Process Replication with Log-Based Amnesia Support

Rubén de Juan-Marin, Luis Irin-Briz and Francesc D. bai&scoi

Instituto Tecnologico de Informatica - Universidad Ratinica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

{rjuan, lirun, fmunyoz @iti.upv.es

Technical Report TR-ITI-ITE-07/05

TR-ITI-ITE-07/05

Process Replication with Log-Based Amnesia Support

Rubén de Juan-Marin et al.:

Process Replication with Log-Based Amnesia Support

Rubén de Juan-Marin, Luis Irin-Briz and Francesc D. bhiEscoi

Instituto Tecnolbgico de Informéatica - Universidad P&tinica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/05

e-mail: {rjuan, lirun, fmunyoz @iti.upv.es

Abstract

Process replication is used for providing highly availahiel fault-tolerant systems. Traditionally,
for simplicity reasons they have assumed the crash-stapdanodel. This paper, instead, encourages
the use of the crash-recovery with partial amnesia failuceleh when managing large state amounts,
presenting the arising problems of this assumption andniog how they can be managed. Finally, and
overhead analysis is presented.

1 Introduction

Replicated systems, a subset of distributed systems, amenoaly used for providing high available and
fault tolerant applications. Being composed by severakspdhen a replica crashes the remaining alive
members hide this failure to end users, maintaining avialtdeir provided services.

As it has been outlined previously, the main advantage dfettsystems is that they go on working
despite of some replica crashes without compromising teéegy consistency. In fact, they can be cate-
gorized by the initial number of crash replicas they suppefbre stopping. But this number decreases as
long as original members crash. Then, in order to maintaérfdllt tolerance level of replicated systems it
is necessary to adopt appropiated measuresovery protocols when a crash replica is detected. In this
situation, some replicated systems substitute the cragpdida by a new one transferring to it the whole
state. Others update the crashed replica once it reconnects

Process replication based on message-passing systenspfdbis paper, has largely assumed the first
recovery solution [16], based on tlceash-stopfailure model [8], due to its management simplicity and
their accurate behavior for systems with few state (typieale in process replication).

This paper, instead, recommends the use of the secondmylii@sed on therash-recovery with
partial amnesiafailure model [8] for process replicated systems managargd state amounts, where
transferring the whole state as it is done in the first appraeid imply a high cost. This solution is based
on the use of checkpointing and logging ideas widely usedstributed systems [13]. Therefore, when
a crashed node reconnects first restores the checkpoinpgfidsathe received messages before the crash
—amnesia recovery—, and second receives the broadcasigessturing its disconnection.

The main proposal problem is that recovery processes mustaer theamnesia phenomenamorder
to avoid its associated problems. These problems relateetanformation that must be maintained for
applying the messages during tamnesia recoverprocess in order to: repeat the forgotten work —work
already done before the crash but lost in it—, and do the wotparformed before the crash. Moreover, the
amnesia recoverjas to avoid the repetition of the work already performedwahith follows the exactly-
once semantics [17] (i.e. state changes with permanerttgffe Thus, this paper after recommending
and reasoning the use of tikeash-recovery with partial amnesfar process replication with large state
amounts, details the arising problems in the associateal/eeg processes and proposes a solution for
managing them.

This paper is structured as follows. Section 2 details thesiciered system model in this work. A
comparison between the fail-stop and the crash-recovety partial amnesia is performed in section 3.
Afterwards, the amnesia phenomenon is described in settiexplaining in the subsequent section 5 how
to deal with it in our initial replicated configuration usitige log-based recovery strategy. Section 6 de-
tails the overhead introduced for providing amnesia sufdpdatifferent process replication configurations.
Finally, some related work is given in section 7, and sec8@oncludes the paper.

2 System Model

The replicated system considered is composed by sevel@agp-each one in a different node—. These
nodes belong to a partially synchronous distributed syst#mir clocks are not synchronized but the
message transmission time is bounded. The state is fullicaded in each node.

The replicated system uses a group communication sySg9(Point-to-point and broadcast deliv-
eries are supported. The minimum guarantee provided is @ Rk reliable communication. It is also
assumed the presence of a group membership servicekmgwsin advance the identity of all potential
system nodes. These nodes can join the group and leavest eiplicitly or implicitly by crashing. The
group membership service combined with tBESprovidesVirtual Synchrony{3] guarantees, which is
achieved usingending view delivergnulticast [7] which enforces that messages are deliverdéueiview
they were sent. Therefore, each time a membership changeehgpit supplies consistent information
about the current set of reachable members. This informasigiven in the format ofiews Sites are
notified about a new view installation withew change events

The view notification mechanism is extended with node appbo state information providing the
enriched view synchronjl] approach. This makes simpler and easier the supportsiEBy cascading
reconfigurations. These enriched vievesiew not only inform about active nodes, but they also inform
about the state of active nodes: outdated or up-to-@atewsuse refines thprimary partitionmodel into
the primary subviewmodel, so the system only can work whepragress conditioris fulfilled! as it is
detailed in [9]. At the same time the state consistency isieasbecause only the primasybviewis able
to work in partition scenarios. Thus, this subview is theyanie allowed to generate recovery information,
which will be afterwards used for recovery. For similar reas, a node can not start new transactions until
it has not been fully updated.

3 Failure Models

Different papers, as [8, 3] have presented different failmodels that can be adopted in replicated systems.
The assumed failure model in a replicated system has a grgmiriance in the way it provides fault
tolerance. Traditionally, most replicated systems hawapgetl the fail-stop failure model, because it is the
simplest one to manage. When a replica crashes in thesersydteey substitute the crashed replica by
transferring the whole state to a new one. But, this optidhneit work well for replicated systems which
manage large amounts of data state, because will lead tdoregtransfer periods. This situation implies:
longer periods with low performance levels for systems dase active replication, longer periods with
decreased fault tolerance support and higher intervalsafailability if the replicated system does not
fullfil the progress condition (i.e. systems based on prinpartitions) as comented in [10].

The crash-recovery with partial amnesia failure model wilhimize these problems, because only
lost state (and not whole) must be transferred. But therigearthe amnesia problem, being necessary to
manage it in order to ensure the state consistency aftevnpeirig recovery processes.

Following sections detail how the amnesia problem marsfesprocess replicated systems and how it
can be managed generally with a log-based recovery straégseover, it will be analyzed the effects of
providing this support in four basic process replicationfigurations.

1This characteristic prevents the system from working in dteting phase until a primary subview is reached, and there
during this initial phase, the recovery protocol must nafqren any work.

4 Amnesia Effects

The first question that must be answered, is how the amnesideaats. Basicly, it can be said that crashed
nodes at their reconnection time have lost the last actate seached before the crash, being necessary
to restore it before applying the replication messageseadisiiring its disconnection in order to avoid
diverging state evolutions.

In fact, crashed nodes at reconnection time have lost ail tlodatile state, while their permanent
performed changes are maintained. Therefore, it will beessary to reconstruct all their volatile state
before the crash, as first step of their recovery process.

Moreover, it is possible that some messages delivered ddfercrash event have not been applied in
the crashed replica (i.e. due to workload). This situati@kes necessary to distinguish between messages
delivered and applied from those delivered but not appliefbte the crash. Then, as a basic idea for
the amnesia recovery process, first ones only must be reapdirtially —because they have been already
applied—, while second ones must be applied totally.

The amnesia phenomenon also manifests at message delieeybackground idea is that once a
message is considered to be delivered, the group commiarisagystem is not concerned to maintain
it. At this point, if a node crashes before storing the mesgaaysistently, when the node reconnects the
system is unable to reapply it partially —-message alreagiiegp-, or to apply it.

Then, it can be concluded that the amnesia problem arise@atifferent levelstransporfreplication
andreplica. Thus, extra information has to be maintained to solve thodlem, being afterwards used in
the amnesia recovery process. The next section provides twawoid amnesia problems at recovery time
for log-based recovery policies.

5 Log-Based Amnesia Recovery

In this section we will detail the needed information to @ane the amnesia problems outlined in section
4 and how to use it in recovery processes.

The departing point will be the basic recovery strategy usaghdate outdated nodes. Being discarded
from the beginning the whole state transfer, we propose ¢otlis broadcast messages as basic recovery
information —log-based approach combined with checkpmipt And the two basic steps of the whole
proposed recovery protocol are shown in figure 1.

Recovery process:
1 - Amnesia Recovery Process
2 - Update Recovery Process

Figure 1: Basic Recovery Process

In the first step, the reconnected node reaches a statemgduitm applying all the messages delivered
before its crash event —some reapplied partially while maythers totally applied—. Remind that this
reached state may be different to the one reached beforedbh.cWhen the first step is concluded, the
recovery protocol will start to transfer to the outdated eatlie messages delivered during its disconnection
in order to update it.

Once the general context has been presented it is time toiloke$ow this amnesia recovery process
is performed, and detailing the necessary informationtierttvo levels considered in sectiontdansport
andreplica.

5.1 Transport/Replication Level

Amnesia implies at this level that delivered messages ateatocrash time. Therefore the idea is to store
persistently these messages in each replica as soon ag¢haglimered —in an atomic way in the delivery
process— as it is proposed in [11]. Moreover, this work wagimsilar to the adopted in logging recovery
strategies for distributed systems [13].

Solving the amnesia problem at this level is a necessary tusurficient condition for solving the
amnesia at replica level. Thus, once it has been overcomamwacto solve the amnesia at replica level.

5.2 Replica Level

For being able to manage the amnesia problem at replica lasét has been described in section 4, the
system must know which work —meaning state changes— mustibermed during th@mnesia recovery
process

This amnesia recovery processmbines the application of the last checkpoint and theivedenes-
sages —persistently stored for avoiding the transport Evmesia— from this checkpoint [14]. Thus, each
replica performs checkpoints periodically, storing penmiatly its in-memory state at this point time. When
a new checkpoint is created, the replica discards the puevébeckpoint and the messages that lead the
system to the current checkpoint, starting to log new incmmiessages [14]. Therefore, the previous
algorithm is refined to figure 2.

Recovery process:

1 - Amnesia Recovery Process
Restoring the Checkpoint
Reapplying messages

2 - Update Recovery Process

Figure 2: Intermediate Recovery Process

But there are some problems associated to the second ph#se afhnesia recovery process, when
applying the stored messages after the applied checkgméchuse some of this work must not to be
redone (e.g. persistent changes), because it has no sehseefdre, it is necessary to know for each
applied message its really performed changes, and mord&isplyg changes that must not be repeated.
And, for messages delivered but not applied before the étasinecessary to know which work must not
be performed during the recovery process.

Then, the next question that must be answered is which wosk mat be reprocessed —or processed—
in the amnesia recovery process. To do so, first we presen¢ s@pects that must be considered for
determining which state changes must not be reapplied. 3jecss considered are:

e in-memory or external changes,
e permanent or non-permanent changes,
e exactly-once semantics changes [17] or not,

e real time changes or not, meaning that these changes camemgrformed —or only has sense to
perform them— into the boundaries of an established windim& interval (e.g. changes depending
on an input data which changes its value outside the window interval).

State changes can be classified attending to these issdedgp@nding on them it will be necessary to
process them or not. Subsequently, we will perform someiderations about these issues, their combi-
nations, and how they influence in the necessity of reapglgiranges or not.

¢ In-memorystate changes awlatile, therefore all their changes are lost at crash time. Andstri
sense to consider thexactly-onceandreal-time semantics for these changes, because they do not
imply any action in external devices. Then, they can be riagp-or applied—, without leading to
undesired situations.

e Externalchanges can be distinguishid among those implpeignanenthanges and those implying
volatile ones. In this case, consideriegactly-onceandreal time semantics will imply different
behaviours in each category.

— Permanent effect changes, are always associated ex#otly-oncer real-timesemantics. In
the first case, the system must ensure that they must be dgpiaetly once, so if a change
has not been performed before the crash it must be applied |&ontrarily, if it has been
already applied it must not be reprocessed, because itgehamot lost. In the second case,
the system must ensure that the change is processed onlywathie the established time
boundaries. Then, if change has been processed beforeat$teitis not necessary to reapply
it in the recovery process —remind that we are talking alpentnaneneffects—, while if it has
not been applied it must be only processed if the time windasvriot ended.

— \olatile effect changes performed before the crash are thetefore in the recovery process
they must always be reprocessed —those already performreprocessed —those that were
not processed—. Only, thoselatile changes following theeal time semantics must be not
performed if their time window has ended.

Therefore, summarizing the previous considerations thé&waat must be not reapplied:
o for alreadyapplied work:

— Externalpermanent changes, either following #veactly-oncer real timesemantics.
— Externalvolatile changes associated to tieal timesemantics if the time window has closed.

¢ for non alreadyapplied work:

— Externalchanges associated to treml time semantincs once their time window has closed,
eitherpermanenbr volatile.

Then, from a recovery point of view how must manage eachaajiis already performed work attend-
ing to the previous characterization? The idea is to log extérnal access which must not be repeated,
in this case only external accesses implying permanentggsarNotice thateal timesemantics are man-
aged in a different way. Therefore, the log process for eatlreal permanent access is done in two
steps. First, it logs when the message/signal is sent, axhdét closes the log when receives the process
message/signal acknowledgement from the external deVidbe used wire is reliable and the external
device is enabled to store incoming orders/signals thergkstep, the acknowledgement requirement can
be avoided, only being necessary the first step of the loggssc

Afterwards, this log information can be used in order to dv@peating already performed work in the
amnesia recovery processhecking in the log if the task was already performed befbeecrash as it is
shown in the algorithm presented in figure 3.

Recovery process:
1 - Amnesia Recovery Process
Restoring the Checkpoint
Reapplying messages
For each message check if it has been applied:
Yes - check its related log when reapplying
No - apply completely
2 - Update Recovery Process

Figure 3: Complete Recovery Process

It must be noticed that a problem will arise if the processsduat receive the acknowledgement from
the external device accessed, implying that it can not kriokei external device has been able to perform
the commanded order or even if it has received the messggalsin this case, a similar problem, to the
two generals problerarises [21].

Other considerations that must be taken under account amtimesia recovery proceage the following
ones:

e Another arising problem in this scenario relates to the fhat usual process replication does not
work atomically as transactional systems do [15], suppgrthat at crash time in a replica some
work associated to a message has been applied while otherTinig problem has been already
explored in some literature as [22], and some solutions lhaen provided. But, in our case, the
previously provided solution for knowing which work must bEapplied in theamnesia recovery
processovercomes this problem when a crash occurs. This stored l@grinformation prevents
the system for reprocessing previously performed permiacieanges during the recovery process.
Therefore, our previous algorithm can be modified to the @tigan presented in figure 4.

Recovery process:
1 - Amnesia Recovery Process
Restoring the Checkpoint
Reapplying messages
For each message check its work log
2 - Update Recovery Process

Figure 4: Final Recovery Process

Obviously, it must be remarked that this message work logp@sed policy can only be used for
atomicity purposes in a crash context. If we want to use asargsundomechanism it would be
necessary to log also performed volatile changes.

e It also must be noticed that for exactly-once operatiorsiitgcessary to distinguish between exactly
once operations at replicated system level or replica lelefirst case, in spite of a replica crash,
if the replicated system has not stopped working one of tive aéplicas will have performed the
operation. In the second case, this work must be done ing@itees, therefore in crashed replica the
recovery process must ensure its fullfilment.

e Some of these previous considerations, the ones relatedrtogment changes that are not lost at
replica time, can be discarded if the performed checkpaittié replica stores either the in-memory
state —volatile—, and its associated external state. Mieer restoring the checkpoint after the crash
part of the permanent changes will be also undone, then wépptying the messages it will be
only necessary to consider the changes associated tomeasémantics.

Once we have detailed how the amnesia problem can be avoidbd awo levels it manifests, and
have described the arising problems when performing thevesy process, in the following section we
will detail the overhead introduced for supporting amnesia

6 Amnesia Overhead

In this section we will study the overhead introduced dueupp®rting amnesia in process replication.
We will only study the overhead during the normal work, in @rdo analyze how it influences in its
performance. Overhead during recovery processes is neidened.

The overhead must be studied at different levels: transgeplication—and replica level. At replication
level the overhead introduced is related to the proces®dhstpersistently the delivered messages. While
at the replica level it will depend on several aspects. Ifdheckpointing solution is selected the overhead
will be associated to the cost of generating the checkpbuitit can be discarded if we consider that it is
performed in a separated thread, with less priority thanrdpdication work. The other aspect relates to
the logging of external accesses that follow the exactlgeassemantics as it has been commented before.
Thus, the overhead at replica level will depend on the peaggnmean of external accesses done in replica
operations. Therefore, the overhead associated to thesiansigpport at replication and replica levels is
considered.

6.1 Replication Level

The overhead study at this level is performed considerisgdlir main process replication configurations
proposed in [24]: active replicatiorAR), semi-active replicationSAR, semi-passive replicatior5PR
and passive replicatioPR).

In ARall replicas receive the client request messages and tloes, whereas iRRonly a replica,
the primary, receives the client request, process the stquml propagates the updates associated to this
request to the other replicas —backupsSARallows to work in a non-deterministic way. All replicas
receive the client request and process them Aike but it works in a different way for non-deterministic
operations. In this case, one of the replickesader spreads its result of applying this request among the
others followers-. The last considered configurati8i? Rworks very similar taPRin “good runs”. But it
presents two differences. The first one is that all replieagive client requests but only one, the primary,
processes the request. The second one is that Whekupseceive the spread update from teémary,
first they acknowdlege the reception, and once the primasyrbeeived all acknowledgements, spreads
another message among all replicas in order to apply rdaypteviously spread update.

From a communications point of viewkRandSARuse total order broadcasi©B), while PRandSPR
utilize reliable FIFO R-FIFO). In all cases we emphasize the ussefiding view delivery

The overhead study will be done detailing first the basic essing timeBPT) and after the processing
time supporting amnesi&{T SA. Processing times will be expressed for each propagaietpn in terms
of spread time {t), persisting time#t) and processing timeAt).

The st depends on the communication guarantees provided. Anddtddpends on the message size
for configurations which spread the updates associated oparation.

As it has been said we considE®B for activeandR-FIFO for passive For TOBwe assume théxed
sequencein the broadcast-broadcaB8H) variant [12] implementation, which uses two reliable litoasts
for message propagation. On the other hand RHeIFO as it is considered foPR can be implemented
using only one reliable broadcast for message propagagoause there is only one sender. Theny if
is the maximum cost of a reliable broadcast, 1t@B has a cost o« for spreading a message while the
R-FIFO cost isa.

The client message request siZ &nd the update propagation messagig)(have their importance
because som@CShave a maximum message size bound to spr€gd,Thus, messages greater than
must be spread sendirﬁ@%l and [5—;1 messages.

The persisting timept, is expressed a8 + v[(S/k)|, whereg is the upper bound time for write disk
accessegy is the storing time of a block size messdgeandsS is the message size. It is considered that
only one write disk access is heeded for message.

For Pt, we consider ther andny value, processing times for client request and update egifin
respectively, which depend on the replication system ltragtead of being very difficult to model, anyway
we consider that any operation always fullfils the rifle> pt.

Parameters| Description
« maximum reliable broadcast cost
8 upper bound time for write disk accesses
A point to point communication cost
5 storing time of a block size message
S, Su client message request and update prpp-
agation message
S maximum message Size communida-
tions bound
T, TU processing times for client request and
update application

Table 1: Time Parameters.

It must be noticed, that fohR, SARandSPRthe replication work starts as soon as the client performs
its request because all replicas receive this requestevibil PR it starts once th@rimary propagates

the update. Moreover, for passive configurations we conside different synchrony levels: hot passive
on-processingfPP) and hot passive asynchronottRA) as presented in [10].

Configuration Time
ar | BPT | ([s;1+Da
PTSA| ([g T+ Da+B+1[7]
sar | BPT | g, 1+ g1+ 2ot +mw
PTSA| ([1+ 4] +2)a+7+mu
SPR | BPT | ([1+ [s2]1+Ja+r+mw
(HPP) | PTSA| ([g- 1+ 541 +2)a+ 7 +mu
SPR | BPT | ([&&1+[g%]+Da+n
(HPA) | PTSA | (g1 + [s2]1 + Da+ 7+ B+
PR | BPT | ([g%]+Da+mw
(HPP) | PTSA| (341 + Da+mu
PR | BPT | [£L]a
(HPA) | PTSA | [E2]a+ B+1[3E]

Table 2: Processing Times.

From table 2 different observations can be extracted.

The first one is thaSBAR SPR (HPP)and PR (HPP)do not present any kind of overhead because
their processing times andry hide the corresponding persisting timgs- ﬂ%} andg + AMSTU]. The
SPR (HPAXxonfiguration only presents the overhead correspondinge@eérsisting storage of the update
propagation message with sigg, while the overhead of the first broadcast message withSigeénidden
by 7. Other configurations present the overhead associatedr® gersistently the messages propagated
for performing the replication work.

Notice thatSAR SPR (HPPandSPR (HPA)perform their replication work spreading two messages:
on one hand the client request message and on the other hangdate propagation message.SIAR
configurations we consider, as in active configurationg,ttebroadcast performed by the client is a part
of the replication work, because the client spreads itsestjio all replicas. And this broadcast u3&€3B.
While in the PR this broadcast is not considered as replication work, bezdloe client request is only
received by therimary.

Another consideration is th&ARworking in a deterministic way presents the same timesRavhile
when it works in a non-deterministic way, the presented onthé table, presents the same cosE8R
(HPP). But SARcan be refined in order to work with the same cosERR(HPA), if we let it to answer to
the client once it has broadcast the update propagatioragess other replicas without waiting that they
process it.

A problem that appears when comparing these configurat®tiei difficulty to compare and Sy,
assuming thas is the size of the client request message whefzass the size of the update propagation
message associated to this client request. Normalhe message size of the client request, will be smaller
than Sy, andk, while Sy will be greater or smaller depending on the updates assattatthe process
operation to perform. If a client request performs a lot camges its corresponding update propagation
message will be greater th&f; andk. Thus, in order to present a more accurate study it will beessary
to extend this work including an analysis of the workloadfpes of different client requests.

Anyway, it can be observed that introducing amnesia supgmets not alter among different config-
urations their original performance cost order. Moreowensidering that nowadays computers increase
faster their computation power than increase the netwdris bandwith it can be stated that the overhead
introduced for supporting amnesia does not affect signiflgahe performance of these replicated systems.

6.2 Replica Level

The overhead introduced at replica level derives from tlog tlaat each replica must log the external ac-
cesses which imply permanent effects. As it has been sado¢hfor each external access is performed in

two steps, one before sending the signal/message, andigrenegeiving the respective acknowledgement.

In order to calculate the overhead associated to an operatiomust know the number of external
accesses which imply the permanent changes. Assumiag this number, the log associated to this
operation must have entries, and the associated overhead for supporting amfeestach of its external
accesses is shown in table 3. The times are expressed inrtgeteams used for presenting the overhead
at replication level, compiled in table 1. But in this casewse\ term for communications cost, because
we assume that external devices are connected to nodegkthpoint to point channels.

Configuration | Time
BPT PYEES

Sy

PTSA 2+ + M sz 1+ D)+

Table 3: Processing Times for each External Access.

It must be noticed, that to quantify this overhead is verfialift because it will depend on the pro-
cessing time in the external devigevalue that will present a great variance among differemtais (e.g.
sensors or printers). Moreover, it also will depend on thesage size —which can present great differences
among external accesses for different devices—, and oopheaundary of the used communications chan-
nel —different for each accessed device—. Thus it will bg irgteresting to categorize the external accesses
attending to the accessed external devices.

As it has been said previously in 5.2, if communications afiable and the external device can store
received messages, the process only must log the send rafsgagl event shorting very much the intro-
duced overhead.

7 Related Work

Literature has largely treated the recovery problem inrifisted systems, either transacional systems [2,
20, 19] or process replicated systems [4, 13]. But in spitéhisf fact, the recovey protocols presented
for process replication have largely assumed the fail-&dpre model, where the proposed solution for
solving the recovery problem is to transfer the whole state hew replica.

As it has been commented in this paper, this proposal preggdd behavior in replicated systems
which manage few state amounts, where to transfer the witaie does not imply a high impact in the
system performance. But, when we talk about systems witfelamounts of data state, to transfer the
whole data state will imply a cost that can not be toleratetler&fore, it is necessary to adopt another
strategy for providing fault tolerance. This strategy ireplto recover previous crashed replicas transferring
only the information that they have lost, assuming the crasbvery with partial amnesia failure model,
and being therefore necessary to deal with the amnesia ptemm. Assumption, that has been already
proposed for replicated databases [5, 6].

Obviously, to transfer the whole state approach will avbiel @amnesia problem, but as it has been said
we are trying to avoid this approach when managing large statounts. Moreover, this approach also
increases its complexity if it needs to transfer the repdixgernal devices state —being necessary to collect
and transfer it—, while our proposal avoids this complexity

Other recovery strategy studied in the distributed systéerature —not focused on replicated systems—
is thecheckpoint-basetbllback recovery [13], also known dollback-Recovergrotocols. In this case,
this strategy forces each node to store periodically a ghick of its state, then if a crash occurs when the
replica becomes alive applies the last checkpoint perfdrofaining a consistent state. But, this strategy
does not support the amnesia phenomenon because it camexisk gap between the last checkpoint
performed in the replica and the work really performed irfiéathe checkpoint. If this solution is adopted
in a replicated system the amnesia support in a crashedaegan be provided forcing a not crashed replica
to transfer to the crashed one the changes performed aftesitreally applied change.

But, in [13], it is also surveyed a recovery strategy whiclmbinescheckpoint-basegolicies with
message loggingrhis other approach provides support for the amnesia proldh a natural way. This is

due to the fact thdbg-basedrecovery strategies, also widely studied in the literataseit is the combi-
nation ofcheckpoint-basegolicies withmessage loggingre the ones that can provide amnesia support
considering the changes pointed out in this work.

On the other hand, literature has not studied extensivelptbblems associated to redoing the work in
recovery processes for process replicated systems betteaysesually have preferred to transfer the whole
state. Few papers ,as [23], have considered it. But, ingtkbtils fact, some research has been done in the
area of generic distributed systems [18]. Contrarily, iga to the exactly-once semantics a lot of work
has been done [17].

It must be said that a similar study related to the amnesipatipnd its associated overhead in trans-
actional replicated systems is presented in [11].

8 Conclusions

This paper details that the fail-stop failure model doespnovide good recovery time when process repli-
cated systems manage large state amounts, presentingsherecovery with partial amnesia failure model
as the best option for these scenarios.

But, the paper points out that this failure model assumpitigplies that recovery protocols must be
enabled to deal with the amnesia phenomenon. Thus, in thex pae have described how this phenomenon
manifests at two different levels: transport and replicadAit has proposed solutions for overcoming them
in log-based recovery strategies. In this solution, it igegispecial importance to the managing way for
the amnesia problem at replica level due to the work natureplfca process.

Besides, it can be inferred that our solution handles thereat devices state from a recovery point of
view in a simpler and cheaper way than the whole state transf®very solution. This last one will be
forced, in order to avoid diverging states, to collect andrémsfer the state associated to these external
devices.

Finally, it is analyzed the overhead introduced for our megd solutions for supporting amnesia. At
transport level, the study has considered the four main gordtion types of process replication established
in [24]. And at replica level it has been noticed the greatrbegad variability associated to this amnesia
support.

References

[1] O. Babaoglu, A. Bartoli, and G. Dini. Enriched view symony: A programming paradigm for partitionable
asynchronous distributed systeniSEE Trans. Comput46(6):642-658, 1997.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodma@oncurrency Control and Recovery in Database Systems
Addison Wesley, Reading, MA, EE.UU., 1987.

[3] K.P.Birman and R. V. RenessReliable Distributed Computing with the ISIS ToalkEEE Computer Society
Press, Los Alamitos, CA, USA, 1993.

[4] A.Borg, W. Blau, W. Graetsch, F. Herrmann, and W. ObeHRault tolerance under unibACM Trans. Comput.
Syst, 7(1):1-24, 1989.

[5] F. Castro, J. Esparza, M. Ruiz, L. Irin, H. Decker, antBfioz. CLOB: Communication support for efficient
replicated database recovery. 18th Euromicro PDP pages 314-321, Lugano, Sw, 2005. IEEE Computer
Society.

[6] F. Castro, L. Irln, F. Garcia, and F. Mufioz. FOBTr: Asien-based recovery protocol for replicated databases.
In 13th Euromicro PDRPpages 306—-313, Lugano, Sw, 2005.

[7] G.V.Chockler, I. Keidar, and R. Vitenberg. Group comriuation specifications: A comprehensive stuAZM
Computing Survey#(33):1-43, 2001.

[8] F. Cristian. Understanding fault-tolerant distribdtgystemsCommunications of the ACN34(2):56—78, 1991.

[9] R.de Juan-Marin. (n/2+1) alive nodes progress comdlitin Sixth European Dependable Computing Conference,
EDCC-§ 2006.

[10] R. de Juan-Marin, H. Decker, and F. D. Mufioz-EscoéviRting hot passive replication. nd International
Conference on Availability, Reliability and SecuritigEE, 2007.

[11] R. de Juan-Marin, L. IrGn-Briz, and F. D. Mufioz-Esc&upporting amnesia in log-based recovery protocols.
Technical report, ITI-ITE-07/01, Instituto Tecnoldgide Informatica, 2007.

10

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]

[24]

X. Défago, A. Schiper, and P. Urban. Total order brmast and multicast algorithms: Taxonomy and survey.
ACM Comput. Sury36(4):372—-421, 2004.

E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnsofs.survey of rollback-recovery protocols in message-
passing system®CM Comput. Sury.34(3):375-408, 2002.

E. N. Elnozahy and W. Zwaenepoel. On the use and impléatien of message logging. IRTCS pages
298-307, 1994.

J. Gray and A. ReutefTransaction Processing: Concepts and Technigidergan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1992.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcastkrelated problems. In S. Mullender, ediistributed
Systemschapter 5, pages 97-145. ACM Press, 1993.

Y. Huang and H. Garcia-Molina. Exactly-once semantics replicated messaging system. ICDE, pages
3-12. IEEE Computer Society, 2001.

Y. Huang and C. M. R. Kintala. Software implemented faalerance technologies and experience FI'CS
pages 2-9, 1993.

R. Jiménez-Peris, M. Patifio-Martinez, and G. Amn&on-intrusive, parallel recovery of replicated data. In
SRDS$S pages 150-159. IEEE Computer Society, 2002.

B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfafion in replicated databases based on group commu-
nication. Inintl.Conf.on Dependable Systems and Netwqukges 117-130, Washington, DC, USA, 2001.

L. Lamport, R. E. Shostak, and M. C. Pease. The byzaggémerals problemACM Trans. Program. Lang. Syst.
4(3):382-401, 1982.

D. B. Lomet. Process structuring, synchronizatiord egcovery using atomic actions. Language Design for
Reliable Softwaregpages 128-137, 1977.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. dafgly consistent replication and recovery of fault-
tolerant corba application€omput. Syst. Sci. End.7(2):103-114, 2002.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. #dorlUnderstanding replication in databases and
distributed systems. IICDCS page 464, Washington, DC, USA, 2000. IEEE Computer Saciety

11

