this paper after recommending
and reasoning the use of thecrash-recovery with partial amnesiafor process replication with large state
amounts, details the arising problems in the associated recovery processes and proposes a solution for
managing them.

1



This paper is structured as follows. Section 2 details the considered system model in this work. A
comparison between the fail-stop and the crash-recovery with partial amnesia is performed in section 3.
Afterwards, the amnesia phenomenon is described in section4, explaining in the subsequent section 5 how
to deal with it in our initial replicated configuration usingthe log-based recovery strategy. Section 6 de-
tails the overhead introduced for providing amnesia support in different process replication configurations.
Finally, some related work is given in section 7, and section8 concludes the paper.

2 System Model

The replicated system considered is composed by several replicas –each one in a different node–. These
nodes belong to a partially synchronous distributed system: their clocks are not synchronized but the
message transmission time is bounded. The state is fully replicated in each node.

The replicated system uses a group communication system (GCS). Point-to-point and broadcast deliv-
eries are supported. The minimum guarantee provided is a FIFO and reliable communication. It is also
assumed the presence of a group membership service, whoknowsin advance the identity of all potential
system nodes. These nodes can join the group and leave it either explicitly or implicitly by crashing. The
group membership service combined with theGCSprovidesVirtual Synchrony[3] guarantees, which is
achieved usingsending view deliverymulticast [7] which enforces that messages are delivered inthe view
they were sent. Therefore, each time a membership change happens, it supplies consistent information
about the current set of reachable members. This information is given in the format ofviews. Sites are
notified about a new view installation withview change events.

The view notification mechanism is extended with node application state information providing the
enriched view synchrony[1] approach. This makes simpler and easier the support of system cascading
reconfigurations. These enriched views (e-view) not only inform about active nodes, but they also inform
about the state of active nodes: outdated or up-to-date.e-viewsuse refines theprimary partitionmodel into
the primary subviewmodel, so the system only can work when aprogress conditionis fulfilled1 as it is
detailed in [9]. At the same time the state consistency is ensured because only the primarysubviewis able
to work in partition scenarios. Thus, this subview is the only one allowed to generate recovery information,
which will be afterwards used for recovery. For similar reasons, a node can not start new transactions until
it has not been fully updated.

3 Failure Models

Different papers, as [8, 3] have presented different failure models that can be adopted in replicated systems.
The assumed failure model in a replicated system has a great importance in the way it provides fault
tolerance. Traditionally, most replicated systems have adopted the fail-stop failure model, because it is the
simplest one to manage. When a replica crashes in these systems, they substitute the crashed replica by
transferring the whole state to a new one. But, this option will not work well for replicated systems which
manage large amounts of data state, because will lead to verylong transfer periods. This situation implies:
longer periods with low performance levels for systems based on active replication, longer periods with
decreased fault tolerance support and higher intervals of unavailability if the replicated system does not
fullfil the progress condition (i.e. systems based on primary partitions) as comented in [10].

The crash-recovery with partial amnesia failure model willminimize these problems, because only
lost state (and not whole) must be transferred. But then it arises the amnesia problem, being necessary to
manage it in order to ensure the state consistency after performing recovery processes.

Following sections detail how the amnesia problem manifests in process replicated systems and how it
can be managed generally with a log-based recovery strategy. Moreover, it will be analyzed the effects of
providing this support in four basic process replication configurations.

1This characteristic prevents the system from working in thestarting phase until a primary subview is reached, and therefore,
during this initial phase, the recovery protocol must not perform any work.

2



4 Amnesia Effects

The first question that must be answered, is how the amnesia manifests. Basicly, it can be said that crashed
nodes at their reconnection time have lost the last actual state reached before the crash, being necessary
to restore it before applying the replication messages missed during its disconnection in order to avoid
diverging state evolutions.

In fact, crashed nodes at reconnection time have lost all their volatile state, while their permanent
performed changes are maintained. Therefore, it will be necessary to reconstruct all their volatile state
before the crash, as first step of their recovery process.

Moreover, it is possible that some messages delivered before the crash event have not been applied in
the crashed replica (i.e. due to workload). This situation makes necessary to distinguish between messages
delivered and applied from those delivered but not applied before the crash. Then, as a basic idea for
the amnesia recovery process, first ones only must be reapplied partially –because they have been already
applied–, while second ones must be applied totally.

The amnesia phenomenon also manifests at message delivery.The background idea is that once a
message is considered to be delivered, the group communications system is not concerned to maintain
it. At this point, if a node crashes before storing the message persistently, when the node reconnects the
system is unable to reapply it partially –message already applied–, or to apply it.

Then, it can be concluded that the amnesia problem arises at two different levels:transport/replication
andreplica. Thus, extra information has to be maintained to solve this problem, being afterwards used in
the amnesia recovery process. The next section provides ways to avoid amnesia problems at recovery time
for log-based recovery policies.

5 Log-Based Amnesia Recovery

In this section we will detail the needed information to overcome the amnesia problems outlined in section
4 and how to use it in recovery processes.

The departing point will be the basic recovery strategy usedto update outdated nodes. Being discarded
from the beginning the whole state transfer, we propose to use the broadcast messages as basic recovery
information –log-based approach combined with checkpointing–. And the two basic steps of the whole
proposed recovery protocol are shown in figure 1.

Recovery process:
1 - Amnesia Recovery Process
2 - Update Recovery Process

Figure 1: Basic Recovery Process

In the first step, the reconnected node reaches a state resulting from applying all the messages delivered
before its crash event –some reapplied partially while may be others totally applied–. Remind that this
reached state may be different to the one reached before the crash. When the first step is concluded, the
recovery protocol will start to transfer to the outdated node the messages delivered during its disconnection
in order to update it.

Once the general context has been presented it is time to describe how this amnesia recovery process
is performed, and detailing the necessary information for the two levels considered in section 4:transport
andreplica.

5.1 Transport/Replication Level

Amnesia implies at this level that delivered messages are lost at crash time. Therefore the idea is to store
persistently these messages in each replica as soon as they are delivered –in an atomic way in the delivery
process– as it is proposed in [11]. Moreover, this work way issimilar to the adopted in logging recovery
strategies for distributed systems [13].

3



Solving the amnesia problem at this level is a necessary but not sufficient condition for solving the
amnesia at replica level. Thus, once it has been overcome we can try to solve the amnesia at replica level.

5.2 Replica Level

For being able to manage the amnesia problem at replica level, as it has been described in section 4, the
system must know which work –meaning state changes– must be performed during theamnesia recovery
process.

This amnesia recovery processcombines the application of the last checkpoint and the received mes-
sages –persistently stored for avoiding the transport level amnesia– from this checkpoint [14]. Thus, each
replica performs checkpoints periodically, storing permanently its in-memory state at this point time. When
a new checkpoint is created, the replica discards the previous checkpoint and the messages that lead the
system to the current checkpoint, starting to log new incoming messages [14]. Therefore, the previous
algorithm is refined to figure 2.

Recovery process:
1 - Amnesia Recovery Process

Restoring the Checkpoint
Reapplying messages

2 - Update Recovery Process

Figure 2: Intermediate Recovery Process

But there are some problems associated to the second phase ofthe amnesia recovery process, when
applying the stored messages after the applied checkpoint,because some of this work must not to be
redone (e.g. persistent changes), because it has no sense. Therefore, it is necessary to know for each
applied message its really performed changes, and more specifically changes that must not be repeated.
And, for messages delivered but not applied before the crashit is necessary to know which work must not
be performed during the recovery process.

Then, the next question that must be answered is which work must not be reprocessed –or processed–
in the amnesia recovery process. To do so, first we present some aspects that must be considered for
determining which state changes must not be reapplied. The aspects considered are:

• in-memory or external changes,

• permanent or non-permanent changes,

• exactly-once semantics changes [17] or not,

• real time changes or not, meaning that these changes can onlybe performed –or only has sense to
perform them– into the boundaries of an established window time interval (e.g. changes depending
on an input data which changes its value outside the window time interval).

State changes can be classified attending to these issues, and depending on them it will be necessary to
process them or not. Subsequently, we will perform some considerations about these issues, their combi-
nations, and how they influence in the necessity of reapplying changes or not.

• In-memorystate changes arevolatile, therefore all their changes are lost at crash time. And it has not
sense to consider theexactly-onceandreal-timesemantics for these changes, because they do not
imply any action in external devices. Then, they can be reapplied –or applied–, without leading to
undesired situations.

• Externalchanges can be distinguishid among those implyingpermanentchanges and those implying
volatile ones. In this case, consideringexactly-onceand real time semantics will imply different
behaviours in each category.

4



– Permanent effect changes, are always associated to theexactly-onceor real-timesemantics. In
the first case, the system must ensure that they must be applied exactly once, so if a change
has not been performed before the crash it must be applied later. Contrarily, if it has been
already applied it must not be reprocessed, because its change is not lost. In the second case,
the system must ensure that the change is processed only oncewithin the established time
boundaries. Then, if change has been processed before the crash it is not necessary to reapply
it in the recovery process –remind that we are talking aboutpermanenteffects–, while if it has
not been applied it must be only processed if the time window has not ended.

– Volatile effect changes performed before the crash are lost, therefore in the recovery process
they must always be reprocessed –those already performed– or processed –those that were
not processed–. Only, thosevolatile changes following thereal timesemantics must be not
performed if their time window has ended.

Therefore, summarizing the previous considerations the work that must be not reapplied:

• for alreadyapplied work:

– Externalpermanent changes, either following theexactly-onceor real timesemantics.

– Externalvolatile changes associated to thereal timesemantics if the time window has closed.

• for non alreadyapplied work:

– Externalchanges associated to thereal timesemantincs once their time window has closed,
eitherpermanentor volatile.

Then, from a recovery point of view how must manage each replica its already performed work attend-
ing to the previous characterization? The idea is to log eachexternal access which must not be repeated,
in this case only external accesses implying permanent changes. Notice thatreal timesemantics are man-
aged in a different way. Therefore, the log process for each external permanent access is done in two
steps. First, it logs when the message/signal is sent, and second it closes the log when receives the process
message/signal acknowledgement from the external device.If the used wire is reliable and the external
device is enabled to store incoming orders/signals the second step, the acknowledgement requirement can
be avoided, only being necessary the first step of the log process.

Afterwards, this log information can be used in order to avoid repeating already performed work in the
amnesia recovery process, checking in the log if the task was already performed beforethe crash as it is
shown in the algorithm presented in figure 3.

Recovery process:
1 - Amnesia Recovery Process

Restoring the Checkpoint
Reapplying messages

For each message check if it has been applied:
Yes - check its related log when reapplying
No - apply completely

2 - Update Recovery Process

Figure 3: Complete Recovery Process

It must be noticed that a problem will arise if the process does not receive the acknowledgement from
the external device accessed, implying that it can not know if the external device has been able to perform
the commanded order or even if it has received the message/signal. In this case, a similar problem, to the
two generals problemarises [21].

Other considerations that must be taken under account in theamnesia recovery processare the following
ones:

5



• Another arising problem in this scenario relates to the factthat usual process replication does not
work atomically as transactional systems do [15], supporting that at crash time in a replica some
work associated to a message has been applied while other not. This problem has been already
explored in some literature as [22], and some solutions havebeen provided. But, in our case, the
previously provided solution for knowing which work must bereapplied in theamnesia recovery
processovercomes this problem when a crash occurs. This stored worklog information prevents
the system for reprocessing previously performed permanent changes during the recovery process.
Therefore, our previous algorithm can be modified to the algorithm presented in figure 4.

Recovery process:
1 - Amnesia Recovery Process

Restoring the Checkpoint
Reapplying messages

For each message check its work log
2 - Update Recovery Process

Figure 4: Final Recovery Process

Obviously, it must be remarked that this message work log proposed policy can only be used for
atomicity purposes in a crash context. If we want to use as a genericundomechanism it would be
necessary to log also performed volatile changes.

• It also must be noticed that for exactly-once operations it is necessary to distinguish between exactly
once operations at replicated system level or replica level. In first case, in spite of a replica crash,
if the replicated system has not stopped working one of the alive replicas will have performed the
operation. In the second case, this work must be done in all replicas, therefore in crashed replica the
recovery process must ensure its fullfilment.

• Some of these previous considerations, the ones related to permanent changes that are not lost at
replica time, can be discarded if the performed checkpoint in the replica stores either the in-memory
state –volatile–, and its associated external state. Then,when restoring the checkpoint after the crash
part of the permanent changes will be also undone, then when reapplying the messages it will be
only necessary to consider the changes associated to real time semantics.

Once we have detailed how the amnesia problem can be avoided at the two levels it manifests, and
have described the arising problems when performing the recovery process, in the following section we
will detail the overhead introduced for supporting amnesia.

6 Amnesia Overhead

In this section we will study the overhead introduced due to supporting amnesia in process replication.
We will only study the overhead during the normal work, in order to analyze how it influences in its
performance. Overhead during recovery processes is not considered.

The overhead must be studied at different levels: transport–replication– and replica level. At replication
level the overhead introduced is related to the process of storing persistently the delivered messages. While
at the replica level it will depend on several aspects. If thecheckpointing solution is selected the overhead
will be associated to the cost of generating the checkpoint,but it can be discarded if we consider that it is
performed in a separated thread, with less priority than thereplication work. The other aspect relates to
the logging of external accesses that follow the exactly-once semantics as it has been commented before.
Thus, the overhead at replica level will depend on the percentage mean of external accesses done in replica
operations. Therefore, the overhead associated to the amnesia support at replication and replica levels is
considered.

6



6.1 Replication Level

The overhead study at this level is performed considering the four main process replication configurations
proposed in [24]: active replication (AR), semi-active replication (SAR), semi-passive replication (SPR)
and passive replication (PR).

In ARall replicas receive the client request messages and process them, whereas inPRonly a replica,
the primary, receives the client request, process the request and propagates the updates associated to this
request to the other replicas –backups–.SARallows to work in a non-deterministic way. All replicas
receive the client request and process them likeAR, but it works in a different way for non-deterministic
operations. In this case, one of the replicas –leader– spreads its result of applying this request among the
others –followers–. The last considered configurationSPRworks very similar toPR in “good runs”. But it
presents two differences. The first one is that all replicas receive client requests but only one, the primary,
processes the request. The second one is that whenbackupsreceive the spread update from theprimary,
first they acknowdlege the reception, and once the primary has received all acknowledgements, spreads
another message among all replicas in order to apply really the previously spread update.

From a communications point of view:ARandSARuse total order broadcast (TOB), whilePRandSPR
utilize reliable FIFO (R-FIFO). In all cases we emphasize the use ofsending view delivery.

The overhead study will be done detailing first the basic processing time (BPT) and after the processing
time supporting amnesia (PTSA). Processing times will be expressed for each propagated operation in terms
of spread time (st), persisting time (pt) and processing time (Pt).

Thest depends on the communication guarantees provided. And it also depends on the message size
for configurations which spread the updates associated to anoperation.

As it has been said we considerTOB for activeandR-FIFO for passive. ForTOBwe assume thefixed
sequencerin the broadcast-broadcast (BB) variant [12] implementation, which uses two reliable broadcasts
for message propagation. On the other hand, theR-FIFO as it is considered forPRcan be implemented
using only one reliable broadcast for message propagation because there is only one sender. Then, ifα
is the maximum cost of a reliable broadcast, theTOBhas a cost of2α for spreading a message while the
R-FIFOcost isα.

The client message request size (S) and the update propagation message (SU ) have their importance
because someGCShave a maximum message size bound to spread,SM . Thus, messages greater thanSM

must be spread sending⌈ S

SM

⌉ and⌈ SU

SM

⌉ messages.
The persisting time,pt, is expressed asβ + γ⌈(S/k)⌉, whereβ is the upper bound time for write disk

accesses,γ is the storing time of a block size messagek, andS is the message size. It is considered that
only one write disk access is needed for message.

For Pt, we consider theπ andπU value, processing times for client request and update application
respectively, which depend on the replication system load.Instead of being very difficult to model, anyway
we consider that any operation always fullfils the rulePt > pt.

Parameters Description
α maximum reliable broadcast cost
β upper bound time for write disk accesses
λ point to point communication cost
γ storing time of a block size messagek

S, SU client message request and update prop-
agation message

SM maximum message size communica-
tions bound

π, πU processing times for client request and
update application

Table 1: Time Parameters.

It must be noticed, that forAR, SARandSPRthe replication work starts as soon as the client performs
its request because all replicas receive this request, while for PR it starts once theprimary propagates

7



the update. Moreover, for passive configurations we consider two different synchrony levels: hot passive
on-processing (HPP) and hot passive asynchronous (HPA) as presented in [10].

Configuration Time

AR
BPT (⌈ S

SM
⌉ + 1)α

PTSA (⌈ S

SM

⌉ + 1)α + β + γ⌈S

k
⌉

SAR
BPT (⌈ S

SM
⌉ + ⌈ SU

SM
⌉ + 2)α + π + πU

PTSA (⌈ S

SM

⌉ + ⌈ SU

SM

⌉ + 2)α + π + πU

SPR BPT (⌈ S

SM

⌉ + ⌈ SU

SM

⌉ + 2)α + π + πU

(HPP) PTSA (⌈ S

SM
⌉ + ⌈ SU

SM
⌉ + 2)α + π + πU

SPR BPT (⌈ S

SM

⌉ + ⌈ SU

SM

⌉ + 1)α + π

(HPA) PTSA (⌈ S

SM
⌉ + ⌈ SU

SM
⌉ + 1)α + π + β + γ⌈SU

k
⌉

PR BPT (⌈ SU

SM
⌉ + 1)α + πU

(HPP) PTSA (⌈ SU

SM

⌉ + 1)α + πU

PR BPT ⌈ SU

SM
⌉α

(HPA) PTSA ⌈ SU

SM

⌉α + β + γ⌈SU

k
⌉

Table 2: Processing Times.

From table 2 different observations can be extracted.
The first one is thatSAR, SPR (HPP)and PR (HPP)do not present any kind of overhead because

their processing timesπ andπU hide the corresponding persisting timesβ + γ⌈S

k
⌉ andβ + γ⌈SU

k
⌉. The

SPR (HPA)configuration only presents the overhead corresponding to the persisting storage of the update
propagation message with sizeSU , while the overhead of the first broadcast message with sizeS is hidden
by π. Other configurations present the overhead associated to store persistently the messages propagated
for performing the replication work.

Notice thatSAR, SPR (HPP)andSPR (HPA)perform their replication work spreading two messages:
on one hand the client request message and on the other hand the update propagation message. InSPR
configurations we consider, as in active configurations, that the broadcast performed by the client is a part
of the replication work, because the client spreads its request to all replicas. And this broadcast usesTOB.
While in thePR this broadcast is not considered as replication work, because the client request is only
received by theprimary.

Another consideration is thatSARworking in a deterministic way presents the same times asAR, while
when it works in a non-deterministic way, the presented one in the table, presents the same cost asSPR
(HPP). But SARcan be refined in order to work with the same cost asSPR(HPA), if we let it to answer to
the client once it has broadcast the update propagation message to other replicas without waiting that they
process it.

A problem that appears when comparing these configurations is the difficulty to compareS andSU ,
assuming thatS is the size of the client request message whereasSU is the size of the update propagation
message associated to this client request. Normally,S, the message size of the client request, will be smaller
thanSM andk, while SU will be greater or smaller depending on the updates associated to the process
operation to perform. If a client request performs a lot of changes its corresponding update propagation
message will be greater thanSM andk. Thus, in order to present a more accurate study it will be necessary
to extend this work including an analysis of the workload profiles of different client requests.

Anyway, it can be observed that introducing amnesia supportdoes not alter among different config-
urations their original performance cost order. Moreover,considering that nowadays computers increase
faster their computation power than increase the networks their bandwith it can be stated that the overhead
introduced for supporting amnesia does not affect significantly the performance of these replicated systems.

6.2 Replica Level

The overhead introduced at replica level derives from the fact that each replica must log the external ac-
cesses which imply permanent effects. As it has been said, the log for each external access is performed in

8



two steps, one before sending the signal/message, another after receiving the respective acknowledgement.
In order to calculate the overhead associated to an operation we must know the number of external

accesses which imply the permanent changes. Assumingn as this number, the log associated to this
operation must haven entries, and the associated overhead for supporting amnesia for each of its external
accesses is shown in table 3. The times are expressed in the same terms used for presenting the overhead
at replication level, compiled in table 1. But in this case weuseλ term for communications cost, because
we assume that external devices are connected to nodes through point to point channels.

Configuration Time
BPT λ⌈ S

SM

⌉

PTSA 2(β + γ) + λ(⌈ S

SM
⌉ + 1) + π

Table 3: Processing Times for each External Access.

It must be noticed, that to quantify this overhead is very difficult because it will depend on the pro-
cessing time in the external deviceπ, value that will present a great variance among different devices (e.g.
sensors or printers). Moreover, it also will depend on the message size –which can present great differences
among external accesses for different devices–, and on the top boundary of the used communications chan-
nel –different for each accessed device–. Thus it will be very interesting to categorize the external accesses
attending to the accessed external devices.

As it has been said previously in 5.2, if communications are reliable and the external device can store
received messages, the process only must log the send message/signal event shorting very much the intro-
duced overhead.

7 Related Work

Literature has largely treated the recovery problem in distributed systems, either transacional systems [2,
20, 19] or process replicated systems [4, 13]. But in spite ofthis fact, the recovey protocols presented
for process replication have largely assumed the fail-stopfailure model, where the proposed solution for
solving the recovery problem is to transfer the whole state to a new replica.

As it has been commented in this paper, this proposal presents good behavior in replicated systems
which manage few state amounts, where to transfer the whole state does not imply a high impact in the
system performance. But, when we talk about systems with large amounts of data state, to transfer the
whole data state will imply a cost that can not be tolerated. Therefore, it is necessary to adopt another
strategy for providing fault tolerance. This strategy implies to recover previous crashed replicas transferring
only the information that they have lost, assuming the crashrecovery with partial amnesia failure model,
and being therefore necessary to deal with the amnesia phenomenon. Assumption, that has been already
proposed for replicated databases [5, 6].

Obviously, to transfer the whole state approach will avoid the amnesia problem, but as it has been said
we are trying to avoid this approach when managing large state amounts. Moreover, this approach also
increases its complexity if it needs to transfer the replicaexternal devices state –being necessary to collect
and transfer it–, while our proposal avoids this complexity.

Other recovery strategy studied in the distributed systemsliterature –not focused on replicated systems–
is thecheckpoint-basedrollback recovery [13], also known asRollback-Recoveryprotocols. In this case,
this strategy forces each node to store periodically a checkpoint of its state, then if a crash occurs when the
replica becomes alive applies the last checkpoint performed obtaining a consistent state. But, this strategy
does not support the amnesia phenomenon because it can exista work gap between the last checkpoint
performed in the replica and the work really performed in it after the checkpoint. If this solution is adopted
in a replicated system the amnesia support in a crashed replica can be provided forcing a not crashed replica
to transfer to the crashed one the changes performed after its last really applied change.

But, in [13], it is also surveyed a recovery strategy which combinescheckpoint-basedpolicies with
message logging. This other approach provides support for the amnesia problem in a natural way. This is

9



due to the fact thatlog-basedrecovery strategies, also widely studied in the literature, as it is the combi-
nation ofcheckpoint-basedpolicies withmessage loggingare the ones that can provide amnesia support
considering the changes pointed out in this work.

On the other hand, literature has not studied extensively the problems associated to redoing the work in
recovery processes for process replicated systems becausethey usually have preferred to transfer the whole
state. Few papers ,as [23], have considered it. But, insteadof this fact, some research has been done in the
area of generic distributed systems [18]. Contrarily, in regard to the exactly-once semantics a lot of work
has been done [17].

It must be said that a similar study related to the amnesia support and its associated overhead in trans-
actional replicated systems is presented in [11].

8 Conclusions

This paper details that the fail-stop failure model does notprovide good recovery time when process repli-
cated systems manage large state amounts, presenting the crash-recovery with partial amnesia failure model
as the best option for these scenarios.

But, the paper points out that this failure model assumptionimplies that recovery protocols must be
enabled to deal with the amnesia phenomenon. Thus, in this paper we have described how this phenomenon
manifests at two different levels: transport and replica. And, it has proposed solutions for overcoming them
in log-based recovery strategies. In this solution, it is given special importance to the managing way for
the amnesia problem at replica level due to the work nature ofreplica process.

Besides, it can be inferred that our solution handles the external devices state from a recovery point of
view in a simpler and cheaper way than the whole state transfer recovery solution. This last one will be
forced, in order to avoid diverging states, to collect and totransfer the state associated to these external
devices.

Finally, it is analyzed the overhead introduced for our proposed solutions for supporting amnesia. At
transport level, the study has considered the four main configuration types of process replication established
in [24]. And at replica level it has been noticed the great overhead variability associated to this amnesia
support.

References

[1] O. Babaoǧlu, A. Bartoli, and G. Dini. Enriched view synchrony: A programming paradigm for partitionable
asynchronous distributed systems.IEEE Trans. Comput., 46(6):642–658, 1997.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in Database Systems.
Addison Wesley, Reading, MA, EE.UU., 1987.

[3] K. P. Birman and R. V. Renesse.Reliable Distributed Computing with the ISIS Toolkit. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1993.

[4] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle.Fault tolerance under unix.ACM Trans. Comput.
Syst., 7(1):1–24, 1989.

[5] F. Castro, J. Esparza, M. Ruiz, L. Irún, H. Decker, and F.Muñoz. CLOB: Communication support for efficient
replicated database recovery. In13th Euromicro PDP, pages 314–321, Lugano, Sw, 2005. IEEE Computer
Society.

[6] F. Castro, L. Irún, F. Garcı́a, and F. Muñoz. FOBr: A version-based recovery protocol for replicated databases.
In 13th Euromicro PDP, pages 306–313, Lugano, Sw, 2005.

[7] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A comprehensive study.ACM
Computing Surveys, 4(33):1–43, 2001.

[8] F. Cristian. Understanding fault-tolerant distributed systems.Communications of the ACM, 34(2):56–78, 1991.
[9] R. de Juan-Marı́n. (n/2+1) alive nodes progress condition. InSixth European Dependable Computing Conference,

EDCC-6, 2006.
[10] R. de Juan-Marı́n, H. Decker, and F. D. Muñoz-Escoı́. Revisiting hot passive replication. In2nd International

Conference on Availability, Reliability and Security. IEEE, 2007.
[11] R. de Juan-Marı́n, L. Irún-Briz, and F. D. Muñoz-Escoı́. Supporting amnesia in log-based recovery protocols.

Technical report, ITI-ITE-07/01, Instituto Tecnológicode Informática, 2007.

10



[12] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms: Taxonomy and survey.
ACM Comput. Surv., 36(4):372–421, 2004.

[13] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.A survey of rollback-recovery protocols in message-
passing systems.ACM Comput. Surv., 34(3):375–408, 2002.

[14] E. N. Elnozahy and W. Zwaenepoel. On the use and implementation of message logging. InFTCS, pages
298–307, 1994.

[15] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1992.

[16] V. Hadzilacos and S. Toueg. Fault-tolerant broadcastsand related problems. In S. Mullender, editor,Distributed
Systems, chapter 5, pages 97–145. ACM Press, 1993.

[17] Y. Huang and H. Garcia-Molina. Exactly-once semanticsin a replicated messaging system. InICDE, pages
3–12. IEEE Computer Society, 2001.

[18] Y. Huang and C. M. R. Kintala. Software implemented fault tolerance technologies and experience. InFTCS,
pages 2–9, 1993.

[19] R. Jiménez-Peris, M. Patiño-Martı́nez, and G. Alonso. Non-intrusive, parallel recovery of replicated data. In
SRDS, pages 150–159. IEEE Computer Society, 2002.

[20] B. Kemme, A. Bartoli, and O. Babaoǧlu. Online reconfiguration in replicated databases based on group commu-
nication. InIntl.Conf.on Dependable Systems and Networks, pages 117–130, Washington, DC, USA, 2001.

[21] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantinegenerals problem.ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[22] D. B. Lomet. Process structuring, synchronization, and recovery using atomic actions. InLanguage Design for
Reliable Software, pages 128–137, 1977.

[23] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Strongly consistent replication and recovery of fault-
tolerant corba applications.Comput. Syst. Sci. Eng., 17(2):103–114, 2002.

[24] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding replication in databases and
distributed systems. InICDCS, page 464, Washington, DC, USA, 2000. IEEE Computer Society.

11


